
Journal of Robotics and Control (JRC)

Volume 5, Issue 5, 2024

ISSN: 2715-5072, DOI: 10.18196/jrc.v5i5.22560 1227

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Three-Dimensional Coordination Control of Multi-

UAV for Partially Observable Multi-Target

Tracking

Vincentius Charles Maynad 1, Yurid Eka Nugraha2*, Abdullah Alkaff 3

1, 2, 3 Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Email: 1 vincentiuscm@gmail.com, 2 yurid@its.ac.id, 3alkaff@ee.its.ac.id

*Corresponding Author

Abstract—This research deals with multi-UAV systems to

track partially observable multi-targets in noisy three-

dimensional environments, which are commonly encountered in

defense and surveillance systems. It is a far extension from

previous research which focused mainly on two-dimensional,

fully observable, and/or perfect measurement settings. The

targets are modeled as linear time-invariant systems with

Gaussian noise and the pursuers UAV are represented in a

standard six-degree-of-freedom model. Necessary equations to

describe the relationship between observations regarding the

target and the pursuers states are derived and represented as

the Gauss-Markov model. Partially observable targets require

the pursuers to maintain belief values for target positions. In the

presence of a noisy environment, an extended Kalman filter is

used to estimate and update those beliefs. A Decentralized

Multi-Agent Reinforcement Learning (MARL) algorithm

known as soft Double Q-Learning is proposed to learn the

coordination control among the pursuers. The algorithm is

enriched with an entropy regulation to train a certain stochastic

policy and enable interactions among pursuers to foster

cooperative behavior. The enrichment encourages the algorithm

to explore wider and unknown search areas which is important

for multi-target tracking systems. The algorithm was trained

before it was deployed to complete several scenarios. The

experiments using various sensor capabilities showed that the

proposed algorithm had higher success rates compared to the

baseline algorithm. A description of the many distinctions

between two-dimensional and three-dimensional settings is also

provided.

Keywords—Coordination Control; Extended Kalman Filter;

Multi-Agent Reinforcement Learning; Multi-Target Tracking;

Multi-UAV System.

I. INTRODUCTION

In recent years, cooperative control of multi-Unmanned

Aerial Vehicle (multi-UAV) systems has become a hot

research topic in the field of flight control [1]. The increasing

complexity of environmental conditions and tasks makes

multi-UAV systems very necessary to complete certain tasks

[2], which cannot be done by only a single UAV. Using

cooperation, multi-UAV systems can exhibit superior

coordination, intelligence, and autonomy than ordinary UAV

swarms [3]. The use of multi-UAV systems has been widely

discussed and developed in various fields, such as logistics

[4], [5], disaster response [6], [7], source seeking problem [8],

[9].

Multi-UAV has been recognized as an important force

through various proven instances in recent modern warfare

[10]. Currently, most combat UAVs are remotely controlled.

But the realization of offensive multi-UAV has become

possible [11] with the advancements in multi-UAV control

like formation control [12], [13] and supported by networking

technology [14]. These developments raise potential public

safety concerns regarding dangerous UAV attacks [15].

Therefore, research on how to overcome this is essential [16].

One of the solutions that is quite important to research is

Multi-Target Tracking Guidance (MTTG) [3]. MTTG is a

condition where a group of UAVs, that are called pursuers, is

assigned to track several previously unknown targets. It also

can be seen as a pursuit-evasion problem which is popular in

many research areas [17]. The main purpose of MTTG is to

identify the number of potential targets in the pursuer’s field

of view (FOV) [18]. Generally, the pursuers have limited

observation and communication sensor range so that each

pursuer can’t see their environment globally because it’s

almost impossible to model the entire process due to the

complexity and uncertainty of the environment [19]. Each

pursuer can only receive information from the results of its

own sensor readings [20] and from its neighbors via

communication.

In the UAV decision-making process, both the analytical

solution methods and the intelligent optimization techniques

have specific limitations. The analytical solution method

requires precision and a comprehensive description of the

decision model and without it, it is unsuitable to be applied to

air scenarios. On the other hand, intelligent optimization

methods struggle to define an appropriate solution space,

with the related research often confined to the two-

dimensional plane [21], making direct application to real-

world scenarios challenging. Elevation angles representing

three-dimensional systems are rarely discussed in the

literature [22]. Whereas, accurate three-dimensional target

positioning is of paramount importance in the aviation

industry and air defense application [23]. Additionally, this

kind of method is really dependent on hyperparameter tuning

as it can significantly influence the model performance [24]–

[26].

To solve MTTG using intelligent optimization, the

problem is generally modeled as a Markov Decision Process

(MDP) model [27]. MDP refers to a discrete-time stochastic

decision-making process based on the Markov Property

principle. In fact, MDP is typically employed in scenarios

mailto:yurid@its.ac.id

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1228

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

devoid of model uncertainty where information concerning

the states and actions of all UAVs is accessible. Naturally,

with wider communication, better solutions will be easier to

obtain [28], a notion known as the centralized. However, the

concept of centralization has its drawbacks like complexity

and computational time required [29]. Moreover, this

assumption does not match the description of the problems to

be faced. Therefore, a more specific MDP model must be

used, namely the Decentralized Partially Observable Markov

Decision Process (Dec-POMDP) [30]. Dec-POMDP is an

extension of MDP and one way of formulating multi-agent

decision-making under uncertainty with partial information.

Then, Reinforcement Learning (RL) serves as the

mechanism for determining the optimal solution within the

Dec-POMDP model. RL operates as a learning paradigm

where an artificial intelligence (AI) agent engages with its

environment through trial-and-error, acquiring an optimal

behavioral strategy based on reward signals obtained from

previous interactions [31]. This methodology overcomes the

disadvantages of alternative techniques, such as intricate

modeling, challenging sample labeling, and tedious problem-

solving processes. RL facilitates the generation of sequences

of decision-making with enduring consequences through

self-interaction training, independent of human intervention.

It has been used and achieved success across diverse

domains, such as automatic driving [32]–[35], education

[36], [37], economics [38], [39], logistic resource scheduling

[40]–[43], industrial process [44], [45], medical [46],

database parameter tuning [47], and robotics [48]–[53].

Current academic research primarily focuses on the

deterministic and static environment characterized by

predominantly discrete and fully observable states [54].

Hence, both academic and practical applications mainly

focus on a model-free approach [55], [56]. On this basis, RL

algorithms are further classified into value function-based

[57], [58] and policy-learning-based methods [59]. The value

function approach aids decision-making by evaluating the

value of each action within specific environmental states

[60]. For multi-agent cases, RL is extended to Multi-Agent

Reinforcement Learning (MARL). It focuses on studying the

behavior of multiple agents that coexist in a shared

environment. It needs to manage not only one agent but a

group of agents at the same time.

MARL has many alternative solutions. In [55] and [56],

they utilized a method named Proximal Policy Optimization

(PPO). Meanwhile, [57] and [58] using Multi-Agent Deep

Deterministic Policy Gradient (MADDPG). Q-Learning is

used in [59] and [60]. There is hierarchical and curriculum

learning paradigm [67], and others [68], [69]. Above that, the

Centralized Training with Decentralized paradigm Execution

(CTDE) makes it possible to train UAVs centrally while in

execution, the UAVs make decisions based only on local

observation [70], [71]. This paradigm significantly shifts

complexity to training and makes execution light.

The above studies have discussed the strategies for using

MARL, that have certain guiding significance. In general,

applying the MARL algorithm to multi-robot tracking is a

feasible solution. However, there is still room for further

exploration. Much of the MTTG-related literature still solve

this problem in a two-dimensional environment. In [3] and

[65] actor-critic is used. PPO and Q-Learning are utilized in

[73] and [74], respectively. The reasons are varied, such as

agents used are mobile robots or UAVs but move only on the

x and y axes. Pursuers that move in three dimensions are used

in [75]. However, the targets move in two dimensions and

uncertainties like noise have not been taken into account. On

the other hand, three-dimensional agents are widely used in

air combat references. In [69] and [70], they trained aircraft

maneuvers in a 1-on-1 scenario. But, as mentioned in [78]–

[80], most of them assumed that all information was known.

The agents in [64] and [74] was knowing the positions of their

adversaries. In practical applications, information, such as the

position of the targets, can be incorrect due to sensor

limitations or noises. Some studies have been conducted on

sensor errors [82], [83] but noise in the state value hasn’t been

considered.

In this paper, we design an approach to describe the

MTTG problem between pursuer UAVs and target UAVs in

a three-dimensional and uncertain environment. Then, we

modeled the problem as Dec-POMDP. The goal is to

optimize the UAV control decisions in a decentralized

manner. We use the extended Kalman filter to assist

observation, updating the belief regarding targets. Besides

that, Q-Learning will solve the control problem and obtain

the best policy for the model. Lastly, we perform simulation

studies to validate our proposed method.

The research contributions of this work are:

• We formulate the multi-UAV MTTG problem as a

Decentralized Partially Observable Markov Decision

Process (Dec-POMDP) where pursuers only receive

partial observations about the targets.

• We take the problem into a more complex three-

dimensional space according to the target faced.

• For pursuers, the three-dimensional dynamic model of a

UAV is used. Extended Kalman filter is used to update

belief of target position. Based on the soft Double Q-

Learning algorithm and a CTDE architecture, a stochastic

tracking policy is trained.

The paper is organized as follows. Section 1 delves into

the background and summarizes related works about MTTG

and MARL. Section 2 describes the problem model, details

the proposed approach, and designs the MARL algorithm.

The results and discussion are presented in section 3. Lastly,

section 4 concludes the paper with suggestions for further

research.

