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Abstract—Ionic diffusion across cytomembranes plays a critical
role in both biological and chemical systems. This paper reexam-
ines the FitzHugh-Nagumo reaction-diffusion system, specifically
incorporating the influence of diffusion on the system’s dynamics.
We focus on the system’s finite-time stability, demonstrating that
it achieves and maintains equilibrium within a specified time
interval. Unlike asymptotic stability, which ensures long-term
convergence, finite-time stability guarantees rapid convergence to
equilibrium, a crucial feature for real-time control applications.
We prove that the equilibrium point of the FitzHugh-Nagumo
system exhibits finite-time stability under certain conditions. In
particular, we provide a criterion for finite-time stability and
derive results using new lemmas and a theorem to guide the
system’s design for reliable performance. Additionally, the paper
discusses finite-time synchronization in reaction-diffusion systems,
emphasizing its importance for achieving coherent dynamics
across distributed components within a finite time. This approach
has significant implications for fields requiring precise control
and synchronization, such as sensor networks and autonomous
systems. Practical simulations are presented to elucidate the
theoretical principles discussed earlier, using the finite difference
method (FDM) implemented in MATLAB.

Keywords—Fitzhugh-Nagumo Reaction-Diffusion System; Finite-
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I. INTRODUCTION

Neurons are fundamental units in neural systems, pivotal
to neuroscience, brain science, and medical technology. While
the Hodgkin-Huxley (HH) model [1]–[4] is a classic frame-
work for simulating neural network dynamics, its complex-

ity often necessitates the use of simplified models like the
FitzHugh-Nagumo (FHN) model [5], [6]. The FHN model
captures key features of neuronal excitability through cubic
nonlinearity, providing insights into nerve impulse propagation,
separatrix loops, equilibrium bifurcation, and limit cycles [7],
[8]. Reaction-diffusion systems (RDSs), described by partial
differential equations, are crucial for modeling phenomena such
as chemical pattern formation, biological processes, and disease
spread [9]–[11]. When extended to include spatial diffusion,
the FitzHugh-Nagumo model becomes the FitzHugh-Nagumo
reaction-diffusion system (FHN-RDS). This extension allows
for an exploration of how neuronal activity propagates spatially,
offering insights into neural pattern formation and interactions
across spatial domains.

Recent research has highlighted the significance of finite-time
stability for accelerating convergence and enhancing system
resilience. Works such as [12], [13] have established criteria
for finite-time stability in systems with time-varying delays
using the Lyapunov-Razumikhin technique, while [14], [15]
extended the generalized Gronwall inequality to systems with
delays and disturbances. These advancements underscore the
growing interest in finite-time stability as a means to achieve
rapid convergence in dynamic systems.

Synchronization in dynamical systems involves aligning mul-
tiple systems to oscillate coherently and has broad applications
[16]–[21]. Approaches to achieve synchronization include linear
and nonlinear control techniques [22]–[26], categorized into
finite-time synchronization, phase synchronization, and gener-
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alized synchronization [27]–[33] . Finite-time synchronization,
in particular, ensures systems achieve synchrony within a
predetermined time frame, which is crucial for applications
requiring precise coordination, such as networked and real-time
control systems [34]–[37]. Unlike infinite-time synchronization,
which only guarantees eventual convergence, finite-time syn-
chronization ensures convergence within a specific, often short,
period [38]–[46]. This feature is essential for performance and
effectiveness in scenarios where timely coordination is critical
[47]–[51].

Despite these advancements, achieving finite-time synchro-
nization in spatially extended systems like reaction-diffusion
systems presents unique challenges [52], [53]. The complexity
of spatial and temporal dynamics, nonlinearities, and diffusion-
driven interactions complicates synchronization efforts [54].
Current methods often address infinite-time synchronization
or simpler systems, leaving a gap in understanding how to
synchronize complex systems within finite time [55]–[59]. This
gap highlights the need for innovative techniques specifically
tailored to the complexities of reaction-diffusion systems [60].

In response to these challenges, this manuscript makes the
following contributions:

• Novel Stability Lemma: We develop a new lemma specif-
ically for finite-time stability in reaction-diffusion systems.
This lemma introduces precise criteria for achieving con-
vergence to equilibrium points within a finite time frame,
addressing the limitations of existing stability criteria in
capturing the dynamics of FitzHugh-Nagumo reaction-
diffusion systems (FHN-RDS).

• State-Dependent Linear Controllers: We design and
implement state-dependent linear controllers to facilitate
rapid synchronization between primary and response sys-
tems. The linear control techniques are chosen for their
effectiveness in managing the linearizable aspects of FHN-
RDS, aiming for efficient and precise synchronization.

