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Abstract—In this study, deep learning (DL) model is used to 

predict brake power (BP) of GX35-OHC 4-stroke, air-cooled, 

single-cylinder gasoline engine. The engine uses E15 (85% 

gasoline + 15% ethanol) as a fuel due to its high performance 

and low emissions. A convolutional neural networks (CNN) 

model is used on time-series data due to their ability to capture 

temporal patterns and relationships in sequential data, such as 

engine BP. While studying the performance of the network, it 

is found that the root mean squared error (RMSE) is 0.0007, 

explained variance score (EVS) is 0.9999, and mean absolute 

percentage error (MAPE) is 0.22%. Compared to traditional 

machine leaning methods, these metrics demonstrate the high 

accuracy and reliability of the model, confirming its 

effectiveness in predicting BP. Various performance curves are 

plotted such as comparing target and predicted values, 

regression plots (to indicate the generalization capability),  

learning curve (to demonstrate the model's effective training 

progress and convergence), Bland-Altman plot (to show the 

convergence between the actual and predicted values), 

histogram and density plot (to show a close fit between 

predicted and actual values), density plot of actual and 

predicted outputs, and residual plot (to show randomly 

distributed errors). This high accuracy and reliability of this 

DL model help in effective real-time engine performance 

monitoring, and reducing emission levels, especially for the 

adoption and use of renewable fuels like E15. 

Keywords—Deep Learning; Convolutional Neural Network 

(CNN); Engine Performance; SI Engine. 

I. INTRODUCTION 

Internal combustion (IC) engines,  which include both 

compression ignition (CI) and spark ignition (SI) engines 

are widely used in various applications such as automobiles 

and trucks [1]. CI engines also known as diesel engines, 

ignite fuel through the heat produced when air is 

compressed [2], while SI engines, also known as gasoline 

engines, make use of spark plug to ignite the air-fuel 

mixture [3]. These engines are preferred due to its high 

power density, they operate with high performance through 

various speed range [4][5][6]. The development of IC 

engines has become very rapid, focusing on enhancing 

engine performance and reducing emissions [7][8][9]. The 

development of SI engines has been known with replacing 

gasoline with natural gas or blending various alternative 

fuels with gasoline [10][11][12]. Recently, ethanol-gasoline 

blends have become very common fuel as it produces high 

performance and low emissions [13][14].  

There are different studies showed the use of machine 

learning (ML) techniques in IC engines to improve the 

prediction of performance and emissions such as decision 

tree (DT) [15], support vector regression (SVR) [16], 

random forest (RF) [17], gradient boosting machines 

(GBM) [18],  artificial neural network (ANN), and response 

surface methodology (RSM) [19][20]. ANNs are one of the 

most prominent techniques used to predict ICE 

[21][22][23]. These models have been used to forecast 

engine performance metrics such as torque, combustion 

chamber pressure, exhaust gas physical qualities, and 

vibration. Additionally, ANN has been used for defect 

detection, misfire diagnostics, and combustion timing 

management in IC engines [19][24][25][26]. Also, support 

vector machines SVMs are powerful mathematical tools 

used for classification, regression, and function estimation 

[27][28]. It is observed that the SVM model is a powerful 

method in predicting engine performance and emissions 

because they provide a high accuracy [29]. These previous 

studies using traditional ML techniques have not achieved 

the highest accuracy in predicting engine performance and 

emissions in real-time. 

Deep learning (DL) that is considered a sub-branch of 

ML algorisms, depends on identifying various layers of 

distributed representations. At last years, deep learning is 

used in various applications for classic problems [30].Top of 

Form DL algorithms are able to enhance ML algorithms 

with advanced models that has various layers of processing 

to enable the learning of data representation through 

different levels of abstraction. This field causes significant 

advances in various field’s performance such as speech and 

visual object recognition, object detection, and areas like 

drug discovery and genomics. With using backpropagation 

algorithm, deep learning added complex patterns with 

extensive datasets and guided the machine to adjust its 

internal parameters. These adjustments help compute the 

data representation in one layer based on the information 

from the preceding layer [31]. DL techniques can be used 

for linear regression analyses on datasets. Generally, when 

applying a model on a small sample, one of the major things 

to consider is the case of over fitting. These are concerns 

using the present model Definition Adjusting the model’s 

parameters to reduce these concerns [32]. These methods 

open up good research opportunities for studying the 

performance characteristics of SI engines, to enable better 
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fuel economy and, at the same time, impacting on the 

operational costs. Hence, the objective of this study is to 

improve the prediction accuracy of engine performance 

(BP) via CNN, and offer real-time and accurate data to 

broaden the range of engine management. 

Deep learning is a current machine learning approach 

used to design complex neural networks with multiple 

layers of neurons to map and learn the complexity in big 

data set [33]. Some of these networks have provided new 

state of the art solutions for a number of problems. This has 

made DL algorithms in ANN capable of handling complex 

information as a result of the complexity of the algorithms. 

However, the investigated networks and the mechanism 

underlying them involve a feature that allows them to 

learned data representations at multiple hierarchal levels 

[31]. There has been significant improvement for deep 

neural networks in the last years. But their performance in 

supervised learning tasks depends on the availability of a 

large volume of training data. In an attempt to overcome 

this, ways of data enhancement have been developed to 

increase the sizes of the training data artificially [34]. 

