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Abstract—Understanding behavioral patterns and 

forecasting the bodily motions of persons heavily relies on 

detecting human activities. This has profound ramifications in 

several domains, including healthcare, sports, and security. This 

study sought to identify and classify 18 human actions recorded 

by 90 people using smartphone sensors using the KU-HAR 

dataset. The primary aim of this study is to examine statistical 

features such as (mean, mod, entropy, max, median …etc.) 

derived from time-domain sensory data collected using 

accelerometers and gyroscopes. Activity detection utilizes many 

machine learning methods such as Random Forest (RF), 

Decision Tree (DT), Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Logistic Regression (LG), Naïve Bayes (NB), 

and AdaBoost. The RF model achieves the highest overall 

accuracy of 99%. While the DT model gets 95%, SVM receives 

93%, and the KNN gets 82%. At the same time, the other model 

didn’t get good results. The research is evaluated using 

accuracy, recall, precision, and f1-scor. The research 

contribution is to extract the statistical feature from the raw file 

of the sensor to create a new dataset. This research recommends 

employing statistical features in time series. Future research is 

recommended to solve misclassification in certain activities, 

which could be achieved using feature selection to reduce the 

number of features. 

Keywords—Human Activity; Classification Algorithms; 

Wearable Sensor; Tsfresh; Statistical Feature. 

I. INTRODUCTION  

There is a growing need to improve the living conditions 

of elderly individuals [1] by using technology and artificial 

intelligence to tackle cognitive and physical disabilities [2], 

guarantee safety [3], and aid in daily living activities (ADL) 

[4]. Human Activity Recognition (HAR) uses sensor 

technologies to anticipate and categorize human behaviors 

[5]. HAR is important in this effort [6]. Human Activity 

Recognition (HAR) can accurately recognize and classify 

daily activities using smartphone data from accelerometers 

and gyroscopes [7]. This technology is valuable for 

monitoring and enhancing individual health and lifestyle 

trends [8]. Nevertheless, deriving significant insights from 

this data is difficult owing to its intricate nature [9]. This 

project aims to enhance Human Activity Recognition (HAR) 

by creating new datasets and employing a range of machine 

learning and deep learning algorithms [10]. The goal is to 

obtain higher levels of precision and dependability in 

recognizing activities, which is crucial for healthcare 

applications, geriatric monitoring, and other related domains 

[11]. 

Numerous applications in healthcare [12] Stand to benefit 

in the present day from developments in wireless networking 

technology [13], peripheral devices [14], information and 

communication technology [15], and smartphones [16]These 

developments facilitate examining large-scale patient data, 

medical images, recordings, and images using data mining 

technologies. Moreover, these technologies enable the 

identification of human activity in daily life routines. [17]. 

Activity is the motion of the body or the part of it with 

time and gravity  [18, 19]. Human Activity Recognition 

(HAR) is a classification project that entails the 

categorization of an individual's activity through the 

utilization of data acquired from various sources, such as 

sensors [20] and cameras [21] , The healthcare industry 

extensively utilizes it for many purposes, namely in the 

ongoing surveillance of activities and identification of falls in 

elderly individuals [22]. Furthermore, it exhibits considerable 

promise in enabling the advancement of many applications, 

including indoor localization [23], augmented reality [24], 

and the Internet of Things (IoT) [25], inside intelligent 

building control systems[26]. These applications aim to 

deliver a comfortable environment while maintaining high 

efficiency of energy [27] [28]. HAR is divided into two 

approaches: vision-based and sensor-based.  

In vision-based human activity recognition [29], the 

objective is to predict actions [30], activities [31], or 

movements by utilizing visual data obtained from cameras 

[32], consisting of photos or videos [33]. The process entails 

examining video frames or photographs to comprehend and 

analyze human motions. [34], gestures [35], and behaviors 

[36]. The researchers prioritize the improvement of 

recognition accuracy and efficiency by the extraction of 

significant characteristics from visual input, as seen in Fig. 1. 