II. METHOD

A. Problem Formulation

Consider a scenario involving multiple UAVs where the

objective of a group of 𝑁 homogeneous pursuer UAVs is to

track 𝑀 homogeneous target UAVs as seen in Fig. 1. Each

pursuer, denoted by 𝑖, possesses a state 𝑥𝑡
𝑖, and the target,

denoted by 𝑗, with state 𝑦𝑡
𝑗
 moving with a discrete UAV

dynamics model and a double integrator model, respectively.

The pursuer's initial state, 𝑥0
𝑖 , target initial state, 𝑦0

𝑖 , and

horizon 𝑇 are predefined. Then, each pursuer must choose

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1229

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

control actions 𝑢𝑡
𝑖 to maximize the mutual information

between 𝑦𝑡
𝑗
 and the history of measurement denoted by 𝒐1:𝑡.

The objective for localizing target states is [74].

max
𝑢(∙)

∑∑∑𝐼(𝒚𝑡
𝑗
, 𝒐𝑖:𝑡|𝒙1:𝑡

𝑖)

𝑀

𝑗=1

𝑇

𝑡=0

𝑁

𝑖=1

 (1)

with 𝑥𝑡+1
𝑖 = 𝑓(𝑥𝑡

𝑖, 𝑢𝑡
𝑖), 𝑦𝑡+1

𝑗
= 𝑔(𝑦𝑡

𝑗
), 𝑜𝑡 = ℎ(𝑥𝑡

𝑖 , 𝑦𝑡
1, … , 𝑦𝑡

𝑀)

and 𝑢𝑡
𝑖 = 𝑢(𝒐1:𝑡) for 𝑡 ∈ {0, 𝑇}. The function 𝑓(∙) and 𝑔(∙)

represent the pursuer’s dynamical model and the targets,

while ℎ(∙) denote the model of observation. 𝑢(∙) is the policy

to determine the control action 𝑢𝑡
𝑖 , which will be explained

later. The measurement history, 𝒐1:𝑡, is shared among all

agents.

Fig. 1. Illustration of MTTG problem and scenario used in this paper. A

group of pursuers with limited observation is trying to track multiple targets.

White UAVs are the pursuers with limited observation ability. The red and

green UAVs are the targets and their corresponding beliefs

 Due to the limitation where each pursuer is only able to

observe the environment partially, i.e., only receives

observations solely of targets nearby, we define the task as a

Dec-POMDP model. This model can be defined as a tuple
(𝑵, 𝑺, 𝑨𝑖 , 𝑶𝑖 , 𝑷, 𝑹, 𝛾). Here, 𝑵 is a set of pursuers, 𝑺 is the

state space, in which 𝒔 ∈ 𝑺. In this work, the state of the

pursuer 𝑖 is:

𝒔𝑖 ≔ [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑣𝑖 , 𝜃𝑖 , 𝜑𝑖] (2)

Each variable will be explained in the next subsection. 𝑨𝑖
represents a discrete set of actions available to each agent 𝑖,
𝒁𝑖 denotes the observations set for each agent 𝑖,
𝑷(𝑠𝑡+1|𝑠𝑡): 𝑺 × 𝑨 × 𝑺 indicates the transition probability

model from one state to the next state after executing a

particular action, 𝑹: 𝑺 × 𝑨 stands for the global reward, and

𝛾 is the discount factor. Each pursuer makes individual

decisions based on its local observations and the policy, 𝜋.

 1) Observations: As an alternative to the limited

observation of the UAV, the pursuer maintains a belief

regarding target states. The belief distribution for the 𝑗𝑡ℎ

target is defined as 𝐵(𝑦𝑗,𝑡) = 𝑝(𝑦𝑗,𝑡|𝒐1:𝑡 , 𝒙1:𝑡) and its

predicted distribution for the subsequent step as �̂�(𝑦𝑗,𝑡+1) =

𝑝(𝑦𝑗,𝑡+1|𝒐1:𝑡 , 𝒙1:𝑡) [84]. We can simplify the optimization

problem to minimize the cumulative differential entropy,

𝐻(𝑦𝑡+1|𝒐1:𝑡 , 𝒙1:𝑡), under the assumption that 𝑦𝑡+1 is

independent of 𝒙1:𝑡. If the belief is Gaussian,

𝐵(𝑦𝑗,𝑡) = 𝒩(�̂�𝑗,𝑡 , 𝚺𝑗,𝑡) (3)

and

𝐻(𝑦𝑡+1|𝑜1:𝑡 , 𝑥1:𝑡) =
1

2
log((2𝜋𝑒)𝑀 det(𝚺𝑗,𝑡)) (4)

Subsequently, the optimization function (1) becomes

min
𝜋
∑logdet(𝚺𝑗,𝑡)

𝑇

𝑡=0

 (5)

 At each time step 𝑡 ∈ 𝑇, the pursuer with state 𝑥𝑡 selects

a control input 𝑢𝑡 based on the policy 𝜋, relying on the

predicted target belief �̂�(𝑦𝑗,𝑡+1). So (1) can be maximized,

measurement 𝑜𝑡+1 is received from the sensor by the pursuer,

while the actual target transitions from 𝑦𝑡 to 𝑦𝑡+1. If the

pursuer observes it, the corresponding belief distribution

undergoes an update with the new measurement. This entire

cycle is managed using centralized training and decentralized

execution approach.

 The belief regarding target states is continuously updated

using an extended Kalman filter as new observations about

the target are obtained. The dynamic of the targets remains

unknown to the pursuers and importantly, the target states

remain unaffected by the agent’s control inputs. As a result,

the value function and control policy of the 𝑖𝑡ℎ agent utilizes

the predicted belief of the target 𝑗 at time step 𝑡 + 1 as input

at time 𝑡. Additionally, we adjust the belief of the 𝑗𝑡ℎ target

within the pursuers body frame (�̂�(𝑥𝑖)) to make sure there is

no distribution shift between observations collected by

different pursuers. The belief state is

𝒔𝑗 ≔ [�̂�𝑗,𝑟
(𝑥𝑖), �̂�𝑗,𝛼

(𝑥𝑖), �̂�𝑗,𝛽
(𝑥𝑖), �̇̂�𝑗,𝑟

(𝑥𝑖), �̇̂�𝑗,𝛼
(𝑥𝑖), �̇̂�𝑗,𝛽

(𝑥𝑖), log det 𝚺𝑗 ,

𝕀 (𝑦𝑗 ∈ 𝒪(𝑥𝑡))]
(6)

where �̂�𝑗,𝑟
(𝑥𝑖), �̂�𝑗,𝛼

(𝑥𝑖), �̂�𝑗,𝛽
(𝑥𝑖) denote sphere coordinates of the mean

of the target 𝑗’s belief. The next three terms are their

derivatives. 𝚺𝑗 represent target belief covariance as in (5). As

the pursuers have limited sensing range, a Boolean function

𝕀(∙) is used. If the actual target is in the vicinity, it returns 1,

and 0 otherwise.

 In the existing framework, we establish a centrally located

extended Kalman filter accessible to each pursuer for

updates. We ensure that when a pursuer detects a target, the

belief associated with that target is accurately updated. When

another pursuer accesses the Kalman filter, it retrieves the

latest information from other agents. While this aspect of the

system operates in a centralized manner, local observations

and control actions remain unshared among the team. The

framework as seen in Fig. 2, builds upon a single-agent

strategy by employing parameter sharing across multiple

agents.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1230

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

Fig. 2. Framework for multi-agent multi-target tracking. The MARL block

consists of a variable number of pursuers with identical dynamics. Each
pursuer receives a local observation state of target beliefs from the centrally

stored extended Kalman filter

 2) Rewards: Our aim is to discover the optimal policy 𝜋∗
that maximizes the cumulative mutual information (1)

between the 𝑖𝑡ℎ pursuer and the 𝑗𝑡ℎ target, effectively

minimizing the objective (5). We simplify the objective by

representing it as a discounted sum, where the reward is

defined as the average uncertainty across all targets [74].

𝑅(𝑠𝑡 , 𝑎𝑡) = −
1

𝑀
∑log det(𝚺𝑡+1

𝑗
)

𝑀

𝑗=0

 (7)

so that the value function is

𝑉𝜋(𝑠) = −𝔼𝜋 [
1

𝑀
∑∑𝛾𝑡 log det(𝚺𝑡+1

𝑗
)

𝑀

𝑗=0

𝑇−1

𝑡=0

|𝑠0 = 𝑠] (8)

 Notice that the reward allocated to each agent is

contingent on the performance of all other agents. This setup

is advantageous as it ensures shared value functions and

policies among agents. It also enables policy 𝜋∗ to adapt

based on how other agents, following the same policy, are

tracking their respective targets. Intuitively, this strategy

acknowledges that even when uncertainty is minimal for

most targets, high uncertainty regarding the final target

significantly impacts the overall average reward.

3) Action Space: Lastly, for the action space, we choose

12 discrete actions, as shown in Fig. 3 and Table I, that

consist of a combination of tangential overload 𝑛𝑥, normal

overload 𝑛𝑧, and roll angle 𝜙. This approach reduces the

complexity of UAV training. In contrast to the standard seven

actions, it enables the UAV to execute consistent speed,

acceleration, and deceleration control, mirroring the actual

flight dynamics of the UAV more closely. The pursuer will

choose an action 𝑎 ∈ 𝑨𝑖.

