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Abstract—Coronary diseases (CVD) are a major global 

health concern, and timely, accurate diagnosis is crucial for 

effective treatment and management. As machine learning is, 

has steadily been on the improvement way, and it's there where 

we find the transformative potential for enhancing the 

diagnostic accuracy for their predictive accuracy using the 

Local Interpretable Model-agnostic Explanations technique to 

ensure the explainability of our models. With the advancement 

of machine learning, we aim to enhance diagnostic accuracy by 

developing a high-precision prediction tool for heart disease 

using various ML models. We utilized a Kaggle dataset to 

implement several ML models, including Random Forest, 

Gradient Boosting, CatBoost, K-Nearest Neighbor, Naive Bayes, 

Support Vector Machine, and AdaBoost, with appropriate data 

preprocessing. The soft voting ensemble method, combining 

various models, achieved a notable 98.54% accuracy and 99% 

precision, recall, and f1-score, with Random Forest, CatBoost, 

and the Voting Classifier outperforming others. These results 

indicate that our model is highly reliable and sets a new 

standard for CVD prediction. Future research should focus on 

validating this model with larger datasets and exploring deep 

learning approaches. 

Keywords—Cardiovascular Disease Prediction; Machine 

Learning; Ensemble Learning; Soft Voting Classifier. 

I. INTRODUCTION 

Cardiovascular diseases (CVDs) are the leading cause of 

death globally, accounting for 17.9 million deaths annually 

[1]. This number is projected to rise to 23.6 million by 2030 

[2], with a significant impact on low- to middle-income 

countries [3][4]. Contributory risk factors to HD are diverse 

and include, for example, unhealthy diets, tobacco use, and 

the high prevalence of obesity in developed countries [5][6]. 

Risk factors for heart disease include unhealthy diets, tobacco 

use, and obesity. In low- to middle-income countries, the 

adoption of similar lifestyles and rapid urbanization have led 

to a rising prevalence of chronic diseases [4]. Furthermore, 

CVDs impose a substantial economic burden, estimated at 

USD 3.7 trillion globally from 2010 to 2015 [7][8]. This 

reveals that the diseases are characterized by massive 

financial effects on an economy [24] [25]. They help in the 

fighting of HD through the availability and access to 

diagnostic technologies, for instance, electrocardiograms and 

CT scans, especially in resource-limited settings. This 

ultimately leads to late or failed diagnoses that further 

increase the health and economic burdens [4]. Early detection 

and accurate diagnosis are crucial for effective treatment and 

prevention of CVDs, especially in resource-limited settings. 

Machine learning (ML) and data mining techniques offer 

promising solutions by identifying patterns in large datasets, 

which can lead to more accurate and early diagnosis of heart 

diseases [26] [27], which may be lifesaving, including for the 

affected individual and the health system burdening their 

finances. Data mining is the analytic process that helps in 

identifying necessary information from large datasets in 

different domains, among which medicine has its need in this 

area of activity. This is exactly what healthcare needs most: 

to extract the hidden pattern from vast repositories of patient 

data for making better diagnostic decisions [9]. Artificial 

intelligence, being relatively new and fast growing, comes 

hand in hand with ML to play the most crucial role in 

analyzing these extensive medical datasets [28] [29]. Its 

algorithm customizes the hard and non-linear interactions of 

all the other diverse health factors in such a way that the 

prediction accuracy is maximized and minimized in the 

difference between expected and real outcomes [10]. These 

have become very essential in the diagnosis, instrumental for 

the prediction of different diseases, including HD [11] [30] 

[31]. 

Previous years have seen an application of these 

techniques in predicting the probability of HD development 

[32] [33]. Factors predicting it include diabetes, high blood 

pressure, levels of cholesterol, and abnormal pulse rates [12]. 

However, often the medical data available are incomplete, 

which can impact the accuracy of HD prediction [34] [35]. It 

has been demonstrated in previous work that data mining has 

applications in the prediction of diseases [36][37][13], but 

accurate predictions are yet to be decided, especially with 

specific regard to the progression of diseases like HD [14].  

Numerous studies have utilized machine learning models 

for the classification of heart diseases to this point [60, 61], 

yet many of these models have lacked sufficient explanatory 

power. Recent advancements in explainable machine 

learning [62, 63] have introduced a fresh research perspective 

focused on explicating the models deployed in the 

classification of heart diseases. In this area, a limited yet 

significant body of work has emerged. The most prevalent 

frameworks for elucidating machine learning models include 

LIME [62] and SHapley Additive exPlanations (SHAP) [65]. 

The researchers in [64] applied SHAP to elucidate the impact 

of coronary heart disease on mortality due to heart failure. 