Vision-based methods for recognizing human activity have 

several advantages [37], such as capturing detailed 

information [38], being non-intrusive [39], having wide-

ranging applications [40], being scalable [41], adaptable to 

changing environments [42], and combining several modes 

of data [43]. Nevertheless, it has challenges such as 

safeguarding privacy [44], optimizing resource use [45], and 

addressing blind spots [46]. 
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Fig. 1. Process of human recognition  

Sensor-based human activity detection involves using 

many sensor types, including accelerometers, gyroscopes, 

and magnetometers, to gather data about motion, orientation, 

and physiological signals [47]. The sensory data collected is 

analyzed to identify and categorize particular activities or 

behaviors exhibited by individuals. Sensor-based researchers 

employ a range of devices [48]. They are outfitted with 

sensors, including glasses [49], cellphones [50], watches 

[51], wristbands [52], chest patches [53], and shoes refer to 

Fig. 2. [46]. Sensors such as accelerometers, gyroscopes, 

proximity sensors, and magnetometers are included in cell 

phones. The utilization of these sensors enables the 

measurement of our physical activity [54]. An accelerometer 

is a device that measures the change in velocity of an object 

over time or a body at rest, while a gyroscope can detect 

movements that are difficult for humans to perceive, such as 

rotation and changes in orientation [55]. The proliferation of 

apps and computing capabilities has led to a notable surge in 

the popularity of smartphones in recent years [56].  

 

Fig. 2. Sensors position 

Sensor-based methodologies have several benefits. They 

enable the collection of data at any location and moment and 

can offer information tailored to the user [57]. The 

proliferation of commercially available wearable gadgets has 

led to significant growth [58]. The problem of varying 

measuring conditions, including the type of device [59], 

possession method, wearing technique, and measurement 

application continue to exist. The conditions above may 

exhibit variability across users and different measurement 

dates [60]. 

In this research, machine learning algorithms are used 

along with the KU_HAR dataset to recognize human activity. 

The KU_HAR dataset comprises data on 18 distinct activities 

obtained from 90 participants, 75 males and 15 females. The 

data was gathered utilizing sensors embedded in 

smartphones., specifically the Accelerometer and Gyroscope; 

we will describe more detail in the methodology section [55]. 

This dataset is available on the Kaggle website, and there are 

a few studies on it, but no one uses extracted statistical 

features from it. Statistical features are extracted from raw 

data in the KU_HAR dataset. To recognize human activity 

using machine learning algorithms like “Random Forest” 

algorithm (RF), Decision Tree algorithm (DT), “Support 

Vector Machine” algorithm (SVM), K-Nearest Neighbor 

(KNN), Logistic Regression (LG), Naïve Bayes (NB), and 

AdaBoost. 

The research contribution is: 

• Develop an intelligent model using a mobile inertial 

sensor to recognize human activity. 

• By extracting statistical features from the sensor's raw 

file, create a new dataset different from the original in 

size, sample rate, and features. 

• Obtain high accuracy during training and validation. 

The rest of the study unfolds as follows: section (III) 

describes the previous studies on HAR that are helpful to 

understanding the related work to the research, section (IV) 

describes the research methodology that is applied to the 

research dataset, including the data collection, preprocessing, 

Data balance, Model evaluation, and confusion metrics, and 

section (V) presents the results and discussion of the study. 

Lastly, section (VII) serves as the conclusion, summarizing 

the most important discoveries and outlining potential 

directions for further research to develop the HAR field. 

II. LITERATURE REVIEW  

The scholarly literature about HAR has garnered 

significant academic interest in recent times. Multiple 

research has concentrated on identifying diverse behaviors 

through mobile sensors. Researchers undertook a series of 

studies exploring different approaches and tactics for Human 

Activity Recognition (HAR) to characterize human actions 

using sensor data accurately. 

In [55] The author compiled the KU-HAR dataset using a 

mobile sensor. The dataset has 18 distinct categories 

collected from 90 individuals, with 20,750 sub-samples. The 

author implemented the Random Forest method and achieved 

a 90% accuracy rate. The study dataset is utilized in our 

suggested work. The dataset is vast, with several individuals 

involved in its collection in 2021. It encompasses 18 distinct 

classifications.  

In [61] The author categorizes six human activity 

recognition (HAR) activities: standing, sitting, descending 

stairs, ascending stairs, lying down, and walking. The author 

used a dataset from a smartphone's accelerometer and 

gyroscope sensors and applied machine learning and deep 

learning techniques to analyze the data. After extracting 561 

features, the 1DCNN and SVM models obtained superior 

results, with a 96% accuracy rate. 