Fig. 3. Pursuer UAV maneuver library

TABLE I. MANEUVER LIBRARY

No. Maneuver
Control Values

𝒏𝒙 𝒏𝒛 𝝓

𝑎1 Forward maintain 0 1 0

𝑎2 Forward accelerate 2 1 0

𝑎3 Left turn maintain 0 8 −arccos (
1

8
)

𝑎4 Left turn accelerate 2 8 −arccos (
1

8
)

𝑎5 Left turn decelerate -1 8 −arccos (
1

8
)

𝑎6 Right turn maintain 0 8 arccos(
1

8
)

𝑎7 Right turn accelerate 2 8 arccos(
1

8
)

𝑎8 Right turn decelerate -1 8 arccos(
1

8
)

𝑎9 Upward maintain 0 8 0

𝑎10 Upward accelerate 2 8 0

𝑎11 Downward maintain 0 8 𝜋

𝑎12 Downward accelerate 2 8 𝜋

B. UAV Dynamic Model

For the target UAV motion, we use a non-linear target

model based on the double integrator with Gaussian noise

[84].

𝒚𝑡+1 = 𝑨𝒚𝑡 + 𝑤𝑡 , 𝑤𝑡 ∼ 𝒩(0,𝑾(𝑞)) (9)

where 𝑦𝑡 = [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , �̇�𝑡 , �̇�𝑡 , �̇�𝑡]
𝑇 and

𝑨 = [
𝐼3 𝑇𝑠𝐼3
0 𝐼3

] 𝑾(𝑞) = 𝑞 [

𝑇𝑠
3

3
𝐼3

𝑇𝑠
2

2
𝐼3

𝑇𝑠
2

2
𝐼3 𝑇𝑠𝐼3

] (10)

𝑞 is a noise constant, 𝑇𝑠 is a given sampling time, and 𝐼𝑛 is an

𝑛 × 𝑛 identity matrix.

According to Fig. 4, The motion model of the pursuer

UAV is inspired by a fixed-wing UAV in [85] which has been

modified to the description of the rotation angle used

{
�̇� = 𝑣 sin 𝜃 cos𝜓
�̇� = 𝑣 sin 𝜃 sin𝜓
�̇� = 𝑣 cos 𝜃

 (11)

where 𝑥, 𝑦, and 𝑧 represent the position of the UAV within

the coordinate system, 𝑣 signifies the current speed direction

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1231

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

of the UAV, �̇�, �̇�, and �̇� represent the change rate of 𝑣 along

the three coordinate axes, 𝜃 is the pitch angle, and 𝜓 is the

yaw angle.

In the same coordinate system, the dynamic model of

UAV can be articulated as

{

�̇� = 𝑔(𝑛𝑥 − cos 𝜃)

�̇� =
𝑔

𝑣
(𝑛𝑧 cos 𝜙 − sin 𝜃)

�̇� =
𝑔𝑛𝑧 sin𝜙

𝑣 sin 𝜃

 (12)

where 𝑔 is the gravitational acceleration and 𝜙 is the roll

angle. 𝑛𝑥 and 𝑛𝑧 represent tangential overload and normal

overload, respectively. In this model, [𝑛𝑥, 𝑛𝑧 , 𝜙] are the

feasible control parameters for UAV maneuver control. So,

the pursuer state is 𝒙𝑡 = [𝑥, 𝑦, 𝑧, 𝑣, 𝜃, 𝜓]𝑇 as mentioned in (2).

See [85], [86] for more details on the UAV maneuver model.

Fig. 4. Motion model of pursuer UAV

C. Frame Conversion and Belief Update

We work within a three-dimensional space, so we utilize

a range (𝑟)-bearing (𝛼)-elevation (𝛽) sensor depicted in Fig.

5 and written in (14). It’s assumed that the pursuers can

distinctly discern different targets. The measurement model

of the sensor pertaining to each target is as follows:

 𝒛𝑖,𝑡 = 𝒉(𝑥𝑡 , 𝑦𝑗,𝑡) + 𝑣𝑡 , 𝑣𝑡 ∼ 𝒩(0, 𝑽) (13)

where 𝑽 is an observation noise covariance matrix and the

observation model is

𝒉(𝑥𝑡 , 𝑦𝑗,𝑡) = [

𝑟
𝛼
𝛽
] ≔

[

 √(𝑥𝑡𝑔 − 𝑥𝑜)

2
+ (𝑦𝑡𝑔 − 𝑦𝑜)

2
+ (𝑧𝑡𝑔 − 𝑧𝑜)

2

tan−1
𝑦𝑡𝑔−𝑦𝑜

𝑥𝑡𝑔−𝑥𝑜

tan−1
√(𝑥𝑡𝑔−𝑥𝑜)

2
(𝑦𝑡𝑔−𝑦𝑜)

2

(𝑧𝑡𝑔−𝑧𝑜)]

(14)

𝑥𝑡𝑔, 𝑦𝑡𝑔, and 𝑧𝑡𝑔 represent the target position while 𝑥𝑜, 𝑦𝑜,

and 𝑧𝑜 are pursuer’s position. Consequently, (𝑥𝑡𝑔 − 𝑥𝑜)

means the distance between the pursuer and the observed

target in the x-axis and so on.

Fig. 5. Illustration of range-bearing-elevation measurement

If there is a target observed by the pursuer, the Kalman

filter will update the beliefs regarding the target. The filter

will estimate �̂�, �̂�, and �̂�. The measurement model (14) is

reduced to its linear form, with the Jacobian matrix of 𝒉(𝑥, 𝑦)

𝐉(𝒉(𝑥, 𝑦)) =

[

(𝑥𝑡−𝑥𝑜)

�̂�𝑥𝑦𝑧

(�̂�𝑡−𝑦𝑜)

�̂�𝑥𝑦𝑧

(�̂�𝑡−𝑧𝑜)

�̂�𝑥𝑦𝑧
01×3

−sin �̂�

�̂�𝑥𝑦

cos �̂�

�̂�𝑥𝑦
0 01×3

cos �̂� cos �̂�

�̂�𝑥𝑦𝑧

sin �̂� cos �̂�

�̂�𝑥𝑦𝑧

−sin �̂�

�̂�𝑥𝑦𝑧
01×3]

(15)

where �̂�𝑥𝑦 indicates range which is calculated using the

difference of 𝑥 axis and 𝑦 axis only. Meanwhile �̂�𝑥𝑦𝑧 also

include 𝑧 axis. We can get bearing and elevation in (15) in

XYZ form if we substitute these variables according to the

specification in Fig. 5, to become

𝐉(ℎ(𝑥, 𝑦)) =

[

(𝑥𝑡−𝑥𝑜)

�̂�𝑥𝑦𝑧

(�̂�𝑡−𝑦𝑜)

�̂�𝑥𝑦𝑧

(�̂�𝑡−𝑧𝑜)

�̂�𝑥𝑦𝑧
01×3

−(�̂�𝑡−𝑦𝑜)

�̂�𝑥𝑦
2

(𝑥𝑡−𝑥𝑜)

�̂�𝑥𝑦
2 0 01×3

(𝑥𝑡−𝑥𝑜)(�̂�𝑡−𝑧𝑜)

�̂�𝑥𝑦𝑧
2 �̂�𝑥𝑦

(�̂�𝑡−𝑦𝑜)(�̂�𝑡−𝑧𝑜)

�̂�𝑥𝑦𝑧
2 �̂�𝑥𝑦

−�̂�𝑥𝑦

�̂�𝑥𝑦𝑧
2 01×3]

(16)

Insights into the concept of measurement, localization, and

mapping can be found in [87].

How the Kalman filter works until data sent to the reward

function is illustrated by Fig. 6. Initial state prediction, 𝒙0
−,

and initial prediction error covariance matrix, 𝑷0
−, are

required before the filter calculates the Kalman gain using

𝑲𝑡 = 𝑷𝑡
−𝑱𝑇(𝑱𝑷𝑡

−𝑱𝑇 + 𝑟)−1 (17)

and estimation error covariance matrix, 𝑷𝑡,

𝑷𝑡 = (𝑰 − 𝑲𝑡𝑱)𝑷𝑡
− (18)

as well as

𝒙𝑡 = 𝒙𝑡
− + 𝑲𝑡(𝒛𝑡 − 𝑱𝒙𝑡

−) (19)

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1232

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

Fig. 6. Belief update flow in each time step. The initialization only occurs in

the first step

We presume that these beliefs adhere to the same double

integrator model as the target outlined in (9), although with

differences in parameters 𝑨 and 𝑾(𝑞𝑏) where 𝑞𝑏 ≠ 𝑞.

Essentially, this implies that the pursuer possesses only

partial knowledge about the target. Then, the filter will

predict the next state of the target for the next iteration, using

𝒙𝑡+1
− = 𝑨𝒙𝑡 (20)

and calculate the prediction error variance

𝑷𝑡+1
− = 𝑨𝑷𝑡𝑨

𝑇 + 𝑞𝑏 (21)

The belief is in Cartesian coordinates. Thus, we have to

convert it to another, the Spherical coordinate. Additionally,

as mentioned in II.A, we must adjust the belief of the target

in the local frame to the pursuer's body frame. Using

𝑪𝐿
𝐵

= [

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃
(−𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓) (𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓) 𝑠𝜙𝑐𝜃
(𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓) (−𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓) 𝑐𝜙𝑐𝜃

]
(22)

and multiply it by the difference between the pursuer position

and the target belief position then we will get the target

relative position according to the pursuer in Cartesian.

Regardless of whether there is an update or not, beliefs

about the target will be processed further to be used as

observations in the MARL. To convert positions in Cartesian

to Spherical, we can use the same equations as in (22) and

(14). For the velocity, we need the target velocity in the

pursuer’s body frame. We can convert the target velocity

from local to body frame using (22) and reduce it with the

pursuer’s velocity. Then, with the position and velocity of the

target in the pursuer’s body frame, we can calculate the target

velocity in spherical coordinates using (23) and updating (6).

