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Abstract—In the wake of contemporary challenges such as 

the COVID-19 pandemic, understanding children’s mental 

health through non-verbal forms like drawing has become 

paramount. This study enhances pediatric psychological 

assessments by employing an ensemble of deep learning models 

to interpret children’s drawings, aiming for early detection of 

psychological states. Traditional drawing analysis methods are 

often subjective, variable and time consuming. To ddress these 

limitations, we developed an ensemble model that combines the 

strengths of VGG16, VGG19, and MobileNet architectures 

using a hard voting mechanism. This approach reduces bias and 

enhances reliability by integrating the unique capabilities of 

each model. Our methodology involved rigorous data collection 

through a custom Android application, followed by exploratory 

data analysis, data preprocessing, and comprehensive model 

valuation. The ensemble model was trained and validated on the 

diverse Kids’ Hand Movement Dataset (KHMD), 

demonstrating superior accuracy and robustness in classifying 

drawings that indicate various psychological conditions. It 

significantly outperformed individual models, achieving a 99% 

accuracy rate. These findings underscore the potential of 

advanced machine learning techniques in providing more 

accurate and bias-free insights into children’s psychological 

health, suggesting that ensemble learning can greatly improve 

the precision of pediatric psychological evaluations. Future 

work will explore expanding the dataset and employing more 

sophisticated ensemble methods to further enhance diagnostic 

accuracy. 

Keywords—Pediatric Psychological Assessment; Ensemble 

Deep Learning; Children’s Drawings Analysis; Mental Health 

Detection; Art Therapy in Psychology. 

I. INTRODUCTION 

Growing complexities in societal pressures and 

competitive environments have raised significant concerns 

about mental well-being, particularly regarding children’s 

mental health [1]. The COVID-19 pandemic has exacerbated 

these concerns, significantly impacting children by isolating 

them socially and increasing stress over their health and 

safety [2]. The early detection and treatment of mental health 

issues in children, including conditions such as depression, 

anxiety, ADHD, trauma, and developmental disabilities, are 

crucial; undetected, these issues can adversely affect long-

term well-being into adulthood. Given the increasing 

prevalence of mental health issues among children, effective 

assessment tools are essential for early detection and 

intervention. Art therapy, particularly through drawing, has 

emerged as a vital tool in pediatric psychological evaluations 

due to its accessibility and expressiveness. Children often 

express their feelings and thought. through art more freely 

than verbally, making art therapy an effective means of 

accessing their subconscious. This is particularly beneficial 

for children who struggle to articulate their emotions, as 

drawing can help unbind suppressed thoughts and feelings. 

Therefore, art therapy has already become rather widespread 

due to its efficiency in unbinding suppressed thoughts and 

emotions [3]. Various projective drawing tests, such as the 

Bender Gestalt Test and the House-Tree-Person test, operate 

on the premise that drawings can reflect personality and 

emotional states, providing valuable insights into cognitive 

and personal development. These methods relevance is 

derived from their ability to provide insight into multiple 

psychological domains – cognitive and personal 

development, social connection – using a medium familiar 

and engaging to a child. Nonetheless, given the subjectivity 

and time-consuming nature of traditional drawing analysis, 

applying artificial intelligence for interpretation presents a 

promising alternative. The absence of an automated model 

for detecting mental health issues in children through their 

drawings highlights a critical gap in current methodologies.  

Deep learning techniques can automate the analysis, 

offering bias-free psychological insights into children’s 

emotional states [4]. The application of artificial intelligence 

in interpreting drawing tests presents a viable alternative to 

traditional methods. Research indicates that AI can 

effectively identify a diverse array of personality traits in 

children based on their drawings [5]. Machine learning 

techniques, such as Support Vector Machines (SVMs) and k-

Nearest Neighbors (kNN), are supervised methods that have 

been successfully applied to classify features in hand-drawn 

images [6]-[11]. Additionally, deep learning—a subset of 

AI—enables the development of models that autonomously 

interpret drawings. These models are particularly valuable for 

providing unbiased psychological insights into a child’s 

emotional state. Since its inception, deep learning has been 

employed in various methods to analyze hand-drawn images 

[12]-[19]. Convolutional Neural Networks (CNNs) excel at 
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extracting patterns from images, enabling them to identify 

hierarchical features directly from the visual data of hand-

drawn items [16][20][21]. Transfer Learning utilizes pre-

trained models, originally developed on extensive datasets, 

for hand-drawn recognition tasks. These models are then 

adapted or fine-tuned to meet specific needs [22]. Ensemble 

Methods Combining the predictions of multiple base 

classifiers through techniques such as bagging and boosting 

significantly enhances the overall performance of 

classification tasks in hand-drawn analyses [23]. This study 

advances the field by rigorously evaluating and comparing 

the performance of deep learning models—namely VGG16, 

VGG19 [24], and MobileNet—alongside an ensemble hard 

voting model [25][26]. Our approach harnesses the distinct 

strengths of each model while mitigating their individual 

weaknesses. By integrating diverse perspectives through hard 

voting, the ensemble model enhances prediction reliability 

and reduces the risk of overfitting. 

The structure of this paper is as follows: Section 2 

discusses related works, contextualizing our study within 

existing research on children’s drawing analysis and deep 

learning applications. Section 3 details our methodology, 

including data collection, exploratory data analysis, data 

preprocessing, modeling techniques, and evaluation 

measures. Section 4 presents the experiments and results 

from each neural network model. Section 5 discusses the 

efficacy of ensemble methods based on the results. Section 6 

concludes the paper, summarizing findings and suggesting 

future research avenues. 

II. RELATED WORKS  

The understanding of human behavior through 

handwriting and drawing analysis has witnessed significant 

advancements through the integration of deep learning 

techniques. 

The research paper by Pysal et al. [27] investigates 

children’s drawing strategies for creating seriation objects, 

focusing on the sequencing and order of strokes. Previous 

studies have identified six logical structures underlying these 

strategies. However, traditional evaluation methods relying 

on human observation are prone to inaccuracies. To address 

this, the study extends the research to touch screen drawings 

and employs a novel deep learning hybrid model (FLSTM) to 

classify drawing strategies. An application was developed for 

the drawing task, involving 32 children aged 5 to 12, resulting 

in 420 drawings. Comparative analysis with existing models 

(LSTM, CNN, Fuzzy-CNN) showed that the FLSTM model 

outperformed others with precision, recall, and F1 scores of 

89.1%, 88.6%, and 88.6% respectively. The study 

demonstrates how deep learning facilitates understanding 

human psychological behavior through children’s drawing 

analysis. 

Ahmadsaraei et al. [28] explores the interpretation of 

psychological data through children’s drawings, noting 

variations in behavior across different ages. The study 

compares various deep learning methods on children’s data. 

After introducing the dataset and conducting statistical 

analysis, two methods, modified YOLO V5 (MYOLO V5) 

and modified ResNet 50 (MResNet 50), are compared on the 

OBGET dataset. The classification accuracy of these 

methods is evaluated on 386 Original Bender Gestalt 

Drawing Test samples for children. Preprocessing and semi-

automatic labeling are conducted to prepare for comparison. 

Both MYOLO V5 and MResNet 50 achieve acceptable 

pattern detection accuracy, but MYOLO V5 demonstrates 

higher accuracy when applied to the collected dataset. 