• Extension of Generalized Gronwall Inequality: We
apply and extend the generalized Gronwall inequality to
derive sufficient conditions for finite-time stability and
synchronization in reaction-diffusion systems. This ex-
tension addresses the spatial and temporal complexities
inherent in FHN-RDS.

• Validation through Numerical Simulations: We conduct
comprehensive numerical simulations using the finite dif-
ference method (FDM) to test and validate the theoretical
results. These simulations provide practical insights and
demonstrate the effectiveness of the proposed techniques
under realistic conditions.

The paper is organized as follows: Section II explores the
FitzHugh-Nagumo reaction-diffusion system, analyzing the im-
pact of ionic diffusion on its dynamics. Section III presents the
application of the proposed stability lemma and state-dependent
linear controllers for finite-time stability and synchronization in

coupled FHN systems. Section IV provides a comprehensive
theoretical framework and practical methodology for finite-
time synchronization in reaction-diffusion systems, linking
theoretical results to real-world applications. Finally, Section
V focuses on numerical simulations using FDM, validating
the theoretical findings and assessing the performance of the
proposed techniques.

II. MODEL DESCRIPTION

The FitzHugh-Nagumo reaction-diffusion system is widely
recognized for modeling the propagation of nerve impulses.
Ionic diffusion, which occurs as ions traverse the cytomem-
brane, plays a critical role in this process. Therefore, it is
crucial to incorporate diffusion effects into the model to capture
the dynamics accurately. In this manuscript, we reexamine the
FitzHugh-Nagumo reaction-diffusion system as described in
[24]

∂U1 (r , z )

∂z
= n1∆U1 + (a −U1)(U1 − 1)U1 −U2, r ∈ Ω,

∂U2 (r , z )

∂z
= n2∆U2 + c(bU1 −U2), r ∈ Ω, z > 0,

∂U1

∂η
=

∂U2

∂η
= 0, r ∈ ∂Ω, z > 0,

U1(r , 0) = U1,0(r) > 0,U2(r , 0) = U2,0(r) > 0, r ∈ Ω,

(1)

In this system, Ω represents a bounded domain within Rn with
a smooth boundary ∂Ω, and ∆ denotes the Laplace operator
acting on Ω. The Laplace operator, denoted by ∆, describes
the spatial diffusion of the reactants in the system, which
is crucial for capturing the spatial propagation of signals in
excitable media. The choice of Neumann boundary conditions,
∂U1

∂η
=

∂U2

∂η
= 0, reflects the assumption that there is no

flux across the boundary of the domain, a common scenario in
biological systems where the boundary represents impermeable
membranes or the edges of the tissue [61], [62].

The initial conditions, U1(r , 0) and U2(r , 0), are chosen
to be positive functions over the domain Ω. These conditions
are critical as they represent the initial state of the membrane
potential and recovery variable, respectively. The positivity of
the initial values ensures the physiological relevance of the
model, as negative values would not be meaningful in the
context of nerve impulse propagation.

The parameters n1 and n2 represent the diffusion coefficients
for the variables U1 and U2, respectively. These coefficients
are crucial in determining the rate at which the signals spread
through the domain. The excitatory threshold a , the parameter
b affecting the rest state, and the excitability parameter c are
all chosen based on their roles in shaping the dynamics of the
system, particularly in determining the conditions under which
the system exhibits excitable behavior.
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These assumptions and choices are standard in the study of
reaction-diffusion systems and are motivated by the need to
model the key features of excitable media accurately. The se-
lected boundary and initial conditions, along with the parameter
choices, ensure that the model is both mathematically tractable
and physiologically relevant. Moreover, they allow for the
derivation of analytical results, such as the finite-time stability
of equilibrium points, as discussed in subsequent sections.

III. FINITE TIME STABILITY RESULT

Finite-time stability concerns achieving and maintaining sys-
tem equilibrium within a specified time interval, regardless of
initial conditions. Unlike asymptotic stability, which involves
approaching equilibrium over an infinite time span, finite-
time stability ensures convergence within a predetermined time
frame. This property is particularly valuable in real-time control
systems and critical applications where rapid stabilization is
essential. In this section, we demonstrate that the FitzHugh-
Nagumo reaction-diffusion system (1) exhibits finite-time sta-
bility at the equilibrium point [63]–[65].

Definition 1 ensures finite-time stability by maintaining the
system’s proximity to the equilibrium within a specified time
frame. Lemma 1 guarantees that solutions are unique and
bounded, ensuring predictable system behavior. Lemma 2 re-
lates a function’s integral to its gradient, facilitating stability
analysis. Lemma 3 uses exponential bounds to regulate function
growth, thereby supporting stability. Theorem 1 provides a
criterion for assessing the finite-time stability of the equilibrium
point, guiding the design and control of the system for reliable
performance. First, we determine the equilibrium points of the
system (2){

n1∆U ∗
1 + (a −U ∗

1 )(U
∗
1 − 1)U ∗

1 −U ∗
2 = 0,

n2∆U ∗
2 + c(bU ∗

1 −U ∗
2 ) = 0.