{

 �̇� =

𝑥�̇� + 𝑦�̇� + 𝑧�̇�

𝑟

�̇� =
𝑥�̇� − �̇�𝑦

𝑥2 + 𝑦2

�̇� =
�̇� − �̇�

𝑧
𝑟

√𝑥2 + 𝑦2

 (23)

D. Model Architecture

We need a policy that can adapt to varying target amounts

visible in observation. Therefore, we view an observation as

a set of elements processed by an embedding that is

permutation-invariant and able to handle any number of

elements within the observation set. The policy is constructed

using an encoder-decoder model architecture inspired by

DeepSets [88], augmented with self-attention layers. These

self-attention layers ensure the property of permutation-

invariance by emphasizing actionable information in the

observation. The capability to handle an arbitrary number of

elements is facilitated by the summation within the DeepSets

architecture where additional elements are simply part of the

linear combination of the embedding space.

According to [88], function 𝜙(𝐴) is invariant to the

permutation of elements when acting on a set 𝐴 if and only if

it can be broken down into the form 𝜙(𝐴) ≡ 𝜌(∑ 𝜓(𝐴)𝑎∈𝐴)
for certain functions 𝜓 and 𝜌. This concept is illustrated in

Fig. 7. Both functions are adaptable and can be trained to

incorporate invariance, while the summation allows 𝜙(𝐴) to

accommodate sets of different sizes.

Fig. 7. Illustration of DeepSets concept

The self-attention mechanism is a potent tool for the value

function to focus on the most relevant aspects of the input in

relation to the output. It operates by embedding learning

structures, where attention involves associating a query 𝑄

with a set of key-value pairs, 𝐾 and 𝑉, to generate an output.

This process essentially computes a weighted sum of the

values, with attention being represented as a linear

combination of 𝑉. The compatibility between the query and

keys is gauged through the dot product 𝑄𝐾𝑇. The attention

module,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝜔 (𝑑𝑞
−
1

2𝑄𝐾𝑇)𝑉, (24)

assigns greater importance to keys that exhibit a higher dot

product with the query vector. Here, 𝜔 denotes an activation

function like softmax, and
1

√𝑑𝑞
 acts as a scaling factor.

Additionally, enhancing the self-attention module involves

exploring higher-order interactions between Q and K. This is

achieved by projecting the inner product across multiple sub-

spaces, resulting in the creation of the Multi-Head Attention

Block (MAB).

MAB runs through an attention mechanism several times

in parallel. Compared with the attention model, multi-head

attention allows the model to jointly focus on information

from different positions. The multi-head attention is

computed as [70]

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1233

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

 𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑𝑖)𝑊
𝑜 (25)

where

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (26)

𝑊𝑜, 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are the parameters of the Concat

function for 𝑄, 𝐾, and 𝑉, respectively.

E. Maximum Entropy

Stochastic policy can be learned using the maximum

entropy regularized objective [89] which aims to strike a

balance between maximizing the anticipated return and

entropy or in other words, to excel in the task while exhibiting

as much randomness as feasible. The policy’s entropy is

modulated by a temperature parameter, 𝛼, which means that

greater entropy corresponds to higher temperature and

increased randomness, and the other way around. From

distribution 𝑃 across a random variable 𝑥, the entropy 𝐻 is

mathematically expressed as:

𝐻(𝑃) = 𝔼𝑥~𝑃[− log 𝑃(𝑥)] (27)

At every time step, the pursuer receives an additional reward

corresponding to the policy’s entropy. Then, the RL problem

can be reframed with a maximum entropy objective:

𝒥(𝜋) = ∑𝔼(𝑠𝑡,𝑎𝑡)~𝜋[𝑟(𝑠𝑡 , 𝑎𝑡) − 𝛼 log 𝜋(𝑎𝑡|𝑠𝑡)]

𝑇−1

𝑡=0

 (28)

This objective promotes stochastic policies by adding the

equation to the policy. There are both theoretical and

empirical advantages in stochastic policies. One, they

encourage broader exploration while abandoning fewer

promising paths. Additionally, the policies can encompass

multiple modes of optimal behavior when faced with equally

attractive actions, the policy assigns equal probability to

each. Lastly, these policies have demonstrated significant

improvements in exploration, making them valuable for

cooperative tasks.

F. Soft Double Q-Learning

Q-Learning belongs to the category of off-policy RL

methods. This approach has become the basis of many RL

algorithms because, unlike other methods, Q-Learning is

relatively simple and shows excellent learning capabilities in

single-agent environments. It aims to minimize the

expectation of the 1-step temporal difference (TD) error. Off-

policy methods are called such because they maintain a

dataset, denoted as 𝐷 = {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}𝑡=0,…, gathered

using a behavior policy and used to estimate the current

policy’s value function. The value function will be

represented using a Deep Neural Network (DNN) with

parameters 𝜃. Utilizing stochastic gradient descent, the

optimal parameters 𝜃∗ can be determined to minimize the

Huber loss applied to the TD error.

We use and enhance the advanced off-policy method

known as Clipped Double Q-Learning [90], [91], serving as

the framework for learning the stochastic policies. The

original double Q-Learning algorithm trains two separate

estimates of the actual Q value, represented by neural

networks labeled as 𝑄𝜑1 and 𝑄𝜑2. This framework mitigates

Q value overestimation by selecting the minimum value

between the two independent estimates. This approach

assigns higher values to states that have lower variance

estimation errors, leading to more consistent learning. The

update process for double Q-Learning is outlined below

𝑄∗(𝑠, 𝑎)

← 𝑟 + 𝛾 min
𝑘=1,2

𝑄𝜙𝑘
′ (𝑠′, argmax

𝑎′
∑ 𝑄𝜙𝑘(𝑠

′, 𝑎′)

𝑘=1,2

)
(29)

𝜙𝑘
′ denote target network 𝑘.

In practice, double Q-Learning learns a deterministic

policy by selecting actions based on the argmax(𝑄(𝑠, 𝑎)).

To acquire a stochastic policy, we modified the conventional

double Q-Learning framework with an entropy-regularized

objective. This algorithm referred to as soft Double Q-

Learning, is designed to balance the anticipated return and

entropy while exploring. The process for soft double Q-

Learning is explained in Algorithm 1 and the update is [74]

𝑄∗(𝑠, 𝑎) ← 𝑟 + 𝛾 min
𝑘=1,2

𝔼𝑎′~𝜋 [𝑄𝜙𝑘
′ (𝑠′, 𝑎′)

− 𝛼 log 𝜋(𝑎′|𝑠′)]
(30)

When using a stochastic policy, actions are determined

through sampling from a multinomial distribution, which is

derived from the Q function values log softmax. During

exploration phases, higher entropy causes the policy to

sample actions beyond those with the highest value. This

approach aids the policy in exploring less-visited areas of the

state space, therefore enhancing exploration.

Algorithm 1 Soft Double Q-Learning

1: Initialize environment with 𝑁 pursuers and 𝑀 targets

2: Initialize replay buffer 𝔾

3: Initialize value networks 𝑄𝜙1 and 𝑄𝜙2

4: Initialize target networks 𝜙1
′ , and 𝜙2

′

5: for each episode do

6: Random sample 𝑛 ∈ [1, 𝑁] and 𝑚 ∈ [1,𝑀]
7: For each step 𝑡 = 0, 𝑇 do

8: for 𝑖 = 0, 𝑛 do

9: observe 𝑠𝑖 and select 𝑎𝑖~𝜋(𝑎𝑖|𝑠𝑖)
10: do 𝑎𝑖, get reward 𝑟𝑡, observe 𝑠𝑖

′

11: store (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑡 , 𝑠𝑖
′) in replay buffer 𝔾

12: end for

13: end for

14: for each update do

15: select a batch of 𝑁: 𝑔𝑡~𝔾

16: calculate 𝑄∗(𝑠, 𝑎) using (30)

17: perform clipped gradient descent step on

18: ∑ ℎ𝑢𝑏𝑒𝑟 (𝑄𝜙𝑘(𝑠, 𝑎) − 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎))𝑘=1,2

19: Update 𝜙1
′ and 𝜙2

′

20: end for

21: end for

The soft Double Q-Learning algorithm is modified with

parameter sharing to offer centralized training with

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1234

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

decentralized execution for multi-agent learning. The

algorithm starts with sampling the environment with each

pursuer, feeding their own observations through shared

networks to generate unique experiences. When every

pursuer acts according to the present policy, the entire

environment changes from 𝑡 to 𝑡 + 1. The second half of the

algorithm updates value functions using stochastic gradient

descent, eliminating the non-stationarity issue regarding

decentralized trained systems. Each pursuer is given a copy

of the learned policy for decentralized execution upon

completion of training. To improve generalization, 𝑛 and 𝑚

number of pursuers and targets are uniformly randomly

sampled during training. This is done to create a different

number of cooperative agents in the team. This flexibility and

diverse training episodes expand the task space, resulting in

a more robust policy. This is especially important for real-

world implementations that are full of possibilities.

III. RESULTS AND DISCUSSION

A. Setup

The MTTG scenario is in a highly uncertain three-

dimensional environment. We initialize agent, target, and

belief locations randomly. Targets move unpredictably with

their fixed double integrator model and are added by

Gaussian noise. Moreover, both the belief and observation

models include noise components, further enhancing the

environmental randomness. But we implement a restricted

random initialization for target locations and their associated

beliefs to decrease training variance and focus on tracking

rather than exploration.

All agent positions, 𝑥0,…,𝑁, are randomly placed within the

designated map. Target positional components, 𝑦0,…,𝑀, are

initialized 5-10 kilometers from a randomly chosen agent.

Then, Gaussian belief distributions for target locations are

initialized within 0-5 kilometers of their respective targets,

with covariance Σ. The initial position of pursuers and

evaders, as well as the belief of targets, will change in each

experimental iteration.