In their study, Shi et al. [29] address autism spectrum 

disorder (ASD) as a significant mental health concern 

globally. They highlight the lack of systematic comparison 

between paintings by ASD individuals and typically 

developed (TD) children. To address this gap, they create an 

ASD painting database comprising 478 paintings by ASD 

individuals and 490 by TD children. Through subjective and 

objective analysis, they identify key characteristics such as 

structuring logic, facial depiction, repetitive structures, 

composition location, and edge completeness in ASD 

paintings. Additionally, they develop a classifier based on 

these features to distinguish between ASD and TD painters, 

showing promising accuracy as a potential screening tool for 

ASD. Their work offers insights into understanding the 

distinctive aspects of autistic children’s expressions through 

their artwork, with plans to release the database to the public. 

Kamran et al. [30] address the challenge of diagnosing 

Parkinson’s disease (PD) in its early stages. They highlight 

the importance of early diagnosis for effective symptom 

management, as PD currently lacks a cure. Leveraging 

handwriting samples from multiple PD datasets, they propose 

a method for early PD diagnosis using deep transfer learning-

based algorithms. By combining HandPD, NewHandPD, and 

Parkinson’s Drawing datasets, they achieve remarkable 

accuracy of 99.22% in identifying PD cases. Their approach 

demonstrates superiority over existing methods, offering 

promising potential for early PD detection and management. 

Zhang et al. [31] focus on the importance of early 

detection in Parkinson’s disease (PD) and the role 

handwriting analysis can play in diagnosis, given that hand 

tremors and handwriting difficulties are early motor 

symptoms. They propose a deep learning-based system for 

assessing patients’ handwriting drawings as a means of early-

stage PD diagnosis. Utilizing two datasets, HandPD and 

NewHandPD, consisting of hand-drawn spirals and meanders 

from PD patients and healthy individuals, they employ 

various deep learning models for classification. EfficientNet-

B1 emerges as the most effective, achieving high precision, 

sensitivity, and accuracy in classifying patients’ meander 

traced graphics. Additionally, they develop a userfriendly 

Windows application and a Python Web API based on Flask 

for the assessment system, enhancing its accessibility for 

screening tests and aiding healthcare professionals in 

Parkinson’s disease diagnosis. 

Nadeem et al. [32] examine the possibility of using 

handwriting analysis to detect emotions. According to the 

authors, a person’s emotional state at the time of writing can 

be expressed in his or her handwriting. Previously, emotional 

states were recognized through visual, auditory analysis, and 

other nonverbal methods. In this paper, it is proposed to do 

this by handwriting. It is a relatively new area of research as 

earlier studies were limited to identifying such basic 

emotions as anxiety, stress, and depression. The main 
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purpose of this experiment was to identify the emotional state 

of the author, who can characterize a person as distressed/sad 

and suggest consulting a mental health professional. In 

addition, the authors evaluated how handwriting changes in 

different emotional states. 

Elngar et al. [33] conducted a study devoted to 

handwriting analysis, a traditional method used for 

evaluating personality traits. However, now it has been 

adapted to find correlations between features of handwriting 

and one’s personality traits of the Big Five Personality Traits. 

The authors suggested a dataset where samples of 

handwriting were checked against personality traits. They 

proposed a new algorithm, which includes two neural 

networks: Artificial Neural Network and Convolutional 

Neural Network. The performance of this approach is 

evaluated by comparing it with “traditional machine learning 

classifiers that evaluate key classification metrics”. The tests 

demonstrated a high level of improvement over the 

traditional approach from Pearson and other authors. 

Ghosh et al. [34] described an automatic graphology-

based handwriting analysis method for analyzing human 

behavioral characteristics from structural components of 

handwritten English lower-case alphabets. The proposed 

system is novel in that it does not require human 

interpretation and instead analyzes individual characters 

based on loop, slant, and stroke. The proposed system is 

easily accessible online, where the end-users input the 

characters and the system analysis their personal and social 

characteristics. The feedback from the users of different 

genders and age groups was analyzed to score 86.70%, with 

5300 different responses collected from the end-users of the 

system. 

Mekhaznia et al. [35] analyzed the personality trait 

identification from people’s handwriting, which is highly 

applied in forensic science, recruitment, and healthcare. 

Despite the uniqueness of each human’s handwriting 

characteristics, personality traits recognition presents an 

immense problem. This paper developed an architecture to 

extract textural features of handwriting applications and 

apply artificial neural networks on the TxPI-u database. The 

proposed architecture has shown an impressive recognition 

rate compared with existing functional ontologies in 

identifying the personality traits of individuals. 

Saraswal et al. [36] presented an automated system 

capable of personality prediction from an individual’s 

handwriting to save laborious work for a graphologist. The 

authors introduced the K-nearest neighbor algorithm to the 

system for analyzing handwriting characteristics such as 

letter size, word spacing, slant, pen pressure, and baseline. 

The research was done to bring an effect to this growing 

interest in biometric and behavior-based personality 

prediction system wide. 

In another work, Hamdi et al. [37] proposed the 

integration of BEM with a multi-stage DL-RNN-based 

approach that uses BLSTM. The goal of this method was to 

optimize online handwriting trajectory modeling for mobile 

and other fast devices in computation time, and space, by 

learning an end-to-end description system. The model 

covered preprocessing, segmentation, and trajectory 

approximation using the neural computation sequences in 

velocity and geometric profiles. The effectiveness of their 

methodologies was measured using mean absolute error and 

root mean square error on 2 datasets: LECTURE MULTI-

CHANNEL Architecture and CALLIGRAPHY single-

channel architecture, resulting in RMSE values 3.75% and 

5.26% and MAE values 1.69% and 2.75%, respectively. 

A novel multi-stage DL-based algorithm for multilingual 

online handwriting recognition has been proposed by Hamdi 

et al. [38]. It integrates a hybrid deep Bidirectional Long 

Short Term Memory (DBLSTM) and SVM networks. The 

method consists of initial preprocessing of the script, 

segmentation of Online Handwriting Trajectories (SOHTs), 

extraction of two types of feature vectors through the Beta-

Elliptic Model (BEM) and CNN, classification of these 

vectors into subgroups through DBLSTM networks in a 

supervised mode, obtained via the Unsupervised Fuzzy K-

Means algorithm for the online and offline branches, and 

combining these models by a trained SVM engine to increase 

the discrimination power. Extensive testing on three diverse 

datasets proved the effectiveness and synergy of the separate 

modules as well as the boost introduced by the overall fusion. 

When experimenting with the classification of children’s 

hand drawings as normal or not normal, we opted for an 

ensemble learning model that utilizes the hard voting 

technique. The choice was influenced by the unique and 

complex data variety within the organized dataset, which 

included children’s drawings classified as either normal or 

not normal. In contrast to previously highlighted 

methodologies utilizing various deep learning architectures 

such as VGG16, VGG19, and MobileNet, this study presents 

a unique multiple models ensemble learning approach. The 

variability across possible classification parameter traits 

requires various classification frameworks. This framework 

is distinct from the previous relatively single-model various 

research methodologies since it unifies all the classification 

models toward the individual variances in the children’s 

drawings and their potential classification, which took into 

consideration the psychometric distinctions between a 

normal or not normal drawing. The ensemble method using 

the hard voting mechanism effectively integrates all the 

classifiers’ decision-making processes into a single optimal 

decision-making process, which is vital due to the 

unpredictable classification per image among markers. The 

hard voting model integrates the diverse model output to aid 

in dumping individual decision-making processes and 

providing TSU to a final decision-making process. The 

uniqueness in differences such as line thickness, the 

simplicity or complexity of the shape used, the overall 

composition, and the clear distinct object and color objects 

make the integration of the models effective. The unique 

classification in the TSU implementation that eliminates 

individual level misclassification offers a considerable 

significance in the overall implementation of utilization. 