This study aims to enhance the prediction accuracy of 

heart disease (HD) by utilizing various machine learning 

(ML) models applied to a dataset from the UCI repository, 

which is publicly available on Kaggle. We will evaluate 

individual ML algorithms [11] and integrate ensemble 

learning techniques to identify the most effective predictive 
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model. Additionally, to ensure the explainability of our 

results, we incorporate the use of explainable artificial 

intelligence (XAI) with the Local Interpretable Model-

Agnostic Explanations (LIME) technique, allowing for a 

clearer understanding of how our models make their 

predictions. This approach enhances the reliability of the 

predictions and makes the outcomes transparent and 

interpretable for healthcare professionals. 

The research contributions of our article can be articulated 

as follows: 

- This research significantly advances the predictive 

accuracy of heart disease diagnostics by employing a 

comprehensive ensemble of machine learning models. By 

integrating various algorithms, the study provides a 

robust framework that enhances the ability to predict 

heart disease more accurately than using individual 

models alone. 

- The research innovates in the optimization of ensemble 

learning strategies to combine the strengths of individual 

ML models effectively. This leads to superior 

performance in terms of predictive accuracy, reliability, 

and applicability in real-world clinical settings. 

- A key contribution of this study is the application of 

explainable artificial intelligence techniques, specifically 

the Local Interpretable Model-Agnostic Explanations 

(LIME). This approach allows for the elucidation of the 

decision-making processes of ML models, fostering trust 

and understanding among healthcare professionals by 

providing clear explanations of predictive outcomes. 

- By improving the accuracy of HD predictions, this 

research will contribute significantly to medical 

diagnostics and preventive healthcare, providing valuable 

insights into the likelihood of CVDs based on patient 

attributes such as age, gender, and medical history. 

II. RELATED WORK  

Recent advances in data mining and machine learning 

(ML) have significantly impacted healthcare, particularly 

cardiology, by efficiently analyzing large volumes of medical 

data. This has opened new avenues for algorithm 

development and testing. Heart disease (HD) remains a major 

cause of mortality in developing countries, making it a key 

research area. Utilizing data mining and ML to identify risk 

factors and early symptoms can greatly enhance the early 

detection and prevention of HD, ultimately minimizing its 

public health impact. 

Studies have demonstrated various ML techniques' 

efficacy in predicting cardiovascular diseases (CVDs). For 

instance, in [12], a hybrid model combining Random Forest 

(RF) and Linear Model (HRFLM) achieved an accuracy of 

88.7% in CVD prediction. Another study [15] employed RF, 

Decision Tree (DT), Logistic Regression (LR), Naive Bayes 

(NB), and Support Vector Machine (SVM), with DT 

achieving the highest precision of 93.19%. In [16], a K-

Nearest Neighbor (KNN) model achieved an accuracy of 

90.8% using the Cleveland HD dataset. Study [15] showed 

that RF was used, along with other ML algorithms like the 

Decision Tree (DT), Logistic Regression (LR), NB, and 

SVM, in predicting heart failure from the Cleveland Clinic 

Foundation data. These models have been cross-validated by 

10 folds, which further establish that the DT algorithm leads 

in precision with 93.19%, followed closely by the SVM of 

92.30%. This is indicative that the use of ML in the prediction 

of HD is very effective and hence forth will be a great tool in 

future research focusing on the prediction of HD. The 

researchers tried to develop a prediction model for CVD 

using ML approaches on the Cleveland HD dataset from the 

UCI repository, which contains 303 cases with 17 features 

[16]. The authors had applied to their testing various 

supervised classification methods with KNN had a maximum 

accuracy of 90.8%. Summarizing, the study has indicated that 

the KNN model seems to be the best, with the highest 

percentage accuracy of 90.8%. Research [4] highlighted the 

effectiveness of ensemble methods, with a stacked model 

combining KNN, RF, and SVM achieving 75.1% accuracy. 

Another study [17] evaluated eight data mining classifiers 

with different cross-validation methods, finding the Neural 

Network most precise for large datasets (71.82%) and RF for 

smaller datasets (89.01%). 

The investigation in [17] delved into the role of data 

mining techniques and four cross-validation methods in HD 

prediction, employing eight data mining classifiers on 

datasets from Kaggle and the UCI machine-learning 

repository. The study aimed to discover the most accurate 

combination for HD prediction, employing accuracy, 

precision, recall, and F-measure as metrics. For large datasets 

(70,000 records), the Neural Network with the holdout 

method was found to be the most precise (71.82%), whereas 

for smaller datasets (303 records), the Repeated Random 

method with RF was most effective (89.01%). This research 

seeks to assist physicians in early HD detection to potentially 

improve productivity within business organizations. 