Several real-world applications have been solved 

efficiently using Deep learning (DL) techniques, thus 

Pioneering its use in many conditions monitoring (CM) 

studies. While these studies present a high success rate in 

identifying DL architectures for various applications, there 

is a lack of comprehensive recommendations on choosing 

the right architecture and its relevance achieved through 

feature learning in such research [35].  These can learn 

features from the raw data and have been found to be very 

useful in recent times in many fields. It can be attributed to 

the increase in computational capabilities, availability of 

cloud computing, the creation of new and convenient 

analytical tools and frameworks and enormous datasets [36], 

[37]. With the amount of data rising, the DL method 

features high performance during the testing stage, even 

though the training phases might be very long. A critical 

feature in making DL efficient is reliance on assorted matrix 

computations; therefore, DL lends itself well to GPU 

processing [38]. Top of FormTop of Form Convolutional 

Neural Networks (CNNs) have become an important field of 

study since the introduction of the basic CNNs in 1990 and 

they are widely used today as the default architectures in 

different machine learning and computer vision tasks. In 

which the 2012 ILSVRC contributed in creating a 

significant impression, showing that deep CNNs are very 

much capable to perform well and efficiently on image 

classifications. One of the key drivers of the popularity of 

deep CNNs has been tremendous improvements in the 

processing capability of computers that are available in the 

market today [39]. Generally, CNNs are a type of feed-

forward neural networks that feature alternating layers of 

convolution and subsampling, and they are primarily trained 

using supervised learning methods [40]. 

Deep learning has been used In adsorption properties of 

metal−organic frameworks to construct accurate models for 

quantitative structure-property relationships (QSPR) that 

quickly forecast the working capacity of CO2 and the 

selectivity of CO2/N2 under low-pressure scenarios 

pertinent to post-combustion carbon capture (0.15 bar CO2, 

0.85 bar N2) [41]. Ağbulut et al. used DL algorithm to 

predict brake specific fuel consumption (BSFC), brake 

thermal efficiency (BTE), exhaust gas temperature (EGT), 

CO, and NOx emissions It is evidenced that DL algorithms 

prove to be very efficient of estimating the performance and 

emission of CI engines and can be employed for real-time 

engine monitoring and improvement [42]. Shin et al. 

proposed a model based on deep neural networks for the 

prediction of several aspects related to common gasoline 

engine efficiency. This model is divided into two sub-

models: the first is an approach that can be used for 

predictions on cases such as engine knock while the second 

covers prediction of factors like engine performance, 

combustion features, and emission rates. They used an 

advanced DL algorithms to predict multiple engine outputs 

simultaneously, including emissions and performance 

indices like BSFC and brake-specific nitrogen oxides 

(BSNOx). These models consistently achieved high R² 

values (above 0.99) and low RMSE, indicating high 

predictive accuracy [43]. Lee et al. employed the deep 

learning approach to forecast the dynamic characteristic of 

design parameters of diesel engine valve train. Of all the 

models that were tried, it was observed that the one-

dimensional convolutional neural network (1D-CNN) had 

the best results. The 1D-CNN increased the prediction 

accuracy for valve train force and valve seating velocity 

which are important for efficiency and life cycle of the 

engine [44]. Papagiannakis et al. used DL in improving the 

prediction of the engine performance and emissions in the 

study. Particularly, the 1D-CNN model provided higher 

accuracy in terms of predicting valve train force and valve 

seating velocity having the R2 Scores of 0.89 and 0.98 

respectively. This implies that deep learning models 

especially the 1D-CNN could enhance the forecasting of 

critical parameters of the engine hence enhancing the engine 

performance and its lifespan [4]. Pulvirenti et al. employed a 

similar DL model for estimating the vehicle speed and 

explained how the incorporation of the prediction as a 

component of energy management is superior to the 

powertrain control approach. A new Adaptation algorithm is 

proposed that uses the speed prediction to improve an A-

V2X-ECMS. This approach makes use of the driving pattern 

recognition to modify the equivalence factor of the ECMS 

in the event that there are changes in some driving patterns 

or SoC significantly departs from its desired value [45].  

Cantero-Chinchilla et al. have made a study on 

ultrasound corrosion profile time series regression, a 

proposed customized convolutional neural network (CNN) 

architecture is presented for estimating the thickness values 

(minimum and mean) of corroded profiles from ultrasonic 

time-series measurements (A-scan). The architecture of the 

CNN is determined by the optimization of the hyper-

parameters that identifies the most effective network 

performance [46]. Dou et al. have constructed a DL model 

to develop a lightweight diagnostic method using thermal 

parameters to indicate the importance of these parameters in 

IC engines diagnosis. Deep learning capability in this 

approach plays a role in analyzing and interpreting thermal 

data as a different approach to diagnosing engine health and 

status [47]. Using the same DL model, Vellandi et al. have 

attempted at identifying the depth of surface mixture that 
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can be collected using a handheld microscope from given 

RGB images. This could assist in demonstrating the 

capability of DL in elucidating visual information and 

support profound texture depth examination without having 

the need for wanton and costly operative instruments [48]. 

Tajima et al. have done a work that consists of the use of 

deep learning processes to forecast instances of engine 

knock using past records in the form of in-cylinder pressure 

data gathered from experiments. This was done to identify 

the most critical period within the pressure history for 

accurate knock prediction. Supervised deep learning 

techniques were applied, using the in-cylinder pressure 

history as input and labeling each cycle based on the 

presence or absence of knock. To address the challenge 

posed by the imbalance between knock and non-knock 

cycles, the learning process was conducted both with and 

without cost-sensitive approaches, to assess their impact on 

prediction accuracy [49]. Rana et al. have been modeled a 

CNN for the multi-step ahead prediction of thermal solar 

collectors’ generation in addition to the immediate time 

horizon. This technique has also been used in the prediction 

of thermal energy utilizing solar power within a building 

cooling system as part of a central controller’s forecasting 

system [50]. These are involved challenges like the exhaust 

emission control and the enhancement of fuel economy. In 

this way, applying DL capabilities, we can improve the 

accuracy of the models for monitoring the engine processes 

and escalating the performance. This in the long-run helps 

to bring about better and efficient engine performance. 