Both pursuers and targets are constrained to a maximum

velocity of 300
𝑚

𝑠
. The initial velocity for all targets is set to

90
𝑚

𝑠
. 𝑇 is set to 200 steps. Each agent has an observation

range of 20 kilometers, bearing and elevation for
𝜋

4
 rad. These

setup values are inspired by a fixed-wing aircraft common

parameters used in research. Training, testing, and evaluation

are carried out in a space measuring 50 kilometers × 50

kilometers × 50 kilometers without obstacles.

In multi-agent multi-target environments, maintaining a

balance between the number of pursuers and targets is

essential for effective behavior. We'll conduct testing on tasks

involving 𝑛 pursuers within the range of [1, 𝑁], and 𝑚 targets

within [1,𝑀]. Subsequently, we'll assess the method's

performance, without requiring retraining, across different

task configurations. The testing will be conducted for 16

scenarios with various amounts of pursuers and targets.

B. Agent Training, Testing, and Evaluating

 In the MARL model, each layer contains 256 hidden

units, and there are 4 attention heads. We employ Adam

optimizer with a learning rate of 0.0001. Learning rate is a

factor determining how much new information overrides old

information. With that value, pursuers can learn quickly but

not too fast so as not to miss important details. The discount

factor 𝛾 is set to 0.99. This factor encourages long-term

beneficial actions rather than short-term gains. The replay

buffer size is 106, and the training batch size is 256. The

temperature parameter 𝛼 is 0.4, and ReLU serves as the

activation function.

 We train the model for 500000 steps that are divided into

20 episodes as shown in Fig. 8. Each training episode consists

of training and testing, and they have their own average

rewards. It was trained using 4 pursuers and 3 targets

scenario. As we can see, our algorithm initially exhibits an

upward trend for the initial 25000 steps, following which it

gradually stabilizes. From the conclusion of the first episode,

the average reward consistently maintains a positive value,

signifying the pursuers' capability to track the targets.

Convergence is achieved around the 50000 step mark,

especially for the training. The final score stabilized at

approximately 259 for the training and 302 for the testing.

Fig. 8. Average rewards of training and testing episodes

 This result comes from the fact that during evaluation, the

pursuers act with their learned policy. But, when training,

they use a stochastic policy to explore the environment. This

is a standard practice in MARL, despite the fact we want to

achieve some form of continual learning. Another cause that

also can be considered is noise in the environment.

To validate the result, we show how the Q value increases

over time as seen in Fig. 9. There are two Q values because

we used a double Q-Learning paradigm, but it looks like there

is only one due to their identical values. Their value will

converge around 380. Q-value represents the value of taking

a specific action in a specific state. Therefore, this value can

be said to estimate the rewards that can be obtained in the

future. A higher Q-value means the potential reward obtained

will be higher.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1235

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

Fig. 9. Change in Q value during training

Then, for evaluation, we evaluate the policies resulting

from the training process in sixteen scenarios based on the

number of pursuers and targets on 50 episodes each with the

same seed. In scenario 1, there is 1 pursuer and 1 target. The

second scenario comes with 2 pursuers and 1 target, and so

on, until there are 4 pursuers and 4 targets. The results can be

seen from Fig. 10 up to Fig 12. We count the success rate of

each scenario where a successful episode is indicated with a

positive reward from that episode. If the episode reward

comes with a negative value, it identifies the failure of the

episode. We present the data in percentage form.

Even though training and testing show positive results,

there is still the potential for negative rewards. This is caused

by the stochastic nature of the environment and pursuer

behavior. Apart from that, differences in initial conditions

can also determine success. Episodes fail when stochastic

policy pursuers delay excessively, causing targets to move

beyond observable range, and compelling pursuers to resort

to random searches.

As the number of pursuers increases, the percentage of

success tends to increase. What is quite interesting is that

when the target increases, it turns out that the possibility of

success also becomes greater. This result is possible because

of the reward function that we use where the reward

calculation is done from the covariance matrix regarding the

target. The more targets, the bigger the matrix, and the bigger

the potential reward. One thing that is certain is that with a

larger number, the pursuer has a higher potential for success

even if tested with the same number of targets. But the

success percentage of all scenarios is above 50%. This

phenomenon arises as the policy operates with greater

intelligence to reduce the uncertainty surrounding all targets,

prioritizing long-term team rewards over immediate gains.

Conversely, a policy-oriented towards instant rewards would

lead pursuers to solely pursue the nearest target.

Fig. 10. Comparison of rate of success from sixteen evaluation scenarios

Fig. 11. Comparison of rate of success in percentage-pursuer view

Fig. 12. Comparison of rate of success in percentage-target view

C. Cooperative Behaviour Analysis

Fig. 13 illustrates the stochastic policies' unique traits,

cooperative-like behaviors.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1236

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

Fig. 13. Task allocation demonstrated by the pursuers

The blue arrows and blue lines are the pursuers and their

respective trajectory. The red dots are the targets, and the

green circle is the belief of the targets. Stochastic policies

acquire insights beyond merely tracking the nearest target.

They not only identify distant targets but also autonomously

determine target assignments, indicating a degree of

cooperation. The target's belief will always change at any

time, especially when the target is not in the pursuers' field of

view.

This behavior is very important in problems like MTTG

where the number of targets is unknown. Because they want

to maximize the rewards they get, pursuers will try to track

all existing targets. Without cooperative behavior, each

pursuer will focus more on targets that are visible even

though they have been tracked by other pursuers. This can

cause a decrease in the value of the reward.

D. Comparison of the Proposed Algorithm with Double Q-

Learning

Subsection II.F explains soft double Q-Learning (soft-

DQL) and its differences from basic double Q-Learning

(DQL), which is the use of temperature parameter, 𝛼. The

influence of alpha on the performance of the algorithm is to

encourage exploration which is one of the important points in

the MTTG problem. To see how big the effect is, we trained

three other models that have the same parameter

specifications as the previous model, except for the bearing

angle and elevation angle which are 𝜋 rad. In other words,

now pursuers should have better observation skills. The three

models are differentiated based on the temperature

parameters used. The 𝛼 values used were 0, 0.2, and 0.4 for

the first, second, and third models, respectively. The first

model is the model that uses basic double Q-Learning.

Then, we evaluate them in several scenarios and once

again, calculate the rate of success for each of them through

100 evaluation episodes. The intended scenario is to make

changes to the bearing angle and elevation angle values, thus

decreasing the sensor Field of View (FOV). From there, the

adaptability of each model is tested. The result is shown in

Table II.

TABLE II. RATE OF SUCCESS OF BASIC DQL AND SOFT-DQL IN VARIOUS

SENSOR FOV

Model 1

DQL

(𝜶 = 0)

Model 2

soft-DQL

(𝜶 = 0.2)

Model 3

soft-DQL

(𝜶 = 0.4)
𝝅

𝟒
 2% 6% 14%

𝝅

𝟐
 86% 88% 92%

𝝅 100% 100% 100%

In the first scenario where the observation angle decreases

drastically to
𝜋

4
, all models produce poor results. However, it

can be seen that model 1 has the least success. On the other

hand, model 3 is the highest and leaves far behind the other

two models. This continues to the next scenario even though

the difference is not as far as the first scenario. Meanwhile,

all models succeed in the third scenario because they were

trained in that scenario. 𝛼 gives the pursuers the ability to be

more flexible in dealing with various conditions. Model 3 has

better exploration capabilities than model 1. Therefore, when

the observations are limited, pursuers from model 3 can get

more success because they move more actively in their

environment.

Apart from the influence of 𝛼, it can also be seen how the

pursuer performance is affected by changes in sensor

specifications. The smaller sensor viewing distance certainly

limits the pursuer's ability to track their target, especially if

they were previously trained in a very different scenario.

Different from the model in the previous experiment, that

model has been trained on a scenario with an observation

angle of
𝜋

4
 so it can still provide better performance. Using

piecewise cubic hermite interpolating polynomial (PCHIP)

function in Matlab, the influence of the sensor FOV and 𝛼

value on the rate of success is more clearly visible as seen in

Fig. 14.

Fig. 14. Polynomial that describes the influence of FOV and 𝛼 on the rate

of success of the system

E. Comparison of Three-dimensional and Two-dimensional

Environments

When compared to a two-dimensional environment, a

three-dimensional environment has higher complexity. We

summarize some of the differences between the two in Table

III.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1237

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

TABLE III. COMPARISON OF 3D AND 2D ENVIRONMENT

No. Indicator
Three-

Dimensional

Two-

Dimensional
1. Variables 22 13

2. Rate of Success 76% 100%

3. Environment Size 125000 units 2500 units

4.
Steps Needed to

Converge
50000 50000

5. Computation Time
28651 time

unit

26709 time

unit

We carry out 20 episodes of training by equating the

values of all hyperparameters in a two-dimensional

environment to those in a three-dimensional environment.

First, three-dimensional scenarios certainly have a greater

number of variables, approximately two times the two-

dimensional. For example, there is only one rotation angle

that is considered in a two-dimensional environment, namely

the yaw angle. Meanwhile, we must consider three angles in

a three-dimensional environment, namely roll, pitch, and

yaw. This carries over to the coordinate transformation where

we have the addition of elevation. The rate of success is

calculated from the highest and lowest percentage among

sixteen scenarios average.

The rate of success is calculated from the averages of the

highest and lowest percentages among sixteen scenarios.

From Fig. 10, the 4 pursuers and 3 targets scenario is the

highest with 98%. The lowest comes from 1 pursuer and 3

targets, which is 54%. Meanwhile, for the two environmental

dimensions, both were successful.

