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Abstract—This research deals with multi-UAV systems to 

track partially observable multi-targets in noisy three-

dimensional environments, which are commonly encountered in 

defense and surveillance systems. It is a far extension from 

previous research which focused mainly on two-dimensional, 

fully observable, and/or perfect measurement settings. The 

targets are modeled as linear time-invariant systems with 

Gaussian noise and the pursuers UAV are represented in a 

standard six-degree-of-freedom model. Necessary equations to 

describe the relationship between observations regarding the 

target and the pursuers states are derived and represented as 

the Gauss-Markov model. Partially observable targets require 

the pursuers to maintain belief values for target positions. In the 

presence of a noisy environment, an extended Kalman filter is 

used to estimate and update those beliefs. A Decentralized 

Multi-Agent Reinforcement Learning (MARL) algorithm 

known as soft Double Q-Learning is proposed to learn the 

coordination control among the pursuers. The algorithm is 

enriched with an entropy regulation to train a certain stochastic 

policy and enable interactions among pursuers to foster 

cooperative behavior. The enrichment encourages the algorithm 

to explore wider and unknown search areas which is important 

for multi-target tracking systems. The algorithm was trained 

before it was deployed to complete several scenarios. The 

experiments using various sensor capabilities showed that the 

proposed algorithm had higher success rates compared to the 

baseline algorithm. A description of the many distinctions 

between two-dimensional and three-dimensional settings is also 

provided. 

Keywords—Coordination Control; Extended Kalman Filter; 

Multi-Agent Reinforcement Learning; Multi-Target Tracking; 

Multi-UAV System. 

I. INTRODUCTION 

In recent years, cooperative control of multi-Unmanned 

Aerial Vehicle (multi-UAV) systems has become a hot 

research topic in the field of flight control [1]. The increasing 

complexity of environmental conditions and tasks makes 

multi-UAV systems very necessary to complete certain tasks 

[2], which cannot be done by only a single UAV. Using 

cooperation, multi-UAV systems can exhibit superior 

coordination, intelligence, and autonomy than ordinary UAV 

swarms [3]. The use of multi-UAV systems has been widely 

discussed and developed in various fields, such as logistics 

[4], [5], disaster response [6], [7], source seeking problem [8], 

[9]. 

Multi-UAV has been recognized as an important force 

through various proven instances in recent modern warfare 

[10]. Currently, most combat UAVs are remotely controlled. 

But the realization of offensive multi-UAV has become 

possible [11] with the advancements in multi-UAV control 

like formation control [12], [13] and supported by networking 

technology [14]. These developments raise potential public 

safety concerns regarding dangerous UAV attacks [15]. 

Therefore, research on how to overcome this is essential [16].  

One of the solutions that is quite important to research is 

Multi-Target Tracking Guidance (MTTG) [3]. MTTG is a 

condition where a group of UAVs, that are called pursuers, is 

assigned to track several previously unknown targets. It also 

can be seen as a pursuit-evasion problem which is popular in 

many research areas [17]. The main purpose of MTTG is to 

identify the number of potential targets in the pursuer’s field 

of view (FOV) [18]. Generally, the pursuers have limited 

observation and communication sensor range so that each 

pursuer can’t see their environment globally because it’s 

almost impossible to model the entire process due to the 

complexity and uncertainty of the environment [19]. Each 

pursuer can only receive information from the results of its 

own sensor readings [20] and from its neighbors via 

communication.  

In the UAV decision-making process, both the analytical 

solution methods and the intelligent optimization techniques 

have specific limitations. The analytical solution method 

requires precision and a comprehensive description of the 

decision model and without it, it is unsuitable to be applied to 

air scenarios. On the other hand, intelligent optimization 

methods struggle to define an appropriate solution space, 

with the related research often confined to the two-

dimensional plane [21], making direct application to real-

world scenarios challenging. Elevation angles representing 

three-dimensional systems are rarely discussed in the 

literature [22]. Whereas, accurate three-dimensional target 

positioning is of paramount importance in the aviation 

industry and air defense application [23]. Additionally, this 

kind of method is really dependent on hyperparameter tuning 

as it can significantly influence the model performance [24]–

[26].  

To solve MTTG using intelligent optimization, the 

problem is generally modeled as a Markov Decision Process 

(MDP) model [27]. MDP refers to a discrete-time stochastic 

decision-making process based on the Markov Property 

principle. In fact, MDP is typically employed in scenarios 
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devoid of model uncertainty where information concerning 

the states and actions of all UAVs is accessible. Naturally, 

with wider communication, better solutions will be easier to 

obtain [28], a notion known as the centralized. However, the 

concept of centralization has its drawbacks like complexity 

and computational time required [29]. Moreover, this 

assumption does not match the description of the problems to 

be faced. Therefore, a more specific MDP model must be 

used, namely the Decentralized Partially Observable Markov 

Decision Process (Dec-POMDP) [30]. Dec-POMDP is an 

extension of MDP and one way of formulating multi-agent 

decision-making under uncertainty with partial information.  

Then, Reinforcement Learning (RL) serves as the 

mechanism for determining the optimal solution within the 

Dec-POMDP model. RL operates as a learning paradigm 

where an artificial intelligence (AI) agent engages with its 

environment through trial-and-error, acquiring an optimal 

behavioral strategy based on reward signals obtained from 

previous interactions [31]. This methodology overcomes the 

disadvantages of alternative techniques, such as intricate 

modeling, challenging sample labeling, and tedious problem-

solving processes. RL facilitates the generation of sequences 

of decision-making with enduring consequences through 

self-interaction training, independent of human intervention. 

It has been used and achieved success across diverse 

domains, such as automatic driving [32]–[35], education 

[36], [37], economics [38], [39], logistic resource scheduling 

[40]–[43], industrial process [44], [45], medical [46], 

database parameter tuning [47], and robotics [48]–[53].  

Current academic research primarily focuses on the 

deterministic and static environment characterized by 

predominantly discrete and fully observable states [54]. 

Hence, both academic and practical applications mainly 

focus on a model-free approach [55], [56]. On this basis, RL 

algorithms are further classified into value function-based 

[57], [58] and policy-learning-based methods [59]. The value 

function approach aids decision-making by evaluating the 

value of each action within specific environmental states 

[60]. For multi-agent cases, RL is extended to Multi-Agent 

Reinforcement Learning (MARL). It focuses on studying the 

behavior of multiple agents that coexist in a shared 

environment. It needs to manage not only one agent but a 

group of agents at the same time.  