(2)

Herein, we have many equilibrium points depending on the sign
of

χ = (a − 1)
2 − 4b, (3)

• If χ > 0, there are three equilibrium points:

(U ∗
1 ,U

∗
2 ) =

{
(0, 0) ,

(
a + 1∓√

χ

2
,
b
(
a + 1∓√

χ
)

2

)}
(4)

• If χ = 0, there are two equilibrium points:

(U ∗
1 ,U

∗
2 ) =

{
(0, 0) ,

(
a + 1

2
,
b (a + 1)

2

)}
, (5)

• If χ < 0, there is a unique equilibrium point:

(U ∗
1 ,U

∗
2 ) = (0, 0) . (6)

Definition 1. [66] The equilibrium point (U ∗
1 ,U

∗
2 ) of system

(1) with initial conditions is said to be finite time stable with
respect to {δ, ε, J} , δ < ε, if and only if

∥(U1,0 −U ∗
1 ,U2,0 −U ∗

2 )∥ := ∥U1,0 −U ∗
1 ∥+ ∥U2,0 −U ∗

2 ∥
< δ, (7)

implies

∥(U1 (z )−U ∗
1 ,U2 (z )−U ∗

2 )∥ := ∥U1 (z )−U ∗
1 ∥

+ ∥U2 (z )−U ∗
2 ∥ < ε,∀z ∈ J = [0, z∗] , (8)

where

∥U0 −U ∗∥2 =

∫
Ω

|U0 (r)−U ∗|2 dr ,

and

∥U (z )−U ∗∥2 =

∫
Ω

|U (r , z )−U ∗|2 dr .

Lemma 1. [24] Model (1) possesses a globally unique solution
(U1,U2), and there exists a constant Q ∈ R+ such that

U1 (r , z ) ,U2 (r , z ) ≤ Q , (9)

for all (r , z ) ∈ Ω× [0,+∞).

Lemma 2. [57], [58], [67] Let Ω ⊂ Rm be a bounded domain
with smooth boundary ∂Ω of class C2,U (r) ∈ H1

0 (Ω) is a

real-valued function and
∂U (r)

∂η

∣∣∣∣
∂Ω

= 0. Then

Υ1

∫
Ω

|U (r)|2 dr ≤
∫
Ω

|∇U (r)|2 dr , (10)

where Υ1 is defined by the positive eigenvalue of the problem−∆U (r) = ΥU (r) , r ∈ Ω,
∂U (r)

∂η
= 0, r ∈ ∂Ω.

(11)

Lemma 3. [66] Assume that function U (z ) satisfies

U (z ) ≤ F1 (z ) +

∫ z

0

U (s)F2 (s) ds, z ∈ [0, z∗] , z∗ < ∞,

(12)

where

U (z ) ,F1 (z ) ,F2 (z ) ∈ C ([0, z∗]) , z∗ < ∞,

and

F2 (z ) > 0.

If F1 (z ) is non decreasing. Then

U (z ) < F1 (z ) e
∫ z
0
F2(s)ds . (13)
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Theorem 1. The equilibrium point (U ∗
1 ,U

∗
2 ) of system (1)

exhibits finite-time stability if and only if the following condition
is satisfied:

M = max

{
3Q2 + 2(a + 1)Q + a +

cb + 1

2
− n1Υ1,

cb + 1

2
− c − n2Υ2

}
> 0. (14)

Here, the finite-time stability parameter z∗ is defined as

z ∗1 =
2

M
ln

(
ε√
2δ

)
. (15)

Proof. We describe the formula (16) as follows:{
R1(r , z ) = U1(r , z )−U ∗

1 ,

R2(r , z ) = U2(r , z )−U ∗
2 .

