
Journal of Robotics and Control (JRC)
Volume 5, Issue 6, 2024
ISSN: 2715-5072, DOI: 10.18196/jrc.v5i6.23109 2035

Trajectory Planning and Tracking Control for 6-DOF
Yaskawa Manipulator based on Differential Inverse

Kinematics
Ngo Xuan Khoat 1, Cao Thanh Vinh Hoa 2, Nguyen Bui Nguyen Khoa 3, Ngo Manh Dung 4*

1 Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam
2,3,4 Ho Chi Minh City University of Technology, VNU-HCM, Ho Chi Minh City, Vietnam

Email: 1 khoatnx.ncs@ut.edu.vn, 2 ctvhoa.sdh222@hcmut.edu.vn,
3 nbnkhoa.sdh232@hcmut.edu.vn,4 nmdung@hcmut.edu.vn

*Corresponding Author

Abstract—In the realm of robotics research, there is a strong
focus on trajectory planning and control, driven by the increasing
need to integrate robots across diverse industries. Drawing on
the traditional Artificial Potential Field (for short, APF) method
for path planning, the author proposes modifications on the force
field calculation functions and time coefficients. These proposed
functions improve the robot arm’s movement to better interact
with identified obstacles, regardless of distance conditions. This will
help reduce calculation time compared to traditional methods. The
research aims to enhance the operational system of the manipulator
by developing an external program that interfaces with the central
controller. The program guides the robot arm to follow a specific
path using the Differential Inverse Kinematics (for short, DIK)
method to ensure the smoothness of trajectory tracking. Facing the
issue of the invertibility of the Jacobian matrix, the research team
addressed it by adding a Moore–Penrose right pseudoinverse of the
Jacobian and avoiding the shock velocity around the singularity
using a Damping Constant technique. In this research, the proposed
APF is validated and compared to the traditional method using
MATLAB. The DIK method utilizes the optimal path from previous
to control the Yaskawa MotoMINI manipulator - the physical robot
arm system.

Keywords—Trajectory Planning; Tracking Control; Differential
Inverse Kinematics; Obstacle Avoidance

I. INTRODUCTION

Manufacturers of robotic arms are developing integrated
packages in their controllers [1] to assist users in path-planning
by enabling them to ”teach” the required coordinates [2],
selecting trajectories, and offering user-friendly programming
features to create a sequence of tasks for the manipulator [3]–[5].
Morover, the central controller allows communication with other
devices via Ethernet, enabling users to connect and control the
robot with a personal computer and expand it with cameras and
computer vision algorithms [6]. However, teaching points and
robot control using available functional packages are challenging
for complex environments [7], and the communication packets
only offer position control levels [8], resulting in latency and
reduced flexibility. This paper aims to develop a computer

program to solve trajectory planning and tracking control robot
with low-latency communication. The computer and the central
controller communicate via ROS, an open operating system with
manufacturer-provided data packages [9], [10]. ROS assists users
in creating an efficient communication environment and enables
robot control at high speeds through the central controller [11].

Trajectory planning phase is a significant challenge in deter-
mining the best movement sequence [12] for a robot to reach
its target without encountering obstacles [13], [14] in natural
working environments. The path must meet the requirements
for both optimal movement time [15] and total distance in other
to conserve energy [16], [17]. Currently, this is a significant
focus of research and experimental testing to ensure it meets the
needs of robotic systems, such as 6-DOF. Common algorithms
such as Rapidly-exploring Random Tree (RRT) [18]–[24], Fast
Marching Tree (FMT) [25]–[30], as well as methods that utilize
powerful algorithms in machine learning, such as Reinforcement
Learning (RL) [31]–[33] and Artificial Neural Network (ANN)
[34]–[38].

RRT and FMT are probabilistic sampling algorithms suc-
cessfully developed and applied in planning phase. The core
operation of these algorithms involves working on a randomly
initialized map with lots of movable ”nodes” [39]. The process
begin at the start node and expands by connecting to the other
within a given radius, similar to ”tree branches”, until it reaches
the target node [40]. These algorithms effectively exploit the
working environment without establishing obstacle positions
based on the robot’s configuration [41]. However, they need
help finding paths in unstructured environments with numerous
random obstacles [42]. Additionally, an excessive number of
nodes or an inappropriate choice of exploration radius can lead to
reduced computation speed and convergence [23]. Research on
these algorithms often focuses on improving search capabilities
and convergence or combining them with other algorithms for
higher efficiency. Qingyang Gao [18] used the RRT and the Back

Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2036

Propagation (BP) optimization algorithm to find the optimal
path for controlling a humanoid system. Their results were
significantly reduce the number of connection points in the
trajectory compared to the basic algorithm. However, this method
required a large amount of training data for the best model,
and the trajectory generated was not smooth. Ying-Hao Yu [30]
introduced the Slice-based Heuristic technique into the FMT
algorithm for controlling the Human–robot Collaboration system.
This research aims to reduce computation time and eliminate
the need for prior knowledge of the working environment while
still avoiding obstacles. However, the resulting path is too long
and not smooth.

APF is a path-planning method that utilizes virtual force
fields placed at key points in the working environment [43],
[44]. These fields exert attraction and repulsion forces to guide
the robot along a safe path [45], [46]. The Attraction force field
pulls the robot toward the target point, while the Repulsion
force field pushes the robot away from obstacles to prevent
collisions. The APF was first proposed by Khalib in 1985 for
systems such as autonomous cars and self-driving ships [47]. In
systems with multiple operating devices, APF demonstrates
its capability by forming various potential fields at critical
points [48], [49], bringing efficiency and high safety to complex
industrial operating systems [50].

The research conducted by Hao Li and his team showcased
the computational efficiency and feasibility of the Artificial
Potential Field (APF) algorithm for robotic manipulators [51].
This was demonstrated through simulations on a system with
the plate number 3-DOF. Many publications have proposed
enhancements and variations of the traditional APF due to its
simple structure and low computational cost. For instance, Min
Zhuang combined APF with the A* algorithm to shorten the
travel distance for apple-picking robots [52]. At the same time,
in 2023, Xinkai Xia [53] introduced another variant called
the Velocity Potential Field (VPF) for obstacle avoidance path
planning. The velocity-based approach is particularly suitable
for high-precision applications such as human-robot interaction
and medical robotics as it offers improved safety in control.

We have identified shortcomings in the mathematical functions
and distance conditions used in the classical Artificial Potential
Field (APF) method. These impact the quality of generated
paths, causing abrupt changes in trajectory and oscillations near
obstacles. We propose using alternative mathematical functions
without distance conditions for the attractive and repulsive force
fields, and mention changes in the math function of iteration to
reduce computational time.

In the next phase, the tracking control supervises the robot’s
movement along a predefined trajectory. Passive control at
the position level leads to movement errors [54]. Using an
external position-level controller requires constant monitoring
and causes significant control delays [55]. The experimental
setup utilizes the YRC1000Micro controller to manage the

Yaskawa MotoMINI robot arm via Ethernet, mainly using a
UDP-based protocol [56]. Nonetheless, a smooth and precise end
effector motion encounters significant limitations. The research
by Sana Baklouti reveals conventional position control delays
up to 0.78s (>0.6s) [57]. This delay timeframe is unsuitable
for real-time communication, in which the transmitted packets
accounting for nearly 70% of the delay. Thus, an overreliance
on position-level control packages may pose challenges that
must be addressed:

• Limited Motion Planning: The controller’s inability to
handle complex motion planning online. Online planning
method allows real-time adjustments based on sensor’s feed-
back [58], which is crucial for tasks requiring adaptation
[59]. Position-level control necessitates pre-programmed
paths, limiting the robot’s ability to respond to the dynamic
situations.