MARL has many alternative solutions. In [55] and [56], 

they utilized a method named Proximal Policy Optimization 

(PPO). Meanwhile, [57] and [58] using Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG). Q-Learning is 

used in [59] and [60]. There is hierarchical and curriculum 

learning paradigm [67], and others [68], [69]. Above that, the 

Centralized Training with Decentralized paradigm Execution 

(CTDE) makes it possible to train UAVs centrally while in 

execution, the UAVs make decisions based only on local 

observation [70], [71]. This paradigm significantly shifts 

complexity to training and makes execution light.  

The above studies have discussed the strategies for using 

MARL, that have certain guiding significance. In general, 

applying the MARL algorithm to multi-robot tracking is a 

feasible solution. However, there is still room for further 

exploration. Much of the MTTG-related literature still solve 

this problem in a two-dimensional environment. In [3] and 

[65] actor-critic is used. PPO and Q-Learning are utilized in 

[73] and [74], respectively. The reasons are varied, such as 

agents used are mobile robots or UAVs but move only on the 

x and y axes. Pursuers that move in three dimensions are used 

in [75]. However, the targets move in two dimensions and 

uncertainties like noise have not been taken into account. On 

the other hand, three-dimensional agents are widely used in 

air combat references. In [69] and [70], they trained aircraft 

maneuvers in a 1-on-1 scenario. But, as mentioned in [78]–

[80], most of them assumed that all information was known. 

The agents in [64] and [74] was knowing the positions of their 

adversaries. In practical applications, information, such as the 

position of the targets, can be incorrect due to sensor 

limitations or noises. Some studies have been conducted on 

sensor errors [82], [83] but noise in the state value hasn’t been 

considered.       

In this paper, we design an approach to describe the 

MTTG problem between pursuer UAVs and target UAVs in 

a three-dimensional and uncertain environment. Then, we 

modeled the problem as Dec-POMDP. The goal is to 

optimize the UAV control decisions in a decentralized 

manner. We use the extended Kalman filter to assist 

observation, updating the belief regarding targets. Besides 

that, Q-Learning will solve the control problem and obtain 

the best policy for the model. Lastly, we perform simulation 

studies to validate our proposed method.  

The research contributions of this work are: 

• We formulate the multi-UAV MTTG problem as a 

Decentralized Partially Observable Markov Decision 

Process (Dec-POMDP) where pursuers only receive 

partial observations about the targets.  

• We take the problem into a more complex three-

dimensional space according to the target faced. 

• For pursuers, the three-dimensional dynamic model of a 

UAV is used. Extended Kalman filter is used to update 

belief of target position. Based on the soft Double Q-

Learning algorithm and a CTDE architecture, a stochastic 

tracking policy is trained. 

The paper is organized as follows. Section 1 delves into 

the background and summarizes related works about MTTG 

and MARL. Section 2 describes the problem model, details 

the proposed approach, and designs the MARL algorithm. 

The results and discussion are presented in section 3. Lastly, 

section 4 concludes the paper with suggestions for further 

research.  

II. METHOD 

A. Problem Formulation 

Consider a scenario involving multiple UAVs where the 

objective of a group of 𝑁 homogeneous pursuer UAVs is to 

track 𝑀 homogeneous target UAVs as seen in Fig. 1. Each 

pursuer, denoted by 𝑖, possesses a state 𝑥𝑡
𝑖, and the target, 

denoted by 𝑗, with state 𝑦𝑡
𝑗
 moving with a discrete UAV 

dynamics model and a double integrator model, respectively. 

The pursuer's initial state, 𝑥0
𝑖 , target initial state, 𝑦0

𝑖 , and 

horizon 𝑇 are predefined. Then, each pursuer must choose 
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control actions 𝑢𝑡
𝑖  to maximize the mutual information 

between 𝑦𝑡
𝑗
 and the history of measurement denoted by 𝒐1:𝑡. 

The objective for localizing target states is [74]. 

max
𝑢(∙)

∑∑∑𝐼(𝒚𝑡
𝑗
, 𝒐𝑖:𝑡|𝒙1:𝑡

𝑖 )

𝑀

𝑗=1

𝑇

𝑡=0

𝑁

𝑖=1

 (1) 

with 𝑥𝑡+1
𝑖 = 𝑓(𝑥𝑡

𝑖, 𝑢𝑡
𝑖), 𝑦𝑡+1

𝑗
= 𝑔(𝑦𝑡

𝑗
), 𝑜𝑡 = ℎ(𝑥𝑡

𝑖 , 𝑦𝑡
1, … , 𝑦𝑡

𝑀) 

and 𝑢𝑡
𝑖 = 𝑢(𝒐1:𝑡) for 𝑡 ∈ {0, 𝑇}. The function 𝑓(∙) and 𝑔(∙) 

represent the pursuer’s dynamical model and the targets, 

while ℎ(∙) denote the model of observation. 𝑢(∙) is the policy 

to determine the control action 𝑢𝑡
𝑖 , which will be explained 

later. The measurement history, 𝒐1:𝑡, is shared among all 

agents.  

 

Fig. 1. Illustration of MTTG problem and scenario used in this paper. A 

group of pursuers with limited observation is trying to track multiple targets. 

White UAVs are the pursuers with limited observation ability. The red and 

green UAVs are the targets and their corresponding beliefs 

 Due to the limitation where each pursuer is only able to 

observe the environment partially, i.e., only receives 

observations solely of targets nearby, we define the task as a 

Dec-POMDP model. This model can be defined as a tuple 
(𝑵, 𝑺, 𝑨𝑖 , 𝑶𝑖 , 𝑷, 𝑹, 𝛾). Here, 𝑵 is a set of pursuers, 𝑺 is the 

state space, in which 𝒔 ∈ 𝑺. In this work, the state of the 

pursuer 𝑖 is: 

𝒔𝑖 ≔ [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑣𝑖 , 𝜃𝑖 , 𝜑𝑖] (2) 

Each variable will be explained in the next subsection. 𝑨𝑖 
represents a discrete set of actions available to each agent 𝑖, 
𝒁𝑖  denotes the observations set for each agent 𝑖, 
𝑷(𝑠𝑡+1|𝑠𝑡): 𝑺 × 𝑨 × 𝑺 indicates the transition probability 

model from one state to the next state after executing a 

particular action, 𝑹: 𝑺 × 𝑨 stands for the global reward, and 

𝛾 is the discount factor. Each pursuer makes individual 

decisions based on its local observations and the policy, 𝜋.  