In [62], The author introduces a feature fusion system that 

combines manually crafted and automatically obtained 

features using a deep learning method for Human Activity 

Recognition (HAR). The author has devised a Maximum Full 

a Posterior (MFAP) approach to enhance the effectiveness of 

HAR, taking into account common human behavioral 

tendencies. The experimental findings indicate that the 

proposed methodology surpasses the most advanced 

techniques in a publicly available dataset and a dataset 

collected by the author. 
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In [26] The author suggests integrating residual structure 

and layer normalization into a bidirectional long-short-term 

memory network (BLSTM). This integration will expand the 

capabilities of extracting features and improve the stability 

and accuracy of recognizing activities. The author assessed 

the model's performance by conducting tests on the KU-HAR 

dataset, resulting in a 97% accuracy rate. 

In [63] The author proposed an architecture called 

DeepCNN-RF, which integrates a convolutional neural 

network (CNN) with a random forest classifier to introduce 

unpredictability into the model. The suggested models have 

been tested using publically available HAR Datasets, such as 

UCI HAR and WISDM Dataset. The experimental results 

demonstrate that the hybrid models outperform the most 

sophisticated data mining and machine learning methods in 

UCI HAR and WISDM, obtaining an accuracy of 97.77% and 

98.2%, respectively. 

In [64] The author proposes an all-encompassing activity 

detection framework that utilizes deep learning by integrating 

Convolutional Neural Network (CNN) and Long Short-Term 

Memory Network (LSTM). The CNN-LSTM approach 

improves the precision of forecasting human actions by 

examining unprocessed data. Furthermore, it streamlines the 

model and removes the need for specialist feature 

engineering. The model exhibits a 99% level of accuracy 

when evaluated on the iSPL dataset, which is an internal 

dataset. When evaluated on the UCI HAR public dataset, it 

achieves an accuracy of 92%. 

In [65] The author introduced a one-dimensional 

convolutional neural network (1D-CNN) model to identify 

and classify human behavior. He utilized the model on the 

Motion Sense dataset, which was gathered using a 

smartphone's accelerometer and gyroscope sensor. After 

undergoing testing, the model attained a 96% accuracy. 

We conduct a comparative analysis of our proposed study 

with relevant prior research to differentiate it from them. The 

factors we take into account include the dataset's balance or 

imbalance, the number of data collectors, the number of 

classes, the specific sensors used (limited to accelerometer 

and gyroscope), whether the data is preprocessed, the dataset 

size, the algorithms applied, the number of features, and the 

accuracy. Table I shows the compared table. 

According to Table I, our suggested study demonstrates 

significant differences from prior studies. We have achieved 

much higher accuracy on the KU-HAR dataset than a 

previous study that utilized the same dataset. In addition, our 

strategy encompasses both balanced and unbalanced 

scenarios for training, which is uncommon in prior studies 

that frequently overlook the need for data balancing. We 

utilize seven distinct algorithms and extract statistical 

characteristics to improve the efficiency and resilience of 

human activity identification. 

III. METHODOLOGY  

A. Methodology  

This section provides an overview of the technique 

utilized in the study, which includes gathering the dataset, 

preprocessing procedures, and dividing data for training and 

evaluating the model, as seen in Fig. 3. It also provides a 

comprehensive overview of each step involved in the 

suggested technique. The subsequent sequence encompasses 

the specifics of each step within the proposed methodology. 

 

Fig. 3. The proposed steps of the Human Activity  

In this paper, we work on the original data of the sensor 

by extracting statistical features every 5 seconds to create a 

new dataset that is different from the original one. 