In [18], ML techniques identified critical CVD risk 

factors in patients with metabolic-associated fatty liver 

disease, achieving accuracies of 85.11% and 79.17% for 

high-risk and low-risk groups, respectively. In [19], SVM led 

in precision (91.67%) for CVD diagnosis using electronic 

health records. Other studies [20][21][22] demonstrated the 

potential of ML models like AdaBoost and ensemble 

classifiers in achieving high accuracies for HD prediction. 

A study [19] demonstrated the developed intelligent 

systems for accurate CVD diagnosis using electronic health 

records. The research evaluated four classification 

algorithms, following a preprocessing stage with data and 

feature extraction. The result of this model evaluated on 

metrics of accuracy, precision, recall, and F1-score with 

SVM led in precision with 91.67%. 

 A new method of increasing the prediction accuracy of 

the HD was established through algorithms on the basis of six 

algorithmic models. According to [20], the research 

established a new approach for This research takes the 

Cleveland dataset from the Cleveland database, and the data 

is from IEEE Dataport, wherein the model has been 

effectively tuned using GridSearchCV and using five-fold 

cross-validation. In the Cleveland dataset, AdaBoost has been 

most effective to the tune of 90%, whereas on the IEEE 

Dataport dataset, LR displayed 90.16% accuracy. The soft 
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voting ensemble classifier of novel nature that integrates 

these six algorithms presents improved accuracies of 93.44% 

and 95% for the Cleveland and IEEE Dataport datasets, 

respectively. This means better performance over the 

individual algorithms. A study of [21] therefore focuses on 

predictive algorithms for early detection of CVD and accurate 

prediction that form central points for improving patient 

diagnosis and treatment. The study took into account the data 

of the patients collected from Khyber Teaching Hospital and 

Lady Reading Hospital, based on which DT, RF, LR, NB, and 

SVM techniques were put to take up the study classification 

and prediction of CVD. The algorithm with the highest 

accuracy (85.01%) was the RF, which hints at a possible 

universal use of this model in healthcare for C CVD 

prediction. The investigation in [22] introduced a ML-based 

prediction model (MLbPM) for HD, incorporating data 

scaling, optimal data splitting ratios, best parameter selection, 

and algorithm application. Evaluated using the University of 

California Irvine HD dataset, the MLbPM, particularly with 

the LR algorithm, achieved remarkable accuracy of 96.7%. 

This model outperformed others in accuracy, presenting a 

significant advancement in HD prediction methodologies. 

III. METHODOLOGY  

This section outlines the methodology for developing a 

heart disease prediction model, including data preprocessing, 

model training, evaluation, and the use of ensemble learning 

and Explainable AI (XAI) techniques. 

A. Proposed Heart Disease Model 

The proposed heart disease prediction model integrates 

multiple machine learning algorithms to enhance prediction 

accuracy. This process involves data preprocessing, model 

training, and evaluation using ensemble learning techniques. 

A schematic representation of an HD Prediction model Data 

from Kaggle originating is shown on Fig. 1. The process 

starts with EDA (Exploratory Data Analysis) to get an insight 

of the dataset's most prominent patterns and to spot some 

possible outliers. Data Engineering includes various stages 

such as EDA, in which the data is normalized in order to 

prepare it for modeling. 

The training and test sets are created from the predecored 

dataset to help validate the models after. Multiple individual 

models are learnt to be trained, including RF, GB, CatBoost, 

KNN, NB, SVM, and AdaBoost. Every model leverages the 

data for training, after which accuracy is tested. 

The following step is training of individual models, then 

an ensemble learning model using the soft voting method will 

be used. Each of the models mentioned above produces a 

prediction based on the specific model's weighting scheme. 

The final probability of prediction is then the average of the 

predicted probabilities. The case in point is that this type of 

methodology usually ensures a higher quality of 

performance, because it makes use of the strong sides of the 

given models to counteract their weak points. The 

performance of both the individual models and ensemble 

model is measured using a set of metrics.  

 

Fig. 1. Flowchart of proposed heart disease model 

B. Dataset Description 

The dataset used in this study is derived from the 

Cleveland database, available on the UCI repository and 

Kaggle. It includes 1025 instances with 14 attributes relevant 

to heart disease diagnosis, such as age, gender, chest pain 

type, resting blood pressure, and cholesterol levels. It also 

includes results from resting electrocardiographic tests, 

maximum heart rate achieved, exercise-induced angina, ST 

depression induced by exercise relative to rest, the slope of 

the peak exercise ST segment, and the number of major 

vessels colored by fluoroscopy, as well as the presence of 

thalassemia—a blood disorder affecting hemoglobin levels. 