(16)

By applying Green’s formula and Lemma 2, we obtain

∂

∂z

∫
Ω

R2
1 dr = n1

∫
Ω

R1∆R1 dr

−
∫
Ω

[
U 2

1 +U ∗2
1 +U1U

∗
1

− (a + 1)

(
U1 +U ∗

1 − a

a + 1

) ]
R2

1 dr −
∫
Ω

R1R2 dr

≤− n1

∫
Ω

|∇R1|2 dr +

∫
Ω

[
|U1|2 + |U ∗

1 |
2
+ |U1| |U ∗

1 |

+(a + 1)

(
|U1|+ |U ∗

1 |+
a

a + 1

)]
R2

1 dr −
∫
Ω

R1R2 dr

≤
(
3Q2 + 2(a + 1)Q + a − n1Υ1

) ∫
Ω

R2
1 dr

+

∫
Ω

|R1| |R2| dr .
(17)

Similarly, we have

∂

∂z

∫
Ω

R2
2 dr

= n2

∫
Ω

R2∆R2 dr + cb

∫
Ω

R1R2 dr − c

∫
Ω

R2
2 dr

≤− n2

∫
Ω

|∇R2|2 dr + cb

∫
Ω

R1R2 dr − c

∫
Ω

R2
2 dr

≤− (n2Υ2 + c)

∫
Ω

R2
2 dr + cb

∫
Ω

|R1| |R2| dr .

(18)

Therefore, we have∫
Ω

R2
1 + R2

2 dr ≤
∫
Ω

R2
1,0 + R2

2,0 dr +
(
3Q2 + 2(a + 1)Q

+a − n1Υ1)

∫ z

0

∫
Ω

R2
1drds− (n2Υ2 + c)

∫ z

0

∫
Ω

R2
2drds

+ (cb + 1)

∫ z

0

∫
Ω

|R1| |R2| dr ds,
(19)

which implies∫
Ω

R2
1 + R2

2 dr ≤
∫
Ω

|R1,0|2 + |R2,0|2 dr

+

(
3Q2 + 2(a + 1)Q + a +

cb + 1

2
− n1Υ1

)∫ z

0∫
Ω

|R1|2 dr ds+

(
cb + 1

2
− c − n2Υ2

)∫ z

0

∫
Ω

|R2|2 dr ds.

(20)
Consequently, we obtain∫

Ω

R2
1 + R2

2 dr ≤
∫
Ω

|R1,0|2 + |R2,0|2 dr

+max

{
3Q2 + 2(a + 1)Q + a +

cb + 1

2
− n1Υ1,

cb + 1

2
− c − n2Υ2

}∫ z

0

∫
Ω

R2
1 + R2

2 dr ds

≤δ2 +max

{
3Q2 + 2(a + 1)Q + a +

cb + 1

2
− n1Υ1,

cb + 1

2
− c − n2Υ2

}∫ z

0

∫
Ω

R2
1 + R2

2 dr ds.

(21)
By assuming M = max

{
3Q2 + 2(a + 1)Q + a + cb+1

2 − n1Υ1,
cb+1

2 − c − n2Υ2

}
> 0 and considering Lemma 3, we get∫

Ω

|R1|2 + |R2|2 dr ≤ δ2eMz . (22)

Further, we obtain

∥R1 (z )∥+ ∥R2 (z )∥ ≤ F (z ) =
√
2δe

M
2 z . (23)

Thus, the settling time is given by

z∗1 =
2

M
ln

(
ε√
2δ

)
. (24)

Therefore, system (1) is stable over a finite duration if z is
greater than or equal to z∗.

IV. FINITE-TIME SYNCHRONIZATION SCHEME

Finite-time synchronization in reaction-diffusion systems
aims to rapidly achieve coherent dynamics among spatially
distributed components within a defined period. This synchro-
nization is crucial for establishing uniform behavior across the
system’s spatial dimensions. By linking the primary system (1)
with the response system (25), synchronization is facilitated
[68]–[71].

Achieving finite-time stability and synchronization is essen-
tial for ensuring reliable and efficient operation across various
applications. When synchronization occurs within a finite time,
distributed components converge to a unified state, which is
critical for applications such as sensor networks and industrial
automation, where timely synchronization is of the essence
[72].
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For safety-critical systems like autonomous vehicles, pre-
dictable stabilization within a finite time frame is key to en-
suring consistent and safe operation. Additionally, streamlined
control strategies enhance cost-efficiency by reducing imple-
mentation costs and operational complexity. This benefits large-
scale processes by minimizing reliance on extensive hardware
and manual intervention [73], [74].

Minimizing synchronization errors between the primary and
response systems improves accuracy and reliability, making this
approach valuable for precision-driven fields such as robotics
and aerospace. We define the response system (25) as follows:



∂V1 (r , z )

∂z
= n1∆V1 + (a −V1)(V1 − 1)V1 −V2

+C , r ∈ Ω, z > 0,
∂V2 (r , z )

∂z
= n2∆V2 + c(bV1 −V2), r ∈ Ω, z > 0,

∂V1

∂η
=

∂V2

∂η
= 0, r ∈ ∂Ω,

V1(r , 0) = V1,0(r) > 0, V2(r , 0) = V2,0(r) > 0, r ∈ Ω
(25)

The objective of this research is to develop a streamlined
controller, C , aimed at reducing costs and simplifying im-
plementation. This controller C is crucial for ensuring finite-
time synchronization within the system. It is designed to adjust
the error dynamics effectively, minimizing the synchronization
error e until it reaches zero. This careful tuning is essential not
only for maintaining stability but also for reducing implemen-
tation costs and complexity.