TABLE I.  COMPARED WITH RELATED WORK 

Paper Dataset name Balance 
No of 
users 

No of 
classes 

Sensor Preprocessing 
Size of 
dataset 

Model 
No of 

Features 
Performance 

Proposed KU-HAR 

Balance 

and 

imbalance 

90 18 
ACC, 
GYR 

Yes 

12448 

sample 

2808 
sample 

23562 

sample 

RF, DT, 
SVM, 

KNN, LG, 

NB, 
AdaBoost 

4698 
99%, 78%, 

72% 

[61] UCI HAR imbalance - 6 
ACC, 

GYR 
Yes 10299 1DCNN 561 96.13% 

[62] Private name imbalance 12 6 
ACC, 

GYR 
- 4752 MFAP - 98.85% 

[26] KU-HAR imbalance 90 18 
ACC, 

GYR 
Yes 20,750 

1DCNN-

ResBLSTM 
- 97.89% 

[63] UCI HAR imbalance 30 6 
ACC, 
GYR 

Yes 10299 CNN+RF 561 98.2% 

[64] UCI HAR imbalance 30 6 
ACC, 

GYR 
Yes 10299 

CNN-

LSTM 
- 92.2% 

[65] MotionSense Imbalance 24 6 
ACC, 
GYR 

Yes - 1DCNN - 96.77% 
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B. Data Collection  

The dataset utilized in this study was KU-HAR [55] 

Which was acquired from a cohort of 90 participants by 

positioning the phone in a waist bag. In the context of data 

collection, Fig. 4. depicts the act of carrying a smartphone. 

The data collected by the smartphone's accelerometer and 

gyroscope sensors occurred at 100 Hz. The data consists of 

18 distinct activities, sitting (1 min), standing (1 min), 

running  20 meters, walking 20 meters, Talk-sit with hand 

movements while sitting (1 min), Stand-sit (5 times), 

descending stairs (≈50 s), Talk-stand with hand movements 

while standing or walking (1 min), Laying (1 min), 

transitioning from lying down to standing (5 times), 

performing push-ups (5 times), jumping (10 times), picking 

up objects (10 times), sitting up (5 times), walking backward 

20 meters, Walk-circle (≈ 20 s), ascending stairs (≈1 min), 

and engaging in table tennis  (1 min). Table II displays the 

specific information of the KU-HAR dataset.  

 

Fig. 4. Position of the smartphone 

TABLE II.  DETAIL OF THE DATASET  

Number of participants: 90 

Number of males: 75 

Number of females: 15 

Range of age: 18 – 34 

Age average: 21.7 

Range of weight: 42.2 

Weight average: 63.2 

Preexisting heart conditions: 2 

 

C. Preprocessing  

The preprocessing stage involves several key steps, 

including data cleaning, segmentation of the data, feature 

extraction, and data splitting. These steps lay the foundation 

for analyzing and classifying human activities. Data cleaning 

is the initial step in pre-processing, and it aims to remove 

redundant data. The data could include a signal without a 

value, representing the recording activities' start period. 

Consequently, the KU-HAR dataset was cleaned by 

eliminating the first millisecond of each sensor signal using a 

programming code to clean all files of the sensor by 

examining the first row of the sensor file. If the value is zero 

or repeated value, then it is removed, because the person did 

not begin to move. These sensor datasets are subsequently 

Segmented into "windows" with predefined sampling 

intervals. Each display contains a tiny window that Denotes 

the signal received from the sensor. In this study, the 

windows are segmented into non-overlapping windows with 

500 data points, corresponding to 5 seconds for each activity. 

Fig. 5. show an example of how data is segmented. The red 

color data will represent a single sample for the activity, and 

the blue color will represent the second sample of the same 

activity because this file is for one activity, and the green 

color is the same; every activity has a different file. 

Therefore, the labeling process will not be confusing, Fig. 6. 

shows how the segmented data point is transferred. 

 

Fig. 5. Segmented raw data  

 

Fig. 6. Feature extracted from segmented data points 

Extracting sensor features in time-series data is crucial to 

train a model effectively. Therefore, the statistical features 

are extracted from the original file of the collected dataset. In 

this research, the tsFresh Python package was used to extract 

features such as maximum, minimum, mean, median, 

standard deviation, variance, skewness, root mean square, 

signal energy, number of peaks, peak-to-peak amplitude, 

interquartile range, absolute area under the curve, zero-

crossing rate, autocorrelation, correlation coefficient, 

entropy, mean absolute deviation, the time between peaks, 

etc. [66]. This happens by taking the first segment of the first 

column of the accelerometer, and extract statistical features 

from it. Then continue to the other column of the same 

segment. As a result of using tsfresh, 783 features were 

generated for each segment in the sensor channel, totaling 

4698 features and yielding 12448 samples for all activity raw 

files. Finally, the dataset is split into training and testing sets. 