 1) Observations: As an alternative to the limited 

observation of the UAV, the pursuer maintains a belief 

regarding target states. The belief distribution for the 𝑗𝑡ℎ 

target is defined as 𝐵(𝑦𝑗,𝑡) = 𝑝(𝑦𝑗,𝑡|𝒐1:𝑡 , 𝒙1:𝑡) and its 

predicted distribution for the subsequent step as �̂�(𝑦𝑗,𝑡+1) =

𝑝(𝑦𝑗,𝑡+1|𝒐1:𝑡 , 𝒙1:𝑡) [84]. We can simplify the optimization 

problem to minimize the cumulative differential entropy, 

𝐻(𝑦𝑡+1|𝒐1:𝑡 , 𝒙1:𝑡), under the assumption that 𝑦𝑡+1 is 

independent of 𝒙1:𝑡. If the belief is Gaussian,  

𝐵(𝑦𝑗,𝑡) = 𝒩(�̂�𝑗,𝑡 , 𝚺𝑗,𝑡) (3) 

and 

𝐻(𝑦𝑡+1|𝑜1:𝑡 , 𝑥1:𝑡) =
1

2
log((2𝜋𝑒)𝑀 det(𝚺𝑗,𝑡)) (4) 

Subsequently, the optimization function (1) becomes 

min
𝜋
∑logdet(𝚺𝑗,𝑡)

𝑇

𝑡=0

 (5) 

 At each time step 𝑡 ∈ 𝑇, the pursuer with state 𝑥𝑡 selects 

a control input 𝑢𝑡 based on the policy 𝜋, relying on the 

predicted target belief �̂�(𝑦𝑗,𝑡+1). So (1) can be maximized, 

measurement 𝑜𝑡+1 is received from the sensor by the pursuer, 

while the actual target transitions from 𝑦𝑡  to 𝑦𝑡+1. If the 

pursuer observes it, the corresponding belief distribution 

undergoes an update with the new measurement. This entire 

cycle is managed using centralized training and decentralized 

execution approach.  

 The belief regarding target states is continuously updated 

using an extended Kalman filter as new observations about 

the target are obtained. The dynamic of the targets remains 

unknown to the pursuers and importantly, the target states 

remain unaffected by the agent’s control inputs. As a result, 

the value function and control policy of the 𝑖𝑡ℎ agent utilizes 

the predicted belief of the target 𝑗 at time step 𝑡 + 1 as input 

at time 𝑡. Additionally, we adjust the belief of the 𝑗𝑡ℎ target 

within the pursuers body frame (�̂�(𝑥𝑖)) to make sure there is 

no distribution shift between observations collected by 

different pursuers. The belief state is 

𝒔𝑗 ≔ [�̂�𝑗,𝑟
(𝑥𝑖), �̂�𝑗,𝛼

(𝑥𝑖), �̂�𝑗,𝛽
(𝑥𝑖), �̇̂�𝑗,𝑟

(𝑥𝑖), �̇̂�𝑗,𝛼
(𝑥𝑖), �̇̂�𝑗,𝛽

(𝑥𝑖), log det 𝚺𝑗 ,

𝕀 (𝑦𝑗 ∈ 𝒪(𝑥𝑡))] 
(6) 

where �̂�𝑗,𝑟
(𝑥𝑖), �̂�𝑗,𝛼

(𝑥𝑖), �̂�𝑗,𝛽
(𝑥𝑖) denote sphere coordinates of the mean 

of the target 𝑗’s belief. The next three terms are their 

derivatives. 𝚺𝑗 represent target belief covariance as in (5). As 

the pursuers have limited sensing range, a Boolean function 

𝕀(∙) is used. If the actual target is in the vicinity, it returns 1, 

and 0 otherwise. 

 In the existing framework, we establish a centrally located 

extended Kalman filter accessible to each pursuer for 

updates. We ensure that when a pursuer detects a target, the 

belief associated with that target is accurately updated. When 

another pursuer accesses the Kalman filter, it retrieves the 

latest information from other agents. While this aspect of the 

system operates in a centralized manner, local observations 

and control actions remain unshared among the team. The 

framework as seen in Fig. 2, builds upon a single-agent 

strategy by employing parameter sharing across multiple 

agents. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1230 

 

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target 

Tracking 

 

Fig. 2. Framework for multi-agent multi-target tracking. The MARL block 

consists of a variable number of pursuers with identical dynamics. Each 
pursuer receives a local observation state of target beliefs from the centrally 

stored extended Kalman filter  

 2) Rewards: Our aim is to discover the optimal policy 𝜋∗ 
that maximizes the cumulative mutual information (1) 

between the 𝑖𝑡ℎ pursuer and the 𝑗𝑡ℎ target, effectively 

minimizing the objective (5). We simplify the objective by 

representing it as a discounted sum, where the reward is 

defined as the average uncertainty across all targets [74].  

𝑅(𝑠𝑡 , 𝑎𝑡) = −
1

𝑀
∑log det(𝚺𝑡+1

𝑗
)

𝑀

𝑗=0

 (7) 

so that the value function is 

𝑉𝜋(𝑠) = −𝔼𝜋 [
1

𝑀
∑∑𝛾𝑡 log det(𝚺𝑡+1

𝑗
)

𝑀

𝑗=0

𝑇−1

𝑡=0

|𝑠0 = 𝑠] (8) 

 Notice that the reward allocated to each agent is 

contingent on the performance of all other agents. This setup 

is advantageous as it ensures shared value functions and 

policies among agents. It also enables policy 𝜋∗ to adapt 

based on how other agents, following the same policy, are 

tracking their respective targets. Intuitively, this strategy 

acknowledges that even when uncertainty is minimal for 

most targets, high uncertainty regarding the final target 

significantly impacts the overall average reward. 

3) Action Space: Lastly, for the action space, we choose 

12 discrete actions, as shown in Fig. 3 and Table I, that 

consist of a combination of tangential overload 𝑛𝑥, normal 

overload 𝑛𝑧, and roll angle 𝜙. This approach reduces the 

complexity of UAV training. In contrast to the standard seven 

actions, it enables the UAV to execute consistent speed, 

acceleration, and deceleration control, mirroring the actual 

flight dynamics of the UAV more closely. The pursuer will 

choose an action 𝑎 ∈ 𝑨𝑖. 