The comparative analysis of our method with related 

works is summarized in Table I. This table highlights the 

various datasets, age groups, types of data collected, models 

used, and key results from each study. Our approach, utilizing 

the Kids’ Hand Movement Dataset (KHMD), involves a 
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combination of VGG16, VGG19, MobileNet to create an 

ensemble voting. 

III. METHODOLOGY 

The Fig. 1 illustrates our proposed methodology for 

analyzing children’s drawings to assess psychological and 

developmental traits. Our study employs the Kids’ Hand 

Movement Dataset (KHMD), which uses a specially 

designed Android application to capture the drawing 

movements of children aged 5 to 10 years. This application 

records children drawing shapes like ellipses and spirals, 

chosen to reveal insights into their motor skills and cognitive 

abilities. We standardize the recording environment by 

ensuring all children are seated at a consistent height and use 

a tablet for their drawings. For analysis, we visually explore 

the drawing patterns through Exploratory Data Analysis 

(EDA), which helps identify characteristics that categorize 

drawings as “normal” or “not normal”. This visualization 

facilitates further analysis using deep learning models. In 

preprocessing, we normalize the image data and adjust 

dimensions to prepare for modeling, ensuring our models can 

generalize well from our training data. We use a custom-built 

Convolutional Neural Network that includes advanced 

architectures like VGG16, VGG19, and MobileNet. This 

model setup enhances the prediction accuracy by leveraging 

the combined strengths of these architectures through a hard 

voting ensemble method. Our methodology systematically 

progresses from data collection to evaluation, using metrics 

to assess each model’s performance thoroughly. This 

structured approach ensures the study’s integrity and the 

usefulness of our findings in enhancing psychological and 

developmental assessments for children. 

A. Datset Collection 

In our study focusing on analyzing children’s hand 

drawing movements, we carefully crafted an Android 

application specifically for drawing particular geometric 

shapes—ellipses and spirals. Our target group was children 

between the ages of 5 to 10 years. To ensure a controlled and 

consistent data gathering environment, we made sure each 

child participant sat comfortably on a chair set at a height of 

45 cm and used a table that was 80 cm high for their drawing 

activities on a tablet. 

The protocol was structured to naturally capture the 

children’s drawing behaviors. To initiate, an experimenter 

demonstrated the task to the participants, showing them how 

to trace the figures on the touchscreen using their finger. 

Following the demonstration, children were given a three-

minute practice session to familiarize themselves with the 

task and the application interface. This preparation was 

crucial to ensure that the collected data reflected their best 

understanding and execution of the task. 

During the actual data recording, children were asked to 

continuously trace the outlined figures for 30 seconds at their 

preferred speed, without specific instructions on movement 

velocity, emphasizing the spontaneity and comfort of their 

natural drawing pace (Fig. 2). The application interface, as 

shown in the Fig. 3, featured a simple ’Save’ button, which 

allowed for the storage of the hand movements in both text 

(.txt) and image (.png) formats, thus facilitating subsequent 

data analysis.

TABLE I.  COMPARATIVE STUDY OF RELATED WORKS 

Study Dataset Name Age Group Data Collected Models Used Key Results 

Pysal et al. 
[27] 

Seriation Objects 
Drawing Dataset 

5-12 years Sequencing and order of strokes 
FLSTM, LSTM, 

CNN, Fuzzy-CNN 

FLSTM model achieved precision, 
recall, and F1 scores of 89.1%, 

88.6%, and 88.6% respectively 
Ahmadsaraei 

et al. [28] 
OBGET Dataset Various ages 

Psychological data through 
drawings 

MYOLO V5, Mres-
Net 50 

MYOLO V5 demonstrated higher 
accuracy in pattern detection 

Shi et al. [29] ASD Painting Database 
ASD and TD 

children 
Paintings by ASD and TD 

children 

Custom based 
features on classifier 

identified 

Key characteristics identified for 
ASD paintings, promising accuracy 

as a screening tool for ASD 

Kamran et al. 
[30] 

HandPD, NewHandPD, 
Parkinson’s Drawing 

datasets 
Various ages Handwriting samples 

Deep transfer 
learning algorithms 

Achieved 99.22% accuracy in 
identifying PD cases 

Zhang et al. 
[31] 

HandPD, NewHandPD 
PD patients 
and healthy 
individuals 

Hand-drawn spirals and meanders 
EfficientNet-B1, 

Other deep learning 
models 

High precision, sensitivity, and 
accuracy in classifying meander 

traced graphics 

Nadeem et al. 
[32] 

- Various ages Handwriting samples - 
Identified emotional states through 
handwriting, suggesting mental 

health consultations 

Elngar et al. 
[33] 

Personality Detection 
Dataset (PDD) 

Various ages Handwriting samples ANN, CNN 
High improvement over traditional 
methods in evaluating personality 

traits 

Ghosh et al. 
[34] 

Graphology-based 
Analysis 

Various ages 
Handwritten English lowercase 

alphabets 

Novel system 
based on structural 

components 
Scored 86.70% with user feedback 

Mekhaznia et 
al. 

[35] 
TxPI-u Database Various ages Handwriting samples ANN 

Impressive recognition rate in 
identifying personality traits 

Saraswal et 
al. 

[36] 

Automated Personality 
prediction from 

handwriting characteristics 
Various ages Handwriting characteristics 

K-nearest neighbor 
algorithm 

Automated personality prediction 
from handwriting characteristics 

Hamdi et al. 
[37] 

LECTURE MULTI-
CHANNEL, 

CALLIGRAPHY single-
channel 

Various ages Online handwriting trajectory DL-RNN, BLSTM 
Effective trajectory modeling with 
RMSE 3.75% and 5.26%, MAE 

1.69% and 2.75% 

Hamdi et al. 
[38] 

Multiple datasets Various ages Multilingual online handwriting 
DBLSTM, SVM, 

CNN 

Proven effectiveness and synergy of 
modules with improved discrimination 

power 
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Fig. 1. Proposed approach 

 

Fig. 2. Child participant tracing figures on tablet 
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Fig. 3. Application interface 

The design of this data collection approach was critical in 

ensuring the authenticity and consistency of the drawing data, 

which are paramount for the subsequent analysis using deep 

learning techniques. This methodological rigor aids in 

creating a robust dataset that accurately represents the motor 

skills and cognitive abilities reflected in the children’s 

drawings, crucial for our study’s aim to analyze these 

movements for psychological and developmental insights. 

We collected an overall of 250 normal and 250 not normal 

images, ensuring a balanced Kids’ Hand Movement Dataset 

(KHMD) for our analytical models. This comprehensive 

collection of drawing data forms the foundation for our 

further investigations into classifying and understanding the 

nuances of children’s drawing behavior, as presents in Fig. 4. 