The set training constituted 70 % of the dataset, the remaining 

30% comprising the testing set. 

D. Data Balance  

The issue of imbalanced data categorization arises when 

a significant disparity in the proportional class sizes within a 

given dataset [67]. It is a straightforward and widely used 

method to equalize the distribution of classes in the training 

data. One of the methods used to achieve balance in the 

original data space is Random Over-sampling (ROS) or 

Random Under-sampling (RUS) [68]. As shown in Fig. 7. 
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Fig. 7. Over-sampling and Under-sampling methods          

In this research, to get the best accuracy results, we train 

the model in two scenarios, one with an imbalanced dataset 

and the other with a balanced dataset, by applying both over- 

and under-sampling methods. 

E. Model Evaluation   

Several methods, such as a confusion matrix, accuracy, 

recall, precision, and F-score, may be used to assess a 

classification model's efficacy. [69]. These metrics are widely 

employed in academic literature. These indicators aid in 

evaluating the efficacy of the classification model, 

pinpointing regions of suboptimal performance [70], and 

guiding necessary modifications. The methodologies 

employed in the current investigation are outlined in a 

comprehensive manner below [71]. 

F. Confusion Metrics   

The confusion matrix is a matrix with dimensions of N by 

N, which is utilized to evaluate the efficacy of model 

classification. The variable "N" denotes the aggregate 

number of target categories in the present context. The matrix 

facilitates comparing the observed goal values and the 

machine learning model. Algorithm's anticipated target 

values [72]. The measurements of the confusion matrix and 

positive/negative results are shown in Fig. 8. 

 

Fig. 8. Confusion metrics  

• (True Positives) (TP) represents the instances in which a 

model accurately identifies samples in the positive class 

[73]. 

• (True Negatives) (TN) are the instances in which the 

model identifies samples correctly about harmful 

category [74]. 

• (False Positives) (FP) is the instances where The model 

misclassified the negative class samples as the positive 

class [75]. 

• (False Negatives) (FN) represent the positive class values 

that the model incorrectly classified as the negative class 

[76]. 

Recall, also called Sensitivity, inquires about the 

algorithm's ability to identify all relevant cases correctly. This 

quantifies the classifier's capacity to recognize positive 

instances accurately and is referred to as the actual Positive 

Rate) (TPR) [77]. 

Precision requires a specific count of errors made in the 

relevant cases. This refers to the positive predictive value of 

the classifier, which indicates the accuracy of predictions 

[78]. 

The formulas for “precision” and “recall” are presented in 

Equations (1) and (2). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃   +    𝐹𝑃
      (1) 

𝑅𝑒𝑐𝑎𝑙𝑙    =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (2) 

Accuracy: Classification accuracy measures the 

proportion of correct predictions [79]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   =  
𝑇𝑃   +   𝑇𝑁

𝑇𝑝 + 𝑇𝑁 + 𝐹𝑃 +   𝐹𝑁
   (3) 

The F-score: known as the f1_score, is a metric that 

measures the model's precision on a dataset. The F1_score is 

a standard metric for evaluating models of machine learning. 

It is a technique that merges the “recall” and “precision” of 

the model, as described in Equation (4).  It is the harmonic 

range of “precision” and “recall” of the model [80]. 

                 𝐹1 −  𝑠𝑐𝑜𝑟 =
2

1 ÷ 𝑟𝑒𝑐𝑎𝑙𝑙  × 1 ÷ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
=

 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
=

𝑇𝑃

𝑇𝑃+ 
1

2
 (𝐹𝑃+𝐹𝑁)

 
(4) 

IV. RESULTS  

Our model was trained using the Jupyter Notebook 

environment, namely the Google Collab service, which is 

free [81]. This service facilitates the provision of computer 

resources, including 12.7 Gigabyte (GB) system Random 

Access Memory (RAM), 16 GB GPUs, and more than 78 GB 

Hard desk for temporary data saving [81]. The aim is to 

design a model that can accurately recognize human activity 

using the accelerometer and gyroscope built into 

smartphones. This is important because smartphones are 

constantly with people and should not violate their privacy. 