The ability of the controller C to achieve finite-time syn-
chronization is particularly critical for real-time applications,
where systems must quickly reach a coordinated state. By
analyzing the error dynamics, the conditions necessary for syn-
chronization can be derived, providing valuable insights into the
stability and behavior of the coupled systems. Additionally, the
controller’s streamlined design ensures it is cost-effective and
easy to implement, which is especially important in practical
scenarios with limited resources and computational power. The
effectiveness of the controller and the synchronization analysis
can be validated through both theoretical derivations and nu-
merical simulations, offering robust evidence of its capability
to achieve synchronization within the desired time frame [75]–
[77].

In mathematical terms, the synchronization error between
the two systems, designated as system (1) and system (25),
is defined as follows:

e =

(
e1
e2

)
=

(
V1 −U1

V2 −U2

)
(26)

We aim to demonstrate that the discrepancy tends to zero
as time approaches z ∗. This is accomplished by substituting
the expression derived from equation (1) into the error system

delineated in equation (25), i.e.,

∂e1
∂z

= n1∆e1 −
[
U 2

1 +V 2
1 +U1V1

− (a + 1)
(
U1 +V1 − a

a+1

)]
e1 − e2 + C , r ∈ Ω,

∂e2
∂z

= n2∆e2 + c (be1 − e2) , r ∈ Ω, z > 0,

∂e1
∂η

=
∂e2
∂η

= 0, r ∈ ∂Ω, z > 0,

e1 (r , 0) = V1,0 (r)−U1,0 (r) ,

e2 (r , 0) = V2,0 (r)−U2,0 (r) , r ∈ Ω.

(27)

The control law C is engineered to achieve finite-time
synchronization in reaction-diffusion systems, ensuring that
spatially distributed components quickly converge to a unified
state. This is crucial for applications like autonomous vehicles
and sensor networks, where precise and timely coordination is
imperative. The control strategy focuses on adjusting the error
dynamics between the primary and response systems, driving
the error to zero within a finite time using a Lyapunov-based
approach. Streamlined for cost-efficiency and simplicity, the
control law is particularly suitable for practical implementation
in large-scale systems [78], [79].

However, its effectiveness hinges on assumptions such as a
homogeneous control environment, accurate system modeling,
and tolerable external disturbances. Constraints on control input
and the presence of noise could impact performance. Despite
these challenges, the control law is expected to significantly
enhance system reliability, precision, and overall performance
in real-time applications [80], [81].

Theorem 2. [82] (e∗1 , e
∗
2 ) is a finite-time stability equilibrium

point of the nonlinear system (27) if there exists a positive
definite Lyapunov function V : [0,+∞) × Ω → R+, three
class M functions η, β,Λ, and δ > 0 such that

1) η ∥e (z )∥ ≤ V (z , e (z )) ≤ β ∥e (z )∥ ,
2)

∂V (z , e (z ))

∂z
< −ΛV (z , e (z )) ,

3)
∫ ε∗

0

dz

Λ (z)
< +∞, (∀ε : 0 < ε∗ ≤ δ∗) .

Definition 2. [83] If there exists a setting time z∗ > 0 such
that

lim
z→z∗

∥e1 (z )∥+ ∥e2 (z )∥ = 0 (28)

and

∥e1 (z )∥+ ∥e2 (z )∥ ≡ 0, ∀z ≥ z∗, (29)

then the derive-response systems (1) and (25) are synchronized
in finite time.
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Theorem 3. The derived-response systems, denoted by (1) and
(25), will achieve stable and synchronized states within a finite
time if the following conditions are satisfied:

Λ = 2min

{
n1Υ1 −

1 + cb

2
,n2Υ2 + c − 1 + cb

2

}
> 0,

(30)

and by implementing the one-dimensional linear control law

C = −
(
3Q2 + 2 (a + 1)Q + a

)
e1. (31)

The finite-time synchronization is defined as

z∗2 =
V (0)

ΛV (zmax)
. (32)

Proof. We employ Lyapunov’s direct method in conjunction
with a positive definite Lyapunov function. Let

V (z ) =
1

2

∫
Ω

e21 + e22 dr . (33)

Utilizing Lemma 1 and 2 yields

∂V (z )