• Inflexibility for Complex Kinematics: Many robotic ma-
nipulators have complex kinematic structures, leading to
multiple joint configuration and/or solutions to achieve
a desired end-effector pose [60]. Traditional position
control, which relies on pre-computed inverse kinematics,
struggles with selecting the optimal solution amidst these
nonlinearities. This inflexibility can lead to an inefficient
motion or even a failure to reach specific poses in an
adaptive planning environment [61].

• Inability to Address Time Constraints: Real-world applica-
tions often have specific time constraints for completing
tasks [62], [63]. Position control offers limited control over
the time it takes for the robot to reach a designated position.
This lack of fine-grained control over motion speed makes
it challenging to guarantee task completion within a desired
time frame [64].

DIK is a velocity-level manipulator control technique used
to replace complex traditional control methods. This technique
helps to overcome the disadvantages of solving robot kinematic
problems. To improve the control accuracy and overcome the
problem of increased velocity when the manipulator passes
through singular points, we propose to enhance the Close-loop
controller and the Damping Constant technique.

The research contributions is: developing a fast and accurate
path-planing algorithm that operates in real-time and establishing
communication with the manipulator’s central controller in
minimal delay to ensure precise trajectory tracking control. From
our analysis of various methods, we combine the proposed APF
and DIK techniques for the manipulator control program. Our
research focus on creating the integrated solutions for computer-
controlled robot systems while maintaining high accuracy and
real-time communication. We provide further details on the
method enhancements in the following sections.

The remaining part of this article presents the contents in the
following order: In section 2, we will introduce the manipulator
structures and ROS system for seamless data communication

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2037

with the central controller. The impactful changes implemented
within the Artificial Potential Field are highlighted in section 3.
In section 4, the process of creating a control system is outlined,
which is based on Differential Inverse Kinematics. This system
is designed to calculate and execute precise control of the robot
arm. Section 5 will showcase the results and thoroughly assess
trajectory formation, tracking errors, and program response
simulation. Finally, section 6 concludes the article and outlines
future development plans.

II. SYSTEM DESCRIPTION

The MotoMINI Robot, shown in Fig.1 and Table I, features six
revolute joints, which can provide high acceleration capabilities
and excellent performance. This versatile robot is commonly
used for factory assembly, packaging, and sorting operations.
With a maximum payload of 0.5 kg and a reach of up to
350 mm, the MotoMINI is well-suited for collaborative tasks
such as assembly, product inspection, and classification. This
product weights only 7kg, suitable for installation in confined
spaces and is easy to maneuver. The MotoMINI stands out
among other robots in its segment, boasting speeds that are 20%
faster alongside exceptional processing capabilities, resulting in
significantly enhanced operational efficiency.

To operate this robotic system, the software built on the
ROS must handle communication tasks and control task. The
control loop involves a computer running ROS Nodes and
the YCR1000micro central controller equipped with integrated
firmware running ROS1-MotoROS. In this process, offline path
planning and computation are carried out by MATLAB software,
while the robot’s kinematic algorithms for control are computed
in real time at a rate of 40 Hz. The planned trajectory is stored
as a data file in the computer’s hard drive for easy access by
programs in the ROS ecosystem, which then engage in post-
processing and initiate the control process. Fig. 1 depicts an
overview of the system connections. In which:

• Finding the best path: Using the improved APF proposals
to find the trajectory between two points without collision
with obstacles in nature working environment.

• The “data file”: contains the pre-planned path data, includ-
ing the coordinates of each point along the trajectory in
the (pe,∆t) motion configuration. Each line in the file
corresponds to one point on the path.

•“Path Planning Input” Node: converts the (pe,∆t) motion
configuration to the (pe,ve) format. The node then further
divides the points along the path into individual points with
a time interval of 25ms (corresponding to 40Hz) between
two consecutive points to create a smooth trajectory for
the controller. The node also configures the requirements
for the robot and the settings for generating control values
for the robot.

•“Smooth Trajectory Generation” Node: the main node
responsible for inverse kinematics calculations and sending

Fig. 1. An overview of the control process diagram.

control signals to the robot.
•“Motoman ROS” Node: contains nodes related to com-

munication between the ROS nodes on the PC and the
YRC1000micro firmware to update the status and receive
control commands related to the robot, known as the
Motoman ROS Driver.

TABLE I. MOTOMINI PARAMETERS

Axis S L U R B T
Max range

(degree) ±170 +90
/-85

+90
/-50 ±140 +210

/-30 ±360

Max speed
(rad/s) 5.5 5.5 7.3 10.5 10.5 10.5

III. ARTIFICIAL POTENTIAL FIELD

A. Modified Attractive Potential Field

In the Cartesian workspace of the traditional APF method, the
target is considered a “valley” which has an ability to generate an
attractive force pulling the end-effector closer. Khatib proposes
a fundamental equation characterizing the attractive force field
in the traditional method [47]:

Utatt
(p) =

1

2
kattd

2(p,pgoal) (1)

Where p is the current position of the end-effector, pgoal is
the target position and katt is the gain of the attractive force.
Hence d(p, pgoal) is the shortest distance in Cartesian space
from the manipulator to the target and is determined by the
Euclidean distance formula in (5).

The traditional attractive force’s potential field function
extends across the entire operating space and increases gradually

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2038

with distance. However, it only depends on distance, as the
end-effector gets closer to the target point. In that case,
the potential attraction will decrease, potentially causing an
issue if an obstacle exist near the target point. To overcome
this constraint, the research team recommends employing an
exponential distance function to preserve the appealing quality
of the target point, described as follows:

Umatt(p) = katte
αd(p,pgoal) (2)

Where α is a coefficient that affects the magnitude of the
attractive field. The attractive force is determined by the gradient
vector of the attractive field (Fatt = −∇Uatt) throughout the
considered workspace:{

Ftatt = −kattd(p,pgoal)∇d(p,pgoal)

Fmatt = −kattαeαd(p,pgoal)∇d(p,pgoal)
(3)

In equation (3) ∇d(p, pgoal) is the direction of the attractive
force acting on the robot arm. it is defined by following (4):

∇d(p,pgoal) =
p,pgoal

d(p,pgoal)
(4)

d(p,pgoal) =
√
(x− xgoal)2 + (y − ygoal)2 + (z − zgoal)2

(5)
When d(p,pgoal) decreases, the attractive force is maintained

at a certain level and cannot be equal to zero because of the
nature of the exponential function. The parameter α reduces
the attractive force for distant objects, avoiding excessive
pulling force that could lead to collisions with nearby obstacles.
∇d(p,pgoal) represents the direction of the applied force. If
the distance approaches zero, the direction of movement will
gradually vanish, allowing the end-effector to reach the target.
In Fig. 2, we can observe that the proposed method makes the
attractive force smaller, changing smoother than traditional.

Fig. 2. Compare attractive force between two method.

B. Modified Repulsive Potential Field

The robot needs to identify obstacles in its workspace to
avoid collisions. There is a repulsive potential field like a
’shield’ surrounding the obstacle, altering the robot’s movement

direction when it gets close. Equation (6) deploy the essential
characteristics of the repulsive potential field, as first described
by Khatib [47]:

Utrep(p) =

{ 1
2krep(

1
d(p,pobs)

− 1
d0
)2 d(p,pobs) < d0

0 d(p,pobs) > d0
(6)

Where, krep is the gain of the repulsive field, d(p, pobs) is
the shortest distance in Catesian space from manipulator to
that obstacle and d0 is the size of the repulsive field region.
When the robot arm is moving near the obstacle in this region
(d(p, pobs) < d0), the repulsive force changes the moving
trajectory of the moving manipulator by the suction field
mentioned above.