 

Fig. 3. Pursuer UAV maneuver library 

TABLE I.  MANEUVER LIBRARY 

No. Maneuver 
Control Values 

𝒏𝒙 𝒏𝒛 𝝓 

𝑎1 Forward maintain 0 1 0 

𝑎2 Forward accelerate 2 1 0 

𝑎3 Left turn maintain 0 8 −arccos (
1

8
) 

𝑎4 Left turn accelerate 2 8 −arccos (
1

8
) 

𝑎5 Left turn decelerate -1 8 −arccos (
1

8
) 

𝑎6 Right turn maintain 0 8 arccos(
1

8
) 

𝑎7 Right turn accelerate 2 8 arccos(
1

8
) 

𝑎8 Right turn decelerate -1 8 arccos(
1

8
) 

𝑎9 Upward maintain 0 8 0 

𝑎10 Upward accelerate 2 8 0 

𝑎11 Downward maintain 0 8 𝜋 

𝑎12 Downward accelerate 2 8 𝜋 

B. UAV Dynamic Model 

For the target UAV motion, we use a non-linear target 

model based on the double integrator with Gaussian noise 

[84]. 

𝒚𝑡+1 = 𝑨𝒚𝑡 + 𝑤𝑡 ,      𝑤𝑡 ∼ 𝒩(0,𝑾(𝑞)) (9) 

where  𝑦𝑡 = [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , �̇�𝑡 , �̇�𝑡 , �̇�𝑡]
𝑇 and 

𝑨 = [
𝐼3 𝑇𝑠𝐼3
0 𝐼3

]      𝑾(𝑞) = 𝑞 [

𝑇𝑠
3

3
𝐼3

𝑇𝑠
2

2
𝐼3

𝑇𝑠
2

2
𝐼3 𝑇𝑠𝐼3

] (10) 

𝑞 is a noise constant, 𝑇𝑠 is a given sampling time, and 𝐼𝑛 is an 

𝑛 × 𝑛 identity matrix.  

According to Fig. 4, The motion model of the pursuer 

UAV is inspired by a fixed-wing UAV in [85] which has been 

modified to the description of the rotation angle used 

{
�̇� = 𝑣 sin 𝜃 cos𝜓
�̇� = 𝑣 sin 𝜃 sin𝜓
�̇� = 𝑣 cos 𝜃

 (11) 

where 𝑥, 𝑦, and 𝑧 represent the position of the UAV within 

the coordinate system, 𝑣 signifies the current speed direction 
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of the UAV, �̇�, �̇�, and �̇� represent the change rate of 𝑣 along 

the three coordinate axes, 𝜃 is the pitch angle, and 𝜓 is the 

yaw angle.  

In the same coordinate system, the dynamic model of 

UAV can be articulated as 

{
 
 

 
 

�̇� = 𝑔(𝑛𝑥 − cos 𝜃)

�̇� =
𝑔

𝑣
(𝑛𝑧 cos 𝜙 − sin 𝜃)

�̇� =
𝑔𝑛𝑧 sin𝜙

𝑣 sin 𝜃

 (12) 

where 𝑔 is the gravitational acceleration and 𝜙 is the roll 

angle. 𝑛𝑥 and 𝑛𝑧 represent tangential overload and normal 

overload, respectively. In this model, [𝑛𝑥, 𝑛𝑧 , 𝜙] are the 

feasible control parameters for UAV maneuver control. So, 

the pursuer state is 𝒙𝑡 = [𝑥, 𝑦, 𝑧, 𝑣, 𝜃, 𝜓]𝑇 as mentioned in (2). 

See [85], [86] for more details on the UAV maneuver model. 

 

Fig. 4. Motion model of pursuer UAV 

C. Frame Conversion and Belief Update 

We work within a three-dimensional space, so we utilize 

a range (𝑟)-bearing (𝛼)-elevation (𝛽) sensor depicted in Fig. 

5 and written in (14). It’s assumed that the pursuers can 

distinctly discern different targets. The measurement model 

of the sensor pertaining to each target is as follows: 

            𝒛𝑖,𝑡 = 𝒉(𝑥𝑡 , 𝑦𝑗,𝑡) + 𝑣𝑡 ,      𝑣𝑡 ∼ 𝒩(0, 𝑽) (13) 

where 𝑽 is an observation noise covariance matrix and the 

observation model is  

𝒉(𝑥𝑡 , 𝑦𝑗,𝑡) = [

𝑟
𝛼
𝛽
] ≔

[
 
 
 
 
 
 √(𝑥𝑡𝑔 − 𝑥𝑜)

2
+ (𝑦𝑡𝑔 − 𝑦𝑜)

2
+ (𝑧𝑡𝑔 − 𝑧𝑜)

2

tan−1
𝑦𝑡𝑔−𝑦𝑜

𝑥𝑡𝑔−𝑥𝑜

tan−1
√(𝑥𝑡𝑔−𝑥𝑜)

2
(𝑦𝑡𝑔−𝑦𝑜)

2

(𝑧𝑡𝑔−𝑧𝑜) ]
 
 
 
 
 
 

  

(14) 

𝑥𝑡𝑔, 𝑦𝑡𝑔, and 𝑧𝑡𝑔 represent the target position while 𝑥𝑜, 𝑦𝑜, 

and 𝑧𝑜 are pursuer’s position. Consequently, (𝑥𝑡𝑔 − 𝑥𝑜) 

means the distance between the pursuer and the observed 

target in the x-axis and so on. 

 

Fig. 5. Illustration of range-bearing-elevation measurement 

If there is a target observed by the pursuer, the Kalman 

filter will update the beliefs regarding the target. The filter 

will estimate �̂�, �̂�, and �̂�. The measurement model (14) is 

reduced to its linear form, with the Jacobian matrix of 𝒉(𝑥, 𝑦) 

𝐉(𝒉(𝑥, 𝑦)) =

[
 
 
 
 
 
(𝑥𝑡−𝑥𝑜)

�̂�𝑥𝑦𝑧

(�̂�𝑡−𝑦𝑜)

�̂�𝑥𝑦𝑧

(�̂�𝑡−𝑧𝑜)

�̂�𝑥𝑦𝑧
01×3

−sin �̂�

�̂�𝑥𝑦

cos �̂�

�̂�𝑥𝑦
0 01×3

cos �̂� cos �̂�

�̂�𝑥𝑦𝑧

sin �̂� cos �̂�

�̂�𝑥𝑦𝑧

−sin �̂�

�̂�𝑥𝑦𝑧
01×3]

 
 
 
 
 

  
(15) 

where �̂�𝑥𝑦 indicates range which is calculated using the 

difference of 𝑥 axis and 𝑦 axis only. Meanwhile �̂�𝑥𝑦𝑧 also 

include 𝑧 axis. We can get bearing and elevation in (15) in 

XYZ form if we substitute these variables according to the 

specification in Fig. 5, to become 

𝐉(ℎ(𝑥, 𝑦)) =

[
 
 
 
 
 

(𝑥𝑡−𝑥𝑜)

�̂�𝑥𝑦𝑧

(�̂�𝑡−𝑦𝑜)

�̂�𝑥𝑦𝑧

(�̂�𝑡−𝑧𝑜)

�̂�𝑥𝑦𝑧
01×3

−(�̂�𝑡−𝑦𝑜)

�̂�𝑥𝑦
2

(𝑥𝑡−𝑥𝑜)

�̂�𝑥𝑦
2 0 01×3

(𝑥𝑡−𝑥𝑜)(�̂�𝑡−𝑧𝑜)

�̂�𝑥𝑦𝑧
2 �̂�𝑥𝑦

(�̂�𝑡−𝑦𝑜)(�̂�𝑡−𝑧𝑜)

�̂�𝑥𝑦𝑧
2 �̂�𝑥𝑦

−�̂�𝑥𝑦

�̂�𝑥𝑦𝑧
2 01×3]

 
 
 
 
 

  
(16) 

Insights into the concept of measurement, localization, and 

mapping can be found in [87].  