The final attribute, 'target,' indicates the presence or absence 

of HD. 

TABLE I.  DATASET FEATURES DESCRIPTION 

Attribute Explanation 

age Individual's age. 

sex Individual's gender (1 = male, 0 = female). 

cp 
Chest pain type (0 = typical angina, 1 = atypical angina, 

2 = non-anginal pain, 3 = asymptomatic). 

trestbps Resting blood pressure (mm Hg). 

chol Serum cholesterol (mg/dl). 

fbs Fasting blood sugar > 120 mg/dl (1 = true, 0 = false). 

restecg 
Resting electrocardiographic findings (0 = normal, 1 = 

ST-T wave abnormality, 2 = left ventricular 

hypertrophy). 

thalach Maximum heart rate achieved. 

exang Angina induced by exercise (1 = yes, 0 = no). 

oldpeak ST depression from exercise relative to rest. 

slope 
Slope of peak exercise ST segment (0 = upsloping, 1 = 

flat, 2 = downsloping). 

ca Major vessels (0-3) shown by fluoroscopy. 

thal 
Thalassemia type (0 = normal, 1 = fixed defect, 2 = 

reversible defect). 

target Heart disease diagnosis (0 = no, 1 = yes). 

 

C. Data Analysis 

Our EDA process was meticulously designed to uncover 

patterns and detect outliers, ensuring a robust foundation for 
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the subsequent modeling steps [39]. We employed statistical 

techniques to examine the distributions of continuous 

variables such as age, resting blood pressure, and serum 

cholesterol. These variables displayed approximately normal 

distributions but with potential outliers, which were 

identified using the Interquartile Range (IQR) method. 

Outliers were then treated by capping at the 1st and 99th 

percentiles to mitigate their impact on model accuracy. 

For categorical variables [38], analysis was conducted 

using frequency bar charts, which highlighted demographic 

disparities, such as a higher prevalence of heart disease 

among males and varying types of chest pain, with typical 

angina appearing less frequently. These insights led to the 

development of feature engineering strategies tailored to 

enhance model interpretability and performance. We 

converted categorical variables into dummy variables to 

facilitate their use in machine learning models and created 

interaction terms between age and serum cholesterol to 

explore potential synergistic effects on heart disease risk. 

Additionally, missing values were handled through 

multiple imputation techniques, informed by the variable 

type and distribution, to preserve data integrity and prevent 

bias in model training. For instance, missing continuous 

variables were imputed with the median value, and 

categorical variables with the mode, ensuring consistency 

and maintaining the statistical properties of the dataset. 

These detailed EDA steps have provided a clear, data-

driven basis for our preprocessing and modeling decisions, 

enhancing the transparency and reproducibility of our study, 

as illustrated in Fig. 2. 

 

Fig. 2. Distribution of clinical attributes in heart disease 

D. Data Pre-processing 

In the preprocessing phase of our HD prediction study, we 

employed the Standard Scaler method to normalize the 

feature set, ensuring that each variable contributes equally to 

the model's predictive power by bringing them to a common 

scale without distorting differences in the ranges of values. 

This step is critical, as the varying scales of raw data can bias 

the algorithms, affecting the accuracy of predictions [40] 

[41]. The dataset was normalized using the Standard Scaler 

method to ensure equal contribution of each variable to the 

model. The data was then split into training (80%) and testing 

(20%) sets to validate the models' performance [42][43]. This 

split is designed to validate the performance of the models 

[44][45], allowing us to train the algorithms on a large portion 

of the data and then test their predictive capabilities on unseen 

data, thereby ensuring the robustness and generalizability of 

our models [46]. 

E. Individual Machine Learning Approach 

A variety of algorithms are tailored to enhance the 

accuracy and efficiency of predictive modeling [82]. Notable 

among these are Random Forest (RF), Gradient Boosting 

(GB), CatBoost, K-Nearest Neighbors (KNN), Naive Bayes 

(NB), Support Vector Machines (SVM), and AdaBoost. Each 

of these models brings a unique set of strengths and 

methodologies to tackle classification problems of heart 

disease prediction. 

• The Random Forest (RF) classifier [66], a key tool for 

heart disease diagnosis, constructs multiple decision trees 

during training and selects the most common outcome 

from these trees to make predictions. This ensemble 

method helps minimize overfitting better than a single 

decision tree by using diverse subsets of the data for each 

tree, enhancing the model’s generalization capabilities. 

By setting a fixed random_state, we ensure 

reproducibility, crucial for model validation and 

comparison. RF effectively handles the bias-variance 

tradeoff, making it adept at using a variety of features—

from demographic to medical—to predict heart disease, 

while also highlighting the most influential factors in its 

predictions [74] [75]. 