The traditional method of restricting the distance to generate
repulsive forces can lead to an abrupt changes in the manipu-
lator’s path, challenging operation and affecting the system’s
dynamic nature. Furthermore, this algorithm requires a careful
choice of coefficients to avoid generating powerful repulsive
forces. The authors recommend using a negative exponential
function with respect to the distance to characterize the repulsive
field around the obstacles while maintaining the core concept
of the traditional repulsive potential field, as follows:

Umrep
(p) = krepexp(−

d2(p,pobs)

2d20
) (7)

The repulsive force Frep impact the end-effector is determined
by the gradient vector of the repulsive field (Frep = −∇Urep)
around the obstacle:

Ftrep(p) =

{
krep(

1
d(p,pobs)

− 1
d0
)∇d(p,pobs)
d2(p,pobs)

0

Fmrep(p) = krep
d(p,pobs)

d2
0

exp(−d2(p,pobs)
2d2

0
)∇d(p,pobs)

(8)

If the environment has many obstacles, the repulsive force
generated will be equal to the sum of the forces of all obstacles
acting on the robot Frep(p) =

∑n
i=1 Frep(p,pobs(i)). Deter-

mining the distance from the end-effector to an obstacle with
an indefinite shape poses challenges because it requires finding
a point on the obstacle closest to the robot. Powerful computer
vision-based algorithms can assist in recognizing the structural
shape of the obstacles [65], [66], but the computation time also
increases as the objects’ complexity increases. Moreover, to
avoid the obstacles in the APF approach can be done without
high levels of detail. Therefore, Yu Chen proposed a solution to
construct the shapes of the obstacles as spheres encompassing
the objects entirely [41]. By this way, the distance from the
manipulator to the obstacles can be more easily determined as
follows:

d(p,pobs) = ∥p− pobs∥ − robs − rthick (9)

With ∥p− pobs∥ is calculated similarly to (5) but for the
center of the sphere. rthick is the thickness of the center

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2039

of the end-effector, robs is the radius of the smallest sphere
encompassing the object. ∇d(p,pobs) is the direction of the
repulsive acting on the robot arm, as follows:

∇d(p,pobs) =
p− pobs

∥p− pobs∥
(10)

Fig. 3 shows that the repulsive force in the traditional method
appears abruptly and significantly when the robot moves close
to the repulsive potential field of the obstacle. Meanwhile,
the proposed function makes the force changes steadily as
the distance gradually decreases to a safe threshold, resulting
in smoother trajectories around obstacles and ensuring path
quality and obstacle avoidance capability. Furthermore, when
the manipulator is far from the obstacle, the repulsive magnitude
is nearly zero.

Fig. 3. Compare repulsive force between two method.

C. Iteration of Alogrithm

When the robot moves into the considered workspace, it
will always be influenced by two forces: the attractive force
generated at the target point and the repulsive force generated
by obstacles throughout the operational space,following Fig. 4,
forming a total force Fall:

Fall(p) = Fmatt
(p) + Fmrep

(p) (11)

Fig. 4. Force combination effect on robot.

From (11), the algorithm is iteratively repeated according to
(12) until the manipulator’s end-effector moves to the target

point, with pt is the coordinate of robot in workspace at the
t− th iteration and λ is a coefficient of time to determine the
next location of the machine under the impact of the force
description from (11):

pt = pt−1 + λFall (12)

In the traditional method, the coefficient λ is a constant. It is
considered the time coefficient to determine the next position of
the manipulator under the effect of the total force. In segments
of the trajectory without obstacles, the manipulator needs a
large force to move a long path. However, with a small λ, the
robotic arm only moves a short distance before the algorithm
recalculates the force. In subsequent calculations, the attractive
force decreases, followed by distance, so the total force gradually
decreases. This causes the algorithm to repeat many times to
complete the trajectory.

Conversely, if λ is setted too large, the movement path near
obstacles will not be smooth. This is because the resultant
repulsive force here is extensive and exerted over a long period.
The trajectory will continuously change, causing the system to
appear to vibrate at this point. Therefore, the authors propose a
new method that continuously updating the λ coefficient based
on the distance between the manipulator’s end-effector and the
target point, as well as obstacles. It is defined below:

λ = β1 + β2d(p,pgoal) + β3d(p,pobs) (13)

Where β1, β2, β3 are the learning rate parameters depending
on the current distance of the robot with obstacles and with the
target point. When there are many obstacles in the environment,
β1 will consider with the nearest obstacle distance. β1 is
considered the basic coefficient for the time coefficient. β2, β3
are used for adjusting λ according to the current distance. The
flowchart in Fig. 5 shows the process of proposed APF work in
path-planning

Fig. 5. Proposed APF method’s process

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2040

IV. DIFFERENTIAL INVERSE KINEMATICS

In traditional position control for robots, significant latency
is often observed due to the controller continuously checking
the position. This process involves obtaining a pre-planned
trajectory of end-effector positions (x, y, z) and performing
inverse kinematics calculations to determine the corresponding
joint angles qi required to achieve each desired end-effector
location. These calculated joint positions are then sent to the
robot controller, which drives the motors to reach those positions.
The control loop waits for confirmation from joint encoders
that the commanded positions are achieved before sending the
next set of commands [67]. The process sending the position
commands and waiting for confirmation is repeated for every
points along the trajectory, ultimately guiding the robot’s end-
effector through the planned path.

Acknowledging the limitations of the traditional method and
the design requirements that need to be met for online motion
control, the most suitable algorithm for the robot’s motion is
Differential Inverse Kinematics [68], [69]. This method proposed
to calculate the average velocity ve = (vxe, vye, vze) based on
the time interval ∆t between points pe on the trajectory. To
simplify the calculation of the average velocity, the specific
formula is used to calculate the velocity vei for any point
at a given time step i is derived from the one-sided average
velocity (focusing on the velocity for reaching the next point)
ve = (pei+1 − pei

)/∆ti.
From the perspective of robot kinematic motion control,

starting with an initial motion configuration (pe,∆t) =
((xe, ye, ze),∆t) when applying the above formula yields a new
motion configuration (pe,ve) = ((xe, ve, ze), (vxe, vye, vze)).
This new configuration is directly related to the position and
velocity of the robot’s end-effector at each point along the
trajectory shown in Fig. 6. This simplifies the kinematic motion
design process. Since this type of motion configuration contains
velocity parameters (instead of time), it is more compatible with
the developed and proven robot kinematic equations.

Fig. 6. Motion planning for the orbiting manipulator.

A. Concept of the Open-Loop Motion Control Method

The trajectory is defined as a series of points that represent the
end-effector, containing both position and velocity information
in the format: [(pe0 ,ve0), . . . , (pei

,vei
), (pegoal

,vegoal
)]. The

robot control process will involve controlling the robot’s joints
value q to make the robot’s end-effector move from the starting
point pe0 , sequentially passing through the points pei

along the
trajectory path with velocity vei

, ultimately reaching the target
point pegoal

. pe = [xe, ϕe]
T is the information about the end-

effector’s position in the world-frame, including end-effector
position parameters xe = [xe ye ze] and rotation direction
parameters ϕe = [φ ϑ ψ]T (using the fixed angel Roll-Pitch-
Yaw). ve = [ẋe, ϕ̇e]

T is information about the end-effector’s
velocity move to the next point. The problem to be addressed
is to build an inverse kinematics computation model, with the
aim of continuously calculating the values of the joint variables
[70].