How the Kalman filter works until data sent to the reward 

function is illustrated by Fig. 6. Initial state prediction, 𝒙0
−, 

and initial prediction error covariance matrix, 𝑷0
−, are 

required before the filter calculates the Kalman gain using 

𝑲𝑡 = 𝑷𝑡
−𝑱𝑇(𝑱𝑷𝑡

−𝑱𝑇 + 𝑟)−1 (17) 

and estimation error covariance matrix, 𝑷𝑡,  

𝑷𝑡 = (𝑰 − 𝑲𝑡𝑱)𝑷𝑡
− (18) 

as well as 

𝒙𝑡 = 𝒙𝑡
− + 𝑲𝑡(𝒛𝑡 − 𝑱𝒙𝑡

−) (19) 
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Fig. 6. Belief update flow in each time step. The initialization only occurs in 

the first step 

We presume that these beliefs adhere to the same double 

integrator model as the target outlined in (9), although with 

differences in parameters 𝑨 and 𝑾(𝑞𝑏) where 𝑞𝑏 ≠ 𝑞. 

Essentially, this implies that the pursuer possesses only 

partial knowledge about the target. Then, the filter will 

predict the next state of the target for the next iteration, using 

𝒙𝑡+1
− = 𝑨𝒙𝑡 (20) 

and calculate the prediction error variance  

𝑷𝑡+1
− = 𝑨𝑷𝑡𝑨

𝑇 + 𝑞𝑏 (21) 

The belief is in Cartesian coordinates. Thus, we have to 

convert it to another, the Spherical coordinate. Additionally, 

as mentioned in II.A, we must adjust the belief of the target 

in the local frame to the pursuer's body frame. Using  

𝑪𝐿
𝐵

= [

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃
(−𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓) (𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓) 𝑠𝜙𝑐𝜃
(𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓) (−𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓) 𝑐𝜙𝑐𝜃

] 
(22) 

and multiply it by the difference between the pursuer position 

and the target belief position then we will get the target 

relative position according to the pursuer in Cartesian.  

Regardless of whether there is an update or not, beliefs 

about the target will be processed further to be used as 

observations in the MARL. To convert positions in Cartesian 

to Spherical, we can use the same equations as in (22) and 

(14). For the velocity, we need the target velocity in the 

pursuer’s body frame. We can convert the target velocity 

from local to body frame using (22) and reduce it with the 

pursuer’s velocity. Then, with the position and velocity of the 

target in the pursuer’s body frame, we can calculate the target 

velocity in spherical coordinates using (23) and updating (6).  

{
 
 
 

 
 
 �̇� =

𝑥�̇� + 𝑦�̇� + 𝑧�̇�

𝑟

�̇� =
𝑥�̇� − �̇�𝑦

𝑥2 + 𝑦2

�̇� =
�̇� − �̇�

𝑧
𝑟

√𝑥2 + 𝑦2

 (23) 

D. Model Architecture 

We need a policy that can adapt to varying target amounts 

visible in observation. Therefore, we view an observation as 

a set of elements processed by an embedding that is 

permutation-invariant and able to handle any number of 

elements within the observation set. The policy is constructed 

using an encoder-decoder model architecture inspired by 

DeepSets [88], augmented with self-attention layers. These 

self-attention layers ensure the property of permutation-

invariance by emphasizing actionable information in the 

observation. The capability to handle an arbitrary number of 

elements is facilitated by the summation within the DeepSets 

architecture where additional elements are simply part of the 

linear combination of the embedding space.  

According to [88], function 𝜙(𝐴) is invariant to the 

permutation of elements when acting on a set 𝐴 if and only if 

it can be broken down into the form 𝜙(𝐴) ≡ 𝜌(∑ 𝜓(𝐴)𝑎∈𝐴 ) 
for certain functions 𝜓 and 𝜌. This concept is illustrated in 

Fig. 7. Both functions are adaptable and can be trained to 

incorporate invariance, while the summation allows 𝜙(𝐴) to 

accommodate sets of different sizes. 

 

Fig. 7. Illustration of DeepSets concept 

The self-attention mechanism is a potent tool for the value 

function to focus on the most relevant aspects of the input in 

relation to the output. It operates by embedding learning 

structures, where attention involves associating a query 𝑄 

with a set of key-value pairs, 𝐾 and 𝑉, to generate an output. 

This process essentially computes a weighted sum of the 

values, with attention being represented as a linear 

combination of 𝑉. The compatibility between the query and 

keys is gauged through the dot product 𝑄𝐾𝑇. The attention 

module, 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝜔 (𝑑𝑞
−
1

2𝑄𝐾𝑇)𝑉, (24) 

assigns greater importance to keys that exhibit a higher dot 

product with the query vector. Here, 𝜔 denotes an activation 

function like softmax, and 
1

√𝑑𝑞
 acts as a scaling factor. 

Additionally, enhancing the self-attention module involves 

exploring higher-order interactions between Q and K. This is 

achieved by projecting the inner product across multiple sub-

spaces, resulting in the creation of the Multi-Head Attention 

Block (MAB).  

MAB runs through an attention mechanism several times 

in parallel. Compared with the attention model, multi-head 

attention allows the model to jointly focus on information 

from different positions. The multi-head attention is 

computed as [70] 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1233 

 

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target 

Tracking 

       𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑𝑖)𝑊
𝑜 (25) 

where  

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (26) 

𝑊𝑜, 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are the parameters of the Concat 

function for 𝑄, 𝐾, and 𝑉, respectively.  