• Support Vector Machines (SVM) excel in classification 

by identifying the optimal hyperplane that maximizes the 

margin between two classes [67-69]. In heart disease 

diagnosis, SVM classifies conditions based on a clear gap 

between positive and negative cases. It operates by 

projecting data points into a high-dimensional space, 

ensuring a maximum margin between the closest 

examples of each class. This configuration leads to 

confident classification of new instances. Using the scikit-

learn library's SVC function with a fixed random_state 

ensures reproducibility. Depending on data complexity, 

various kernels like linear, polynomial, or radial basis 

function (RBF) can be used to handle linear or more 

intricate relationships among features. 

• The K-Nearest Neighbors (KNN) algorithm classifies 

data based on the proximity of similar cases within the 

feature space, making it ideal for tasks like heart disease 

diagnosis [76]. KNN determines the classification by 

examining the 'K' nearest labeled data points to a new 

patient’s data, assigning a binary output where '0' 

indicates no heart disease and '1' indicates its presence, 

based on the majority class among these neighbors. 

Implemented via the KNeighborsClassifier() from the 

scikit-learn library, it calculates distances (typically 

Euclidean) between points, selecting the 'K' closest to 

decide the class by majority. Selecting an optimal 'K' 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1416 

 

Raed Hassan Laftah, Explainable Ensemble Learning Models for Early Detection of Heart Disease 

value is critical, as smaller 'K' can be noise-sensitive, 

while larger 'K' increases computation and may reduce 

precision. 

• The Naive Bayes (NB) classifier, utilized for heart disease 

prediction [77] [78], operates on Bayes' theorem with an 

assumption of feature independence, making it suitable 

for high-dimensional datasets. Specifically, the 

GaussianNB() function is used, which presumes that 

continuous features like age and cholesterol follow a 

Gaussian distribution. This classifier estimates the 

probability of heart disease presence ('1') or absence ('0') 

by treating each feature's effect independently, 

simplifying calculations and enabling efficient estimation 

of one-dimensional distributions. Gaussian Naive Bayes 

proves effective even when features deviate from normal 

distribution, by computing and comparing the posterior 

probabilities for each class to make predictions. 

• Gradient Boosting (GB) is a powerful ensemble technique 

that builds models sequentially, with each new model 

focusing on correcting errors made by previous ones. It 

combines multiple weak prediction models, typically 

decision trees, to create a strong predictive model. In heart 

disease prediction, GB progressively refines its 

predictions by increasing the weight of incorrectly 

classified instances, ensuring subsequent models focus 

more on difficult cases. This approach helps in effectively 

handling the complex patterns and interactions within 

medical data, resulting in a robust model capable of 

accurately predicting the presence or absence of heart 

disease with high reliability [79] [80]. The final prediction 

is made by aggregating the outcomes from all the 

individual trees, providing a balanced consideration of 

various risk factors. 

• CatBoost is an advanced gradient boosting algorithm that 

excels in handling categorical data directly with minimal 

preprocessing required [81]. It is designed to effectively 

prevent overfitting, making it particularly suitable for 

complex datasets like those used in heart disease 

prediction. CatBoost builds on decision trees by 

systematically selecting the best splits during the learning 

process, optimizing predictions through ordered boosting. 

This approach ensures high accuracy by addressing 

potential biases in feature selection. For heart disease 

classification, CatBoost leverages its capability to process 

diverse medical datasets, integrating numerous health 

indicators to predict the likelihood of heart disease with 

enhanced precision and stability. 

• AdaBoost, short for Adaptive Boosting, is a robust 

ensemble technique that combines multiple weak 

classifiers into a strong one by iteratively adjusting the 

weights of incorrectly classified instances [82]. In the 

context of heart disease prediction, AdaBoost starts with 

a base classifier, often a decision tree, and focuses 

subsequent classifiers on the errors of the previous ones. 

Each classifier’s influence in the final decision is 

weighted based on its accuracy, with more accurate 

classifiers having more impact. This adaptive process 

enhances the model's ability to distinguish between 

patients with and without heart disease, effectively 

improving prediction accuracy by emphasizing harder-to-

classify instances in successive training rounds. 

F. Ensemble Learning Approach 

Ensemble learning leverages the strengths of multiple 

predictive models to enhance the overall accuracy and 

robustness of predictions [47] [70-72](Fig. 3). In our 

approach, we employed a soft voting ensemble method [51], 

where the decision is derived from the average of the 

predicted probabilities of selected models, specifically 

Random Forest (RF), Gradient Boosting (GB), and CatBoost. 