In robot kinematics theory, there exists a velocity kinematics
equation that describes the relation as mentioned above, which
is written as follows:

ve =

[
ẋe

ωe

]
=

[
JP (q)
JO(q)

]
q̇ = J(q)q̇ (14)

Where the matrix J(q) is the Jacobian velocity kinematics
matrix, with a size of 6x6 (for the current MotoMINI robot
configuration). Equation (14) includes two matrices Jp(q) and
Jo(q), both of size 3x6. Jp(q) and Jo(q) describes the effect
of joint velocity q̇ on the linear velocity ẋ and the angular
velocity ωe of the end-effector. Based on the (14) to calculate
q̇ follows:

q̇ = J−1ve (15)

Subsequently, to inversely find the position of each robot joint
angle q, the ideal integration of the joint velocity found above
must be taken, where q(0) is the robot joint angle position at
the initial time:

q(t) =

t∫
0

q̇(τ)dτ + q(0) (16)

This inverse kinematics calculation technique is completely
independent of the solvability of the traditional geometric inverse
kinematics method based on robot structure [71]. The control
diagram is shown in Fig. 7.

Fig. 7. Open-loop inverse kinematics algorithm.

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2041

The inverse kinematics algorithm calculates the joint values
in the continuous-time domain and determines joint angle and
velocity. It helps control the robot along a desired motion
trajectory. But note that the Jacobian matrix must always be
a square matrix and may not be invertible in specific robot
configurations.

In addition, the approach also involves utilizing optimal
integration to determine the solution, which is nearly impossible
to carry out efficiently for computer-based numerical control
systems. Thus, it is evident that this method has limitations: the
non-invertibility of the Jacobian matrix affects the calculation
over the entire subsequent trajectory, and the possibility of falling
into the singularity point/region causes a loss of velocity control
during the control process [72]. Furthermore, this open-loop
calculation method makes it very difficult to avoid errors in the
control response. To address the drawbacks of the method as
mentioned above, in the process of building the control model,
a combination of several computational techniques will be used:

• Jacobian Pseudoinverse Matrix: To limit the case where
the Jacobian matrix cannot be inverted (loss of rank), the
Jacobian pseudoinverse matrix calculation technique can be
used with the locally minimization of the norm of joint’s
velocity vectors solution [73].

• Damping Constant: To minimize velocity shock when
entering a neighborhood of a singularity point, the Jacobian
pseudoinverse matrix can be adjusted by incorporating a
damping coefficient.

• Closed-Loop Algorithm: To limit errors in control, it is
necessary to design a closed-loop algorithm to improve
control quality.

B. Jacobian Pseudoinverse Matrix Method

In robot motion control, some state positions may cause the
Jacobian matrix to lose rank. Consequently the rank of the
matrix is less than the number of degrees of freedom of the
robot, leading (15) to infinite solutions. To avoid this, the joint
velocity optimization method can be used to reduce the number
of feasible solutions to an optimal solution. The quadratic cost
functional of joint velocities to be minimized:

g (q̇) =
1

2
q̇TWq̇ (17)

Where W is a suitable (n× n) symmetric positive definite
weighting matrix. A particular case occurs when the weighting
matrix W is the identity matrix. This problem can be solved
using the method of Lagrange multipliers. The sought optimal
solution for q̇:

q̇ = J†ve = J† = JT
(
JJT

)−1
ve (18)

Where J† is the Moore–Penrose right pseudoinverse of
J. With this optimal solution technique, the inverse velocity
kinematics method is no longer constrained by the cases of rank

deficiency in the Jacobian matrix. The consequence of finding
this optimal solution is that the joint velocity vector q̇ obtained
using this technique always yield the locally minimize-norm
velocity vector optimum [74] (within the stopping criteria range
during computation).

C. The Singularity Problem and the Jacobian Matrix with a
Damping Constant

Another characteristic when using the inverse velocity kine-
matics method is related to singularity points [75]. The Jacobian
matrix causes difficulties at the singularity position and its
neighborhood. At singularity positions and the neighboring
region, as the determinant of J approaches 0, it causes significant
changes in the joint velocities [76]. A solution to overcome
this problem is called the Damped Least Squares (DLS) inverse
[75], [77]. In this case, the pseudoinverse matrix mentioned in
(18) will be adjusted to become:

J⋆ = JT
(
JJT + k2I

)−1
(19)

Where k is the damping vector that renders the inversion
better conditioned, with positive and lower 1a positive value
less than 1.

D. Closed-Loop Motion Controller Design

The final drawback in the calculation process is taking the
ideal derivative in (18). If converting that equation to a discrete
expression, it will have the form of:

q(tk+1) = q(tk) + q̇(tk)∆t (20)

Where q̇ is obtained by using (18) and (19), substituting the
solution into equation (20) produces the formula to calculate
joint value in discrete expression form:

q(tk+1) = q(tk) + J⋆(q(tk))ve(tk)∆t (21)

In (21), q(tk+1) is the solution of the corresponding ve(tk),
that is, the input is the desired velocity to the next point on
the trajectory. When controlling velocity of a real robot, it is
impossible to ensure that the robot always moves according
to the set velocity due to software and mechanical issues
[78], leading to the following position q(tk+1) having an error
compared to the calculation. When this iterative calculation is
repeated many times along the trajectory, a significant error will
accumulate at the end of the trajectory.

This difficulty can be resolved by continuously updating the
current end-effector coordinates q(tk) from the robot’s sensor
[79], [80] finding the current position qe after each solution
step, with a predefined update cycle ∆t. This is equivalent to
defining the error between the desired point qd and the current
position of the end-effector qe. Let the error between these two
points be defined as follows:

e = pd − pe (22)

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2042

From there, the system continuously references the position
error between the current end-effector position and the desired
point. Rewriting the velocity kinematics equation in terms of
the variable e, the velocity kinematics equation depending on
the error value for each calculation step is obtained:

q̇ = J⋆Ke (23)

In which K is a positive definite matrix (in this research, a
positive diagonal matrix is used) characterizing the rate of error
convergence to zero. The larger this matrix K is, the faster the
convergence rate, and the end-effector quickly returns to the
desired position shown in Fig. 8.

Fig. 8. Closed-loop inverse kinematics algorithm.

On the other hand, some limitations in the communication
process, such as signal transmission quality affecting the update
rate not being fast enough to meet the control capabilities of
the model, can lead to poor control quality and overshoot [81].

V. EXPERIMENTAL RESULTS

A. Environment Setup

The experiments are performed on a Yaskawa MotoMINI
robot with six revolute joints. In the working environment, there
are two spherical obstacles with the same radius of 30mm. The
start point is at [0.207 0.1 0.015] m, and the target point is at
[0.096, -0.201, -0.14] m, the centers of the two obstacles are at
[0.168 0.017 0.04] m and [0.117 -0.143 -0.09] m.

In the first step, following the diagram in Fig. 1, the MATLAB
uses the initial parameters to find the best path based on the
proposed method of APF. The second step, the input path is
divided into individual points with a time interval 25ms. Next,
the program guides the robot arm to follow the path using the
proposed Differential Inverse Kinematics method. The final step,
the program sends the control signal for robot tracking the path
with the minimal error. Fig. 9 is the set up testing environment
of our article.

B. Path Planning Result

The planning phase is performed and evaluated on MATLAB
for both traditional and modified methods, providing the input
values of the environment, along with the necessary parameters
for each algorithm. The parameters of traditional APF is set:
d0 = 0.01m, rthick = 0.0005m, katt = 0.07, krep = 10−7, and
Modified APF is set: d0 = 0.01m, rthick = 0.005m, katt =
0.08, krep = 10−3, α = 0.55, d1 = 0.005m. To assess the

impact of the parameter λ on the quality of the planned path,
executing time, and the number of algorithm iterations, the
traditional method will be conducted at three respective values:
0.05, 0.1, and 0.2. Fig. 10a illustrates the trajectory of the
robotic arm, successfully moving from the starting point to
the destination without collisions with two spherical obstacles.
Fig. 10b describes the smooth and continuous change in the
end-effector’s position, avoiding sudden changes near obstacles
throughout the entire space.