E. Maximum Entropy 

Stochastic policy can be learned using the maximum 

entropy regularized objective [89] which aims to strike a 

balance between maximizing the anticipated return and 

entropy or in other words, to excel in the task while exhibiting 

as much randomness as feasible. The policy’s entropy is 

modulated by a temperature parameter, 𝛼, which means that 

greater entropy corresponds to higher temperature and 

increased randomness, and the other way around. From 

distribution 𝑃 across a random variable 𝑥, the entropy 𝐻 is 

mathematically expressed as: 

𝐻(𝑃) = 𝔼𝑥~𝑃[− log 𝑃(𝑥)] (27) 

At every time step, the pursuer receives an additional reward 

corresponding to the policy’s entropy. Then, the RL problem 

can be reframed with a maximum entropy objective: 

𝒥(𝜋) = ∑𝔼(𝑠𝑡,𝑎𝑡)~𝜋[𝑟(𝑠𝑡 , 𝑎𝑡) − 𝛼 log 𝜋(𝑎𝑡|𝑠𝑡)]

𝑇−1

𝑡=0

 (28) 

This objective promotes stochastic policies by adding the 

equation to the policy. There are both theoretical and 

empirical advantages in stochastic policies. One, they 

encourage broader exploration while abandoning fewer 

promising paths. Additionally, the policies can encompass 

multiple modes of optimal behavior when faced with equally 

attractive actions, the policy assigns equal probability to 

each. Lastly, these policies have demonstrated significant 

improvements in exploration, making them valuable for 

cooperative tasks. 

F. Soft Double Q-Learning 

Q-Learning belongs to the category of off-policy RL 

methods. This approach has become the basis of many RL 

algorithms because, unlike other methods, Q-Learning is 

relatively simple and shows excellent learning capabilities in 

single-agent environments. It aims to minimize the 

expectation of the 1-step temporal difference (TD) error. Off-

policy methods are called such because they maintain a 

dataset, denoted as 𝐷 = {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}𝑡=0,…, gathered 

using a behavior policy and used to estimate the current 

policy’s value function. The value function will be 

represented using a Deep Neural Network (DNN) with 

parameters 𝜃. Utilizing stochastic gradient descent, the 

optimal parameters 𝜃∗ can be determined to minimize the 

Huber loss applied to the TD error. 

We use and enhance the advanced off-policy method 

known as Clipped Double Q-Learning [90], [91], serving as 

the framework for learning the stochastic policies. The 

original double Q-Learning algorithm trains two separate 

estimates of the actual Q value, represented by neural 

networks labeled as 𝑄𝜑1 and 𝑄𝜑2. This framework mitigates 

Q value overestimation by selecting the minimum value 

between the two independent estimates. This approach 

assigns higher values to states that have lower variance 

estimation errors, leading to more consistent learning. The 

update process for double Q-Learning is outlined below 

𝑄∗(𝑠, 𝑎)

← 𝑟 + 𝛾 min
𝑘=1,2

𝑄𝜙𝑘
′ (𝑠′, argmax

𝑎′
∑ 𝑄𝜙𝑘(𝑠

′, 𝑎′)

𝑘=1,2

) 
(29) 

𝜙𝑘
′  denote target network 𝑘.  

In practice, double Q-Learning learns a deterministic 

policy by selecting actions based on the argmax(𝑄(𝑠, 𝑎)). 

To acquire a stochastic policy, we modified the conventional 

double Q-Learning framework with an entropy-regularized 

objective. This algorithm referred to as soft Double Q-

Learning, is designed to balance the anticipated return and 

entropy while exploring. The process for soft double Q-

Learning is explained in Algorithm 1 and the update is [74] 

𝑄∗(𝑠, 𝑎) ← 𝑟 + 𝛾 min
𝑘=1,2

𝔼𝑎′~𝜋 [𝑄𝜙𝑘
′ (𝑠′, 𝑎′)

− 𝛼 log 𝜋(𝑎′|𝑠′)] 
(30) 

When using a stochastic policy, actions are determined 

through sampling from a multinomial distribution, which is 

derived from the Q function values log softmax. During 

exploration phases, higher entropy causes the policy to 

sample actions beyond those with the highest value. This 

approach aids the policy in exploring less-visited areas of the 

state space, therefore enhancing exploration. 

Algorithm 1 Soft Double Q-Learning 

1: Initialize environment with 𝑁 pursuers and 𝑀 targets 

2: Initialize replay buffer 𝔾 

3: Initialize value networks 𝑄𝜙1 and 𝑄𝜙2  

4: Initialize target networks 𝜙1
′ , and 𝜙2

′  

5: for each episode do 

6:        Random sample 𝑛 ∈ [1, 𝑁] and 𝑚 ∈ [1,𝑀]  
7:        For each step 𝑡 = 0, 𝑇 do  

8:              for 𝑖 = 0, 𝑛 do 

9:                   observe 𝑠𝑖 and select 𝑎𝑖~𝜋(𝑎𝑖|𝑠𝑖)    
10:                   do 𝑎𝑖, get reward 𝑟𝑡, observe 𝑠𝑖

′ 

11:                   store (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑡 , 𝑠𝑖
′) in replay buffer 𝔾 

12:               end for 

13:         end for 

14:         for each update do 

15:               select a batch of 𝑁: 𝑔𝑡~𝔾  

16:               calculate 𝑄∗(𝑠, 𝑎) using (30)   

17:               perform clipped gradient descent step on 

18:                  ∑ ℎ𝑢𝑏𝑒𝑟 (𝑄𝜙𝑘(𝑠, 𝑎) − 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎))𝑘=1,2  

19:               Update 𝜙1
′  and 𝜙2

′  

20:       end for 

21: end for 

The soft Double Q-Learning algorithm is modified with 

parameter sharing to offer centralized training with 
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decentralized execution for multi-agent learning. The 

algorithm starts with sampling the environment with each 

pursuer, feeding their own observations through shared 

networks to generate unique experiences. When every 

pursuer acts according to the present policy, the entire 

environment changes from 𝑡 to 𝑡 + 1. The second half of the 

algorithm updates value functions using stochastic gradient 

descent, eliminating the non-stationarity issue regarding 

decentralized trained systems. Each pursuer is given a copy 

of the learned policy for decentralized execution upon 

completion of training. To improve generalization, 𝑛 and 𝑚 

number of pursuers and targets are uniformly randomly 

sampled during training. This is done to create a different 

number of cooperative agents in the team. This flexibility and 

diverse training episodes expand the task space, resulting in 

a more robust policy. This is especially important for real-

world implementations that are full of possibilities. 

III. RESULTS AND DISCUSSION 

A. Setup 

The MTTG scenario is in a highly uncertain three-

dimensional environment. We initialize agent, target, and 

belief locations randomly. Targets move unpredictably with 

their fixed double integrator model and are added by 

Gaussian noise. Moreover, both the belief and observation 

models include noise components, further enhancing the 

environmental randomness. But we implement a restricted 

random initialization for target locations and their associated 

beliefs to decrease training variance and focus on tracking 

rather than exploration.  