The deployment of machine learning as a technique of 

predicting the transient emission characteristics of diesel 

engines has the following advantages; faster computation 

time, these techniques consume less resources and have a 

high forecasting accuracy and are generally more reliable 

[51]. Over the past few years, deep learning methodologies 

have been identified as a relevant area of study for RUL 

prediction. Such advance methods have been acknowledged 

for improving the accuracy and reliability of the prognostic 

predictions [52]. There has been a sharp increase in research 

activity related to time series forecasting; the rate at which 

studies are conducted on this has even quickened in the 

recent past. It outlined that deep neural networks have 

become stable tools likely to achieve reliable performance in 

very many applications. Consequently, less these networks 

have become one of contemporary’s most frequently 

utilized approaches to solving the challenges of big data 

[53]. This work is to utilize time-series data prediction using 

CNNs to explore the deep learning in predicting the engine 

performance and emissions from SI engines. The usage of 

CNNs is beneficial due to the large amount of data it 

handles and the way it extracts the features through layers, 

hence, making it preferable to traditional models of machine 

learning that are dependent on feature extraction. The aim is 

to increase the efficiency and precision of forecast 

pertaining to the engine output and emissions; in other 

words, to provide realistic time available for comprehensive 

engine control and contribution to environmental policies. 

However, there is still a gap especially in the use of the DL 

for prediction of the SI engine power utilizing the time 

series data. Thus, this contribution fills the gap in the 

literature through the integration of CNNs that can handle 

big data and perform extraction through layers while 

surpassing basic ML models. Its aim is to enhance reliability 

of the estimation of the engine performance (BP) qualified 

in real-time control of the engine and demonstrate the 

effectiveness of CNNs in predicting IC engine performance. 

II. METHOD 

A. Test-Rig Installation  

The experimental engine employed in the study was a 

GX35-OHC 4-stroke, air-cooled, single-cylinder gasoline 

engine of details summarized in Table I from the 

manufacturers as depicted in Fig. 1. The following table 

presents all the parts involved in the study. The 

dynamometer was an HM-365 and the engine was placed in 

a CT-159 unit that comprises of several measuring devices 

like the temperature and flow sensors. For CNN 

experiments, the procedure commenced by channeling air 

through a blower as indicated in Fig. 2. This blower 

introduces fresh air into a conduit, leading it through a flow 

control valve used to adjust airflow and into an electric air 

heater that elevates the temperature (this temperature was 

measured but not controlled by the air temperature sensor in 

CT-159 unit). Following this, the air traverses a filter and 

flowmeter, which gauges air consumption in liters per 

minute. The air proceeds to the carburetor, mixing with a 

specified quantity of E15 fuel before it enters the engine’s 

combustion chamber. Simultaneously, the fuel level in the 

fuel measurement tube decreases, a change that can be 

directly observed or calculated via a connected computer so, 

fuel consumption also was measured not controlled. Engine 

speed was controlled by speed control wire on CT-159 unit. 

Engine torque was controlled by HM-365 unit. Engine 

parameters are observed through external computer. These 

previous steps are shown in Fig. 3. 

TABLE I.  ENGINE SPECIFICATIONS USED IN EXPERIMENT [57] 

Engine Type 
4-stroke single cylinder   air cooled OHC 

petrol engine 

Bore X Stroke (mm) 39 x 30 mm 

Compression ratio 8.0: 1 

Ignition System Transistorized 

Net Power 1.0 kW (1.3 HP) / 7000 rpm 

Oil Capacity 0.1 Liter 

Starting System Recoil 

Displacement 35.8 cm3 

Fuel cons. at cont. rated 
power 

0.71 L/h - 7000 rpm 

Max. net torque 1.6 Nm/ 5500 rpm 

Idle speed 2800RPM 

Lubrication Oil mist 

Carburetor Ruixing Brand Carburetor 

 

In this study, BP is taken to be studied. The load was 

operated under both constant and varying loads, the load 

was constant to study the engine performance due to other 

input parameters and then it was varied to study its effect. 

series of measurements are taken to assess a set of 

experimental parameters, designated by "n". This aggregate 

of observations is then utilized to ascertain the central 

experimental result. Consequently, eq (1) can be employed 

to calculate the average value of the quantities recorded 

during the experiments [54]. The variable Xm corresponds to 
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the observed value, and the variable n signifies the total 

number of observations made. Eq (2) describes the method 

for deriving the standard deviation (SD), and eq (3) provides 

the calculation for the uncertainty (U) as indicated in Table 

II [55][56]. The duration of the experiment was selected so 

that the engine achieved a stabilized operating mode and a 

sufficient number of samples was obtained to characterize 

the operational characteristics and emissions with one data 

point per ten seconds under variable and constant load. 

Values that were missing were interpolated using cubic 

spline since this helps in generating values that are quite 

close to the real values. Interquartile range or IQR was used 

to deal with the outliers either by eliminating them or 

restricting them in order to avoid distorting the training of 

the model. 

 

Fig. 1. Experimental test rig 

 

Fig. 2. Experimental installation cycle for CNN 

 

Fig. 3. Flowchart of experimental procedure 

TABLE II.  UNCERTAINTY MEASUREMENTS 

Measurement Uncertainties 

Load ± 0.01 N 

Speed ± 10 rpm 

Temperature ± 1°C 

BP ±1.60 

𝑋̅ =
∑𝑋𝑚

𝑛
  (1) 

𝑆𝐷 = √
∑ (𝑋𝑚−𝑋̅)2𝑛
𝑚=1

(𝑛−1)
  (2) 

𝑈 =
𝑆𝐷

√𝑛
  (3) 

B. Architecture of CNNS 

In our study, a CNN deep learning model shown in Fig. 