 

Fig. 4. Examples of hand-drawn figures 

In our study, we sought participant diversity in 

socioeconomic, educational, and other demographic areas, 

recognizing their impact on children’s drawing skills and 

cognitive development. We selected ellipses and spirals for 

tasks to evaluate fine motor control and cognitive processing, 

markers of neurological development. We also acknowledge 

the limitations in generalizability due to the controlled setting 

of chair and table heights, which may not fully capture natural 

drawing behaviors. These considerations are factored into our 

analysis to ensure the findings are contextualized correctly, 

enhancing the study’s depth and relevance in assessing the 

relationship between children’s motor skills and cognitive 

growth. 

B. Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) is a critical initial phase 

in the data analysis process where researchers analyze, 

summarize, and visualize data to discover patterns, spot 

anomalies, test hypotheses, and check assumptions with the 

help of summary statistics and graphical representations. It 

allows researchers to understand the data’s underlying 

structure, gain insights that are not immediately obvious, and 

inform subsequent analysis strategies and modeling [39]. 

Fig. 4 illustrates examples of hand-drawn figures from 

our Kids’ Hand Movement Dataset (KHMD) categorized as 

“normal” and “not-normal” from the dataset used in our 

study. These images show variations in drawing styles and 

qualities that might indicate differences in motor skills, 

cognitive abilities, or psychological states among children. 

The “normal” drawings display relatively uniform and 

consistent spiral and elliptical shapes, indicating a level of 

precision and control in the drawing process. Conversely, the 

“not-normal” drawings are irregular, with more erratic lines 

and less symmetry, suggesting potential variations in the 

psychological or developmental states of the children. These 

visual distinctions form the basis for using machine learning 

models to classify and analyze these drawings systematically. 

The bar chart shown in Fig. 6 represents the class 

distribution of samples in our dataset, specifically 

categorized into “normal” and “not-normal” classes based on 

children’s hand drawings. Each category consists of 

approximately 200 samples, indicating a balanced dataset. 

This balanced distribution is crucial for training machine 

learning models, as it helps prevent biases towards any one 

class and ensures that the model learns to accurately identify 

and differentiate between the two categories. A balanced 

dataset presents in Fig. 5 like this enables more reliable and 

generalizable results in predictive modeling, making it an 

ideal basis for conducting accurate analyses on children’s 

drawing styles and their implications for developmental 

assessments. 

 

Fig. 5. “normal” and “not-normal” classes for children’s hand drawings 
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Fig. 6. Class distribution 

C. Data Preprocessing 

Preprocessing is a critical step in the machine learning 

pipeline, essential for preparing raw data into a clean dataset 

that enhances the performance and effectiveness of the 

models [40][41]. 

In our data preprocessing phase, we meticulously 

prepared our dataset for the training and testing of our deep 

learning models. The dataset is made up of hand-drawn 

images, which are separated into training and test or 

validation sections. The training set was made up of 80% of 

the images while the test/validation set was composed of the 

remaining 20%. Specifically, our split involved 360 images 

making up the training set; thus, ensuring representative 

diversity in both sets and 90 images set aside for 

test/validation. Image generation refers to the production of 

new images using algorithms. Two significant deep learning 

methods that are suited for image generation include 

Generative Adversarial Networks, or GANs [42], and 

Variational Autoencoders, or VAEs [43]. These networks are 

given a dataset to train on and learn the dataset’s features and 

patterns, then create new images that preserve these features 

but with novel visual differences. Image generation in 

applications is used in increasing image quality or resolution 

enhancing and creating artistic images producing certain 

types of realistic human faces for use in animation, gaming, 

among other avenues and finally, creating synthetic datasets 

to use in ML architectures. These images are essential in 

fields where data images are high quality, and diversity is 

limited [44]. 

This was followed by more data processing using the 

ImageDataGenerator module from Keras that rescales the 

pixel values. Rescaling, referred to as normalization, 

achieves normalized pixel values from between 0 and 255 to 

between 0 and 1. The scale aims to simplify calculations by 

using lower numerical values during model training. It also 

published the image output to 240 by 240 pixels for standard 

image size in the neural network. Standardizing the image 

size allows the neural network to process all images equally 

and hence avoids biases or errors due to image size 

dimensions. For the training dataset, the input images were 

arranged in batches of 64 to optimize memory use while also 

enhancing the gradient estimation of the model during 

backpropagation. Lastly, the classification was set as binary 

for the two categories of normal and not-normal type images, 

focusing the model’s training on distinguishing the two 

distinct categories. 

Furthermore, in the same way, the test generator was set 

up to meet the likeness in image preprocessing and 

processing within the training and test steps. Therefore, this 

thoroughness in data preparation enhances model accuracy in 

addition to validating the model by allowing it to perform 

excellently independently of training data. This disciplined 

data preprocessing sets the stage for model training and 

evaluation. 

D. Modeling 

During the modeling stage of our research on classifying 

the hand drawings created by children, we carefully studied 

several deep learning frameworks to create wider ranging, 

more accurate, and dependable classifications. Our 

methodology consisted of two major components. The first 

one involved the development of unique models, while the 

second relied on up-to-date and recent pre-trained networks. 

In all instances, each model was adjusted to reflect the actual 

items and classification targets we had identified. Finally, we 

used an ensemble, a collection of distinct models, to improve 

the accuracy and dependability of our predictions. 

• CNN Architecture: In this study, we employed a 

Convolutional Neural Network (CNN) specifically designed 

to differentiate between “normal” and “not-normal” 

children’s drawings. Fig. 7 illustrates the CNN architecture. 

This CNN architecture was chosen based on its demonstrated 

effectiveness in image classification tasks, particularly for its 

ability to extract detailed features from complex image data. 

Research has shown that multiple convolutional layers 

followed by max-pooling layers effectively capture various 

levels of abstraction in images, making CNNs suitable for our 

application [45]. 

The architecture begins with a convolutional layer 

featuring 32 filters of size 3×3, utilizing the ReLU activation 

function to introduce nonlinearity, thereby enabling the 

model to learn complex patterns. The depth of the network 

increases with subsequent layers, which use 64 and then 128 

filters. This progression is designed to incrementally capture 

more refined details in the images. After each convolutional 

layer, a max-pooling layer reduces dimensionality, helping to 

prevent overfitting by summarizing the features extracted in 

the convolutional layers. 

To further mitigate overfitting, dropout layers with a rate 

of 0.5 are strategically placed after the dense layer of 512 

neurons. This setup randomly deactivates a portion of the 

neurons during training, enhancing the model’s ability to 

generalize to new, unseen data. 

We conducted extensive hyperparameter tuning to 

optimize the model’s performance. Parameters such as filter 

size, number of filters, and dropout rate were adjusted based 

on iterative testing and validation on a subset of the data. The 

final layer is a dense layer with a sigmoid activation function, 

tailored for binary classification tasks, providing the 

probability of a drawing being classified as “not-normal.” 
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Fig. 7. The proposed CNN architecture 

• VGG16 Architecture: The VGG16 network [46] 

architecture, depicted in Fig. 8, is comprised of 16 layers with 

trainable weights: 13 convolutional layers and 3 fully 

connected layers [47]. Each convolutional layeremploys 

filters with a small receptive field of 3×3—the minimum size 

required to capture directional nuances such as left/right and 

up/down. The stride for these filters is fixed at 1 pixel, and 

the input to each convolutional layer is padded by 1 pixel to 

ensure that the spatial resolution is preserved post-

convolution. 

