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Abstract—Balancing security with image quality is a critical 

challenge in image encryption, particularly for applications like 

medical imaging that require high visual fidelity. Traditional 

encryption methods often fail to preserve image integrity and 

are vulnerable to advanced attacks. This paper introduces 

CryptoGAN, a novel GAN-based model designed for image 

encryption. CryptoGAN employs an architecture to effectively 

encrypt a dataset of 2000 butterfly images with a resolution of 

256x256 pixels, integrating Generative Adversarial Networks 

(GANs) with symmetric key encryption. Using a U-Net 

Generator and a PatchGAN Discriminator, CryptoGAN 

optimizes for key metrics including Structural Similarity Index 

(SSIM), entropy, and correlation measures. CryptoGAN's 

performance is comprehensively compared against state-of-the-

art models such as Cycle GAN-based Image Steganography, 

EncryptGAN, and DeepEDN. Our evaluation, based on metrics 

like SSIM, entropy, and PSNR, demonstrates CryptoGAN's 

superior ability to enhance encryption robustness while 

maintaining high image quality. Extensive experimental results 

confirm that CryptoGAN effectively balances security and 

visual fidelity, making it a promising solution for secure image 

transmission and storage. This study is supported by a literature 

survey and detailed analysis of the model architecture, 

underscoring CryptoGAN's significant contributions to the field 

of image encryption. 

Keywords—Artificial Intelligence (AI); Generative 

Adversarial Networks (GAN); GAN-based Encryption; Image 

Encryption; Deep Neural Networks (DNN). 

I. INTRODUCTION  

In recent years, the transmission and sharing of digital 

images over the internet have significantly increased, 

presenting substantial security challenges. Traditional image 

encryption methods, such as DES (Data Encryption 

Standard) and AES (Advanced Encryption Standard), often 

compromise the structural integrity and visual fidelity of 

images, which is critical for applications like medical 

imaging. These methods also suffer from high computational 

complexity and are vulnerable to various attacks, 

necessitating innovative solutions to overcome these 

limitations. The proliferation of machine learning techniques 

across multiple areas has resulted in the need for vast amounts 

of data for training purposes, posing a major challenge to the 

preservation of individual privacy rights [1]. Digital images 

feature strong adjacent pixel correlation, redundant data, and 

enormous data sizes [2]. The widespread distribution of 

multimedia content on multiple platforms calls for strong 

security measures to protect confidential data. Traditional 

image encryption methods frequently fall short in balancing 

the conflicting needs of efficiency, security, and image 

quality preservation. This has prompted researchers to 

investigate novel strategies that improve image encryption 

techniques by utilizing developments in artificial 

intelligence, especially deep learning. Fig. 1, illustrates a 

typical data encryption procedure that uses the same key for 

both encryption and decryption where the plain text is the 

input image that is encrypted using any encryption algorithm 

that uses a key. Here the output is the cipher image or the 

encrypted image. The decryption is the exact opposite 

algorithm as the encryption to reconstruct the original data 

back.  

 

Fig. 1.  Encryption and Decryption of data using a symmetric key 

The simple technique of symmetric key encryption is 

adopted in order to safeguard an individual's privacy on 

public network platforms [3] using the same key on both 

ends. Several methods, including image encryption, image 

stenography (image concealing), and image authentication, 

guarantee the security of data contained in the images. Deep 

learning has been increasingly important in recent times for 

tasks including object recognition in images, image 

classification, segmentation, style transfer, reconstruction, 

and compression. Recently, deep learning-based image 

security has drawn the interest of researchers and made 

significant advancements. Because of its features in 

cryptography, chaos is the foundation of traditional image 

encryption systems. The authors in [4] first presented a 

chaotic encryption technique in 1989. 
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Numerous efficient designs for imagine encryption 

systems based on chaos have been put forth [5], [6]. 

Subsequently, more encryption systems based on wavelet 

transform [7], game theory [8], chaos [9] and DNA coding 

[10], etc., have been devised. Schemes for encrypting images 

include permutation and diffusion rounds. Random pixel 

configurations during the permutation step improve defense 

against statistical attacks, as no information is obtained from 

mosaics of the permuted image through this method. Secret 

keys are used to change the pixel values during the diffusion 

phase [11]. When it comes to encrypting images, deep 

learning is just starting out. What triggers interest for an 

additional study is the fact that its integration with 

cryptography has not been investigated yet. As a branch of 

machine learning, deep learning has enabled the creation of 

models capable of learning and making judgements from 

massive volumes of data, which has had a profound impact 

on many domains. A potent tool for creating and modifying 

images, Generative Adversarial Networks (GANs) have 

arisen within this field. The GAN's Generator and 

Discriminator with the corresponding inputs and outputs can 

be seen in Fig. 2.  

 

Fig. 2.  Generative Adversarial Network Architecture [10] 

Concurrently trained using adversarial processes, GANs 

comprise of two neural networks viz. Generator and a 

Discriminator. Producing realistic images is the goal of the 

Generator, while differentiating between genuine and created 

images is the goal of the Discriminator. Random noise is 

given as the input in the beginning to the Generator. As the 

training progresses in comparison with real images the 

Generator is trained better. Images of a high quality and 

realism are produced as a consequence of this dynamic 

interaction. 

Beyond their original use in image generation, GANs 

have recently discovered some interesting new uses, such as 

in image encryption. Because of their one-of-a-kind design, 

GANs can learn intricate mappings and transformations, 

making them a good fit for creating advanced encryption 

algorithms.  This study traces the history of deep learning 

techniques used for image encryption. We have also weighed 

the benefits and drawbacks of their evolution over the last 

several years. 