Fig. 9. Testing environment.

(a) Overview path (b) End-effector’s pose
Fig. 10. Simulation results using the proposed method.

The relationship between the virtual force generated from the
force field calculation and the time iteration coefficient λ is very
close. It can be seen in the graph of Fig. 11b, Fig. 11c, Fig. 11d,
with the same attractive and repulsive force field formations of
the traditional method. However, when end-effector approaching
the obstacle, the results are different. When λ is small, the force
acts for a short time and then is recalculated in the next iteration
so the change can be seen evenly and smoothly. Conversely,
the extended application of thrust causes the trajectory to move
far away. However, in the subsequent iteration, the end-effector
moves beyond the influence region, resulting in a loss of thrust.
As a result, the trajectory displays abrupt oscillations around
the obstacle, as shown in Fig. 12b.

The proposed method generates virtual forces with smooth and
uniform variations, avoiding sudden changes, as demonstrated in
Fig. 11a. Along with ensuring that the λ coefficient is compatible
with the current state of the manipulator, based on the distance
from the desired force field points, the trajectory is significantly
improved. The motion near the obstacle maintains a stable
distance without oscillations, as depicted in Fig. 12a.

Table II shows the improvement in the calculation time of
the path-finding algorithm when applying the proposed lambda

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2043

(a) Proposed method

(b) Traditional λ = 0.05

(c) Traditional λ = 0.1

(d) Traditional λ = 0.2

Fig. 11. Attractive, Repulsive and Total force.

(a) Proposed method (b) Traditional λ = 0.2

Fig. 12. Distance from end-effector to the surface obstacle.

coefficient calculation method. When choosing λ = 0.005, it
will ensure that the quality of the formed trajectory is the
most similar to the proposed method. However, the number of
iterations is very large, it lead to 1829 iterate. Because of the
large number of iterations, when controlling the robot to follow
the trajectory, the completion time will also be considerable,
approximately 78s more than proposed method. The evaluation
results of the trajectory tracking controller presented below will
use the results from the proposed method.

TABLE II. COMPARE TIME, DISTANCE TRAVEL, ITERATE BETWEEN
TRADITIONAL λ = 0.05, 0.1, 0.2 AND PROPOSED METHOD

λ = 0.05 λ = 0.1 λ = 0.2 Modified
Distance

traveled(m) 0.3824 0.4221 0.5291 0.383

Iterate 1829 914 459 132
Time(s) 91.5 91.4 91.8 14.2

C. Trajectory Tracking Results

To illustrate the impact of the delay from traditional process,
Fig. 13 visualizes the position control delay. This experiment
was conducted with a 133-point trajectory. The total predefined
time for that trajectory was 14.2 seconds. However, due to the
inherent delays in the control loop, the robot took nearly 100
seconds to complete the trajectory. The delay between each point
ranged from 0.6 to 1 second. This substantial delay between
the planned and actual execution time highlights the limitations
of the traditional position control methods regarding efficiency
and responsiveness.

Fig. 13. Control manipulator using traditional process.

While utilizes the velocity control method according to (23),
the control results are obtained based on a trajectory dataset

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2044

consisting of 133 points, with a total movement time of 14.2303
seconds. The results are achieved using a hardware consisting
of an Intel i7 10875H CPU and a software included ROS1
Noetic. The results of applying the differential kinematic control
algorithm are divided into two results: fast and slow velocity
coefficient to clearly demonstrate the characteristics of tracking
control and the importance of choosing the coefficient.

In the case of slow velocity, configure the coefficient
K = 2.0, k = 0.05. The position tracking results are depicted
in Fig. 14a. The graphs illustrate reduced lag between the
movement points, yielding an almost smooth trajectory with
the point-to-point delays not exceeding 40ms. This reduction in
latency is thanks to the ROS driver’s ability to deliver the next
point to the path-planning queue without delay, even if the robot
is still moving. Additionally, Fig. 14b displays the position error
during the moving process, which remains below 6cm. Some
error peaks in the position error graph arise from the predefined
trajectory’s motion profile rather than the controller. In this
case, abrupt velocity changes at some specific time points (e.g.,
seconds 8 and 14) lead to these peaks. However, the controller
promptly detects and mitigates these errors, as evidenced by the
valleys observed between the peaks.

(a) Tracking path (b) Tracking error
Fig. 14. Slow speed control

In the case of high velocity, configure the coefficient K =
3.25, k = 0.05. The obtained position tracking results are shown
in Fig. 15. In the configuration with a faster tracking velocity
setting, the results can clearly show the improvement in the
shape of the tracking trajectory, tracking error, and convergence
time. For the trajectory shape, the tracking trajectory shows a
higher similarity to the planned trajectory compared to the slow
tracking velocity case. To further demonstrate this, consider the
position error graph, where there is no situation where the error
exceeds 4cm. The tracking error also starts to converge early,
reaching below 0.25cm and starting to converge at 16 seconds,
which is significantly faster than the slow tracking velocity case.

In analyzing tracking delay, which reflects the temporal
displacement between planned and actual robot paths, latency is
measured by comparing timestamps at corresponding positions
during constant velocity phases. The average tracking delay
is 0.49 seconds, ranging from 0.46 to 0.52 seconds. This
demonstrates an improvement over the conventional ROS-based

position control method described in [57].

(a) Tracking path (b) Tracking error
Fig. 15. High speed control

VI. CONCLUSION

The paper has presented a distance-based exponential function
as an alternative to traditional functions. MATLAB simulation
results comparing the proposed method with the traditional
approach show noticeable improvements in path quality, motion
trajectory smoothness, and obstacle avoidance. The change in
a mathematical function for the λ time coefficient significantly
aids expedited pathfinding and efficient interaction with the
working environment. In addition, the article introduces an
external program to ensure close adherence to the trajectory
with minimal communication delay. The closed-loop controller
continuously feedbacks the end-effector’s position, which helps
to guide the robot to follow the trajectory more accurately.
With this implementation, enabled by the DIK technique, were
evaluated through integration with the YRC1000Micro controller
and ROS Motoman driver, demonstrating their effectiveness in
the results.

However, certain challenges remain, particularly in scenarios
involving simple environments with two static obstacles. Further
testing of the method’s coefficients is necessary for broader
application. Additionally, attention to the robot body’s position
structure is essential to prevent collisions with obstacles. Sig-
nificant errors persist in the tracking control process, especially
during continuous trajectory changes, rendering it unsuitable for
applications demanding high precision, such as human-machine
interaction control.

In the future work, with the findings from this study, we will
challenge complex environments with multiple or moving obsta-
cles and expand the system with computer vision applications
to enhance accuracy in location determination and collision
avoidance. Furthermore, future advancements in controlling,
such as incorporating velocity feedback at each joint, promise
even more precise control and improved tracking accuracy during
operation.

ACKNOWLEDGMENT

We acknowledge the support of time and facilities from Ho
Chi Minh City University of Technology (HCMUT), VNU-HCM
for this study.

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2045

REFERENCES

[1] M. Marsono, Y. Yoto, A. Suyetno, and R. Nurmalasari, “Design and pro-
gramming of 5 axis manipulator robot with GrblGru open source software
on preparing vocational students’ robotic skills,” Journal of Robotics and
Control, vol. 2, no. 6, pp. 539–545, 2021, doi: 10.18196/jrc.26134.