 

Fig. 8. The proposed VGG16 architecture 

Following each convolutional operation, a ReLU 

activation function introduces non-linearities into the model, 

facilitating the learning of more complex patterns from the 

data. These convolutional layers are grouped into blocks of 2 

or 3, each followed by a max-pooling layer with a 2×2 filter 

size and a stride of 2. This setup effectively reduces the 

dimensionality of the input volume, thus decreasing 

computation needs and helping control overfitting by 

summarizing the features extracted in the convolutional 

layers. 

The architecture concludes with three fully connected 

layers positioned after multiple blocks of convolutional and 

max-pooling layers. Initially designed for large-scale multi-

class classification, the first two layers contain 4096 nodes 

each, and the final layer traditionally has 1000 nodes 

configured for a 1000-way classification across various 

classes using a softmax activation. In the context of our study 

focusing on binary classification, this last softmax layer is 

modified to a simpler format with one node employing a 

sigmoid activation function to decide between two distinct 

classes: normal and not-normal. This tailored setup in 

VGG16 is specifically adjusted to enhance its applicability 

for binary tasks, as detailed in the accompanying figure, 

demonstrating how these adaptations are crucial for 

achieving precise outcomes in our specific classification 

objectives. 

• VGG19 Architecture: The VGG19 [48] model, an 

extension of VGG16, is detailed in Fig. 9 and features 19 

layers with trainable weights. This model includes 16 

convolutional layers that are organized into more 

comprehensive blocks compared to VGG16, along with 3 

fully connected layers. Similar to VGG16, it employs 3x3 

convolutional filters but with more filtering layers added, 

increasing the depth of the network. It follows the same 

padding and stride strategies as VGG16 to maintain the 

spatial dimensions of the input through the convolutional 

layers. Each convolutional layer is followed by a ReLU 

activation function, and each block of convolutional layers is 

followed by a max-pooling layer with the same specifications 

as in VGG16, designed to reduce feature dimensions and to 

help in making the model invariant to small changes in the 

position of the feature in the input (see Fig. 9). Like VGG16 

[49]–[51], VGG19’s fully connected layers traditionally 

contain 4096, 4096, and 1000 neurons, respectively, ending 

in a softmax layer for classification across many classes. For 

tasks like ours involving binary classification, these are 

customized to end with a sigmoid function that outputs the 

probability of the input being in one of two classes (normal 

or not-normal). 

 

Fig. 9. The proposed VGG19 architecture 
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• MobileNet Architecture: MobileNetV2 [52]–[54] 

was chosen for its efficiency and performance in 

environments with limited computational resources, making 

it suitable for mobile applications. Similar to the adaptations 

made for VGG models as presents in Fig. 10, we included a 

non-trainable pretrained base followed by custom top layers. 

Instead of traditional pooling layers, MobileNetV2 utilizes a 

global average pooling layer to reduce spatial dimensions, 

which helps in maintaining the most important part of the 

feature maps. The subsequent layers include a dense layer 

with 256 neurons, a dropout layer to prevent overfitting, and 

a sigmoid output layer for binary classification. 

 

Fig. 10. The proposed MobileNet architecture 

• Ensemble Model - Hard Voting: In response to the 

need for high accuracy and reliability in classifying children’s 

drawings as either normal or not-normal, we have 

implemented a hard voting ensemble method, integrating the 

strengths of VGG16, VGG19, and MobileNet architectures. 

This ensemble approach leverages the unique advantages of 

each model: VGG16 and VGG19 for their deep, structured 

architectures known for high-performance in image 

classification tasks, and MobileNet for its efficiency in 

handling mobile-based applications with limited 

computational resources. The combination of these models 

aims to mitigate individual biases and errors, enhancing the 

robustness and objectivity of the final predictions. 

Each model within our ensemble has been optimized 

using the Adam optimizer, renowned for its efficiency with 

sparse gradients and noisy data. We employ binary cross-

entropy as our loss function, which is well-suited for binary 

classification problems, ensuring that our model effectively 

distinguishes between the two classes. 

By harnessing the collective capabilities of these diverse 

architectures through a hard voting mechanism, where the 

final output is decided by the most common prediction across 

the models for each sample, our approach not only improves 

the accuracy but also the generalizability of the system across 

different sets of children’s drawings. This ensemble method 

allows us to capitalize on the complementary strengths of 

each model, thereby providing a more reliable and powerful 

tool for psychological and developmental assessments based 

on children’s drawings. Despite the complexity introduced by 

combining multiple models, the benefits in terms of enhanced 

predictive power and reduced risk of overfitting justify the 

approach, especially given the critical nature of the 

application in educational and developmental settings. 

E. Evaluation Metrics 

The evaluation phase of our deep learning models, which 

prioritize classifying children’s drawings as either normal or 

not-normal. We use several key performance metrics that are 

essential to measure the models’ efficacy. They ascertain the 

overall performance and how the model fares in terms of how 

it struggles with different kinds of classification errors. We 

use the confusion matrix, accuracy, precision, recall, and f1-

score as our main metrics. These matrixes help us establish 

how well the models differentiate between the two categories 

and how they balance classification accuracy and the risk of 

misclassification. 

• Confusion Matrix The confusion matrix is a 

fundamental evaluation tool that provides a detailed 

breakdown of the classification results for each class. It is 

typically structured as a table with four different outcomes: 

− True Positives (TP): Correctly predicted positive 

observations. 

− True Negatives (TN): Correctly predicted negative 

observations. 

− False Positives (FP): Incorrectly predicted as positive 

(Type I error). 

− False Negatives (FN): Incorrectly predicted as negative 

(Type II error). 

The matrix itself helps in visualizing the performance of 

an algorithm. 

1) Accuracy 

Accuracy is the most intuitive performance measure and 

it is simply a ratio of correctly predicted observations to the 

total observations. It is great as a measure when the target 

classes are well balanced. The formula for accuracy is: 

𝐴𝐶𝐶 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

2) Precision 

Precision [55]–[57] is the ratio of correctly predicted 

positive observations to the total predicted positives. It is a 

measure of the accuracy provided that a class label has been 

predicted, i.e., it quantifies the number of true positives over 

the sum of true positives and false positives. 

𝑃𝑅𝐸 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
  (2) 

3) Recall 

Recall [58]–[60] is the ratio of correctly predicted positive 

observations to all observations in actual class. It provides an 

indication of missed positive predictions. 
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𝑅𝐸𝐶 =
𝑇𝑃

𝐹𝑃+𝑇𝑁
  (3) 

4) Precision F1-Score 

The F1 Score is the weighted average of Precision and 

Recall. Therefore, this score takes both false positives and 

false negatives into account. It is especially useful when the 

classes are imbalanced. The F1 score is a way of combining 

the precision and recall of the model, and it is defined as the 

harmonic mean of the model’s precision and recall. 