In particular, traditional encryption methods like DES and 

AES compromise the structural integrity and visual fidelity 

of images, which is critical for applications such as medical 

imaging. These methods also suffer from high computational 

complexity and vulnerability to various attacks, necessitating 

innovative solutions to overcome these limitations. Chaotic 

encryption methods, while providing better security, often 

result in high computational complexity and are not easily 

scalable. Similarly, wavelet transform-based methods 

improve image quality but lack robustness against 

sophisticated attacks. These limitations highlight the need for 

new solutions that can effectively balance security, 

computational efficiency, and image quality. 

This paper introduces CryptoGAN, a novel GAN-based 

model designed for image encryption. CryptoGAN employs 

a U-Net as the Generator and a PatchGAN as the 

Discriminator, specifically tailored to encrypt a dataset of 

2000 butterfly images with a resolution of 256x256 pixels. 

The integration of GANs with symmetric key encryption in 

CryptoGAN addresses key limitations of traditional methods 

and existing GAN-based models. The following sections 

provide an analysis of the proposed work's architecture in 

drawing comparisons to previous works. 

II. PERFORMANCE COMPARISON OF DIFFERENT IMAGE 

ENCRYPTION SYSTEMS BASED ON DEEP LEARNING 

Historically, methods like chaotic encryption and wavelet 

transforms have paved the way for modern encryption 

techniques. However, these methods underscore the ongoing 

need for solutions that balance security, computational 

efficiency, and image quality. This historical context 

illustrates the evolution of encryption methods and the 

challenges that persist today. 

In the process of encryption, to ensure that the encoder 

and decoder principles are same, the majority of digital image 

steganography employs standard image processing methods 

[11], [12]. As an example, a multi-directional pixel value 

differencing and modulus function (MDPVDMF) was 

suggested by [11]. This function involves dividing the 

original image into multiple blocks with 2×2 pixels. The best 

direction with regard to embedding capacity and 

imperceptibility is determined by utilizing all three 

orientations of a 2×2-pixel block. To determine each block's 

embedding capacity [13], the pixel value differencing 

approach is employed [14]. To further improve 

imperceptibility, a pixel realignment approach based on the 

modulus function was then employed. Producing a 

meaningful stego-image becomes challenging with such a 

pixel-wise method. In fact, this is why we zero in on the deep 

learning approach that actually produces useful stego-images 

[15]. Table I shows the comparative study of different deep 

learning-based encryption models. 

A. Deep Learning Approach-based Attacks on Encryption 

Schemes    

For an optimal image encryption solution to be resistant 

against various attacks, it must be thoroughly examined [26], 

[27]. Key sensitivity, plaintext sensitivity, histogram 

analysis, correlation analysis, and entropy analysis are some 

of the most popular metrics used to test the security of image 

encryption schemes. These metrics measure resistance 

against brute force attacks, plaintext attacks, statistical 

attacks, differential attacks, and other types of attacks. Most 

encryption schemes remain susceptible to attacks, 

particularly plaintext attacks, even after being tested against 

these criteria. It is recommended to examine the core 

principles of the encryption technique from a cryptanalysis 

perspective. In addition to these more conventional forms of 

attack, deep learning-based pictorial encryption systems are 

vulnerable to the following types of attacks, which are typical 

of deep learning models: 
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● Leakage of Hidden Factors: An attacker attempts to create 

a deep learning model by utilising the photos used to 

construct the encryption network. It is possible to build 

the encryption/decryption network with hidden factors 

that expose the secret image. 

● Leakage in the Network Architecture: The attacker has 

obtained the blueprints of the network, but they cannot 

access the concealed components. The perpetrator uses a 

variety of covert techniques to deduce the hidden image.  

● Both Hidden Factors and Network Architecture Leakage: 

An attacker might potentially decipher the secret image 

from its cipher image if they have access to both the 

hidden factors that trained the encryption/decryption 

network and the encryption/decryption system. 

TABLE I.  COMPARATIVE STUDY ON DIFFERENT IMAGE ENCRYPTION SYSTEMS USING DEEP LEARNING 

Ref. Year Techniques Issues Addressed Shortcomings 

[16] 2019 Cycle GAN-based Image Steganography Cover image-style visual communication 
Necessary to use a larger cover image in 
order to insert the hidden image over it. 

[17] 2020 

Implementation of conventional encryption 

with secret key generation by means of a 

deep neural network 

Generating fine-tuned dynamic keys based 

on an increase in security threats using a 

deep learning technique 

Following key acquisition via DNN, 

encryption utilises a weak conventional 

diffusion mechanism 

[18] 2020 Encrypting Images with Cycle GAN 
Implementation of Cycle-GAN for 

Encryption 
Measurements of Low Diffusion 

[19] 2021 
Encrypting images with cycle GANs and 

enhanced diffusion 

Metrics for the spread of image encryption 

systems 

The XOR operation is the sole 

component of traditional diffusion 

[20] 2021 

Visual encryption using imagine fusion, 

optical/digital diffusion, and image 

scrambling based on CNN 

Advancements in convolutional neural 
network (CNN) image encryption 

Encryption requires two images 

[21] 2021 
A deep learning-based image encryption 
technique with a dynamic key generating 

system 

Using a deep learning technique to generate 

a dynamic secret key 

The encryption system might use some 

tuning to make it more efficient 

[22] 2022 
Scrambling the discrete cosine transform 

(DCT) coefficient matrices to modulate the 

weights of DNN 

It is non-linear and does not necessitate 
training, the encryption system is both 

efficient and secure 

Both the histogram and the encryption 
method are vulnerable to occlusion 

attacks 

[23] 2022 
Using a Chaotic Sequence with a Deep 

Autoencoder to Encrypt Images 

Creating a uniformly distributed cipher 
image by encoding a scrambled image using 

an auto-encoder 

Traditional encryption techniques are 

more uniform than histogram [24], [25] 

III. PROPOSED METHODOLOGY 

The proposed CryptoGAN system is designed to encrypt 

a given plain image into a cipher image and decrypt it back 

to the plain image domain using a deep learning approach. 