Each of these models brings distinct advantages to the 

ensemble that RF excels in reducing overfitting while 

maintaining high accuracy by averaging multiple deep 

decision trees that individually consider a random subset of 

features and data points. GB incrementally builds an 

ensemble by correcting the residuals of earlier trees, 

optimized for performance and less prone to overfitting, 

making it highly effective for complex classification 

problems. CatBoost is particularly effective with categorical 

data and reduces the typical gradient boosting issues of 

overfitting through systematic ordered boosting and 

advanced handling of categorical variables. 

The soft voting mechanism used in our ensemble learning 

method [51] does not simply pick the most frequent 

prediction. Instead, it averages the probabilities assigned to 

each class by the selected models, thereby integrating the 

strengths of each. This probabilistic approach allows the 

ensemble to benefit from the diverse strengths of the included 

models, such as RF's handling of random features, GB's 

sequential improvement on mistakes, and CatBoost's 

efficiency with categorical inputs. Such an ensemble not only 

balances the individual weaknesses of the models but also 

enhances prediction reliability and generalization to new 

data. This ensemble framework, therefore, acts as a 

sophisticated, balanced, and robust tool for predicting heart 

disease, potentially outperforming any single classifier 

operating independently [52] [53]. 

 

Fig. 3. Ensemble learning architecture 

G. Explainable AI (XAI) 

Explainable AI (XAI) plays a pivotal role in demystifying 

the predictions made by AI models, particularly in sensitive 

fields like healthcare. Our methodology utilizes Local 

Interpretable Model-Agnostic Explanations (LIME) to 

enhance the interpretability of our predictive models [54] 

[55][56] [59]. This technique opposes the "black box" 

approach by elucidating how input features affect 

predictions, thus providing transparency and building trust 

with healthcare professionals. 

In this study, LIME was specifically applied to instances 

where the model predicted the presence or absence of heart 

disease. By breaking down the contribution of each feature—

such as age, cholesterol levels, and blood pressure—LIME 

highlighted which factors were most influential in predicting 
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patient outcomes [23]. For example, in a case where the 

model predicted a high risk of heart disease, LIME could 

reveal that elevated cholesterol levels and age were the 

dominant factors influencing this prediction, allowing 

clinicians to understand the basis of the AI's decision. 

Furthermore, we provided case studies in which LIME's 

explanations assisted doctors in making informed treatment 

decisions. These case studies demonstrated scenarios where 

the model's output, validated by LIME, aligned with clinical 

expectations or provided new insights into risk factors that 

were not initially obvious to the treating physicians. 

By integrating LIME, we aim not only to improve model 

transparency but also to empower healthcare professionals to 

leverage AI-assisted diagnostics confidently. This approach 

ensures that the foundation of AI recommendations is clear, 

enhancing the decision-making process in clinical settings 

and fostering deeper trust in AI-driven medical diagnostics 

[57] [58]. 

This enhanced focus on XAI through practical 

applications of LIME establishes its value in heart disease 

prediction, offering clear illustrations of how model 

predictions are derived and how they can be effectively 

communicated and utilized in medical practice. 

IV. RESULT ANALYSIS AND DISCUSSION  

A. Performance Matrices  

In our study, the performance of the heart disease (HD) 

prediction models is evaluated using a comprehensive suite 

of metrics, each offering unique insights into the model's 

effectiveness for a binary classification problem [73]. 

Accuracy measures the overall proportion of correct 

predictions (both true positives and true negatives) relative to 

the total dataset, indicating the model's general effectiveness. 

Precision quantifies the accuracy of the positive predictions, 

reflecting the ratio of true positives to the total predicted as 

positive; this is crucial in medical diagnostics to avoid false 

alarms. Recall, or sensitivity, measures the proportion of 

actual positives correctly identified, highlighting the model’s 

capability to detect all relevant cases, which is vital for 

ensuring no condition goes unnoticed. The F1-score provides 

a balance between precision and recall by calculating their 

harmonic mean, offering a single metric that considers both 

the reliability of positive predictions and the model's ability 

to identify all positives. This is particularly important in 

clinical settings where both avoiding false positives and 

capturing all true positives are critical. 