∂z
=

∫
Ω

e1
∂e1
∂z

+ e2
∂e2
∂z

dr

=

∫
Ω

e1

[
n1∆e1 −

(
U 2

1 +V 2
1 +U1V1 − (a + 1) (U1

+V1 −
a

a + 1

))
e1 − e2 −

(
3Q2 + 2 (a + 1)Q + a

)
e1

]
dr +

∫
Ω

e2 [n2∆e2 + c (be1 − e2)] dr

≤− n1

∫
Ω

|∇e1|2 dr − n2

∫
Ω

|∇e2|2 dr

+

∫
Ω

[
|U1|2 + |V1|2 + |U1| |V1|+ (a + 1) (|U1|

+ |V1|+
a

a + 1

)]
e21dr + (cb − 1)

∫
Ω

e1e2dr

−
(
3Q2 + 2 (a + 1)Q + a

) ∫
Ω

e21dr − c

∫
Ω

e22dr

≤−
(
n1Υ1 −

1 + cb

2

)∫
Ω

e21dr

−
(
n2Υ2 + c − 1 + cb

2

)∫
Ω

e22dr

≤− 2min

{
n1Υ1 −

1 + cb

2
,n2Υ2 + c − 1 + cb

2

}
V (z ) .

Let

Λ = 2min

{
n1Υ1 −

1 + cb

2
, n2Υ2 + c− 1 + cb

2

}
.

We have∫ ε∗

0

1

Λ
dz =

ε∗

2min
{
n1Υ1 − 1+cb

2 , n2Υ2 − c+ 1+cb
2

} < +∞.

(34)

By applying Theorem 2, we can confirm that the zero solution
of the error system (27) signifies the finite-time stability of the
equilibrium point (e∗1 , e

∗
2 ) = (0, 0). Hence, the function V (z )

is decreasing and positive when 0 ≤ z < z∗2 ≤ zmax, and we
obtain V (z ) > V2 (zmax) . Additionally, we have

V2 (z ) ≤ V2 (0)− Λ

∫ z

0

V (s) ds

≤ V2 (0)− Λ

∫ z

0

V (vmax) ds

= V2 (0)− ΛV (zmax) z . (35)

As z approaches a critical value z ∗2 , where the function V (z )
converges to zero, we have

lim
z→z∗

2

V (z ) ≤ V (0)− ΛV (zmax) z
∗
2 = 0. (36)

So, we conclude that the finite-time synchronization is defined
as

z∗2 =
V (0)

ΛV (zmax)
.

Consequently, the derived-response systems (1) and (25)
achieve synchronization within a finite time.

V. NUMERICAL SIMULATIONS

In this section, we present practical simulations designed
to elucidate the theoretical principles discussed earlier. The
simulations were conducted using the finite difference method
implemented in MATLAB. FDM is a numerical approach
used to solve differential equations by discretizing continuous
variables, such as time and space, into a grid. The grid size and
time step are crucial elements that determine the resolution and
stability of the solution. In spatial discretization, the domain is
divided into a grid of points, with smaller grid sizes providing
higher resolution but increasing computational cost. Time is
similarly discretized into intervals, with the time step affecting
both the stability and accuracy of the method. Ensuring stability
often requires the time step to meet specific criteria, such as
the Courant-Friedrichs-Lewy (CFL) condition. When applied to
finite-time stability, FDM approximates the derivatives in the
governing differential equations, and the chosen grid and time
step must preserve the stability properties of the continuous
system. For finite-time synchronization, the method evaluates
synchronization conditions for coupled systems, where accu-
racy depends on minimizing the discretization error. Overall,
careful selection of grid size and time step is essential to ensure
that the numerical solution accurately represents the dynamics
of the continuous system within a finite time frame. This section
includes two illustrative examples for completeness.

Example 1. We examine the domain Ω = [0, 15], with z ∈
[0, 1], and define the parameters as given in Table I. The initial
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TABLE I. PARAMETER VALUES

Variable Value
n1 1
n2 1
a 0.25
b 0.76
c 3.5
Q 1.5
δ 3
ε 17.6192
Υ1 9.32693
Υ2 9.32693
N 100

conditions are given by{
U1,0 (r) = 1.5,

U1,0 (r) = 1.5.
(37)

The condition of Theorem 1 is satisfied

M = max

{
3Q2 + 2(a + 1)Q + a +

cb + 1

2
− n1Υ1,

cb + 1

2
− c − n2Υ2

}
= 3.2531, (38)

and the finite-time stability is estimated as

z∗1 =
2

M
ln

(
ε√
2δ

)
= 0.8754s. (39)

According to Theorem 1, these solutions exhibit finite-time
stability at the equilibrium point (U ∗

1 ,U
∗
2 ) = (0, 0). The figures

and their interpretations are summarized in Table II.

TABLE II. SUMMARY OF SYSTEMS ANALYSIS AND FIGURES

Description Figures
The temporal and spatial solutions of system (1) with homo-
geneous Neumann boundary conditions are shown.