4 is used to predict BP. The input shape is a structured array 

or tensor that includes various operational parameters of an 

engine, such as engine speed, engine torque, air temperature, 

air flowrate, and fuel consumption. Each input vector to the 

same instance in time, to form a snapshot of the engine’s 

operational state. This input is what the network will use to 

predict the subsequent outputs related to engine 

performance and emissions. Convolutional layers (Conv1D) 

are designed to progressively reduce the dimensionality of 

the feature maps while preserving essential information. 

That involve the application of filters to the input to create 

feature maps. These maps themselves differ in that they may 

contain key characteristics of the data, such as patterns or 

trends that the network can use [58].  After each 

Convolution layer there is Max pooling layer 

(MaxPooling1D) to reduce the dimensions of the feature 

maps in order to make the feature representations invariant 

and also to reduce the computational time. It helps in 

avoiding overfitting in the model since it lowers the total 

count of parameters in the model [59]. Max pooling 

achieves this by taking the maximum value over a window 

of specified size (the pool size) and stride over the feature 

map. This operation retains the most significant elements of 

the feature maps, ensuring that the network remains 

sensitive to the most prominent features while gaining a 

degree of translational invariance [60]. Together, these 

convolutional and pooling layers form the feature extraction 

part of the CNN, which is critical for learning task-specific 

features directly from the data without the need for manual 

feature engineering. 

 

Fig. 4. Architecture of CNN 

The flatten layer is the point where the multi-

dimensional output from the preceding max-pooling layers 

is transformed into a one-dimensional vector. This is 

necessary because the following dense layers, which are 

also referred to as fully connected layers, require a fixed-

length input vector. After the input data has gone through 

convolutional and pooling layers which are designed to 

process and condense the information, the high-level 

features that have been extracted are laid out in a long 

vector through the flattening process [61]. The flatten layer 

does not learn any parameters; instead, it is a simple data 

restructuring step. If the output of the preceding max-

pooling layers is a multi-dimensional array (for example, a 
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3D array with dimensions corresponding to the number of 

feature maps, height, and width), the flatten layer takes this 

array and converts it into a 1D array by laying out each of 

the elements in a single long sequence. This 1D array is then 

fed into the dense layers for further processing, which 

typically involves learning the final high-level features and 

performing classification tasks [62]. The dense layers 

combine these features in various ways, learn during 

training which features are important for the task at hand, 

and ultimately produce the predictions at the output layer. 

The dense layers are a series of layers that come after the 

flatten layer. These layers are called "dense" because every 

neuron in each dense layer is connected to every neuron in 

the preceding layer, which is not the case in convolutional 

layers where neurons are only connected to a small, 

localized region of the previous layer [63]. The flattened 

output serves as the input to the first dense layer. Each 

neuron in these dense layers will perform a weighted sum of 

the inputs, apply a bias, and then usually pass the result 

through a non-linear activation function. The purpose of the 

dense layers is to interpret the features extracted by the 

convolutional and pooling layers in order to make a final 

prediction. The dense layers are where the CNN starts to 

make sense of the information that has been distilled by the 

convolutional and pooling layers [64]. They are capable of 

modeling complex functions because of the high level of 

interconnectivity between neurons. In your diagram, you 

can see two dense layers, each followed by an activation 

function (not specifically shown, but typically implied 

between layers in such diagrams) [64]. The last dense layer 

is connected to the output layer. This final layer is tailored 

to the specific task the network is designed to perform [65]. 

For example, in classification tasks, the output layer often 

has as many neurons as there are classes, and a softmax 

activation function is typically used to produce a probability 

distribution over the classes. 

The output layer has one neuron that comes from the 

preceding dense layer. The dense layer neurons will process 

the features from the entire network and pass their weighted 

outputs to the neuron in the output layer [66]. The activation 

function used in the output layer depends on the type of 

prediction the network is performing. For regression tasks, 

the output layer might use a linear activation function. The 

final output of this neurons is typically a set of values that 

are interpreted as the prediction of the network. In a 

regression task, these values might directly represent the 

predicted quantities [67], [68].  

C. Prediction of Brake Power 

The implemented CNN is designed for the regression of 

time-series. Prior to model input, features undergo 

normalization through Minmax scaling, adjusted to a [0, 1] 

range, excluding the target feature 'Brake power', which is 

scaled independently. This scaling is used because it reduces 

the time it takes for the model to converge, increases the 

numerical stability and improves the efficiency of the 

gradient descents [69]. The architecture processes sequences 

of 30 consecutive data points to reflect the inherent temporal 

structure of time-series data. This selection as the short 

intervals of the engine operation contains distinct temporal 

patterns in performance data. This selection considers the 

context acquisition alongside the computational complexity, 

and previous work indicates that it suffices for effective 

modeling in such tasks [70]. The dataset is divided into 

training (70%, further subdivided into training and 

validation subsets), validation (15%), and testing (15%) 

segments to facilitate comprehensive training and 

evaluation. This splitting strategy makes sure that the model 

is trained deeply, as well as validated is to avoid overfitting 

of the data and tested to be sure that it is not overfitted and 

that it can generalize well to new data [14]. 

Initially, the CNN is configured with default settings. 

The input layer is designed to accept sequences shaped (30, 

number of features), where the dimensionality depends on 

the specific dataset used. The first convolutional layer 

consists of 64 filters with a kernel size of 3 as it is effective 

in capturing local temporal patterns in the time-series data 

[71], utilizing the ReLU activation function to introduce 

non-linearity ensuring that the model can efficiently and 

effectively learn from the complex time-series datamin [72], 

while the second convolutional layer includes 128 filters, 

also with a kernel size of 3 and ReLU activation. The 

selection of filters 64 and 128 was performed taking into 

account the fact that these values would be able to capture 

some features of the input data and gave high performance 

network. The first convolution layer with the 64 filters 

extracts simple patterns of data and the second convolution 

layer with 128 filters extracts more high-level features of the 

data so as to make the model strong enough to learn more 

features of the data fed to it [73]. Each convolutional layer is 

succeeded by a max pooling layer with a pool size of 2, 

aimed at reducing spatial dimensions and enhancing feature 

extraction. The flattening layer converts the 

multidimensional output of the previous layers into a 1D 

feature vector. The dense layers comprise a series of fully 

connected layers with decreasing units from 50 to 10, 

employing ReLU activation, and culminate in a single-unit 

output layer with linear activation to predict the scaled 'BP'.  