[2] A. Alipour, M. J. Mahjoob, and A. Nazarian, “A new 4-DOF robot for
rehabilitation of knee and ankle-foot complex: Simulation and experiment,”
Journal of Robotics and Control, vol. 3, no. 4, pp. 483–495, 2022, doi:
10.18196/jrc.v3i4.14759.

[3] J. Qi, Q. Yuan, C. Wang, X. Du, F. Du, and A. Ren, “Path planning
and collision avoidance based on the rrt* fn framework for a robotic
manipulator in various scenarios,” Complex & Intelligent Systems, vol. 9,
no. 6, pp. 7475–7494, 2023, doi: 10.1007/s40747-023-01131-2.

[4] X. Cao, X. Zou, C. Jia, M. Chen, and Z. Zeng, “Rrt-based path
planning for an intelligent litchi-picking manipulator,” Computers
and Electronics in Agriculture, vol. 156, pp. 105–118, 2019, doi:
10.1016/j.compag.2018.10.031.

[5] N. P. Higueras, F. Caballero, and L. Merino, “Teaching robot navigation
behaviors to optimal rrt planners,” International Journal of Social Robotics,
vol. 10, pp. 235–249, 2018, doi: 10.1007/s12369-017-0448-1.

[6] J. A. Kay, D. C. Mazur and R. A. Entzminger, “Basics of Communication
Networks for Electrical Engineers in the Forest Products Industries,” 2018
IEEE IAS Pulp, Paper and Forest Industries Conference, pp. 1-5, 2018,
doi: 10.1109/PPIC.2018.8502239.

[7] H. Ryu and Y. Park, “Improved informed rrt* using gridmap skeletonization
for mobile robot path planning,” International Journal of Precision
Engineering and Manufacturing, vol. 20, no. 11, pp. 2033–2039, 2019,
doi: 10.1007/s12541-019-00224-8.

[8] K. Kunal, A. Z. Arfianto, J. E. Poetro, F. Waseel, and R. A. Atmoko,
“Accelerometer implementation as feedback on 5 degree of freedom
arm robot,” Journal of Robotics and Control, vol. 1, no. 1, 2020, doi:
10.18196/jrc.1107.

[9] A. R. Al Tahtawi, M. Agni, and T. D. Hendrawati, “Small-scale robot arm
design with pick and place mission based on inverse kinematics,” Journal
of Robotics and Control, vol. 2, no. 6, 2021, doi: 10.18196/jrc.26124.

[10] J. D. Téllez, R. S. G. Ramı́rez, J. Pérez-Pérez, J. E. Carreón, and M. A. C.
Rosales, “ROS-based controller for a two-wheeled self-balancing robot,”
Journal of Robotics and Control, vol. 4, no. 4, pp. 491–499, 2023, doi:
10.18196/jrc.v4i4.18208.

[11] A. D. Sabiha, M. A. Kamel, E. Said, and W. M. Hussein, “Ros-based
trajectory tracking control for autonomous tracked vehicle using optimized
backstepping and sliding mode control,” Robotics and Autonomous Systems,
vol. 152, 2022, doi: 10.1016/j.robot.2022.104058.

[12] P. Chotikunnan and Y. Pititheeraphab, “Adaptive P control and adaptive
fuzzy logic controller with expert system implementation for robotic
manipulator application,” Journal of Robotics and Control, vol. 4, no. 2,
pp. 217–226, 2023, doi: 10.18196/jrc.v4i2.17757.

[13] N. Chao, Y. K. Liu, H. Xia, A. Ayodeji, and L. Bai, “Grid-based
rrt* for minimum dose walking path-planning in complex radioactive
environments,” Annals of Nuclear Energy, vol. 115, pp. 73–82, 2018, doi:
10.1016/J.ANUCENE.2018.01.007.

[14] H. I. Lin and M. F. Hsieh, “Robotic arm path planning based on
three-dimensional artificial potential field,” in 2018 18th International
Conference on Control, Automation and Systems (ICCAS). IEEE, 2018,
pp. 740–745.

[15] S. Števo, I. Sekaj, and M. Dekan, “Optimization of robotic arm trajectory
using genetic algorithm,” IFAC Proceedings Volumes, vol. 47, no. 3, pp.
1748–1753, 2014, doi: 10.3182/20140824-6-ZA-1003.01073.

[16] M. A. Mousa, A. T. Elgohr, and H. Khater, “Path planning for a 6 dof
robotic arm based on whale optimization algorithm and genetic algorithm,”
Journal of Engineering Research, vol. 7, no. 5, pp. 160–168, 2023, doi:
10.21608/erjeng.2023.237586.1256.

[17] P. Nithya, L. P. PS, G. E. Benjamin, and J. Venkateswaran, “Optimal path
planning and static obstacle avoidance for a dual arm manipulator used
in on-orbit satellite servicing,” IFAC-PapersOnLine, vol. 53, no. 1, pp.
189–194, 2020, doi: 10.1016/j.ifacol.2020.06.032.

[18] Q. Gao, Q. Yuan, Y. Sun, and L. Xu, “Path planning algorithm of robot
arm based on improved rrt* and bp neural network algorithm,” Journal of

King Saud University-Computer and Information Sciences, vol. 35, no. 8,
2023, doi: 10.1016/j.jksuci.2023.101650.

[19] I.-B. Jeong, S.-J. Lee, and J.-H. Kim, “Quick-rrt*: Triangular inequality-
based implementation of rrt* with improved initial solution and conver-
gence rate,” Expert Systems with Applications, vol. 123, pp. 82–90, 2019,
doi: 10.1016/j.eswa.2019.01.032.

[20] F. Kiani, A. Seyyedabbasi, R. Aliyev, M. U. Gulle, H. Basyildiz, and M. A.
Shah, “Adapted-rrt: novel hybrid method to solve three-dimensional path
planning problem using sampling and metaheuristic-based algorithms,”
Neural Computing and Applications, vol. 33, no. 22, pp. 15569–15599,
2021, doi: 10.1007/s00521-021-06179-0.

[21] Y. Li, W. Wei, Y. Gao, D. Wang, and Z. Fan, “Pq-rrt*: An improved path
planning algorithm for mobile robots,” Expert systems with applications,
vol. 152, 2020, doi: 10.1016/j.eswa.2020.113425.

[22] J. Qi, H. Yang, and H. Sun, “Mod-rrt* : A sampling-based algorithm
for robot path planning in dynamic environment,” IEEE Transactions
on Industrial Electronics, vol. 68, no. 8, pp. 7244–7251, 2021, doi:
10.1109/TIE.2020.2998740.

[23] K. Wei and B. Ren, “A method on dynamic path planning for robotic
manipulator autonomous obstacle avoidance based on an improved rrt
algorithm,” Sensors, vol. 18, no. 2, 2018, doi: 10.3390/s18020571.

[24] W. Xinyu, L. Xiaojuan, G. Yong, S. Jiadong, and W. Rui, “Bidirectional
potential guided rrt* for motion planning,” IEEE access, vol. 7, pp. 95046–
95057, 2019, doi: 10.1109/ACCESS.2019.2928846.

[25] W. Gao, Q. Tang, J. Yao, Y. Yang, and D. Yu, “Heuristic bidirectional
fast marching tree for optimal motion planning,” in 2018 3rd Asia-
Pacific Conference on Intelligent Robot Systems, pp. 71–77, 2018, doi:
10.1109/ACIRS.2018.8467243.

[26] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree:
A fast marching sampling-based method for optimal motion planning in
many dimensions,” The International journal of robotics research, vol. 34,
no. 7, pp. 883–921, 2015, doi: 10.1177/0278364915577958.

[27] B. Wu, X. Wu, N. Hui, and X. Han, “Trajectory planning and singularity
avoidance algorithm for robotic arm obstacle avoidance based on an
improved fast marching tree,” Applied Sciences, vol. 14, no. 8, 2024, doi:
10.3390/app14083241.