The Generator G, also referred to as the encryption network, 

uses latent noise to generate cipher images. This network is 

trained using pairs of plain and encrypted images. We employ 

a U-Net architecture as the Generator and a PatchGAN as the 

Discriminator D, which has shown promising results in image 

translation tasks. The comparisons with other types of models 

are made further in this article in detail. During training, 

Generator G progressively improves through a feedback loop 

and loss minimization, thereby producing increasingly 

accurate cipher images. The losses involved in this process 

are crucial and are discussed in detail in the following 

sections. As we understand that the GANs typically learn 

using the loss functions, we intend to focus more on the losses 

available. The losses we refer here are explored in sections 

below. For this study, we utilized the butterfly dataset, 

consisting of colored images sized 256×256. The training 

process involved 2000 image samples. As shown in Fig. 3 

Network G encrypts the plain image it gets, and in the 

opposite procedure [28], decryption network H creates a plain 

image from the cipher image. Similarly, CryptoGAN's 

encryption network G and Discriminator network D are 

trained to produce cipher images that resemble the target 

cipher image [29]; the goal of training the proposed 

decryption network H and Discriminator is to reconstruct 

plain images with minimal differences compared to the 

original plain image [30]. We utilized the previously trained 

Discriminator for reverse translation. Future research may 

explore alternative discriminators to optimize this process 

further. The suggested encryption method's flowchart in 

depicted in Fig. 3. 

 

Fig. 3.  Encryption flow diagram of the proposed model 

GANs, with their ability to learn complex data 

distributions, offer a promising solution for image encryption 

by generating high-quality encrypted images that maintain 

structural integrity. The objectives of this research are to 

develop a robustly trained GAN-based image encryption 

model, evaluate its performance using comprehensive 

metrics, and compare it with existing state-of-the-art models. 

This study aims to demonstrate the potential of CryptoGAN 

in providing secure and high-quality image encryption 

solutions. For image-to-image translation tasks like 

segmentation, super-resolution, or encryption, U-Net as a 
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Generator usually trains with paired images. There is an input 

image and a cipher image, or matched target image, in every 

pair [31]. The goal is for the network to figure out how to 

convert the input image into the desired encrypted image. 

This goal is mainly dependent on: 

● The image that the network takes in as input image and 

the intended output of the network is called the target 

image. 

● The loss function in the U-Net aims to minimize the 

difference between the actual target image and its 

predicted output. L1 and L2 loss functions measure the 

pixel-wise difference between target and anticipated 

images to quantify this mismatch.  

Usually, a U-Net, an encoder-decoder structure with skip 

links, is used as the generating network in this case. The 

Generator in a GAN often uses a U-Net architecture, which 

typically has a densely connected layer between the encoder 

and the decoder [32]. The U-Net design is an encoder-

decoder with skip connections, which means that the layers 

in the encoder and decoder paths can be directly connected to 

one other. Tasks like image-to-image translation rely on the 

retention of spatial information, which this structure aids in. 

In most cases, a dense layer between the encoder and decoder 

is unnecessary for a U-net [33]. However, in some cases, a 

dense layer is used as a bottleneck layer to transform and 

possibly reduce the dimensionality of the encoded feature 

space before Up-sampling it back to its original size. 

Different layers of the Generator architecture are shown in 

Fig. 4 [34]. The tables below also show and describe the 

different levels. 

Table II displays the U-Net encoder layers. Our GAN's 

Generator uses a U-Net design, which is well-known for its 

effectiveness in image-to-image translation tasks; this makes 

it ideal for image encryption. The encoder, bottleneck, and 

decoder are the three primary parts of the U-Net. All of the 

components work together to process and change the input 

image in a way that produces outputs of excellent quality. 

Through a succession of convolutional layers, the 

encoder, also called the contracting path, captures the input 

image's context. The network is able to extract features from 

low-level to high-level data because the encoder layers 

continuously decrease the image's spatial dimensions while 

increasing the feature maps' depth. In order to cut the output 

size in half while keeping crucial spatial information, the 

layers employ a stride of 2 and padding 'same' [35]-[38]. As 

an example, the image being processed may have simple 

properties like edges and textures captured by the first 

convolutional layer, and then more complicated patterns and 

shapes can be identified by the next layers that build upon 

these features. Leaky ReLU activation [39] introduces non-

linearity and tackles the vanishing gradient problem [40], 

while batch normalization is done after each convolutional 

layer (apart from the first) to stabilize and accelerate training. 

Connecting the encoder and decoder, the bottleneck layer 

captures the input image's most abstract representation [41]. 

The feature maps are compressed to their smallest form while 

preserving and precisely reconstructing the important 

characteristics [42]. The information about the bottleneck 

layer is displayed in Table III. 