However, these metrics have limitations. For instance, 

accuracy can be misleading in imbalanced datasets where one 

class significantly outnumbers the other. Precision and recall 

may not fully capture the model’s performance nuances, as 

they do not consider the true negatives and false negatives, 

respectively. Hence, while these metrics provide a solid 

foundation for evaluating model performance, they must be 

interpreted in conjunction with a thorough understanding of 

their mathematical implications and the clinical context of 

HD prediction. By elucidating these metrics, we aim to 

ensure that the results are interpreted correctly and that the 

model’s applicability to clinical diagnosis is clearly 

understood, fostering trust and reliability in AI-driven 

diagnostics. 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃𝑅𝐸 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (2) 

𝑅𝐸𝐶 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (3) 

𝐹1 − 𝑆 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

B. Evaluation of Individual Machine Learning methods 

In our study, we harnessed the computational power of 

Google Colab, executing our models on a standard computing 

system equipped with a 4800-H processor and 16 GB of 

RAM. The HD dataset under scrutiny contained 1025 

instances, each described by 14 attributes, providing a rich 

matrix of data for analysis. A comprehensive evaluation of a 

spectrum of classifiers was conducted to discern the presence 

of HD, with the results detailed in Table II of our study. 

The performance of each classifier was measured by its 

accuracy, with tree-based algorithms emerging as the most 

effective. The RF and CatBoost models both achieved an 

exemplary accuracy score of 0.985366, indicating their 

superior predictive capabilities in this context. GB also 

performed impressively, with an accuracy of 0.931707, 

underscoring its potential utility in medical diagnostics. 

Further down the accuracy spectrum, the SVM registered 

a substantial accuracy of 0.887805, while AdaBoost followed 

closely with 0.878049, both reflecting strong predictive 

performances. The KNN algorithm, with an accuracy of 

0.834146. Lastly, the NB classifier, while offering a baseline 

accuracy of 0.800, confirmed the challenging nature of the 

task and the sophistication required in the predictive 

modeling of HD. These results not only reflect the 

effectiveness of tree-based models in handling the 

complexity of medical data but also highlight the potential of 

ensemble techniques in enhancing prediction accuracy in the 

field of HD diagnosis. 

TABLE II.  ACCURACY OF DIFFERENT MACHINE LEARNING MODELS FOR 

HEALTH DISEASE PREDICTION 

Model Accuracy 

RF 0.985366 

CatBoost 0.985366 

GB 0.931707 

SVM 0.887805 

AdaBoost 0.878049 

K-NN 0.834146 

NB 0.800 

 

The results from our model, as elucidated through LIME. 

The interpretability of our AI model is significantly enhanced 

through the use of Local Interpretable Model-Agnostic 

Explanations (LIME), as illustrated in Fig. 3 and Fig. 4. In 

Fig. 4, LIME analyzes a prediction where there is a high 

likelihood (87% probability) of a heart attack. This high-risk 

prediction is primarily influenced by critical cardiac 
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indicators including a lower slope of the peak exercise ST 

segment (≤ -0.62) and a reduced maximum heart rate (thalach 

≤ -0.74). Additionally, factors such as age (≥ 0.72) and 

exercise-induced angina (exang ≤ 1.40) contribute to the risk 

assessment, emphasizing their significance in the model's 

predictive logic. 

 

Fig. 4. Interpretable machine learning predictions for heart attack risk using 

LIME 

Fig. 5 contrasts this by depicting a scenario with a low 

probability (1% probability) of a heart attack, where the 

model's confidence in predicting the absence of heart disease 

is particularly driven by an oldpeak value (> 0.49) and low 

cholesterol levels (chol ≤ -0.68). The decision tree paths 

shown elucidate the reasoning behind the model's 

predictions, with the branch widths visually representing the 

impact of each feature on the decision-making process, 

thereby offering clear insights into the factors mitigating 

against the risk of heart disease. 

These visualizations validate the model's accuracy and 

furnish healthcare professionals with understandable, 

actionable insights from AI-driven diagnostics, essential for 

informed clinical decision-making. By employing LIME, we 

offer a detailed interpretation of the model's predictions at an 

individual level, ensuring transparency and 

comprehensibility in how decisions are derived. Such clear 

explanations are vital for clinicians who depend on these 

predictions to guide patient care, enabling them to make well-

informed decisions with confidence. 

 

Fig. 5. Predictive analysis of low heart attack risk using LIME 

C. Evaluation of Individual Machine Learning methods 

The performance of the ensemble learning model, 

specifically the soft Voting Classifier, has exhibited 

exceptional results in the task of HD prediction. With an 

accuracy of 0.9854, the model demonstrates a near-perfect 

classification rate. The sensitivity, or true positive rate, stands 

at 0.9709, indicating that the model correctly identifies 

97.09% of actual HD cases. Moreover, the model achieved a 

specificity of 1.00, which means it perfectly identifies 

individuals without the disease, as there were no false 

positives. 

The confusion matrix, as shown in Fig. 6, further 

solidifies the model's robustness, where out of 205 cases, 102 

were correctly identified as no heart attack (true negatives), 

and 100 were correctly identified as heart attack cases (true 

positives), with only 3 instances of false negatives, where the 

model incorrectly predicted no heart attack. 