All agent positions, 𝑥0,…,𝑁, are randomly placed within the 

designated map. Target positional components, 𝑦0,…,𝑀, are 

initialized 5-10 kilometers from a randomly chosen agent. 

Then, Gaussian belief distributions for target locations are 

initialized within 0-5 kilometers of their respective targets, 

with covariance Σ. The initial position of pursuers and 

evaders, as well as the belief of targets, will change in each 

experimental iteration.  

Both pursuers and targets are constrained to a maximum 

velocity of 300
𝑚

𝑠
. The initial velocity for all targets is set to 

90
𝑚

𝑠
. 𝑇 is set to 200 steps. Each agent has an observation 

range of 20 kilometers, bearing and elevation for 
𝜋

4
 rad. These 

setup values are inspired by a fixed-wing aircraft common 

parameters used in research. Training, testing, and evaluation 

are carried out in a space measuring 50 kilometers × 50 

kilometers × 50 kilometers without obstacles. 

In multi-agent multi-target environments, maintaining a 

balance between the number of pursuers and targets is 

essential for effective behavior. We'll conduct testing on tasks 

involving 𝑛 pursuers within the range of [1, 𝑁], and 𝑚 targets 

within [1,𝑀]. Subsequently, we'll assess the method's 

performance, without requiring retraining, across different 

task configurations. The testing will be conducted for 16 

scenarios with various amounts of pursuers and targets. 

B. Agent Training, Testing, and Evaluating 

 In the MARL model, each layer contains 256 hidden 

units, and there are 4 attention heads. We employ Adam 

optimizer with a learning rate of 0.0001. Learning rate is a 

factor determining how much new information overrides old 

information. With that value, pursuers can learn quickly but 

not too fast so as not to miss important details. The discount 

factor 𝛾 is set to 0.99. This factor encourages long-term 

beneficial actions rather than short-term gains. The replay 

buffer size is 106, and the training batch size is 256. The 

temperature parameter 𝛼 is 0.4, and ReLU serves as the 

activation function.  

 We train the model for 500000 steps that are divided into 

20 episodes as shown in Fig. 8. Each training episode consists 

of training and testing, and they have their own average 

rewards. It was trained using 4 pursuers and 3 targets 

scenario. As we can see, our algorithm initially exhibits an 

upward trend for the initial 25000 steps, following which it 

gradually stabilizes. From the conclusion of the first episode, 

the average reward consistently maintains a positive value, 

signifying the pursuers' capability to track the targets. 

Convergence is achieved around the 50000 step mark, 

especially for the training. The final score stabilized at 

approximately 259 for the training and 302 for the testing. 

 

Fig. 8.  Average rewards of training and testing episodes 

 This result comes from the fact that during evaluation, the 

pursuers act with their learned policy. But, when training, 

they use a stochastic policy to explore the environment. This 

is a standard practice in MARL, despite the fact we want to 

achieve some form of continual learning. Another cause that 

also can be considered is noise in the environment.  

To validate the result, we show how the Q value increases 

over time as seen in Fig. 9. There are two Q values because 

we used a double Q-Learning paradigm, but it looks like there 

is only one due to their identical values. Their value will 

converge around 380. Q-value represents the value of taking 

a specific action in a specific state. Therefore, this value can 

be said to estimate the rewards that can be obtained in the 

future. A higher Q-value means the potential reward obtained 

will be higher. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1235 

 

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target 

Tracking 

 

Fig. 9.  Change in Q value during training 

Then, for evaluation, we evaluate the policies resulting 

from the training process in sixteen scenarios based on the 

number of pursuers and targets on 50 episodes each with the 

same seed. In scenario 1, there is 1 pursuer and 1 target. The 

second scenario comes with 2 pursuers and 1 target, and so 

on, until there are 4 pursuers and 4 targets. The results can be 

seen from Fig. 10 up to Fig 12. We count the success rate of 

each scenario where a successful episode is indicated with a 

positive reward from that episode. If the episode reward 

comes with a negative value, it identifies the failure of the 

episode. We present the data in percentage form. 

Even though training and testing show positive results, 

there is still the potential for negative rewards. This is caused 

by the stochastic nature of the environment and pursuer 

behavior. Apart from that, differences in initial conditions 

can also determine success. Episodes fail when stochastic 

policy pursuers delay excessively, causing targets to move 

beyond observable range, and compelling pursuers to resort 

to random searches. 

As the number of pursuers increases, the percentage of 

success tends to increase. What is quite interesting is that 

when the target increases, it turns out that the possibility of 

success also becomes greater. This result is possible because 

of the reward function that we use where the reward 

calculation is done from the covariance matrix regarding the 

target. The more targets, the bigger the matrix, and the bigger 

the potential reward. One thing that is certain is that with a 

larger number, the pursuer has a higher potential for success 

even if tested with the same number of targets. But the 

success percentage of all scenarios is above 50%. This 

phenomenon arises as the policy operates with greater 

intelligence to reduce the uncertainty surrounding all targets, 

prioritizing long-term team rewards over immediate gains. 

Conversely, a policy-oriented towards instant rewards would 

lead pursuers to solely pursue the nearest target. 

 

Fig. 10. Comparison of rate of success from sixteen evaluation scenarios 

 

Fig. 11. Comparison of rate of success in percentage-pursuer view 

 

Fig. 12. Comparison of rate of success in percentage-target view 

C. Cooperative Behaviour Analysis 

Fig. 13 illustrates the stochastic policies' unique traits, 

cooperative-like behaviors. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1236 

 

Vincentius Charles Maynad, Three-Dimensional Coordination Control of Multi-UAV for Partially Observable Multi-Target 

Tracking 

 

Fig. 13.  Task allocation demonstrated by the pursuers 

The blue arrows and blue lines are the pursuers and their 

respective trajectory. The red dots are the targets, and the 

green circle is the belief of the targets. Stochastic policies 

acquire insights beyond merely tracking the nearest target. 

They not only identify distant targets but also autonomously 

determine target assignments, indicating a degree of 

cooperation. The target's belief will always change at any 

time, especially when the target is not in the pursuers' field of 

view. 

This behavior is very important in problems like MTTG 

where the number of targets is unknown. Because they want 

to maximize the rewards they get, pursuers will try to track 

all existing targets. Without cooperative behavior, each 

pursuer will focus more on targets that are visible even 

though they have been tracked by other pursuers. This can 

cause a decrease in the value of the reward. 