The model is compiled using the Adam optimizer due to 

its self-adjusting functionality that maintains and improves 

convergence rates for the parameters speeding up and 

increasing the viability of the training process in large 

datasets. The learning rate is 0.001 to minimize the mean 

squared error (MSE) loss function and ensure steady 

convergence. It is trained over 100 epochs for training 

without getting overfitted, further helped by early stopping 

according to the validation accuracy obtained. The batch 

size is 32 so that more precise gradient was obtained during 

the training phase, with close monitoring of validation 

performance. This process helped avoid overfitting to some 

degree since the model’s general structure was validated 

using K-fold cross validation tests; the dropout layers were 

implemented with a probability of 0. 5 drop out rate and L2 

regularization to make sure that the system does not over-fit 

the text data. Another regularization technique that was used 

was early stopping given that training was stopped when the 

validation loss did not decrease in some predefined epochs. 

These techniques in combination with the evaluation metrics 

like RMSE: RMSE, EVS, and MAPE all make the CNN 

model more reliable and robust. All the training and 
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evaluation of the CNN model were conducted in a 12 th Gen 

Intel  (R) Core  (TM) i7-12700H processor with 14 cores 

CPU and 20 logical processors, Nvidia Geforce RTX 3060 

graphic card, 16GB RAM and SSD as storage media. For 

implementation, TensorFlow was used; Python was used, 

along with NumPy, pandas, scikit-learn, and matplotlib. The 

average computational time was around 5 minutes. The 

information regarding the hardware infrastructure and 

computational time enables one to assess the feasibility of 

the practical application of this model. 

After training, the model’s effectiveness is assessed on 

the test set using metrics such as Root Mean Squared Error 

(RMSE), Explained Variance Score (EVS), and Mean 

Absolute Percentage Error (MAPE). These metrics are 

selected in order to arrive at a realistic evaluation of the 

given model’s performance. The purpose of RMSE is to 

indicate the average size of errors, which concerns the 

accuracy of the model. EVS provides the percentage of 

variation that is explained to the samples that signify the 

performance of the model in explaining the variability in 

data. MAPE presents a normalized measure of the accuracy 

of predictions as to the size of the errors and their 

comparison. Combined, all these measures facilitate an 

exhaustive assessment of the model’s ability to predict. 
There are some limitations of the experiment and the used 

CNN model that we would like to mention. Some of the 

limitations in experiments include, limited data to be used 

when trying to generalize the results, and changes in 

environment may affect the continuity of the experiment. 

The limitations faced by the by the CNN model included 

sensitivity to hyperparameters and the large amount of time 

and resources needed to train the model. The outline of the 

flowchart starting from data collection right down to result 

analysis is pointed out in Fig. 5. 

 

Fig. 5. Flowchart evaluation for CNN model 

III. RESULTS AND DISCUSSION 

A. Performance Metrics 

Various performance metrics such as RMSE, EVS, and 

MAPE are evaluated to test the performance of the model. It 

is found that RMSE is 0.0007, EVS is 0.9999, and MAPE is 

0.22%. Moreover, for the features considered in the 

research, the Pearson correlation coefficients (Pearson’s r) 

of the model based on the training, validation, and testing 

datasets all equal 0. 9999. These all-previous metrics give 

an indication of high accuracy and reliability in predicting 

BP. Concerning the prediction accuracy measures, a low 

RMSE reveals that there are fewer prediction errors, EVS is 

high meaning that the model accounts for most of the 

disturbances in the data and MAPE is also low revealing 

that the percentage error is small. Higher values for 

Pearson’s r also affirm the presence of a strong positive 

linear relationship between the actual performance level and 

the level predicted by the model, thus establishing that the 

present model accurately recreates the pattern(s) that define 

engine performance.  The regularly high performance of the 

developed model on various datasets also suggests good 

generalization ability on unseen data and the ability of the 

model to make accurate predictions. 

The validation and testing sets are briefly discussed to 

show that the model performs well on new data; however, 

more explanation is needed to prove the reliability of the 

CNN model’s prediction Further details include a 

70%:15%:15% split to create training, validation, and 

testing sets While using splitting ratios, K-fold cross-

validation was applied to ensure that the results from the 

split datasets are unbiased is obtained by partitioning the 

data into. From Table III, it can be deduced that the 

proposed model has good predictive and generalization 

capability. These procedures also give confidence on the 

aspects of generalization and reproducibility of the 

formulated model, implying its practical utility. 

TABLE III.  CROSS VALIDATION RESULTS 

Metric Values 

RMSE 0.0022, 0.0020, 0.0015, 0.0017, 0.0017 

Average RMSE 0.0018 

EVS 0.9996, 0.9996, 0.9995, 0.9998, 0.9994 

Average EVS 0.9996 

MAPE 0.71%, 0.63%, 0.36%, 0.65%, 0.44% 

Average MAPE 0.56% 

 

There is the tendency of overfitting especially with the 

high training accuracy demonstrated here. In order to 

minimize overfitting and to achieve higher accuracy for 

unseen data, the following types of the regularization were 

applied. Dropout layers with the dropout of 0. 5 when 

training was used to randomly eliminating some neurons in 

order to avoid over dependence on some neurons during 

training of the model. Besides, L2 regularization was used 

to prevent the weights from being too large, which can be 

helpful to achieve small generalizable weights. Another 

regularization technique applied was early stopping, which 

stops the training process when the model’s performance on 

the validation set stops improving after a fixed number of 

epochs. These strategies combined kept the problem in 

check by ensuring that model complexity did not get out of 

hand while at the same time increasing the model’s capacity 

to perform well on unseen data.  