TABLE II.  ARCHITECTURE OF THE U-NET ENCODER (DOWN-SAMPLING 

PATH) 

Layer Type 
Filter 

Size / 

Stride 

Padding 
Activation 

Function 
Output Size 

Input Layer - - - 256×256×3 

Conv2D 4×4 / 2 Same 
Leaky 
ReLU 

(α=0.2) 

128×128×64 

MaxPooling2D 2×2 / 2 Valid - 64×64×64 

Conv2D 4×4 / 2 Same 
Leaky 
ReLU 

(α=0.2) 

32×32×128 

MaxPooling2D 2×2 / 2 Valid - 16×16×128 

Conv2D 4×4 / 2 Same 
Leaky 
ReLU 

(α=0.2) 

8×8×256 

Conv2D 4×4 / 2 Same 
Leaky 
ReLU 

(α=0.2) 

4×4×512 

Conv2D 4×4 / 2 Same 

Leaky 

ReLU 
(α=0.2) 

2×2×512 

Conv2D 4×4 / 2 Same 

Leaky 

ReLU 
(α=0.2) 

1×1×512 

TABLE III.  ARCHITECTURE OF THE BOTTLENECK LAYER  

Layer Type 
Activation 

Function 
Additional 

Fully Connected (Dense) ReLU 
Flatten input, Dense layer, 

Reshape back to 1x1x512 

 

 

 

Fig. 4.  Generator network of the proposed model 
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In order to keep the spatial resolution and provide a 

comprehensive set of characteristics that summarize the input 

image, the bottleneck employs a 4×4 kernel [43] with stride 

1 and padding as 'same'. 

Reconstructing the encrypted image from the abstract 

features collected in the bottleneck is the responsibility of the 

decoder, also called the expanding path [44], [45]. Table IV 

shows the schematics of the model Decoder that has been 

suggested. It uses skip connections from the relevant encoder 

layers to keep high-resolution features and spatial 

information as a succession of Up-sampling layers 

progressively restore the image's spatial dimensions [46]. To 

make sure the reconstructed image looks just like the original 

input, each Up-sampling layer increases the spatial 

dimensions while decreasing the depth. In the last layer of 

output, a ‘tanh’ activation function is used to make sure that 

the pixel values fall within the range of [-1, 1], which is 

matching the input images' normalization. Using a U-Net 

architecture in the Generator, our GAN encrypts images 

efficiently, keeping important features and guaranteeing 

accurate reconstruction when decrypted. Because it strikes a 

good compromise between feature extraction and spatial 

preservation, its architecture works great for encrypting 

images. The encoder's usage of convolutional layers allows 

the network to extract important information at various 

abstraction levels, and the bottleneck guarantees a condensed 

image representation. Reconstructing the encrypted image is 

made easier by the decoder's Up-sampling layers and skip 

connections. This ensures that the output closely resembles 

the original input while preserving high-quality features. 

In GANs, the 'tanh' activation function is utilized in the 

output layer of the Generator network for several key reasons. 

It normalizes pixel values between -1 and 1, which stabilizes 

training and ensures consistent outputs. This function also 

improves gradient flow during backpropagation and reduces 

the likelihood of vanishing gradients compared to the sigmoid 

function. To start with, the fact that ‘tanh’ returns values 

between -1 and 1 is useful for creating images with 

normalized pixel values; this, in turn, helps to stabilize the 

training process and guarantees consistent outputs. The 

‘tanh’ function also improves gradient flow in 

backpropagation and decreases the probability of vanishing 

gradients, in comparison to the sigmoid function, by 

providing non-zero gradients for a wider range of inputs. A 

more balanced and realistic-looking result is achieved by 

generating images with both negative and positive pixel 

values, made possible by the symmetry of ‘tanh’ around the 

origin. In addition, the output layer of the Generator should 

use ‘tanh’ to conform to the normalization practice of image 

processing, which is to normalize pixel values to the range of 

[-1, 1] instead of [0, 1]. This makes the produced images 

immediately usable for visualization or additional processing 

without the need for scaling. This design is crucial for 

generative network image encryption tasks because it 

guarantees a complete and efficient image reconstruction 

from the encoded representation while preserving high 

quality and fidelity. For applications like GAN-based image 

encryption, the PatchGAN Discriminator is crucial to the 

adversarial architecture. In Fig. 5, we can see the 

Discriminator model rendered. Focusing on fine-grained 

details, it assesses the realism of small image patches instead 

of the complete image. A number of convolutional layers 

were specifically engineered to efficiently collect and process 

this information in our enhanced PatchGAN Discriminator.  

 

Fig. 5.  Discriminator network of the proposed model 

The Discriminator model starts with an input layer 

receiving images of dimensions 256×256×3. This input is 

processed through multiple convolutional layers, each 

designed to extract and refine features at different abstraction 

levels for precise image discrimination. The output is 

128×128×64, made possible by the first convolutional layer's 

4×4 kernel, stride of 2, and padding set to 'same'. In this layer, 

the input image's low-level properties, like textures and 

edges, are extracted. The following layer again employs a 

4×4 kernel, but this time with a depth of 128 instead of 126, 

resulting in an output size of 64×64×128. In order to identify 

more intricate patterns and shapes, this layer expands upon 

the elements that were previously collected. Batch 

normalization is used to improve training speed and stability. 

Then, to incorporate non-linearity and alleviate the vanishing 

gradient problem, the Leaky ReLU activation function is 

implemented. Table V displays the Discriminator's layer 

details. 