D. Comparison of the Proposed Algorithm with Double Q-

Learning 

Subsection II.F explains soft double Q-Learning (soft-

DQL) and its differences from basic double Q-Learning 

(DQL), which is the use of temperature parameter, 𝛼. The 

influence of alpha on the performance of the algorithm is to 

encourage exploration which is one of the important points in 

the MTTG problem. To see how big the effect is, we trained 

three other models that have the same parameter 

specifications as the previous model, except for the bearing 

angle and elevation angle which are 𝜋 rad. In other words, 

now pursuers should have better observation skills. The three 

models are differentiated based on the temperature 

parameters used. The 𝛼 values used were 0, 0.2, and 0.4 for 

the first, second, and third models, respectively. The first 

model is the model that uses basic double Q-Learning.  

Then, we evaluate them in several scenarios and once 

again, calculate the rate of success for each of them through 

100 evaluation episodes. The intended scenario is to make 

changes to the bearing angle and elevation angle values, thus 

decreasing the sensor Field of View (FOV). From there, the 

adaptability of each model is tested. The result is shown in 

Table II. 

TABLE II.  RATE OF SUCCESS OF BASIC DQL AND SOFT-DQL IN VARIOUS 

SENSOR FOV 

 

Model 1 

DQL 

(𝜶 = 0) 

Model 2 

soft-DQL 

(𝜶 = 0.2) 

Model 3 

soft-DQL 

(𝜶 = 0.4) 
𝝅

𝟒
 2% 6% 14% 

𝝅

𝟐
 86% 88% 92% 

𝝅 100% 100% 100% 

In the first scenario where the observation angle decreases 

drastically to 
𝜋

4
, all models produce poor results. However, it 

can be seen that model 1 has the least success. On the other 

hand, model 3 is the highest and leaves far behind the other 

two models. This continues to the next scenario even though 

the difference is not as far as the first scenario. Meanwhile, 

all models succeed in the third scenario because they were 

trained in that scenario. 𝛼 gives the pursuers the ability to be 

more flexible in dealing with various conditions. Model 3 has 

better exploration capabilities than model 1. Therefore, when 

the observations are limited, pursuers from model 3 can get 

more success because they move more actively in their 

environment.  

Apart from the influence of 𝛼, it can also be seen how the 

pursuer performance is affected by changes in sensor 

specifications. The smaller sensor viewing distance certainly 

limits the pursuer's ability to track their target, especially if 

they were previously trained in a very different scenario. 

Different from the model in the previous experiment, that 

model has been trained on a scenario with an observation 

angle of 
𝜋

4
 so it can still provide better performance. Using 

piecewise cubic hermite interpolating polynomial (PCHIP) 

function in Matlab, the influence of the sensor FOV and 𝛼 

value on the rate of success is more clearly visible as seen in 

Fig. 14.  

 

Fig. 14.  Polynomial that describes the influence of FOV and 𝛼 on the rate 

of success of the system 

E. Comparison of Three-dimensional and Two-dimensional 

Environments 

When compared to a two-dimensional environment, a 

three-dimensional environment has higher complexity. We 

summarize some of the differences between the two in Table 

III.  
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TABLE III.  COMPARISON OF 3D AND 2D ENVIRONMENT 

No. Indicator 
Three-

Dimensional 

Two-

Dimensional 
1. Variables 22 13 

2. Rate of Success 76% 100% 

3. Environment Size 125000 units 2500 units 

4. 
Steps Needed to 

Converge 
50000 50000 

5. Computation Time 
28651 time 

unit 

26709 time 

unit 

 

We carry out 20 episodes of training by equating the 

values of all hyperparameters in a two-dimensional 

environment to those in a three-dimensional environment. 

First, three-dimensional scenarios certainly have a greater 

number of variables, approximately two times the two-

dimensional. For example, there is only one rotation angle 

that is considered in a two-dimensional environment, namely 

the yaw angle. Meanwhile, we must consider three angles in 

a three-dimensional environment, namely roll, pitch, and 

yaw. This carries over to the coordinate transformation where 

we have the addition of elevation. The rate of success is 

calculated from the highest and lowest percentage among 

sixteen scenarios average.  

The rate of success is calculated from the averages of the 

highest and lowest percentages among sixteen scenarios. 

From Fig. 10, the 4 pursuers and 3 targets scenario is the 

highest with 98%. The lowest comes from 1 pursuer and 3 

targets, which is 54%. Meanwhile, for the two environmental 

dimensions, both were successful.  

The size of the three-dimensional environment is fifty 

times bigger than the two-dimensional one as it has the z-axis. 

This occurs because a three-dimensional environment is 

calculated in cubes instead of squares, as in a two-

dimensional environment. This much larger size means that 

the number of available states also increases so that more 

space needs to be explored.  

The time to reach convergence between the two scenarios 

is the same. However, two-dimensional scenarios generally 

have a larger average reward. Lastly, although the values of 

all hyperparameters are the same, the computing time to 

complete 20 episodes is different. Three-dimensional 

environments take longer. However, if this concept is to be 

brought to a real-world setting, there are many other factors 

that need to be considered. One of them is the increase in 

computational complexity connected to three-dimensional 

scenarios. 

IV. CONCLUSION 

This paper presented a method for multi-agent target 

tracking within a complex three-dimensional environment 

with high uncertainty. First, the problem is expressed as the 

Dec-POMDP model. We design and derive several necessary 

equations to describe the relationship between observations 

and the state of pursuers in the three-dimensional 

environment such as the Jacobian matrix of the measurement 

model and velocity in Spherical coordinates. Then, we use 

soft double Q-Learning which is a development of basic 

double Q-Learning to carry out coordination control for each 

pursuer. The experiment results proved the fact that the 

proposed method is capable of completing the task in various 

scenarios and is better than the baseline. 

A significant challenge lies in striking a balance between 

decentralized control decisions, which is necessitated by 

communication constraints, and achieving cooperation or 

information sharing to effectively track multiple targets. This 

study delves into a heuristic to address this tradeoff. It trains 

a stochastic policy that enables pursuers to hedge their control 

actions when multiple targets are nearby. Although this form 

of cooperation is relatively weak, it needs no communication. 

However, this method may not be suitable for more 

demanding scenarios that inherently require more agents to 

track cooperatively, such as targets with rapidly increasing 

uncertainty or emergencies like accidents. Therefore, adding 

communication capabilities between pursuers can be a good 

development. Additionally, analysis of computational 

complexity in a three-dimensional environment also needs to 

be carried out to prepare this method for real-world scenarios, 

such as surveillance systems and public safety. 
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