𝐹1 − 𝑆 = 2 ⨯
𝑃𝑅𝐸 ⨯𝑅𝐸𝐶

𝑃𝑅𝐸+𝑅𝐸𝐶
  (4) 

To address the lack of detailed error analysis, we delve 

deeper into understanding the implications of false positives 

versus false negatives. In the context of developmental 

assessments, a false positive (incorrectly labeling a normal 

drawing as not-normal) could lead to unnecessary 

psychological evaluations, whereas a false negative (failing 

to identify a not-normal drawing) might result in a missed 

opportunity for early intervention. This nuanced 

understanding of error types helps in refining the model to 

reduce specific errors that could have significant implications 

for a child’s developmental pathway. While our current focus 

is on binary classification, this approach may indeed 

oversimplify the complex spectrum of children’s drawing 

behaviors. To enrich our model’s assessment capabilities, 

future iterations could incorporate a more nuanced 

classification scheme that includes intermediate categories or 

utilizes additional metrics that capture broader psychological 

and developmental dimensions. This would allow for a more 

granular and accurate reflection of the diverse expressions 

evident in children’s drawings, potentially leading to more 

tailored and informative developmental assessments. 

We interpret these metrics to understand the balance 

between identifying drawings that may indicate 

psychological issues (recall) and minimizing the risk of false 

alarms (precision). High precision with balanced recall would 

mean our model effectively identifies drawings indicative of 

psychological concerns with minimal misclassification, 

guiding appropriate follow-up assessments. 

Our study, involving children, adheres strictly to ethical 

guidelines. We ensure the confidentiality and anonymity of 

participant data, with appropriate consent from guardians. 

We also consider the psychological impact of our 

classifications, aiming to enhance, not replace, traditional 

psychological assessments with AI. 

IV. EXPERIMENTAL RESULTS 

All of the models have been trained via the Adam 

optimizer [58]–[61]. This was chosen as an alternative to the 

traditional stochastic gradient descent models, as the Adam 

optimizer is designed specifically for an efficient work with 

sparse gradients on noisy tasks, such as an image 

classification. The optimization method is an adaptive 

learning algorithm, which lead to both better and faster results 

than a non-adaptive approach. The epochs number for 

training was set to twenty. 

The justification for this choice was the evaluation of 

early optimization training results, which allowed for the 

stable convergence of the system without overfitting, which 

is a frequent issue with deep learning AI. 

The training was done utilizing the train generator 

function. The function permits real-time batch image 

augmentation while training to extend our model’s potential 

to generalize. A test generator object was used together with 

the validation data parameter to supply a separate dataset to 

the model that it does not see during training. By setting the 

verbose parameter to 1, we could see the loss and accuracy 

for the training and validation data on the eve of each epoch. 

We could exercise our models in a strict environment and 

iterate on the outcomes cautiously to get the best achievable 

performance. 

A. Results of Convolutional Neural Network 

Training and validation metrics across 20 epochs of 

our CNN model provides a comprehensive insight into the 

learning and performance trends (see Fig. 11). The model 

seemed to struggle with the underlying data patterns, given 

the high training loss [65]– [68] of 1.1058 and low/training 

accuracy of 44.72%. However, a commonality of trends 

emerged throughout the epochs. 

The graphs reveal a consistent decrease in both training 

and validation losses across the epochs, with the training loss 

dramatically dropping from 1.1058 to 0.0341 by the final 

epoch. Correspondingly, training accuracy soared to 98.89%, 

and validation accuracy stabilized at approximately 94.44%. 

These results demonstrate that the model not only learned 

effectively from the training data but also generalized well 

to the validation set. 

Despite the convergence of training and validation losses 

and high accuracy rates, the potential for overfitting cannot 

be dismissed without more robust validation. Although the 

similar trajectories of training and validation metrics suggest 

a well-tuned model configuration, further analysis involving 

additional tests on unseen data sets or employing techniques 

such as cross-validation could provide stronger evidence of 

the model’s ability to generalize. Moreover, exploring the 

impact of training duration and the number of epochs on 

model performance could offer deeper insights. Assessing 

whether extending beyond 20 epochs leads to diminishing 

returns or further performance enhancements would help 

optimize the training strategy, ensuring the model’s 

reliability and robustness in categorizing children’s drawings 

into ‘normal’ and ‘not-normal’ categories effectively. 

 

Fig. 11. Learning curves of CNN 
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The confusion matrix [69]–[73] for our Convolutional 

Neural Network (CNN), as shown in Fig. 12, provides a 

detailed look at the model’s effectiveness in classifying 

children’s drawings into ’normal’ and ’not-normal’ 

categories. The model achieves a high accuracy level, 

demonstrated by the presence of 44 true positives and 41 true 

negatives, effectively distinguishing between the two 

classifications. This accuracy is also highlighted by the 

minimal misclassifications observed, with only 1 false 

negative and 4 false positives reported. This indicates that the 

model is particularly adept at correctly identifying ’normal’ 

drawings, an essential trait for applications where accurate 

identification of normal conditions is vital. However, the 

occurrence of 4 false positives indicates a slight tendency of 

the model to misclassify ’not-normal’ drawings as ’normal’, 

signaling an area for potential improvement. Despite this, the 

high rates of true positives and true negatives, combined with 

low numbers of false classifications, underline the model’s 

robustness and reliability. This confirms its effectiveness in 

generalizing from the training data, making it a valuable asset 

for automated analysis in practical applications. The 

confusion matrix for our Convolutional Neural Network 

(CNN), as shown in Fig. 12, provides a detailed look at the 

model’s effectiveness in classifying children’s drawings into 

’normal’ and ’not-normal’ categories. The model achieves a 

high accuracy level, demonstrated by the presence of 44 true 

positives and 41 true negatives, effectively distinguishing 

between the two classifications. This accuracy is also 

highlighted by the minimal misclassifications observed, with 

only 1 false negative and 4 false positives reported. This 

indicates that the model is particularly adept at correctly 

identifying ’normal’ drawings, an essential trait for 

applications where accurate identification of normal 

conditions is vital. However, the occurrence of 4 false 

positives indicates a slight tendency of the model to 

misclassify ’not-normal’ drawings as ’normal’, signaling an 

area for potential improvement. Despite this, the high rates of 

true positives and true negatives, combined with low numbers 

of false classifications, underline the model’s robustness and 

reliability. This confirms its effectiveness in generalizing 

from the training data, making it a valuable asset for 

automated analysis in practical applications. 

 

Fig. 12. Confusion matrix of CNN 

Furthermore, the presence of only one false negative is 

indicative of the model’s strong sensitivity, essential for 

ensuring that nearly all ’not-normal’ conditions are detected. 

However, the impact of these errors needs to be considered 

more deeply. False positives, while less critical than false 

negatives in many health-related applications, could lead to 

undue anxiety or unnecessary testing in a psychological 

assessment context. Conversely, the rare false negatives, 

though minimal, are significant in that even a single missed 

detection of a ’not-normal’ condition could mean a missed 

opportunity for early intervention. 

The CNN model demonstrates excellent performance in 

classifying children’s drawings into ’normal’ and ’not-

normal’ categories, as evidenced by the high test accuracy of 

approximately 94.44% This high level of accuracy reflects 

the model’s strong ability to generalize from the training data 

to unseen test data, a key indicator of a well-trained machine 

learning model. 