In this research, the final testing result for the model after 

applying the machine learning algorithm and tsfresh for 

feature extraction shows good accuracy in RF, DT, SVM, and 

KNN. and shows no results in some models like 

LogisticRegression, Naive Bayes, and AdaBoost. Table II 

shows the final result. 
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TABLE III.  THE FINAL RESULTS  

 accuracy precision recall f1-score 

RF 99 % 98% 98% 98% 

DT 95% 95% 95% 95% 

SVM 93% 93% 93% 93% 

KNN 82% 83% 82% 82% 

 

We got many results because we tested seven models with 

balanced and imbalanced data and with over-sampling and 

under-sampling. Therefore, we will present only the good 

results we got, which were in over-sampling.  

It should be noted that no previous studies used statistical 

features with the KU-HAR dataset. And the advantage of 

using statistical features by tsfresh is that it extracts all the 

statistical automatically. 

After training and evaluating the model, tsfresh is applied 

to extract the feature and machine learning algorithms; we get 

the result as shown in Table II. The RF gets the best (99%) 

accuracy, (98 %) precision, (98%) recall, and (98 %) F1-

score. Fig. 9. shows the RF confusion matrix for each activity. 

The DT gets (95%) accuracy, 95% precision, 95% recall, and 

95% F1-score Fig. 10. Shows the DT confusion matrix for 

each activity. The SVM got (93%) accuracy, (93%) precision, 

(93%) recall, and (93%) F1-score Fig. 11. shows the SVM 

confusion matrix for each activity. The KNN got 82% 

accuracy, 83% precision, 82% recall, and 82% F1-score Fig. 

12. shows the KNN confusion matrix for each activity. 

 

Fig. 9. RF confusion matrix 

From the confusion matrix of the RF model in Fig. 9, we 

realize that all classes get high accuracy, but there is a slight 

mislabeling. For example, in class Sitting, there is a slight 

miss with class Lay, and class Standing with class Sitting. 

The other courses also have mislabeling, but not over 3%, and 

not for all of them. This miss is small in value and does not 

affect the model's efficiency. 

 

Fig. 10. DT confusion matrix  

From the confusion matrix of the DT model in Fig. 10, we 

realize that all classes get high accuracy, but there is a slight 

mislabeling in all classes. For example, in class Sitting, there 

is a slight mislabeling with class Lay and class Lay with class 

Sitting. The other classes also have mislabeling, but not over 

7%, and not for all of them. This miss is small in value and 

does not affect the model's efficiency. 

 

Fig. 11. SVM confusion matrix 

From the confusion matrix of the SVM model in Fig. 11, 

we realize that the miss-labeling value increases to 14%, like 

in Standing with class Lay. The other courses have also been 

missed, but not by more than 14%, and only the last two 

classes show 100% accuracy. 

 

Fig. 12. KNN confusion matrix 

From the confusion matrix of the KNN model in Fig. 12, 

we realize that the missed labeling value increases to 15.6%, 

like in class TalkStand with class LayStand. The other 

courses have missed labels, but not over 15.6% and no class 

shows 100% accuracy. This may be because there is a 

similarity in features that confuses the model. 

V. CONCLUSION  

This study highlights the importance of recognizing 

human activity in several industries, including healthcare, 

sports, and security, by using the functionalities of 

smartphone sensors and focusing on extracting statistical 

features from sensory data collected over time. We aimed to 

identify 18 fundamental human behaviors gathered using 

accelerometers and gyroscopes. Our research contribution is 

to develop an intelligent model using a mobile inertial sensor 

to recognize human activity. By extracting statistical features 

from the sensor's raw file, create a new dataset different from 

the original in size, sample rate, and features. A range of 

machine learning techniques, including RF, DT, SVM, KNN, 

LG, NB, and AdaBoost, were employed to assess different 
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levels of accuracy. The KNN model exhibited strong 

performance in this investigation, with an accuracy rate of 

82%. The SVM model was 93% accurate. DT model was 

95% correct. The RF model achieves a high accuracy rate of 

99 percent. The Logistic Regression, Naïve Bayes, and 

AdaBoost show an alarming accuracy rate of 10%. This may 

be because it has a labeling issue or because the number of 

features is high. This study indicates that extracting statistical 

features enhances the recognition of activities. Future 

research should explore novel approaches to fix the problem 

of mislabeling, which can be applied by feature selection and 

deep learning algorithms. A hybrid model using a sensor and 

camera dataset is also recommended. 
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