[28] J. Xia, Z. Jiang, H. Zhang, R. Zhu, and H. Tian, “Dual fast marching
tree algorithm for human-like motion planning of anthropomorphic arms
with task constraints,” IEEE/ASME Transactions on Mechatronics, vol. 26,
no. 5, pp. 2803–2813, 2021, doi: 10.1109/TMECH.2020.3047476.

[29] J. Xu, K. Song, D. Zhang, H. Dong, Y. Yan, and Q. Meng, “Informed
anytime fast marching tree for asymptotically optimal motion planning,”
IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 5068–5077,
2021, doi: 10.1109/TIE.2020.2992978.

[30] Y.-H. Yu and Y.-T. Zhang, “Collision avoidance and path planning for
industrial manipulator using slice-based heuristic fast marching tree,”
Robotics and Computer-Integrated Manufacturing, vol. 75, 2022, doi:
10.1016/j.rcim.2021.102289.

[31] M. F. Rahman and N. Sharma, “Reinforcement learning based approach
for urban resource allocation and path planning problems,” in 2020
International Conference on Intelligent Data Science Technologies and
Applications, pp. 115–118, 2020, doi: 10.1109/IDSTA50958.2020.9264062.

[32] C. Wang, X. Yang, and H. Li, “Improved q-learning applied to dynamic
obstacle avoidance and path planning,” IEEE Access, vol. 10, pp. 92879–
92888, 2022, doi: 10.1109/ACCESS.2022.3203072.

[33] T. Yan, Y. Zhang, and B. Wang, “Path planning for mobile robot’s
continuous action space based on deep reinforcement learning,” in 2018
International Conference on Big Data and Artificial Intelligence, pp. 42–46,
2018, doi: 10.1109/BDAI.2018.8546675.

[34] A. Abdi, D. Adhikari, and J. H. Park, “A novel hybrid path planning
method based on q-learning and neural network for robot arm,” Applied
Sciences, vol. 11, no. 15, 2021, doi: 10.3390/app11156770.

[35] Y.-W. Chen and W.-Y. Chiu, “Optimal robot path planning system by using
a neural network-based approach,” in 2015 international automatic control
conference (CACS), pp. 85–90, 2015, doi: 10.1109/CACS.2015.7378370.

[36] Y. Li, R. Cui, Z. Li, and D. Xu, “Neural network approximation based near-
optimal motion planning with kinodynamic constraints using rrt,” IEEE
Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8718–8729,
2018, doi: 10.1109/TIE.2018.2816000.

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2046

[37] J. Lu, T. Zou, and X. Jiang, “A neural network based approach to inverse
kinematics problem for general six-axis robots,” Sensors, vol. 22, no. 22,
2022, doi: 10.3390/s22228909.

[38] W. Wang, M. Zhu, X. Wang, S. He, J. He, and Z. Xu, “An improved
artificial potential field method of trajectory planning and obstacle
avoidance for redundant manipulators,” International Journal of Advanced
Robotic Systems, vol. 15, no. 5, 2018, doi: 10.1177/1729881418799562.

[39] B. Wu, X. Wu, N. Hui, and X. Han, “Trajectory planning and singularity
avoidance algorithm for robotic arm obstacle avoidance based on an
improved fast marching tree,” Applied Sciences, vol. 14, no. 8, p. 3241,
2024, doi: 10.3390/app14083241.

[40] L. Chen, Y. Shan, W. Tian, B. Li, and D. Cao, “A fast and efficient
double-tree rrt* -like sampling-based planner applying on mobile robotic
systems,” IEEE/ASME transactions on mechatronics, vol. 23, no. 6, pp.
2568–2578, 2018, doi: 10.1109/TMECH.2018.2821767.

[41] Y. Chen, L. Chen, J. Ding, and Y. Liu, “Research on real-time obstacle
avoidance motion planning of industrial robotic arm based on artificial
potential field method in joint space,” Applied Sciences, vol. 13, no. 12,
2023, doi: 10.3390/app13126973.

[42] A. Hidalgo-Paniagua, J. P. Bandera, M. Ruiz-de Quintanilla, and A. Ban-
dera, “Quad-rrt: A real-time gpu-based global path planner in large-scale
real environments,” Expert Systems with Applications, vol. 99, pp. 141–154,
2018, doi: 10.1016/j.eswa.2018.01.035.

[43] Z. Chen, L. Ma, and Z. Shao, “Path planning for obstacle avoid-
ance of manipulators based on improved artificial potential field,” in
2019 Chinese Automation Congress (CAC), pp. 2991–2996, 2019, doi:
10.1109/CAC48633.2019.8996467.

[44] S. N. Gai, R. Sun, S. J. Chen, and S. Ji, “6-dof robotic obstacle avoidance
path planning based on artificial potential field method,” in 2019 16th
International Conference on Ubiquitous Robots (UR), pp. 165–168, 2019,
doi: 10.1109/URAI.2019.8768792.

[45] N. Zhang, Y. Zhang, C. Ma, and B. Wang, “Path planning of six-dof
serial robots based on improved artificial potential field method,” in 2017
IEEE International Conference on Robotics and Biomimetics (ROBIO),
pp. 617–621, 2017, doi: 10.1109/ROBIO.2017.8324485.

[46] H. Zhaochu, H. Yuanlie, and Z. Bi, “Obstacle avoidence path planning
for robot arm based on mixed algorithm of artificial potential field
method and rrt,” Industrial Engineering Journal, vol. 20, no. 2, 2017, doi:
10.3969/j.issn.1007-7375.e17-2002.

[47] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1, pp.
90–98, 1986, doi: 10.1177/027836498600500106.

[48] A. Sepehri and A. M. Moghaddam, “A motion planning algorithm for
redundant manipulators using rapidly exploring randomized trees and
artificial potential fields,” IEEE Access, vol. 9, pp. 26059–26070, 2021,
doi: 10.1109/ACCESS.2021.3056397.

[49] H. Zhang, Y. Zhu, X. Liu, and X. Xu, “Analysis of obstacle avoidance
strategy for dual-arm robot based on speed field with improved artifi-
cial potential field algorithm,” Electronics, vol. 10, no. 15, 2021, doi:
10.3390/electronics10151850.

[50] Q. Yuan, J. Yi, R. Sun, and H. Bai, “Path planning of a mechanical
arm based on an improved artificial potential field and a rapid expansion
random tree hybrid algorithm,” Algorithms, vol. 14, no. 11, 2021, doi:
10.3390/a14110321.

[51] H. Li, Z. Wang, and Y. Ou, “Obstacle avoidance of manipulators based
on improved artificial potential field method,” in 2019 IEEE international
conference on Robotics and Biomimetics (ROBIO), pp. 564–569, 2019,
doi: 10.1109/ROBIO49542.2019.8961506.

[52] M. Zhuang, G. Li, and K. Ding, “Obstacle avoidance path planning
for apple picking robotic arm incorporating artificial potential field and
a* algorithm,” IEEE Access, vol. 11, pp. 100070-100082, 2023, doi:
10.1109/ACCESS.2023.3312763.

[53] X. Xia, T. Li, S. Sang, Y. Cheng, H. Ma, Q. Zhang, and K. Yang, “Path
planning for obstacle avoidance of robot arm based on improved potential
field method,” Sensors, vol. 23, no. 7, 2023, doi: 10.3390/s23073754.

[54] I. J. Meem, S. Osman, K. M. H. Bashar, N. I. Tushar, and R. Khan, “Semi
wireless underwater rescue drone with robotic arm,” Journal of Robotics
and Control, vol. 3, no. 4, pp. 496–504, 2022, doi: 10.18196/jrc.v3i4.14867.