B. Model Evaluation Plots 

1) Comparative Analysis of CNN Predictive Accuracy for 

Brake Power 

Convolutional Neural Network (CNN) model is used for 

prediction of BP of SI engines using time-series data. Fig. 6. 
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indicates a high degree of correlation between the predicted 

and actual values, as shown by the closeness of the data 

points between actual and predicted data. The y-axis 

represents BP in (kW), ranging from 0.15 to 0.35 kW and 

the x-axis represents the sample index, ranging from 0 to 

140. Depending on the outcome of the experiment, the 

following observations can be deduced: from the model, 

excellent convergence are achieved in the prediction of the 

values as extracted from the dataset along the range extent 

as described by the tight distribution of the points along the 

target variable line. However, certain points of deviation 

indicate some errors because the stability of engine’s 

operational conditions may be more sensitive to these 

variable fluctuations, which may not be captured adequately 

by the model. 

 It is shown that while the model assesses the profile of 

fluctuating BP quite well, it occasionally produces numbers 

that are higher or lower compared to the actual figures. 

These differences are quite low so, there is a high 

convergence between actual and predicted values [74]. 

Therefore, taking into account the data obtained from the 

analysis of the model being considered, it is possible to 

declare that there are no tendencies, indicating that the 

model performs worse on particular samples compared to 

others. Thus, the results are shown to be satisfactory and 

accurate [75]. 

 

Fig. 6. Target vs. predicted data for the CNN 

2) The Regression Plots for Training, Testing, and 

Validation Data 

The regression plot for the training data in Fig. 7 shows 

closely identical results between the model’s predictions and 

the actual outputs. The x-axis indicates the actual output 

values, ranges from approximately 0.15 to 0.35, while the y-

axis represents the predicted output values within the same 

range. The points are closely clustered around the ideal 

prediction line, showing that the model has effectively 

learned the underlying patterns in the training data. This 

close convergence suggests that the model has been trained 

effectively. However, it is crucial to examine the potential 

for overfitting carefully, as high training accuracy does not 

necessarily ensure strong performance on new, unseen data. 

The validation data regression plot acts as a tool for 

assessing how well the constructed model generalizes over 

the data. As pointed out in the plot of the present study, the 

prediction from the test set stays rather close to the actual 

validation, indicating that the parameters of the model have 

been adjusted well and are not overly trained on the data 

used in the present analysis.  

The testing data regression plot is the last examination of 

how robust the model in question is. This plot also shows 

that the model maintains its accuracy even when presented 

with new values that are never used in training hence it can 

be applied in real scenarios [76]. This indicates that real-life 

BP can be fairly predicted using the proposed mathematical 

model because the calendar time fits quite well with the 

ideal prediction line. The consistency displayed in all 

training, validation and testing sets of all the three plots 

further supports that the CNN model has been trained 

optimally with little chances of overfitting. The analysis of 

the model indicates great performance: as we can see from 

the graphics, the R², MSE, and MAE values provide 

comprehensive evidence of the accuracy and generalization 

capability of the model. The fact that the CNN had 

consistent and almost identical numerical results on the 

three data sets affirms its suitability for the application of 

predicting BP [77]. 

 

Fig. 7. Regression plots for training, testing, and validation data 

3) Learning Curve for Training and Validation Loss 

Fig. 8 shows the learning curve depicting the 

performance of loss minimization over epochs for both the 

training and validation datasets. The y-axis represents the 

loss, scaled from 0 to 0.25, and the x-axis represents the 

epoch value, ranging from 0 to 500. The blue line represents 

the training loss, while the orange line represents the 

validation loss. Initially, both curves decrease rapidly 

through few epochs, meaning that the model quickly learns 

the patterns in the dataset. The convergence between these 

two curves near zero loss means that the model effectively 

minimizes loss without overfitting. The overlap here 

suggests the model complexity is proportional to the data 

complexity ensuring it will generalize well and perform well 

on unseen data. This is evident from the high learning rate 

which implies that the patterns in the data are integrated into 

the model in the shortest time. The effect is observed at all 

epochs and shows that the model is not overfitted and can 

generate an accurate result on new data. The fluctuation of 

loss closer to zero in subsequent epochs also validates the 

model’s ability to accurately estimate BP. The model 

implies real activity of learning and is useful for the 

prediction of real engine performance. Further enhancement 

of this model, and its application in real world 

environments, would enable them to forecast on engine 

performance more accurately. 

In this regard, to situate these results within the wider 

literature, it is necessary to point out that other state-of-the-

art models, including basic LSTM and GRU networks, also 

demonstrate similar trends characterized by a swift 
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reduction in loss levels and convergence. Nevertheless, it 

can be seen that the proposed CNN model gives near-zero 

loss with negligible overfitting which evidence its 

effectiveness in capturing the temporal relationship in 

engine performance data. This correlates well with other 

seal models in terms of predictability and variance of engine 

performance indicators for which the proposed CNN 

approach is critical [78], [79]. 