Fig. 1

To numerically validate the finite-time stability, temporal and
spatial solutions of the system, along with error estimates, are
presented for a one-dimensional space.

Fig. 2

This demonstration confirms that the errors converge to 0 as z
approaches z∗1 = 0.8754 seconds, validating the theoretical
predictions.

Fig. 3

A. Sensitivity Analysis of Finite-Time Stability

To explore the sensitivity of the system to changes in
parameter values, we analyze how variations in key parameters
affect the finite-time stability. We consider perturbations in
the parameters a , b, and c, and observe their impact on the
finite-time stability time z∗1 . For each parameter, we vary its
value within a range and compute the corresponding finite-
time stability time. The results are summarized in Table III.
The sensitivity analysis reveals that changes in c have minimal
to moderate impacts on the finite-time stability time, while
variations in a and b can lead to significant changes. This

TABLE III. SUMMARY OF SYSTEM ANALYSIS AND FIGURES

Parameter Perturbation Range Impact on z∗1 Remarks
a [0.16175, 0.25] 0.8754s - 1s Significant impact
b [0.6398, 0.76] 0.8754s - 1s Moderate impact
c [2.1035, 3.5] 0.8754s - 1s Minimal impact

Fig. 1. Dynamic behavior of solution U1 (r , z) and U2 (r , z).

Fig. 2. The state trajectories of the solutions U1 (75, z) and U2 (75, z).
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Fig. 3. Estimation of the function F (z).

information is crucial for designing robust control strategies
that can accommodate parameter uncertainties.

Example 2. Consider the domain Ω, defined as the interval
[0, 6], with z ranging within [0, 100] in Table IV. The initial

TABLE IV. PARAMETER VALUES

Variable Value
n1 13
n2 13
a 1.4
b 1.5
c 1.3294
Q 0.5404
Υ1 106

Υ2 106

N 100

conditions for the derived-response systems (1) and (25) are
set as follows: {

U1,0 (r) = 0.5,

U2,0 (r) = 0.5,
(40)

and {
V1,0 (r) = 1,

V2,0 (r) = 1.
(41)

Based on the conditions of Theorem 3, we obtain

Λ = min

{
n1Υ1 −

1 + cb

2
,n2Υ2 + c − 1 + cb

2

}
(42)

= 2.6× 107. (43)

As a consequence, the one-dimensional linear control law is
defined as

C = −4.87e1 (44)

and
V (0) = 25, V (100) = 9.6281× 10−9. (45)

Thus, we conclude

z∗2 =
V (0)

ΛV (zmax)
= 99.8679s. (46)

Consequently, the Lyapunov function converges to zero as z
approaches z∗2 = 99.8679 s, according to Theorem 3, demon-
strating that the derived-response systems (1)-(25) exhibit finite-
time synchronization at z∗2 = 99.8679 s. Table V summarizes
the figures and their interpretations.

TABLE V. SUMMARY OF SYSTEM ANALYSIS AND FIGURES

Description Figures
The spatiotemporal dynamics of derive-response systems (1)-
(25) are illustrated, with additional insights in both two-
dimensional and one-dimensional spaces.

Figs. 4,
5, 7

The spatiotemporal solutions of the error synchronization sys-
tem (27) are shown through numerical simulations, suggesting
that errors converge to 0 as z approaches z∗2 = 99.8679s,
demonstrating finite-time behavior.

Figs. 6,
7

The Lyapunov function converges to zero as z approaches
z∗ = 99.8679s.

Fig. 8

B. Error Estimation and Analysis

The error estimation and analysis shown in Table VI

TABLE VI. ERROR ESTIMATION AND ANALYSIS

Error e1 × 10−6 Error e2 × 10−5

-9.266181128 4.1680331290
-8.280231685 3.7246841735
-7.399267522 3.3284975276
-6.612093074 2.9744549606
-5.90870968 2.6580724948
-5.280187165 2.3753434684
-4.718549264 2.1226876756
-4.216671364 1.8969059356
-3.768189265 1.6951395083
-3.367417753 1.5148338399
-3.009277928 1.3537061736

C. Sensitivity Analysis of Finite-Time Synchronization:

To assess how variations in key parameters influence the re-
sults, we conduct a sensitivity analysis. This analysis examines
how alterations in critical parameters affect the outcome, as
summarized in Table VII.