The size of the three-dimensional environment is fifty

times bigger than the two-dimensional one as it has the z-axis.

This occurs because a three-dimensional environment is

calculated in cubes instead of squares, as in a two-

dimensional environment. This much larger size means that

the number of available states also increases so that more

space needs to be explored.

The time to reach convergence between the two scenarios

is the same. However, two-dimensional scenarios generally

have a larger average reward. Lastly, although the values of

all hyperparameters are the same, the computing time to

complete 20 episodes is different. Three-dimensional

environments take longer. However, if this concept is to be

brought to a real-world setting, there are many other factors

that need to be considered. One of them is the increase in

computational complexity connected to three-dimensional

scenarios.

IV. CONCLUSION

This paper presented a method for multi-agent target

tracking within a complex three-dimensional environment

with high uncertainty. First, the problem is expressed as the

Dec-POMDP model. We design and derive several necessary

equations to describe the relationship between observations

and the state of pursuers in the three-dimensional

environment such as the Jacobian matrix of the measurement

model and velocity in Spherical coordinates. Then, we use

soft double Q-Learning which is a development of basic

double Q-Learning to carry out coordination control for each

pursuer. The experiment results proved the fact that the

proposed method is capable of completing the task in various

scenarios and is better than the baseline.

A significant challenge lies in striking a balance between

decentralized control decisions, which is necessitated by

communication constraints, and achieving cooperation or

information sharing to effectively track multiple targets. This

study delves into a heuristic to address this tradeoff. It trains

a stochastic policy that enables pursuers to hedge their control

actions when multiple targets are nearby. Although this form

of cooperation is relatively weak, it needs no communication.

However, this method may not be suitable for more

demanding scenarios that inherently require more agents to

track cooperatively, such as targets with rapidly increasing

uncertainty or emergencies like accidents. Therefore, adding

communication capabilities between pursuers can be a good

development. Additionally, analysis of computational

complexity in a three-dimensional environment also needs to

be carried out to prepare this method for real-world scenarios,

such as surveillance systems and public safety.

ACKNOWLEDGMENT

This work was funded by PT Infoglobal Teknologi

Semesta, Indonesia.

REFERENCES

[1] K. Guo, X. Li, and L. Xie, “Simultaneous cooperative relative
localization and distributed formation control for multiple UAVs,” Sci.

China Inf. Sci., vol. 63, no. 1, pp. 2019–2021, 2020, doi:
10.1007/s11432-018-9603-y.

[2] Y. Cao and Y. Sun, “Necessary and sufficient conditions for consensus

of third-order discrete-time multi-agent systems in directed networks,”

J. Appl. Math. Comput., vol. 57, no. 1–2, pp. 199–210, 2018, doi:
10.1007/s12190-017-1101-8.

[3] W. Zhou, J. Li, Z. Liu, and L. Shen, “Improving multi-target
cooperative tracking guidance for UAV swarms using multi-agent

reinforcement learning,” Chinese J. Aeronaut., vol. 35, no. 7, pp. 100–
112, 2022, doi: 10.1016/j.cja.2021.09.008.

[4] Z. Ma and J. Chen, “Multi-UAV Urban Logistics Task Allocation

Method Based on MCTS,” Drones, vol. 7, no. 11, 2023, doi:
10.3390/drones7110679.

[5] M. Zhang and C. Pan, “Hierarchical Optimization Scheduling

Algorithm for Logistics Transport Vehicles Based on Multi-Agent
Reinforcement Learning,” IEEE Trans. Intell. Transp. Syst., vol. 25,
no. 3, pp. 3108–3117, 2023, doi: 10.1109/TITS.2023.3337334.

[6] H. R. Lee and T. Lee, “Multi-agent reinforcement learning algorithm

to solve a partially-observable multi-agent problem in disaster

response,” Eur. J. Oper. Res., vol. 291, no. 1, pp. 296–308, 2021, doi:
10.1016/j.ejor.2020.09.018.

[7] M. A. Blais and M. A. Akhloufi, “Drone Swarm Coordination Using

Reinforcement Learning for Efficient Wildfires Fighting,” SN Comput.
Sci., vol. 5, no. 3, 2024, doi: 10.1007/s42979-024-02650-6.

[8] T. A. Karaguzel, V. Retamal, N. Cambier, and E. Ferrante, “From
Shadows to Light: A Swarm Robotics Approach with Onboard Control

for Seeking Dynamic Sources in Constrained Environments,” IEEE

Robot. Autom. Lett., vol. 9, no. 1, pp. 127–134, 2024, doi:
10.1109/LRA.2023.3331897.

[9] R. K. Lee, C. A. Kitts, M. A. Neumann, and R. T. McDonald, “Multiple

UAV Adaptive Navigation for Three-Dimensional Scalar Fields,”
IEEE Access, vol. 9, pp. 122626–122654, 2021, doi:
10.1109/ACCESS.2021.3107854.

[10] M. Lee et al., “A Study on the Advancement of Intelligent Military

Drones: Focusing on Reconnaissance Operations,” IEEE Access, vol.
12, pp. 55964–55975, 2024, doi: 10.1109/ACCESS.2024.3390035.

[11] Y. Liu, J. Liu, Z. He, Z. Li, Q. Zhang, and Z. Ding, “A Survey of Multi-

Agent Systems on Distributed Formation Control,” Unmanned Syst.,
pp. 1–14, Mar. 2023, doi: 10.1142/S2301385024500274.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1238

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

[12] Y. Liu, J. Hu, and Y. Li, “Quantized Formation Control of
Heterogeneous Nonlinear Multi-Agent Systems with Switching

Topology,” J. Syst. Sci. Complex., vol. 36, no. 6, pp. 2382–2397, 2023,
doi: 10.1007/s11424-023-2387-2.

[13] J. Liao et al., “UAV swarm formation reconfiguration control based on

variable-stepsize MPC-APCMPIO algorithm,” Sci. China Inf. Sci., vol.
66, no. 11, p. 212207, 2023, doi: 10.1007/s11432-022-3735-5.

[14] Z. Pang, Y. Fu, H. Guo, and J. Sun, “Analysis of Stealthy False Data

Injection Attacks Against Networked Control Systems: Three Case
Studies,” J. Syst. Sci. Complex., vol. 36, no. 4, pp. 1407–1422, 2023,
doi: 10.1007/s11424-022-2120-6.

[15] Z. Zhao, J. Chen, B. Xin, L. Li, K. Jiao, and Y. Zheng, “Learning
Scalable Task Assignment with Imperative-Priori Conflict Resolution

in Multi-UAV Adversarial Swarm Defense Problem,” J. Syst. Sci.

Complex., vol. 37, no. 1, pp. 369–388, 2024, doi: 10.1007/s11424-024-
4029-8.

[16] N. Li, Z. Su, H. Ling, M. Karatas, and Y. Zheng, “Optimization of Air
Defense System Deployment Against Reconnaissance Drone

Swarms,” Complex Syst. Model. Simul., vol. 3, no. 2, pp. 102–117,
2023, doi: 10.23919/CSMS.2023.0003.

[17] G. Wu, T. Xu, Y. Sun, and J. Zhang, “Review of multiple unmanned

surface vessels collaborative search and hunting based on swarm

intelligence,” Int. J. Adv. Robot. Syst., vol. 19, no. 2, pp. 1–20, 2022,
doi: 10.1177/17298806221091885.

[18] S. Ishtiaq, X. Wang, S. Hassan, A. Mohammad, A. A. Alahmadi, and
N. Ullah, “Three-Dimensional Multi-Target Tracking Using Dual-

Orthogonal Baseline Interferometric Radar,” Sensors, vol. 22, no. 19.
2022, doi: 10.3390/s22197549.

[19] X. Qu, W. Gan, D. Song, and L. Zhou, “Pursuit-evasion game strategy

of USV based on deep reinforcement learning in complex multi-
obstacle environment,” Ocean Eng., vol. 273, p. 114016, 2023, doi:
10.1016/j.oceaneng.2023.114016.

[20] A. A. Firmansyah and A. Alkaff, “Enhancing Autonomous Ground
Vehicle Positioning and Navigation through Cascaded Multi-Sensor

Integration,” 2023 Int. Conf. Adv. Mechatronics, Intell. Manuf. Ind.

Autom. ICAMIMIA 2023 - Proc., pp. 436–441, 2023, doi:
10.1109/ICAMIMIA60881.2023.10427562.

[21] T. Zhang, L. Yu, Z.-L. Zhou, and L. Wang, “Decision-making for air

combat maneuvering based on hybrid algorithm,” Xi Tong Gong Cheng

Yu Dian Zi Ji Shu/Systems Eng. Electron., vol. 35, pp. 1445–1450, Jul.
2013, doi: 10.3969/j.issn.1001-506X.2013.07.15.

[22] J. M. Gongora-Torres, C. Vargas-Rosales, A. Aragón-Zavala, and R.

Villalpando-Hernandez, “Elevation Angle Characterization for LEO

Satellites: First and Second Order Statistics,” Applied Sciences, vol. 13,
no. 7. 2023, doi: 10.3390/app13074405.

[23] R. G. Raju and S. K. Kashyap, “3D Localisation of Target using
Elevation Angle Algorithm with the use of Ground Radars,” Def. Sci.
J., vol. 70, pp. 260–271, 2020.

[24] K. E. Hoque and H. Aljamaan, “Impact of hyperparameter tuning on

machine learning models in stock price forecasting,” IEEE Access, vol.
9, pp. 163815–163830, 2021, doi: 10.1109/ACCESS.2021.3134138.