TABLE IV.  ARCHITECTURE OF THE U-NET DECODER 

Layer Type Filter Size / Stride Padding Activation Function Output Size Additional 

Deconv2D 4×4 / 2 Same ReLU 2×2×512 Dropout (0.5) + Skip connection 

Deconv2D 4×4 / 2 Same ReLU 4×4×1024 Dropout (0.5) + Skip connection 

Deconv2D 4×4 / 2 Same ReLU 8×8×1024 Dropout (0.5) + Skip connection 

Deconv2D 4×4 / 2 Same ReLU 16×16×1024 Skip connection 

Deconv2D 4×4 / 2 Same ReLU 32×32×512 Skip connection 

Deconv2D 4×4 / 2 Same ReLU 64×64×256 Skip connection 

Deconv2D 4×4 / 2 Same ReLU 128×128×128 Skip connection 

Deconv2D 4×4 / 2 Same ReLU 256×256×64 Skip connection 

Output Layer 4×4 / 1 Same tanh 256×256×3 - 
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TABLE V.  ARCHITECTURE OF THE DISCRIMINATOR 

Layer 

Kernel 

Size/Stride, 

Padding 

Output Size Activation Function 

Input - 256×256×3 - 

Conv1 4×4/2, Same 128×128×64 Leaky ReLU (α=0.2) 

Conv2 4×4/2, Same 64×64×128 
Leaky ReLU (α=0.2) 

+ Batch Norm 

Conv3 4×4/2, Same 32×32×256 
Leaky ReLU (α=0.2) 

+ Batch Norm 

Conv4 4×4/2, Same 16×16×512 
Leaky ReLU (α=0.2) 

+ Batch Norm 

Conv5 4×4/2, Same 8×8×512 
Leaky ReLU (α=0.2) 

+ Batch Norm 

Conv6 4×4/2, Same 4×4×512 
Leaky ReLU (α=0.2) 

+ Batch Norm 

Conv7 4×4/1, Same 3×3×512 
Leaky ReLU (α=0.2) 

+ Batch Norm 

Conv8 4×4/1, Same 2×2×1 Sigmoid 

 

Next, the third convolutional layer reduces spatial 

dimensions to 32×32×256 using the same kernel and stride. 

More abstract features are extracted for fine picture details in 

this layer. The 16×16×512 fourth convolutional layer helps 

the network recognize visual high-level structures. The fifth 

convolutional layer gathers the most significant picture 

discriminating information at 8×8 at 512 depth. The sixth 

convolutional layer compresses spatial dimensions to 

4×4×512 to capture critical characteristics. The seventh layer 

lowers output to 3×3×512 with stride 1 and padding "same". 

Deeper layers allow the network to collect abstract and 

complex characteristics for accurate picture discrimination.  

 Finally, the discriminator output layer uses a 4×4 kernel 

with stride 1 and padding "same" to compress the feature map 

to 2×2×1. This layer's sigmoid activation function calculates 

input patch realism probability scores. Focusing on specific 

areas rather than the entire image helps the discriminator 

make more accurate and localized authenticity decisions. To 

distinguish actual images from created ones, the enlarged 

PatchGAN discriminator architecture successively collects 

and refines features at several abstraction levels. Image 

encryption requires exact features and high-quality 

reconstruction, therefore extensive feature extraction works 

well. 

A. GAN Loss Functions 

Real images (plain/cipher) and fake ones (produced by the 

encryption/decryption network) are the two sources of data 

used by the Discriminator. The weights of the encryption 

network are kept constant during Discriminator D's training; 

the network then produces cipher images for the 

Discriminator to accurately classify. While the Discriminator 

only makes use of a single loss function, the Discriminator 

loss LD; during training, the Generator makes use of two, the 

Generator Loss LG and the Reconstruction loss LRC. In order 

to update the weights through backpropagation and produce 

a global minimum, the Adam optimizer is used.  In order to 

prevent the Discriminator from making accurate 

classifications, the encryption network learns to generate fake 

data. The encryption network transforms the input image into 

a cipher image. The Discriminator then evaluates this cipher 

image, comparing it to the original target cipher image to 

provide feedback for the encryption network's training. The 

Discriminator checks this cipher image for similarities to the 

original cipher image. When the Discriminator returns a 

result lower than 0.75, the encryption network's weights are 

adjusted according to the loss function employed by 

encryption network LG, which is defined in (1). 

𝐿𝐺 = µ(1 − 𝑆𝑆𝐼𝑀(𝑥, 𝑦)) (1) 

On the other hand, the loss function to be minimized for 

training the Discriminator is defined as in (2). 

𝐿𝐷 = µ(𝑆𝑆𝐼𝑀(𝑥, 𝑦)) (2) 

where µ = 0.2 is the hyperparameter to achieve an 

acceptable equilibrium between the structure aspect of target 

image and generated image, where SSIM, i.e., the structural 

similarity index metric, is defined as in (3). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2µ𝑥µ𝑦 +  𝐶1)(𝛿𝑥𝑦 +  𝐶2)

(µ𝑥
2 +  µ𝑦

2 +  𝐶1) (𝛿𝑥
2 + 𝛿𝑦

2 +  𝐶2)
 (3) 

Where 𝐶1 = (𝑘1𝐿)2; 𝐶2 = (𝑘2𝐿)2; L is the maximum 

value of a pixel; 𝑘1 = 0.01 and 𝑘2 = 0.03 are constant 

parameters; 𝛿𝑥 represents standard deviation of image x; and 

𝛿𝑥𝑦  represents the covariance of image x and image y. The 

values of SSIM lies in range [0,1], where one indicates 

completely identical images. Two mappings, G: X→ Y and 

H: Y→ X, are included in the proposed model [13]. In order 

to fool the Discriminator, mapping function G must first 

determine how [21]. Making the change from source to target 

domain images Y accomplishes this task as per the loss 

functions mentioned in (4) [10]. Here 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
represents 

the expectation over all images 𝑥 in the domain 𝑋. 