TABLE VII. SENSITIVITY ANALYSIS RESULTS OF FINITE-TIME SYNCHRONIZATION

Parameter Perturbation Range Impact on z∗2 Remarks
a [1.3996145, 1.4] 99.8679s - 100s Minimal impact
b [1.5, 1.500375] 99.8679s - 100s Moderate impact
c [1.3294, 1.3294714] 99.8679s - 100s Significant impact

The results of the sensitivity analysis indicate that while
fluctuations in parameters a and b lead to only minor or mod-
erate changes in the finite-time stability time z∗2 , variations in
parameter c can cause considerable adjustments. Understanding
these effects is crucial for developing control strategies that
can effectively handle parameter variability and ensure system
robustness.
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Fig. 4. Dynamic behavior of the master system (1): U1 (r , z) and U2 (r , z).

Fig. 5. Dynamic behavior of the slave system (25): V1 (r , z) and V2 (r , z).

Fig. 6. Dynamic behavior of the error system (27): e1 (r , z) and e2 (r , z).

Fig. 7. Solutions of the master-slave systems (1), (25) and the error system (27) at
r = 100.
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Fig. 8. Estimation of the Lyapunov function V (z).

VI. CONCLUSION

In this manuscript, we have investigated the finite-time stabil-
ity of the FitzHugh-Nagumo reaction-diffusion system, provid-
ing a comprehensive analysis that enhances our understanding
of rapid stabilization in such systems. We have established a cri-
terion for finite-time stability, which is essential for applications
requiring quick and reliable stabilization. This criterion, along
with explicit formulas for stability parameters, is particularly
relevant for real-time control systems, sensor networks, and
industrial automation, where prompt and predictable behavior
is crucial.

Our study also extends to finite-time synchronization
schemes, emphasizing their importance in achieving coherent
dynamics across spatially distributed components. This is espe-
cially relevant for precision-driven fields such as robotics and
aerospace, where synchronization within a finite time frame
can improve accuracy and operational efficiency. The numer-
ical simulations performed using the finite difference method
(FDM) in MATLAB have provided valuable insights into the
FitzHugh-Nagumo reaction-diffusion system. These simulations
were instrumental in validating our theoretical claims. For
instance, in Example 1, the system’s demonstrated finite-time
stability at the equilibrium point corroborates our theoretical
criterion, as errors converged to zero in line with the predicted
stability parameter z∗1 . This validation supports the robustness
of our theoretical framework, showcasing its applicability to
practical scenarios. Sensitivity analysis from the simulations
also aligned with our theoretical predictions, indicating that
variations in parameters a and b significantly impact stability,
while parameter c has minimal effects. Similarly, in Example
2, our analysis of the error synchronization system affirmed
the theoretical expectations of finite-time behavior, with system
errors converging to zero at z∗2 . This outcome not only validates
our theoretical results but also highlights the practical relevance
of our approach. The sensitivity analysis from these simulations
showed consistent results with our theoretical predictions, em-
phasizing the significant impact of parameter c on the stability
time and the relatively minor effects of parameters a and b.

A critical aspect of this study is the comparison of our

results with existing literature. While previous studies have
explored various aspects of synchronization and stability in
reaction-diffusion systems, our work introduces a novel finite-
time stability criterion specific to the FitzHugh-Nagumo model.
Unlike the asymptotic stability approaches commonly found in
the literature, our focus on finite-time behavior offers more
immediate and practical insights for applications requiring
rapid system stabilization. The explicit formulas for stability
parameters presented here provide a more direct and applicable
framework compared to earlier theoretical works that often
require more complex or abstract methods.

Future research could extend the finite-time stability and
synchronization analysis to other reaction-diffusion systems and
higher-dimensional models. Investigating the effects of nonlin-
earities and external perturbations on finite-time stability could
provide deeper insights into system robustness. Additionally,
incorporating adaptive control strategies that dynamically adjust
parameters in response to varying conditions would enhance the
practical applicability of the proposed methods. Exploring these
areas will offer further understanding and broaden the applica-
bility of finite-time stability and synchronization techniques.
A limitation of this study is that the theoretical results and
numerical simulations are based on specific parameter ranges
and system configurations. Future work could address this by
exploring a wider range of parameters and more complex sys-
tem configurations. Although the sensitivity analysis provides
valuable insights, it is based on idealized perturbations; real-
world applications may require more nuanced analyses.

This work contributes to the field of reaction-diffusion sys-
tems by providing new theoretical insights into finite-time sta-
bility and synchronization. The proposed criterion and stability
parameter formulas, combined with comprehensive numerical
simulations, offer a robust framework for designing and control-
ling systems requiring rapid stabilization and synchronization.
The study underscores the importance of careful parameter
selection and sensitivity analysis in ensuring system stability
and effectiveness, paving the way for future advancements in
this area. By comparing our findings with previous research
and validating our theoretical predictions through simulations,
we have demonstrated the novelty and enhanced practicality of
our approach, thus providing a meaningful contribution to the
ongoing development of synchronization strategies in complex
systems.
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