B. Results of VGG16 

As demonstrated in Fig. 13 of loss and accuracy plots 

during 20 epochs, the performance of the VGG16 model is 

characterized by impressive learning and generalization 

skills. At the very beginning, the model started with a high 

training loss of 3.2304; however, it was rapidly reduced, 

which proves its ability to quickly adapt to the features of the 

training dataset. By the second epoch, the training loss had 

already reached the level of 1.4845 visibility. The decrease in 

the validation loss is also seen at this stage, which means that 

the model was able to generalize sufficiently to predict 

unseen data. The trends on the accuracy plot are similar: the 

model’s percentage on the training set started at 59.17% and 

quickly increased to 72.22% until the second epoch. By the 

12th epoch, it reached 100%; this means that the model has 

truly understood the data and was able to perfectly predict the 

training set. The validation accuracy score has a similar 

pattern and after the ninth epoch stabilized at around 97.78%. 

Despite these positive indicators, the later epochs showed 

some fluctuations in validation loss, although the sustained 

high accuracy suggests that these did not compromise the 

model’s ability to generalize. This performance, 

characterized by nearly flawless accuracy and minimal loss 

on unseen data, underscores the VGG16 model’s efficacy in 

handling complex image classifications, such as those 

required for analyzing children’s drawings. 

However, in response to concerns about potential 

overfitting given the high accuracy and low loss, and the 

adequacy of the epoch number, further analysis would be 

beneficial. Exploring whether extending the training beyond 

20 epochs would result in diminishing returns or continued 

improvements could offer deeper insights into the training 

dynamics and help validate the chosen epoch number. 

Implementing more robust measures, such as cross-validation 

or additional unseen datasets, could also ensure that the 

model not only fits the training data but also generalizes well 

to new, diverse data scenarios, thus enhancing the model’s 

practical applicability in real-world settings.  
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Fig. 13. Learning curves of VGG16 

Another compelling visualization of the accuracy of the 

VGG16 model in classifying children’s drawings into 

‘normal’ and ‘not-normal’ shows the confusion matrix in Fig. 

14. It is evident that the model was highly precise, with 44 

true positives and 44 true negatives. In other words, the 

VGG16 model performed with high accuracy in identifying 

the drawings well. Such precision is important for any 

automated classification prediction system to be dependent. 

The good performance of the VGG16 model on both classes 

is even more important. The near-symmetrical distribution of 

errors within the confusion matrix underscores the model’s 

unbiased nature in prediction. This lack of bias is crucial for 

maintaining the integrity of the classification system, 

ensuring that one category is not unduly prioritized at the 

expense of another. A deeper examination of these error 

types—false positives and false negatives—reveals their 

respective impacts on the practical application of the model. 

While false positives might lead to unnecessary follow-up 

assessments, false negatives could potentially overlook 

critical abnormal conditions that require intervention. 

Understanding the implications of these errors is fundamental 

to refining the model’s accuracy and reliability in real-world 

applications, highlighting areas for potential enhancement to 

further optimize the system’s performance. 

 

Fig. 14. Confusion matrix of VGG 16 

The model is highly proficient in distinguishing between 

children’s drawings which are ‘normal’ from the ones labeled 

‘not-normal’. This level of data convincingly proves the 

model’s effectiveness in differentiating the two classes and 

makes it dependable in use cases for image classification 

where excellent accuracy is critical. A testing accuracy of 

almost 97.78% is also ranked high and, as such, shows that 

the model can generalize effectively from the learning set to 

the previously unseen testing data. An accuracy degree of the 

above ratio verifies that VGG16 can provide consistently 

accurate prediction for different data sets. 

C. Results of VGG19 

The VGG19 model performance over 20 epochs, as 

shown in Fig. 15, illustrates a successful training and 

validation progression, characterized by substantial 

improvement in both accuracy and loss reduction. Initially, 

the model started with a high training loss of 3.1686, which 

sharply decreased to 1.0944 by the second epoch and 

continued to decline steadily, settling at 0.0146 by the 20th 

epoch. This rapid decrease in loss indicates that the model 

efficiently learned the distinguishing features of the data early 

in the training process. 

Similarly, the accuracy metrics exhibit a notable 

improvement from the outset. The training accuracy began at 

57.22% and rapidly increased to over 94% by the ninth epoch, 

eventually achieving a perfect accuracy rate of 100% from 

the 15th epoch onward. The validation accuracy also 

displayed a consistent upward trend, beginning at 77.78% 

and rising to an impressive 97.78% by the final epoch, 

suggesting that the model was not only fitting well to the 

training data but was also highly effective at generalizing to 

new, unseen data. 

Notably, the graphs also reveal a temporary increase in 

validation loss during the early epochs, peaking at 0.9080 at 

the second epoch. However, this issue was quickly resolved, 

and subsequent epochs saw a decrease and stabilization in 

validation loss, which closely aligned with the training loss 

from the tenth epoch onwards. This convergence of training 

and validation losses, along with consistently high accuracy 

levels, suggests that the model was well-optimized and 

balanced, displaying no overt signs of overfitting despite 

achieving high training accuracies. 

To address potential concerns about overfitting and the 

appropriateness of the 20-epoch training duration, further 

analysis could be beneficial. Investigating whether extending 

training beyond 20 epochs leads to diminishing returns or 

further improvements, and validating the chosen epoch 

number through additional experiments, could provide a 

more comprehensive understanding of the model’s training 

dynamics and its capacity to generalize effectively across 

varied and potentially novel datasets. 

 

Fig. 15. Learning curves of VGG19 
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The confusion matrix in Fig. 16 of the VGG19 model 

gives an accurate picture of the model’s capacity to classify 

children’s drawings into normal and not-normal drawings. 

According to the matrix, the true positive rate of the normal 

and not-normal drawings was 44 for each. That is, the model 

achieved a high sensitivity and specificity, which is thrust 

upon near-perfect accuracy. Here are minimal errors 

assessing only one participant each for the false positive and 

false negative errors. It shows that the VGG19 model 

maintains a balanced sensitivity and specificity, achieving a 

recognition rate of the two classes with minimal bias to either 

category. The ultralow error rates confirm the negligible 

chances of misclassification, which is crucial in sensitive 

classifications. The automatic classification of normal and 

not-normal drawings in this research has shown that the 

VGG19 model is generally ideal in practical applications. 

This is considering its capability to deliver consistent 

accuracy in varied cases of normal and not-normal 

classifications. 

The nuanced analysis of these error types, particularly the 

implications of the false positives and false negatives, is 

critical for understanding the practical impact of the model’s 

performance. In contexts where the classification of 

children’s drawings can influence further psychological 

assessment or educational interventions, minimizing errors is 

paramount. False positives might lead to unnecessary concern 

or additional testing, whereas false negatives could 

potentially overlook crucial developmental issues that require 

attention. 

The performance dynamics of the VGG19 model, depict 

the strong capabilities of this model in classifying children’s 

drawings as either ‘normal’ or ‘not-normal.’ The test 

accuracy rate of about 97.78% is a clear indicator of how true 

the models are in regards to their predictions within the set of 

data. 

 

Fig. 16. Confusion matrix of VGG19 

D. Results of MobileNet 

The MobileNet model’s performance over 20 epochs, as 

illustrated in Fig. 17, showcases a successful progression in 

terms of both training and validation metrics. The model 

started with a relatively high training loss of 0.5136, but this 

quickly declined, stabilizing at a low of 0.0320 by the final 

epoch. This rapid and substantial reduction in training loss 

indicates that the model effectively optimized its parameters 

to fit the training data well. 