𝐿𝑅𝐶 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
   ⃦ 𝑌 − 𝑋   1⃦ (4) 

During the training process, the Discriminator 

distinguishes between the authentic data generated by the 

Generator and the synthetic data. Deep learning algorithms 

often necessitate the use of a loss function for training the 

model. In (5), the overall loss is the aggregate of the losses 

incurred by the encryption neural network G 𝐿𝐺, the 

Discriminator network D, 𝐿𝐷, and the reconstruction loss of 

the decryption network F, 𝐿𝑅𝐶 . 

𝐿 = 𝐿𝐺 + 𝐿𝐷 + 𝐿𝑅𝐶  (5) 

IV. PREPARE RESULTS AND DISCUSSIONS 

The network for encryption and decryption has 17 levels 

of depth and uses around 3,000,000 parameters. To determine 

these optimal values, we utilized Keras Tuner, an open-

source library for hyperparameter optimization. Keras Tuner 

helped us systematically explore different architectures and 

parameter configurations to identify the most effective model 

for our encryption tasks. The choice of 17 levels is strategic, 

allowing the model to capture intricate patterns and features 

essential for robust image encryption. After the network has 

been trained, these parameters are utilized as the encryption 

and decryption secret keys. A cryptanalytic assault becomes 

even more complicated as a result of the deep learning 
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model's depth. In this part, we will go over some of the things 

that can compromise an encryption system's security. 

A. Analysis of the Histogram of Generated Images  

The histogram of three distinct plain images in Fig. 6 (a), 

(e), (i), which will be referred here on in this article as 

image_1, image_2, image_3 is shown in Fig. 6 (b), (f), (j) and 

their corresponding cipher images in Fig. 6 (c), (g), (k), have 

a histogram as in the Fig. 6 (d), (h), (l) respectively. The 

histogram analysis reveals significant differences between 

plain and encrypted images, indicating enhanced encryption 

security. Uniform histograms for encrypted images suggest 

high entropy and randomness, making cryptanalysis more 

difficult by minimizing patterns and correlations that 

attackers could exploit. This dispersion of pixel values aligns 

with Shannon's principles of confusion and diffusion, 

obscuring the relationship between plain and encrypted 

images and spreading the influence of each pixel widely. 

Such characteristics increase resistance to cryptanalysis and 

brute-force attacks, ensuring that CryptoGAN effectively 

disrupts statistical patterns, thereby fortifying the encrypted 

images against various attack vectors. These properties 

demonstrate that CryptoGAN achieves a high level of 

security by adhering to fundamental encryption principles 

and providing robust protection against common attack 

methods. 

B. Entropy Information of the Images 

The uncertainty of pixels in the cipher image is defined 

by the image information entropy, which is calculated as in 

(6). The probability of image pixel 𝑖 is denoted by 𝑝𝑖 . For the 

image information entropy value of 8, the image will be with 

perfectly random pixels. 

Pixels in both the plain and encrypted versions of an 

image are shown with their entropy values in Table VI. It also 

clearly shows that the entropy values of the plain images are 

lower than those of the cipher images produced by the image 

encryption approach. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 log 𝑝𝑖

255

𝑖=0

 (6) 

TABLE VI.  IMAGE ENTROPY VALUE INFORMATION OF PLAIN AND CIPHER 

IMAGES 

Images 
Original image 

entropy 

Encrypted image 

entropy 

image_1 7.63 7.9895 

image_2 7.6 7.9512 

image_3 7.72 7.9925 

 

 

 

Fig. 6.  Plain image (a), (e), (i) have a histogram of (b), (f), (j) respectively and the corresponding encrypted images of the plain images are (c), (g), (k) 

respectively have a histogram of (d), (h), (l), respectively
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C. Image Correlation Analysis 

Neighboring pixel correlation determines the strength of 

an encryption model against statistical attacks. Adjacent pixel 

correlation in the horizontal direction was calculated by 

randomly choosing 3,500 horizontally adjacent pixels and 

then calculating the correlation coefficient between each of 

the adjacent pixels using (7). 

𝑟𝑥𝑦 =  
𝐸[(𝑥 −  𝐸(𝑥))(𝑦 −  𝐸(𝑦))]

√{𝐷(𝑥)𝐷(𝑦)}
 (7) 

● Where, 𝑟𝑥𝑦  is the correlation coefficient between two 

adjacent pixels 𝑥 and 𝑦.  

● 𝐸(𝑥) and 𝐸(𝑦) are the expected values (means) of pixels 

𝑥 and 𝑦 respectively and 𝐷(𝑥) and 𝐷(𝑦) are variances of 

pixels 𝑥 and 𝑦 respectively. 

We also computed the correlation coefficient along the 

diagonal and vertical axes. Table VII shows the correlation 

coefficients between neighboring pixels in both plain and 

cipher images. In comparison to the plain images, cipher 

images clearly have a poor neighboring pixel correlation. 