[55] A. E. Newir, Y. A. Abdelfattah, and M. M. Rashed, “Upgrading gryphon

puma robot arm using ros-moveit,” MSA Engineering Journal, vol. 2,
no. 2, pp. 1212–1224, 2023, doi: 10.21608/MSAENG.2023.293681.

[56] V.-H. Nguyen, H.-N. Nguyen, M.-T. Ho, and T.-S. Nguyen, “Clas-
sifying laboratory tools using robot arm associated with computer
vision,” in 2022 7th National Scientific Conference on Applying
New Technology in Green Buildings (ATiGB), pp. 11–18, 2022, doi:
10.1109/ATiGB56486.2022.9984091.

[57] S. Baklouti, G. Gallot, J. Viaud, and K. Subrin, “On the improvement of
ROS-based control for teleoperated yaskawa robots,” Applied Sciences,
vol. 11, no. 16, 2021, doi: 10.3390/app11167190.

[58] N. E. Du Toit and J. W. Burdick, “Robot motion planning in dynamic,
uncertain environments,” IEEE Transactions on Robotics, vol. 28, no. 1,
pp. 101–115, 2012, doi: 10.1109/TRO.2011.2166435.

[59] M. V. Liarokapis and A. M. Dollar, “Learning task-specific models for
dexterous, in-hand manipulation with simple, adaptive robot hands,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2534–2541, 2016, doi: 10.1109/IROS.2016.7759394.

[60] W. J. Wilson, C. C. W. Hulls, and G. S. Bell, “Relative end-effector
control using cartesian position based visual servoing,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 5, pp. 684–696, 1996, doi:
10.1109/70.538974.

[61] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” Ieee access, vol. 2, pp. 56–77, 2014, doi: 10.1109/AC-
CESS.2014.2302442.

[62] J. K. Behrens, R. Lange, and M. Mansouri, “A constraint programming
approach to simultaneous task allocation and motion scheduling for
industrial dual-arm manipulation tasks,” in 2019 International Confer-
ence on Robotics and Automation (ICRA), pp. 8705–8711, 2019, doi:
10.1109/ICRA.2019.8794022.

[63] K. E. C. Booth, T. T. Tran, G. Nejat, and J. C. Beck, “Mixed-integer and
constraint programming techniques for mobile robot task planning,” IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 500–507, 2016, doi:
10.1109/LRA.2016.2522096.

[64] S. Xu, M. Perez, K. Yang, C. Perrenot, J. Felblinger, and J. Hubert,
“Determination of the latency effects on surgical performance and the
acceptable latency levels in telesurgery using the dv-trainer® simulator,”
Surgical endoscopy, vol. 28, pp. 2569–2576, 2014, doi: 10.1007/s00464-
014-3504-z.

[65] L. D. Hanh and V. D. Cong, “Path following and avoiding obstacle for
mobile robot under dynamic environments using reinforcement learning,”
Journal of Robotics and Control, vol. 4, no. 2, pp. 157–164, 2023, doi:
10.18196/jrc.v4i2.17368.

[66] K. Yamtuan, T. Radomngam, and P. Prempraneerach, “Visual servo kine-
matic control of delta robot using YOLOv5 algorithm,” Journal of Robotics
and Control, vol. 4, no. 6, pp. 818–831, 2023, doi: 10.18196/jrc.v4i6.19102.

[67] P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An histor-
ical survey,” Automatica, vol. 42, no. 12, pp. 2035–2057, 2006, doi:
10.1016/j.automatica.2006.06.027.

[68] D. A. Drexler and I. Harmati, “Joint constrained differential inverse
kinematics algorithm for serial manipulators,” Periodica Polytechnica
Electrical Engineering and Computer Science, vol. 56, no. 4, pp. 95–104,
2012, doi: 10.3311/ppee.7163.

[69] M. Li, X. Luo, and L. Qiao, “Inverse kinematics of robot manipulator
based on bode-cs algorithm,” Machines, vol. 11, no. 6, 2023, doi:
10.3390/machines11060648.

[70] S. Qiu and M. R. Kermani, “Inverse kinematics of high dimensional robotic
arm-hand systems for precision grasping,” Journal of Intelligent & Robotic
Systems, vol. 101, no. 70, 2021, doi: 10.1007/s10846-021-01349-7.

[71] W. Shanda, L. Xiao, L. Qingsheng, and H. Baoling, “Existence conditions
and general solutions of closed-form inverse kinematics for revolute
serial robots,” Applied Sciences, vol. 9, no. 20, p. 4365, 2019, doi:
10.3390/app9204365.

[72] D. N. Nenchev and R. Iizuka, “Emergent humanoid robot motion synergies
derived from the momentum equilibrium principle and the distribution of
momentum,” IEEE Transactions on robotics, vol. 38, no. 1, pp. 536–555,
2022, doi: 10.1109/TRO.2021.3083195.

[73] M. Sekiguchi and N. Takesue, “Fast and robust numerical method
for inverse kinematics with prioritized multiple targets for redundant
robots,” Advanced Robotics, vol. 34, no. 16, pp. 1068–1078, 2020, doi:
10.1080/01691864.2020.1780151.

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2047

[74] A. Taherian, A. H. Mazinan, and M. Aliyari-Shoorehdeli, “Image-
based visual servoing improvement through utilization of adaptive
control gain and pseudo-inverse of the weighted mean of the ja-
cobians,” Computers & Electrical Engineering, vol. 83, 2020, doi:
10.1016/j.compeleceng.2020.106580.

[75] S. R. Buss and J.-S. Kim, “Selectively damped least squares for inverse
kinematics,” Journal of Graphics Tools, vol. 10, no. 3, pp. 37–49, 2005,
doi: 10.1080/2151237X.2005.10129202.

[76] P. P. Rebouças Filho, S. P. P. da Silva, V. N. Praxedes, J. Hemanth, and
V. H. C. de Albuquerque, “Control of singularity trajectory tracking for
robotic manipulator by genetic algorithms,” Journal of computational
science, vol. 30, pp. 55–64, 2019, doi: 10.1016/j.jocs.2018.11.006.

[77] A. S. Deo and I. D. Walker, “Overview of damped least-squares methods
for inverse kinematics of robot manipulators,” Journal of Intelligent and
Robotic Systems, vol. 14, pp. 43–68, 1995, doi: 10.1007/BF01254007.

[78] L. Lu, J. Zhang, J. Y. H. Fuh, J. Han, and H. Wang, “Time-optimal tool
motion planning with tool-tip kinematic constraints for robotic machining
of sculptured surfaces,” Robotics and Computer-Integrated Manufacturing,
vol. 65, 2020, doi: 10.1016/j.rcim.2020.101969.

[79] L. Sciavicco and B. Siciliano, “A solution algorithm to the inverse
kinematic problem for redundant manipulators,” IEEE Journal on Robotics
and Automation, vol. 4, no. 4, pp. 403–410, 1988, doi: 10.1109/56.804.

[80] M. Sekiguchi and N. Takesue, “Fast and robust numerical method
for inverse kinematics with prioritized multiple targets for redundant
robots,” Advanced Robotics, vol. 34, no. 16, pp. 1068–1078, 2020, doi:
10.1080/01691864.2020.1780151.

[81] S. H. J. Lund, P. Billeschou, and L. B. Larsen, “High-bandwidth active
impedance control of the proprioceptive actuator design in dynamic com-
pliant robotics,” Actuators, vol. 8, no. 4, 2019, doi: 10.3390/act8040071.

Ngo Xuan Khoat, Trajectory Planning and Tracking Control for 6-DOF Yaskawa Manipulator based on Differential Inverse
Kinematics