 

Fig. 8. Learning curve for training and validation loss 

4) Bland-Altman Plot 

The Bland-Altman plot in Fig. 9 is a critical tool to 

evaluate the convergence between the CNN model 

predictions and the actual BP measurements. The plot 

examines the level of convergence between actual and 

predicted values. It is worth noting that on the x-axis, there 

exists the mean of the actual and the predicted values while 

the y-axis displays their deviations. The red dashed line 

signifies the mean difference, which is the average bias, 

closer to zero indicating little or no bias. The blue and green 

dashed lines represent the upper and lower limits of 

agreement, showing the range within which, most 

differences lie, indicating prediction variability. This plot 

assists in determining systematic bias and accuracy, which 

most of the points lying inside the limits of agreement it 

shows that the model has low bias and high accuracy. This 

plot assists in determining the systematic bias and the level 

of accuracy with the majority of the points lying within the 

limits of agreement which show that the model is as 

accurate as it is unbiased. 

The differences shown against the means provide a clear 

visual representation of the prediction accuracy across the 

range of measurement. The mean of the actual and predicted 

values ranges from 0.15 to 0.35, while the differences 

between the actual and predicted values range from -0.002 

to 0.002. The red dashed line indicates the mean difference, 

which appears to be around 0.000, the blue dashed line 

represents the upper limit of agreement, set at approximately 

0.001, the green dashed line marks the lower limit of 

agreement, positioned around -0.001. The mean difference, 

illustrated by the red dashed line, is relatively close to zero, 

indicating no significant bias in the predictions.  The blue 

dashed lines represent the limits of agreement and it can be 

noted that most of the predicted values differ from the actual 

values within a specific range. This means that the 

variations are normally distributed and can be acceptable. 

Further, the points are randomly distributed and hence, there 

is no evidence that the model overestimates or 

underestimates in certain values.  

The Bland-Altman plot presented reveals good 

agreement between the predicted and the actual values; 

however, there are some weaknesses. This is due to the 

nature of the model the presence of outliers and the model 

does not work as well in certain BP ranges especially 0. 20 

to 0. 30 kW. Also, the model may fail for extreme engine 

conditions which were not encountered during training of 

the model. These problems therefore suggest the need to 

accumulate more data and improve on the development of 

the models to increase the level of accuracy and reliability.  

In comparison with the corresponding values in the 

analyzed literature, the results of the Bland-Altman plot give 

evidence that the proposed CNN model complies with the 

high level of accuracy and reliability of real-time monitoring 

of engine performance [80]. This level of comprehension is 

comparable to and can be even higher than the comparative 

conventional machine learning approaches, for instance, 

SVM and RF. The high level of stably denotes that the 

current model is rather reliable and mechanically sound to 

be used in auto or industrial real-world applications [81], 

[82]. 

 

Fig. 9. Bland-Altman plot for actual and predicted values 

5) Histogram Analysis of Actual vs. Predicted Brake Power 

Distributions 

The histogram in Fig. 10 shows the distribution of actual 

and predicted brake power BP values based on the concept 

of relative frequencies. It can be used in order to achieve the 

purpose of comparing the distribution of observed and 

predicted BP data items, and thereby determine alignment 

and difference. In the blue bars, the actual BP measurements 

are shown whereas the orange bars illustrate the values from 

the statistical model. It is noticed that the CNN model’s 

predictions are generally in alignment with the actual values 

across various ranges of BP. Especially, in the lower range 

(0.10 to 0.20 kW), the model gives a strong relation between 

the predicted and actual values, with both sets of data 

frequently overlapping or being very close to one another.  

This shows that the model is very good at this range 

implying that it can work very well in other ranges of the 

input data as well. In the middle power: 0.20 to 0.30 kW, 

some differences are observed, yet there is still relatively 

much sharing between the groups. Nevertheless, where the 

BP is greater than 0. 30 kW, the data contains a few outliers 

that may be improved. These outliers indicate areas where 
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the prediction model’s performance can be better, indicating 

the necessity of gathering more data in these ranges or 

improving the modeling methods for managing the 

extremes. Solving these exceptions is very vital in 

enhancing the generality and reliability of this model.  

In the higher range (greater than 0.30 kW), the model is 

fairly accurate, though a few outliers indicate potential 

refinement areas. These variations are small from the overall 

point of view and the performance of the model is not 

affected by these but it portrays some indications of where 

the model is still open for improvements. However, at 

higher values (greater than 0. 30 kW), the model is still 

fairly accurate, as predicted values remain close to the actual 

measurement. However, there are a few cases where 

predicted values are less than or more than the actual values. 

These outliers signify regions where model accuracy could 

be further refined, perhaps by acquiring more data or 

improving the modeling frameworks [83].  

 

Fig. 10. Histogram analysis of actual and predicted outputs 

6) Density Analysis of Model Predictions Versus Actual 

Brake Power 

The distribution of the actual and the estimated values of 

BP through the density plot in Fig. 11. The density plot 

gives an insight into the probability density of the data, 

showing how the data is distributed across different values. 

It provides a better understanding of where the data points 

are concentrated and how the model performs across the 

entire range of values. It compares between the actual and 

predicted value, so, overlapping areas and deviations are 

more apparent. This is useful for identifying small 

differences in distribution that might not be as noticeable in 

a histogram.  

Analyzing the graph, it can be seen that there is a good 

fit between the actual and the predicted therefore proving 

that the CNN model predicts measures well. This is 

reflected by the two curves being closely matched at 

between 0.15 kW, which implies that the accuracy of the 

prediction system is very high in this range. It is found that 

there are minor differences between the actual and predicted 

values at different ranges, especially on the range between 

0.25 kW to 0.35 kW, where the predicted values slightly 

deviate from the actual values. These variations have low 

values and do not affect the overall performance of the 

model so, this suggests that while the model performs well.  

The general trend of the density plot indicates that the 

CNN model is reliable across the range of BP values, with 

consistent predictions that indicates a high convergence with 

the actual data. There is a smooth and continuous 

representation of the data distribution, unlike the histogram, 

which shows the data in discrete columns. This smoothness 

helps in presenting the overall trend and density of the data 

more clearly, without the sudden changes that can be seen in 

a histogram. The overall implications for model accuracy 

are significant, as regions with high overlap confirm the 

model’s reliability and precision, while areas with 

deviations highlight the need for additional refinement. 