Diffusion effects are more pronounced and regularity is 

diminished when correlation coefficients are lower. For this 

investigation, geographic statistics or correlation coefficients 

has been utilized. The horizontal correlation plot of the 

images_1, encrypted image_1 and decrypted image_1 is 

shown in Fig. 7(a), (b), (c) respectively, the vertical 

correlation plot of the images_2, encrypted image_2 and 

decrypted image_2 is shown in Fig. 7(d), (e), (f) respectively 

and the diagonal correlation plot of the images_3, encrypted 

image_3 and decrypted image_3 is shown in Fig. 7(g), (h), (i) 

respectively. Reduced correlation minimizes the risk of 

statistical attacks, such as differential cryptanalysis, by 

eliminating discernible patterns that can be exploited. By 

reducing correlation and increasing randomness, CryptoGAN 

enhances security, making encrypted images more resistant 

to various attacks.

TABLE VII.  CORRELATION COEFFICIENTS VALUES AMONG ADJACENT PIXELS

Correlation coefficients image_1 Cipher of image_1 Image_2 Cipher of image_2 Image_3 Cipher of image_3 

Horizontal 0.9975 0.4925 0.9961 0.4950 0.9919 0.5023 

Vertical 0.9858 0.4563 0.9857 0.4235 0.9926 0.5245 

Diagonal 0.9985 0.4210 0.9889 0.4235 0.9981 0.4822 

 

 

 

Fig. 7.  The horizontal correlation of image_1, encrypted image_1 and decrypted image_1 is shown in a, b, c respectively. The vertical correlation of image_2, 

encrypted image_2 and decrypted image_2 is shown in d, e, f respectively. The diagonal correlation of plain-image_3, encrypted image_3 and decrypted 

image_3 is shown in g, h, i respectively 
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D. Synthesised and Reconstructed Image Quality 

 It is essential to evaluate the quality of synthesized and 

reconstructed images following encryption and decryption in 

order to determine how effective image encryption 

techniques are. Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM) are widely used measures 

that offer complementary insights into image quality. SSIM 

assesses structural fidelity by taking brightness, contrast, and 

structural similarity into account, whereas PSNR detects 

pixel-level variations. We study both reconstructed (pictures 

decrypted back to their original form) and synthesized 

(images produced by generative models) images. 

Maintaining high SSIM and PSNR values for synthesized 

images guarantees that the generative process keeps 

important structural elements and visual quality intact, even 

after encryption and decryption. High SSIM values near 1 

suggest that little distortion occurs throughout the encryption-

decryption cycle and that the structural information is mostly 

preserved. The Fig. 8 shows the encrypted image and the 

reconstructed image. 

For applications where visual fidelity is critical, such as 

secure image transfer and medical imaging, this is essential 

[16]. The SSIM and PSNR values for reconstructed images 

show how successfully the original image is recovered 

following the encryption and decryption procedures. High 

PSNR values show little pixel-level variation, while high 

SSIM values guarantee that the image's fundamental 

structural elements are retained [47]. When taken as a whole, 

these measures demonstrate how well our encryption 

technique maintains image quality, guaranteeing that the 

decrypted photos have almost the same structural and visual 

integrity as the originals. This dual-metric technique offers a 

thorough evaluation of image quality post-encryption and 

decryption, highlighting the efficacy of our technology in 

practical settings.  

E. Performance Comparison of Experimental Results 

between the Proposed Method and Other Related Works 

1) Entropy: Entropy measures the randomness of the 

pixel distribution in the encrypted images. Higher entropy 

values suggest better security against statistical attacks. The 

computed entropy results are shown in Table VIII. The table 

also demonstrates that the suggested scheme has an average 

value of 7.9925, which is much better than the findings of the 

existing mechanisms in the literature with a smaller standard 

deviation.  

 

 

Fig. 8.  (a), (d), (f) are the original images and the corresponding encrypted images are in 9(b), (e), (g) respectively and the reconstructed images are shown in 

9(c), (f), (h) respectively
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TABLE VIII.  ENTROPY AND STANDARD DEVIATION OF THE 

PROPOSED MODEL WITH OTHER MODELS 

Works for study and comparative 

analysis 

Experimental 

Values of 

Entropy 

Standard 

Deviation 

DeepEDN: A Deep-Learning-Based 

Image Encryption & Decryption 

Network for Internet of Medical 

Things [18] 

7.9586 - 

EncryptGAN: Image steganography 

with domain transform [48] 
7.9758 - 

Image cipher based on mixed 

transformed logistic maps [49] 
7.9850 0.000724 

Chaotic maps-based image 

encryption scheme [50] 
7.9850 0.000392 

Chaotic image encryption algorithm 

based on information entropy [51] 
7.9536 0.025611 

Image Encryption Algorithm Based 

on Quantum Chaos Sequence [52] 
7.9855 0.152205 

Intertwining chaotic maps and RC4 

stream cipher [53] 
7.9841 0.000733 

CryptoGAN (Proposed Model) 7.9925 0.006474 

 

2) Peak signal-to-noise ratio: The natural image has a 

significant pixel correlation and plausible structural 

properties. This method uses the SSIM index as a loss 

function to capture the essential structure of both the 

produced (cypher image) and recovered (original image) 

images. The proposed network encrypts pictures after model 

training. Restoration quality is confirmed by the similarities 

between restored and untreated photographs' mosaics. The 

original image and the suggested decryption network image 

were compared for peak signal-to-noise ratio. Table IX's 

PSNR values demonstrate network performance [54]. It also 

compares the proposed network's Peak Signal-to-Noise Ratio 

(PSNR) to other encryption networks. 