 

Fig. 6. Confusion matrix of ensemble learning model 

The classification report in Fig. 7 provides detailed 

insights into the model's precision, recall, and F1-score for 

both classes. For the 'No Heart Attack' class, the model 

achieved a precision of 0.97 and a recall of 1.00, culminating 

in an F1-score of 0.99. The 'Heart Attack' class saw a perfect 

precision of 1.00, a recall of 0.97, and an F1-score of 0.99. 

The support column indicates the number of actual 

occurrences of each class in the dataset, which stands at 102 

for 'No Heart Attack' and 103 for 'Heart Attack.' These 

metrics, combined with the support figures, attest to the 

model's high reliability and validity in classifying HD. 

 

Fig. 7. Classification report of ensemble learning model 

D. Comparison Results 

I In the context of contemporary research on heart disease 

(HD) prediction, our proposed ensemble learning model, 
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employing a soft Voting Classifier, has demonstrated 

outstanding accuracy, achieving 98.54%. This performance 

not only surpasses notable benchmarks set by recent studies 

but also highlights the model’s superior predictive 

capabilities. For instance, Boukhatem et al. [19] reported an 

accuracy of 91.67% using an SVM model, Khan et al. [21] 

achieved 85.01% with the RF algorithm, and Bizimana et al. 

[22] reached 96.7% using LR. These comparisons are 

detailed in Table III, underscoring the enhanced accuracy of 

our approach. 

While our model exhibits high accuracy, it is essential to 

discuss its generalizability and external validity, particularly 

in diverse populations and healthcare settings. The high 

accuracy achieved in a controlled study setting might not 

directly translate to varied clinical environments where 

demographic, genetic, and lifestyle factors can significantly 

influence model performance. To address these concerns, 

further validation studies are necessary, particularly in 

geographically and demographically diverse populations to 

ensure that the model maintains its reliability across different 

groups. Additionally, we acknowledge potential sources of 

bias, such as sampling bias and measurement inconsistencies, 

which could affect the model’s performance in real-world 

settings. 

Addressing these factors and conducting extensive 

external validation will enhance the robustness of our 

findings and ensure that our model can be effectively scaled 

and applied in various clinical scenarios, thus supporting its 

broader adoption for HD prediction. 

TABLE III.  COMPARISON OF HEART DISEASE PREDICTION ACCURACIES 

Reference Method 
Results 

(Accuracy) 

Boukhatem et al. 

[19] 
SVM 91.67% 

Khan et al. [21] RF 85.01% 

Bizimana et al. [22] LR 96.7% 

Our Proposed Model 
Soft Voting 

Classifier 
98.54% 

 

V. CONCLUSION  

Heart disease (HD) remains a significant public health 

challenge, requiring innovative approaches for early 

detection and treatment. It is influenced by a complex 

interplay of genetic, lifestyle, and environmental factors. 

Accurate prediction and diagnosis are crucial for improving 

patient outcomes, necessitating advanced analytical tools. In 

this context, we have developed a state-of-the-art ensemble 

learning model that integrates multiple well-proven 

algorithms like Random Forest (RF), Gradient Boosting 

(GB), and CatBoost through a strategic soft voting 

mechanism. This approach enhances the model's predictive 

accuracy, achieving an impressive 98.54% accuracy and 

leverages the strengths of each constituent classifier to 

improve overall reliability. 

Importantly, we recognize the critical need for model 

interpretability and transparency in healthcare applications. 

Decisions based on our model can have profound 

implications for patient outcomes; therefore, ensuring that the 

decision-making processes are transparent and interpretable 

to both clinicians and patients is essential. We have 

incorporated Explainable AI (XAI) techniques, particularly 

Local Interpretable Model-Agnostic Explanations (LIME), to 

make our model's predictions understandable and actionable. 

This enhances trust and facilitates the adoption of the model 

in clinical settings. 

However, the conclusion of our study also acknowledges 

the necessity of balancing technical performance with the 

broader implications for healthcare delivery. Future 

improvements will focus on enhancing the model's 

generalization capabilities through the use of larger and more 

diverse datasets, potentially integrating deep learning models 

to capture more complex patterns and subtle correlations that 

simpler models might miss. Moreover, ethical and regulatory 

considerations are paramount as predictive models become 

more integrated into clinical decision-making. We are 

committed to addressing ethical concerns such as patient 

privacy, data security, algorithmic bias, and informed 

consent. Compliance with regulatory frameworks like 

HIPAA and GDPR is also a priority to ensure patient safety 

and data protection. 
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