Addressing these deviations, possibly through the inclusion 

of more training data or fine-tuning the model, could 

enhance the prediction accuracy across the entire BP range.  

However, the density plot of the proposed CNN model 

shows presentable results in comparison to state-of-art 

models especially in implementing the actual BP dataset 

[84]. Other models such as LSTM and GRU also 

demonstrate highly aligned density and likewise high 

accuracy, however the latter proves CNN’s suitability in 

learning non-linear temporal patterns for a BP range without 

reduced performance [85]. This works to the advantage of 

CNN model due to the fact that in situations where precise 

and accurate engine performance prediction is of essence, 

then the model is useful. 

 

Fig. 11. Density plot of actual and predicted outputs 

7) Residual Analysis for CNN Predictions of Brake Power 

The residual plot displayed in Fig. 12 illustrates the 

differences between the actual and predicted values of BP, 

plotted against the sample index. Each red dot represents a 

residual for a specific data point, with the blue dashed line 

indicating the zero residual line where the model’s 

predictions would perfectly match the actual values.  

The residuals in most frequencies mostly lie within the 

range of -0.002 to 0.002, which informs that the model has 

given fairly good estimate values that are relatively close to 

the true values. This even spread above and below the actual 

values highlights a well-balanced model performance. 

Nevertheless, there are a few values that do not fall in this 

range as shown in the high frequency distribution but it is 

not prevalent. It is evident that the residuals are 

symmetrically distributed around the zero line. This 

symmetry suggests that the CNN model does not exhibit any 

significant bias in its predictions. The errors are evenly 

spread above and below the actual values. The residual 

values could signify that the model’s estimates are off by 

slightly a small range possibly due to similarities in the 
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training features with those within the calculated residual 

values.  

The information given by the residual plot is important 

for the assessment of the CNN model’s accuracy in 

estimating BP. The random distribution and random 

scattering of the residual points around the central line that 

is equated to zero lead to the conclusion that the model is 

appropriate and that there are no omitted patterns within the 

data set. This means that many residuals will be near zero 

which ultimately emphasizes the high accuracy of the 

model. However, the remaining plot reveals no clear 

inconsistency that would indicate a higher level of 

prediction bias. Thus, a quantitatively deeper error analysis 

is required to make a diagnosis on the model’s robustness. It 

is significant to report the standard deviation of residuals 

and investigate the trends in various BP ranges to identify 

the model’s strengths and weaknesses and its validity within 

the entire population. 

The insights derived from the residual plot are also 

similar to other high-performing approach models used on 

the analysis of engine performance. Small and mostly 

randomly distributed residuals and a very narrow range also 

prove that there are no considerable biases and the CNN 

model accurately fits the data. Such level of residual 

analysis is strong evidence of the model’s fitness and 

stability to be utilized for actual implementations where fair 

and precise anticipations of the engine performance is 

critical [86], [87]. 

 

Fig. 12. Residual plot of sample data 

C. Enhancements and Practical Implications of the CNN 

Despite the achieved high predictive accuracy of the 

CNN model, its further improvements are possible, such as 

the outliers’ handling and boosting the accuracy when 

predicting BP in precise intervals.  Implementing advanced 

outlier detection and correction techniques, gathering more 

data, and focusing on the middle power range (0.20 to 0.30 

kW) during training could reduce discrepancies. 

Additionally, employing ensemble learning and 

hyperparameter optimization may enhance the model's 

overall robustness and accuracy. 

The implications of this research are practical, in that, 

this study provides information on engine performance 

monitoring and optimization within IC engine sectors. It 

enables precise BP predictions and early anomaly detection, 

and reducing operational costs. The model also can optimize 

fuel consumption and various emissions, promoting 

efficiency and environmental sustainability. 

IV. CONCLUSION  

This study focuses on the application of CNNs for the 

BP estimation of the IC engines based on time series data. 

Compared to the feed-forward ANNs, the CNNs can handle 

big data and can learn features autonomously, thereby 

improving the performance. The metrics, such as RMSE 

(0.00007), EVS (0. 9999), and MAPE (0.22%), demonstrate 

the model’s high accuracy in predicting results. Such 

measures reveal the model’s capability to handle 

nonlinearity and extract temporal features, vital for real-time 

engine analysis. To avoid overfitting or underfitting of the 

model, K-fold cross-validation was used to get obtain fair 

performance estimates, enhancing the dependability and 

replicability of the results. 

Despite achieving good results, it is important to 

compare these results with other works in the field of engine 

performance prediction to evaluate their significance. Future 

studies should explore various architecture of DL such as 

LSTM networks to learn long-term dependencies and 

achieve higher predictive capabilities. Additionally, 

acknowledging several limitations of the study is crucial: 

the sensitivity of the models to outliers and the performance 

of the models across different engine types. Looking at 

these directions in the future work and including different 

data sets, it is possible to improve the model. 

Application of the described approaches can be useful in 

monitoring the current state and setting new goals for the 

engine operation, potentially reducing expenses. However, 

like most machine learning research, the study also has 

limitations, including the consideration of outliers and 

generalization to other engine types. Further studies should 

address less questions while using more datasets, and the 

utilization of various data types following the outlined 

model will be useful in the future.  

Other application areas include performance 

enhancement of engine and its monitoring, which can lead 

to potential decrease of expenses. The study also advances 

understanding by demonstrating CNNs’ applicability in 

predictive models of IC engines and providing a strong 

method to improve engine performance analysis. 

Additionally, different curves and plots were used in 

analyzing the model and affirming the outcome. 
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