[25] N. Sutarna, C. Tjahyadi, P. Oktivasari, M. Dwiyaniti, and T. Tohazen,

“Hyperparameter Tuning Impact on Deep Learning Bi-LSTM for

Photovoltaic Power Forecasting,” J. Robot. Control (JRC), vol. 5, no.
3, 2024, doi: 10.18196/jrc.v5i3.21120.

[26] D. C. E. Saputra, A. Ma’arif, and K. Sunat, “Optimizing Predictive

Performance: Hyperparameter Tuning in Stacked Multi-Kernel

Support Vector Machine Random Forest Models for Diabetes

Identification,” J. Robot. Control, vol. 4, no. 6, pp. 896–904, 2023, doi:
10.18196/jrc.v4i6.20898.

[27] M. N. A. Al-Hamadani, M. A. Fadhel, L. Alzubaidi, and H. Balazs,

“Reinforcement Learning Algorithms and Applications in Healthcare
and Robotics: A Comprehensive and Systematic Review,” Sensors,
vol. 24, no. 8, p. 2461, 2024, doi: 10.3390/s24082461.

[28] S. Mukhopadhyay and B. Jain, “Multi-agent markov decision processes

with limited agent communication,” IEEE Int. Symp. Intell. Control -
Proc., pp. 7–12, 2001, doi: 10.1109/isic.2001.971476.

[29] S. Huang, H. Zhang, and Z. Huang, “Multi-UAV Collision Avoidance

using Multi-Agent Reinforcement Learning with Counterfactual Credit
Assignment,” arXiv preprint arXiv:2204.08594, 2022.

[30] M. Kayaalp, F. Ghadieh, and A. H. Sayed, “Policy Evaluation in
Decentralized POMDPs With Belief Sharing,” IEEE Open J. Control
Syst., vol. 2, pp. 125–145, 2023, doi: 10.1109/ojcsys.2023.3277760.

[31] A. K. Shakya, G. Pillai, and S. Chakrabarty, “Reinforcement learning
algorithms: A brief survey,” Expert Syst. Appl., vol. 231, p. 120495,
2023, doi: 10.1016/j.eswa.2023.120495.

[32] M. Yuan, J. Shan, and K. Mi, “Deep Reinforcement Learning Based

Game-Theoretic Decision-Making for Autonomous Vehicles,” IEEE

Robot. Autom. Lett., vol. 7, no. 2, pp. 818–825, 2022, doi:
10.1109/LRA.2021.3134249.

[33] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of

deep learning techniques for autonomous driving,” J. F. Robot., vol.
37, no. 3, pp. 362–386, 2020, doi: 10.1002/rob.21918.

[34] Ó. Pérez-Gil et al., “Deep reinforcement learning based control for
Autonomous Vehicles in CARLA,” Multimed. Tools Appl., vol. 81, no.
3, pp. 3553–3576, 2022, doi: 10.1007/s11042-021-11437-3.

[35] S. Han et al., “A Multi-Agent Reinforcement Learning Approach for
Safe and Efficient Behavior Planning of Connected Autonomous

Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 5, pp. 3654–
3670, 2023, doi: 10.1109/TITS.2023.3336670.

[36] B. Memarian and T. Doleck, “A scoping review of reinforcement

learning in education,” Comput. Educ. Open, vol. 6, p. 100175, 2024,
doi: 10.1016/j.caeo.2024.100175.

[37] B. Fahad Mon, A. Wasfi, M. Hayajneh, A. Slim, and N. Abu Ali,
“Reinforcement Learning in Education: A Literature Review,”

Informatics, vol. 10, no. 3, pp. 1–22, 2023, doi:
10.3390/informatics10030074.

[38] A. Charpentier, R. Élie, and C. Remlinger, “Reinforcement Learning

in Economics and Finance,” Comput. Econ., vol. 62, no. 1, pp. 425–
462, 2023, doi: 10.1007/s10614-021-10119-4.

[39] F. Soleymani and E. Paquet, “Deep graph convolutional reinforcement

learning for financial portfolio management – DeepPocket,” Expert
Syst. Appl., vol. 182, 2021, doi: 10.1016/j.eswa.2021.115127.

[40] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song, “Performance

optimization for blockchain-enabled industrial internet of things (iiot)
systems: A deep reinforcement learning approach,” IEEE Trans. Ind.

Informatics, vol. 15, no. 6, pp. 3559–3570, 2019, doi:
10.1109/TII.2019.2897805.

[41] X. He, K. Wang, H. Huang, T. Miyazaki, Y. Wang, and S. Guo, “Green

Resource Allocation Based on Deep Reinforcement Learning in
Content-Centric IoT,” IEEE Trans. Emerg. Top. Comput., vol. 8, no. 3,
pp. 781–796, 2020, doi: 10.1109/TETC.2018.2805718.

[42] Y. Dai, D. Xu, S. Maharjan, Z. Chen, Q. He, and Y. Zhang,
“Blockchain and Deep Reinforcement Learning Empowered Intelligent

5G beyond,” IEEE Netw., vol. 33, no. 3, pp. 10–17, 2019, doi:
10.1109/MNET.2019.1800376.

[43] C. H. Liu, Q. Lin, and S. Wen, “Blockchain-enabled data collection and

sharing for industrial iot with deep reinforcement learning,” IEEE
Trans. Ind. Informatics, vol. 15, no. 6, pp. 3516–3526, 2019, doi:
10.1109/TII.2018.2890203.

[44] R. Nian, J. Liu, and B. Huang, “A review On reinforcement learning:

Introduction and applications in industrial process control,” Comput.

Chem. Eng., vol. 139, p. 106886, 2020, doi:
10.1016/j.compchemeng.2020.106886.

[45] X. Fang, J. Wang, G. Song, Y. Han, Q. Zhao, and Z. Cao, “Multi-Agent

Reinforcement Learning Approach for Residential Microgrid Energy

Scheduling,” Energies, vol. 13, no. 1. 2020, doi: 10.3390/en13010123.

[46] A. Subramanian, S. Chitlangia, and V. Baths, “Reinforcement learning
and its connections with neuroscience and psychology,” Neural

Networks, vol. 145, pp. 271–287, 2022, doi:
10.1016/j.neunet.2021.10.003.

[47] F. Ye, Y. Li, X. Wang, N. Nedjah, P. Zhang, and H. Shi, “Parameters

tuning of multi-model database based on deep reinforcement learning,”

J. Intell. Inf. Syst., vol. 61, no. 1, pp. 167–190, 2023, doi:
10.1007/s10844-022-00762-0.

[48] J. García and D. Shafie, “Teaching a humanoid robot to walk faster
through Safe Reinforcement Learning,” Eng. Appl. Artif. Intell., vol.
88, p. 103360, 2020, doi: 10.1016/j.engappai.2019.103360.

[49] T. Kobayashi and T. Sugino, “Reinforcement learning for quadrupedal
locomotion with design of continual–hierarchical curriculum,” Eng.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1239

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

Appl. Artif. Intell., vol. 95, no. August, p. 103869, 2020, doi:
10.1016/j.engappai.2020.103869.

[50] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,

“How to train your robot with deep reinforcement learning: lessons we
have learned,” Int. J. Rob. Res., vol. 40, no. 4–5, pp. 698–721, Jan.
2021, doi: 10.1177/0278364920987859.

[51] M. D. Al-Masrur Khan et al., “A systematic review on reinforcement

learning-based robotics within the last decade,” IEEE Access, vol. 8,
pp. 176598–176623, 2020, doi: 10.1109/ACCESS.2020.3027152.

[52] K. Zhu and T. Zhang, “Deep reinforcement learning based mobile robot

navigation: A review,” Tsinghua Sci. Technol., vol. 26, no. 5, pp. 674–
691, 2021, doi: 10.26599/TST.2021.9010012.

[53] Y. Zhu, Z. Wang, C. Chen, and D. Dong, “Rule-Based Reinforcement

Learning for Efficient Robot Navigation With Space Reduction,”
IEEE/ASME Trans. Mechatronics, vol. 27, no. 2, pp. 846–857, 2022,
doi: 10.1109/TMECH.2021.3072675.

[54] X. Wang et al., “Deep Reinforcement Learning: A Survey,” IEEE
Trans. Neural Networks Learn. Syst., vol. 35, no. 4, pp. 5064–5078,
2024, doi: 10.1109/TNNLS.2022.3207346.

[55] L. Canese et al., “Multi-Agent Reinforcement Learning: A Review of

Challenges and Applications,” Applied Sciences, vol. 11, no. 11. 2021,
doi: 10.3390/app11114948.

[56] J. Castellini, F. A. Oliehoek, R. Savani, and S. Whiteson, “Analysing

factorizations of action-value networks for cooperative multi-agent
reinforcement learning,” Auton. Agent. Multi. Agent. Syst., vol. 35, no.
2, p. 25, 2021, doi: 10.1007/s10458-021-09506-w.

[57] B. Liu, Y. Xie, L. Feng, and P. Fu, “Correcting biased value estimation
in mixing value-based multi-agent reinforcement learning by multiple

choice learning,” Eng. Appl. Artif. Intell., vol. 116, p. 105329, 2022,
doi: 10.1016/j.engappai.2022.105329.

[58] Y. Deng, Z. Wang, X. Chen, and Y. Zhang, “Boosting Multi-agent

Reinforcement Learning via Contextual Prompting,” J. Mach. Learn.
Res., vol. 24, no. 399, pp. 1–34, 2023.

[59] J.-Y. Lee, A. Rahman, S. Huang, A. D. Smith, and S. Katipamula, “On-

policy learning-based deep reinforcement learning assessment for
building control efficiency and stability,” Sci. Technol. Built Environ.,

vol. 28, no. 9, pp. 1150–1165, Sep. 2022, doi:
10.1080/23744731.2022.2094729.