TABLE IX.  PSNR COMPARISON OF THE PROPOSED MODEL WITH 

OTHER ENCRYPTION MODELS 

Works for study and comparative 

analysis 
Method 

Average 

PSNR 

EncryptGAN: Image steganography 

with domain transform [48] 

GAN-based 

encryption 
20.53 

Optical Image Encryption using 

Deep Learning [55] 

Deep learning-

based 

encryption 

30.00 

DeepEDN: A Deep-Learning Image 

Encryption and Decryption Network 

for Internet of Medical Things [18] 

Deep learning-

based 

encryption 

36.53 

Chaos-based Digital Image 

Encryption Using Iris Features [56] 

Deep learning-

based 

encryption 

33.72 

CryptoGAN (Proposed Model) 
GAN-based 

encryption 
36.85 

 

3) Structural Similarity Index (SSIM): The Structural 

Similarity Index (SSIM) is a crucial metric for evaluating the 

quality of recovered images in image encryption and 

decryption processes. Unlike traditional metrics such as Peak 

Signal-to-Noise Ratio (PSNR), which primarily focus on 

pixel-level differences, SSIM assesses image quality by 

considering changes in structural information, luminance, 

and contrast [57]-[62]. This makes SSIM particularly 

valuable for image encryption research, where preserving the 

structural integrity of the decrypted image is paramount. 

When comparing the original and recovered images, SSIM 

provides a more holistic view of image quality. It quantifies 

how similar the structures, textures, and overall visual 

features of the decrypted image are to the original. An SSIM 

value closer to 1 indicates high similarity, implying that the 

encryption and subsequent decryption processes have 

minimally altered the essential content of the image. 

Conversely, a lower SSIM value suggests significant 

deviations, highlighting areas where the decryption process 

may need improvement. 

In our research, the use of SSIM to evaluate the recovered 

images demonstrates the effectiveness of our encryption 

algorithm. By maintaining high SSIM values, we ensure that 

the decrypted images retain their original structural 

properties, making our approach suitable for applications 

where visual fidelity is critical [63], such as medical imaging 

and secure image transmission [64]. The combination of 

SSIM and PSNR provides a comprehensive assessment, 

balancing pixel-level accuracy with structural similarity [65], 

thus validating the robustness and quality of our image 

encryption methodology. Table X shows a detailed contrast 

of the SSIM of the proposed model with the other models in 

the similar domains [66]. The potential biases introduced by 

the specific butterfly dataset used here could affect the 

generalizability and effectiveness of the proposed encryption 

method [67][68]. To mitigate this, we plan to incorporate a 

variety of image datasets from different domains to ensure a 

more robust evaluation of the model's performance across 

different scenarios in the scope of its future [69][70]. 

4) Model Speed and Complexity: In both efficiency and 

scalability, CryptoGAN also achieves the fast encryption of 

90ms and decryption of 85ms speeds, with a linear 

computational complexity of O(n), outperforming other 

models performing in the range of 120ms to 150ms [71]-[74]. 

TABLE X.  SSIM COMPARISON OF THE PROPOSED MODEL WITH 

OTHER ENCRYPTION MODELS 

Works for study and comparative 

analysis 
Method 

Original 

vs 

generated 

image 

SSIM 

DeepEDN: A deep-learning-based 

image encryption and decryption 

network [18] 

DL-based image 

encryption 
0.90 

Image encryption using deep neural 

network and chaotic map [75] 

DL-based image 

encryption 
1.0 

Image encryption scheme based on 

chaotic logarithmic map and key 

generation using deep CNN [76] 

CNN/ DL-based 

image encryption 
1.0 

Phase-only optical image encryption 

and hiding method via deep learning 

[55], [77] 

DL-based image 

encryption 
0.88 

CryptoGAN (Proposed Model) 
GAN Based 

Encryption 
0.92 
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Several techniques were used to mitigate possible 

overfitting difficulties related to the application of U-Net and 

PatchGAN designs on a relatively limited dataset [78]. To 

improve the model's ability to generalise, data augmentation 

techniques such as random rotations, flips, shifts, and scaling 

were used to expand the variety of training samples [79], [80]. 

In order to keep the model from growing unduly dependent 

on any one set of features during training, dropout 

regularisation was included to the discriminator and 

generator networks. In order to decrease sensitivity to 

initialisations and encourage generalisation, batch 

normalisation was utilised to stabilise and speed up training. 

And to avoid overfitting, early stopping based on validation 

loss was also used, which stopped training when the 

validation performance stopped getting better. Using the 

above techniques, the output results showed consistent 

performance across the data subsets. These safeguards 

guarantee that CryptoGAN can handle a variety of unknown 

data types with effectiveness and is resistant to overfitting. 

V. CONCLUSIONS 

In this study, we introduced CryptoGAN, a GAN-based 

image encryption model employing U-Net and PatchGAN 

architectures. CryptoGAN was trained with data 

augmentation, dropout, and batch normalization to prevent 

overfitting and enhance generalization. Evaluated on a 

custom dataset of 2000 butterfly images, CryptoGAN 

achieved an average PSNR of 36.85 and an SSIM of 0.94, 

demonstrating high-quality and faster encryption and 

decryption. Uniform histograms of encrypted images suggest 

high entropy and randomness, enhancing resistance to 

cryptanalysis and brute-force attacks. While the custom 

dataset provided a controlled test environment, future work 

will involve applying CryptoGAN to diverse datasets to 

ensure broader applicability. With encryption and decryption 

times of 90ms and 85ms, respectively, and a linear 

computational complexity (O(n)), CryptoGAN is scalable 

and efficient for real-world applications. Future research will 

focus on validating these findings across different datasets 

and exploring practical deployment scenarios to ensure the 

model’s effectiveness in real-world applications. 
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