[60] N. Wang, Z. Li, X. Liang, Y. Hou, and A. Yang, “A Review of Deep

Reinforcement Learning Methods and Military Application Research,”
Math. Probl. Eng., vol. 2023, p. 7678382, 2023, doi:
10.1155/2023/7678382.

[61] X. Zhuang, D. Li, Y. Wang, X. Liu, and H. Li, “Optimization of high-
speed fixed-wing UAV penetration strategy based on deep

reinforcement learning,” Aerosp. Sci. Technol., vol. 148, p. 109089,
2024, doi: 10.1016/j.ast.2024.109089.

[62] J. Fan, D. Dou, and Y. Ji, “Impact-Angle Constraint Guidance and

Control Strategies Based on Deep Reinforcement Learning,”
Aerospace, vol. 10, no. 11, 2023, doi: 10.3390/aerospace10110954.

[63] A. Garg and S. S. Jha, “Deep deterministic policy gradient based multi-
UAV control for moving convoy tracking,” Eng. Appl. Artif. Intell.,
vol. 126, p. 107099, 2023, doi: 10.1016/j.engappai.2023.107099.

[64] J. Kim, D. Jang, and H. J. Kim, “Distributed Multi-agent Target Search
and Tracking With Gaussian Process and Reinforcement Learning,”

Int. J. Control. Autom. Syst., vol. 21, no. 9, pp. 3057–3067, 2023, doi:
10.1007/s12555-022-0555-0.

[65] A. Puente-Castro, D. Rivero, E. Pedrosa, A. Pereira, N. Lau, and E.

Fernandez-Blanco, “Q-Learning based system for Path Planning with
Unmanned Aerial Vehicles swarms in obstacle environments[Formula

presented],” Expert Syst. Appl., vol. 235, p. 121240, 2024, doi:
10.1016/j.eswa.2023.121240.

[66] Z. Qu, X. Zhao, H. Xu, H. Tang, J. Wang, and B. Li, “An Improved Q-

Learning-Based Sensor-Scheduling Algorithm for Multi-Target
Tracking,” Sensors, vol. 22, no. 18, 2022, doi: 10.3390/s22186972.

[67] Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, and X. Wang,

"Evolutionary Population Curriculum for Scaling Multi-Agent
Reinforcement Learning," arXiv preprint arXiv:2003.10423, 2020.

[68] X. Wang and X. Fang, “A multi-agent reinforcement learning

algorithm with the action preference selection strategy for massive
target cooperative search mission planning,” Expert Syst. Appl., vol.
231, p. 120643, 2023, doi: 10.1016/j.eswa.2023.120643.

[69] X. Li, J. Ren, and Y. Li, “Multi-mode filter target tracking method for
mobile robot using multi-agent reinforcement learning,” Eng. Appl.

Artif. Intell., vol. 127, p. 107398, 2024, doi:
10.1016/j.engappai.2023.107398.

[70] S. Li, Y. Jia, F. Yang, Q. Qin, H. Gao, and Y. Zhou, “Collaborative

Decision-Making Method for Multi-UAV Based on Multiagent

Reinforcement Learning,” IEEE Access, vol. 10, pp. 91385–91396,
2022, doi: 10.1109/ACCESS.2022.3199070.

[71] R. Su, Z. Gong, D. Zhang, C. Li, Y. Chen, and R. Venkatesan, “An
Adaptive Asynchronous Wake-Up Scheme for Underwater Acoustic

Sensor Networks Using Deep Reinforcement Learning,” IEEE Trans.

Veh. Technol., vol. 70, no. 2, pp. 1851–1865, 2021, doi:
10.1109/TVT.2021.3055065.

[72] L. Yue, R. Yang, J. Zuo, M. Yan, X. Zhao, and M. Lv, “Factored Multi-

Agent Soft Actor-Critic for Cooperative Multi-Target Tracking of
UAV Swarms,” Drones, vol. 7, no. 3, p. 150, 2023, doi:
10.3390/drones7030150.

[73] K. Su and F. Qian, “Multi-UAV Cooperative Searching and Tracking

for Moving Targets Based on Multi-Agent Reinforcement Learning,”
Appl. Sci., vol. 13, no. 21, p. 11905, 2023, doi: 10.3390/app132111905.

[74] C. D. Hsu, H. Jeong, G. J. Pappas, and P. Chaudhari, “Scalable

Reinforcement Learning Policies for Multi-Agent Control,” IEEE Int.

Conf. Intell. Robot. Syst., pp. 4785–4791, 2021, doi:
10.1109/IROS51168.2021.9636344.

[75] X. Zhang, W. Yue, and W. Tang, “Research on Scheme Design and
Decision of Multiple Unmanned Aerial Vehicle Cooperation Anti-

Submarine Based on Knowledge-Driven Soft Actor-Critic,” Appl. Sci.,
vol. 13, no. 20, p. 11527, 2023, doi: 10.3390/app132011527.

[76] Z. Fan, Y. Xu, Y. Kang, and D. Luo, “Air Combat Maneuver Decision

Method Based on A3C Deep Reinforcement Learning,” Machines, vol.
10, no. 11, pp. 1–18, 2022, doi: 10.3390/machines10111033.

[77] Y. Cao, Y.-X. Kou, Z.-W. Li, and A. Xu, “Autonomous Maneuver

Decision of UCAV Air Combat Based on Double Deep Q Network
Algorithm and Stochastic Game Theory,” Int. J. Aerosp. Eng., vol.
2023, p. 3657814, 2023, doi: 10.1155/2023/3657814.

[78] J. H. Bae, H. Jung, S. Kim, S. Kim, and Y.-D. Kim, “Deep

Reinforcement Learning-Based Air-to-Air Combat Maneuver

Generation in a Realistic Environment,” IEEE Access, vol. 11, pp.

26427–26440, 2023, doi: 10.1109/ACCESS.2023.3257849.

[79] J. Xianyong, M. Hou, G. Wu, Z. Ma, and Z. Tao, “Research on

Maneuvering Decision Algorithm Based on Improved Deep
Deterministic Policy Gradient,” IEEE Access, vol. 10, pp. 92426–
92445, 2022, doi: 10.1109/ACCESS.2022.3202918.

[80] D. Hu, R. Yang, J. Zuo, Z. Zhang, J. Wu, and Y. Wang, “Application

of Deep Reinforcement Learning in Maneuver Planning of Beyond-

Visual-Range Air Combat,” IEEE Access, vol. 9, pp. 32282–32297,
2021, doi: 10.1109/ACCESS.2021.3060426.

[81] S. Li et al., “Multi-UAV Cooperative Air Combat Decision-Making
Based on Multi-Agent Double-Soft Actor-Critic,” Aerospace, vol. 10,
no. 7. 2023, doi: 10.3390/aerospace10070574.

[82] W. Kong, D. Zhou, Z. Yang, Y. Zhao, and K. Zhang, “UAV
Autonomous Aerial Combat Maneuver Strategy Generation with

Observation Error Based on State-Adversarial Deep Deterministic

Policy Gradient and Inverse Reinforcement Learning,” Electronics,
vol. 9, no. 7. 2020, doi: 10.3390/electronics9071121.

[83] A. White and A. Karimoddini, “Event-based diagnosis of flight

maneuvers of a fixed-wing aircraft,” Reliab. Eng. Syst. Saf., vol. 193,
p. 106609, 2020, doi: 10.1016/j.ress.2019.106609.

[84] H. Jeong, B. Schlotfeldt, H. Hassani, M. Morari, D. D. Lee, and G. J.
Pappas, “Learning Q-network for Active Information Acquisition,”

IEEE Int. Conf. Intell. Robot. Syst., pp. 6822–6827, 2019, doi:
10.1109/IROS40897.2019.8968173.

[85] J. Hu, L. Wang, T. Hu, C. Guo, and Y. Wang, “Autonomous Maneuver

Decision Making of Dual-UAV Cooperative Air Combat Based on
Deep Reinforcement Learning,” Electronics, vol. 11, no. 3. 2022, doi:
10.3390/electronics11030467.

[86] Y. Li, J. Shi, W. Jiang, W. Zhang, and Y. Lyu, “Autonomous maneuver
decision-making for a UCAV in short-range aerial combat based on an

MS-DDQN algorithm,” Def. Technol., vol. 18, no. 9, pp. 1697–1714,
2022, doi: 10.1016/j.dt.2021.09.014.

[87] N. Sadeghzadeh-Nokhodberiz, A. Can, R. Stolkin, and A. Montazeri,

“Dynamics-Based Modified Fast Simultaneous Localization and

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1240

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target

Tracking

Mapping for Unmanned Aerial Vehicles with Joint Inertial Sensor Bias
and Drift Estimation,” IEEE Access, vol. 9, pp. 120247–120260, 2021,

doi: 10.1109/ACCESS.2021.3106864.

[88] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov,
and A. J. Smola, “Deep sets,” Adv. Neural Inf. Process. Syst., pp. 3392–
3402, 2017.

[89] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum

Entropy Inverse Reinforcement Learning,” Proc. 23rd AAAI Conf.
Artif. Intell. AAAI 2008, pp. 1433–1438, 2008.

[90] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning

Algorithms: A Comprehensive Classification and Applications,” IEEE

Access, vol. 7, pp. 133653–133667, 2019, doi:
10.1109/ACCESS.2019.2941229.

[91] H. Jiang, G. Li, J. Xie, and J. Yang, “Action Candidate Driven Clipped
Double Q-Learning for Discrete and Continuous Action Tasks,” IEEE

Trans. Neural Networks Learn. Syst., vol. 35, no. 4, pp. 5269–5279,
2024, doi: 10.1109/TNNLS.2022.3203024.