In parallel, the validation loss mirrored this positive trend, 

starting at 0.2742 and decreasing to 0.0716 by the 20th epoch. 

This consistency in the decrease of validation loss alongside 

the training loss indicates good generalization capabilities of 

the model, suggesting that it is not just fitting to the training 

data but also performing well on unseen data. 

Accuracy trends further confirm the model’s efficiency. 

Starting from an accuracy of 72.22%, the model quickly 

improved, reaching above 95% by the fifth epoch and 

peaking at 97.78% in the 15th epoch. This high level of 

accuracy, main-tained throughout the training process, 

showcases the model’s robust capability to classify images 

accurately. The validation accuracy remained stable and high, 

predominantly hovering around 95-96%, and reaching up to 

97.78%, underscoring the model’s reliability and the 

effectiveness of MobileNet’s architecture for the task at hand. 

To address potential concerns about overfitting and the 

justification for the 20-epoch training regimen, further 

evaluations could be advantageous. Investigating whether 

extending the training duration beyond 20 epochs might 

result in diminishing returns or additional improvements 

could offer deeper insights into the model’s training 

dynamics. Additionally, implementing more robust 

validation measures, such as cross-validation or testing on a 

broader and more diverse dataset, would help confirm the 

model’s ability to generalize across different data scenarios 

and ensure its practical applicability in real-world settings. 

 

Fig. 17. Learning curves of MobileNet 

The confusion matrix depicted in Fig. 18 for the 

MobileNet model demonstrates a high degree of accuracy in 

classifying children’s drawings into ’normal’ and ’not-

normal’ categories, with only a few misclassifications. The 

matrix shows that the model correctly identified 43 out of 45 

’normal’ drawings and 43 out of 45 ’not-normal’ drawings. 

This results in a substantial number of true positives and true 

negatives, underscoring the model’s robustness in accurately 

classifying the two categories. 

Despite this high accuracy, the model encountered some 

errors, specifically two instances each of false positives and 

false negatives. While these error counts are relatively low, 

they are crucial for understanding potential areas of 

improvement for the model. False positives—where ’not-

normal’ drawings are incorrectly classified as ’normal’—and 

false negatives—where ’normal’ drawings are incorrectly 
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classified as ’not-normal’—can have differing implications 

depending on the application context. 

In settings where accurate identification is critical, such 

as educational or psychological assessments, these errors 

could lead to inappropriate interventions or missed 

opportunities for support. A more nuanced analysis of these 

errors might involve exploring whether certain features of the 

drawings consistently lead to misclassification, or if 

variability within the ’normal’ or ’not-normal’ categories is 

not adequately captured by the current training dataset. 

 

Fig. 18. Confusion matrix of MobileNet 

E. Results of MobileNet 

Our ensemble model strategically incorporates three of 

the top-performing models: VGG16, VGG19, and 

MobileNet, each selected for their distinct architectural 

features and learning capabilities that contribute to a robust 

ensemble method. VGG16 and VGG19, both from the VGG 

family, are renowned for their deep convolutional networks 

which facilitate the extraction of complex hierarchical image 

patterns. The additional layers in VGG19 allow for more 

detailed feature extraction compared to VGG16, offering 

slightly varied perspectives on the data processed. 

MobileNet, on the other hand, introduces a different 

approach by utilizing depthwise separable convo-lutions 

which optimize computational efficiency and reduce 

processing costs. 

The rationale behind integrating these models into a 

single ensemble was to leverage their collective strengths to 

mitigate their individual limitations, thereby enhancing 

overall prediction accuracy and reliability. This method is 

particularly beneficial in complex classification scenarios 

such as ours, where distinguishing subtle differences between 

’normal’ and ’not-normal’ categories is crucial. By 

harnessing the varied capabilities of these models, the 

ensemble approach aims to deliver a more consistent and 

unbiased performance across diverse input datasets, making 

it well-suited for practical applications like classifying 

children’s drawings. 

The effectiveness of this ensemble is demonstrated in 

the confusion matrix shown in Fig. 19, where it exhibits 

exemplary performance in classifying drawings as ’normal’ 

and ’not-normal’. It successfully identified all 45 ’normal’ 

drawings with zero false negatives and accurately classified 

44 out of 45 ’not-normal’ drawings, with just one false 

negative. 

However, it is important to address potential drawbacks 

of using an ensemble method, such as increased 

computational complexity and the risk of overfitting. While 

ensemble models generally improve prediction accuracy, 

they require more computational resources and can be more 

complex to train and optimize. Moreover, the risk of 

overfitting can be heightened if not carefully managed, 

particularly when combining multiple high-performing 

models. Detailed analysis of the types of errors, such as the 

impact of false positives versus false negatives, is crucial for 

understanding the practical implications of these model 

errors. In practical applications, especially in sensitive fields 

like pediatric psychological assessment, the implications of 

each type of error must be carefully considered to ensure that 

the model’s use aligns with clinical needs and ethical 

standards. 

The ensemble hard voting model showcases its 

impressive performance. The model achieved an overall 

accuracy of approximately 98.89%, highlighting its efficacy 

in distinguishing between ’normal’ and ’not-normal’ 

categories in children’s drawings. This high level of accuracy 

demonstrates the model’s robustness and its strong potential 

to generalize to new or unseen data. 

 

Fig. 19. Confusion matrix of ensemble hard voting 

V. COMPARATIVE ANALYSIS 

The comparative analysis of performance metrics for the 

CNN, VGG16, VGG19, MobileNet models, and their 

ensemble using a hard voting method, as seen in Table II, 

provides significant insights into the efficacy of ensemble 

learning in machine learning applications, particularly in 

complex and high-dimensional challenges like image 

classification. Each model exhibits commendable 

performance on its own. For example, both VGG16 and 

VGG19 demonstrate exceptional precision, recall, and F1-

score values of 0.98, affirming their capabilities in handling 

image classification tasks with considerable complexity. 

MobileNet, tailored for mobile applications that require 

resource efficiency, consistently delivers a performance 
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metric of 0.96, highlighting its balance between accuracy and 

resource utilization. CNN shows robust performance, 

particularly with a high recall rate for the normal class, 

suggesting it effectively identifies true positive cases. 

The ensemble approach, utilizing the hard voting method 

among CNN, VGG16, VGG19, and MobileNet, elevates 

these individual performances by combining their strengths, 

aiming to counteract their individual weaknesses. This 

strategic integration leads to an ensemble model that achieves 

nearperfect accuracy of 0.99 and an outstanding balance of 

recall and precision. The selection of these specific models 

for the ensemble was driven by their complementary 

strengths and distinct architectural designs, which, when 

combined, minimize the errors each model might make 

individually, thus enhancing generalization on new, unseen 

data and reducing the risks associated with overfitting. 

This nuanced error analysis is crucial for understanding 

the practical impact of model errors. For instance, the 

minimal false negatives and false positives indicate a highly 

reliable system, yet even a single error in a real-world 

application can have significant implications, especially in 

sensitive settings such as psychological assessments of 

children. Future work will delve deeper into how the 

characteristics of the Kids’ Hand Movement Dataset 

(KHMD) might influence model performance and 

generalizability to ensure robustness across broader 

applications. Furthermore, the real-world applicability and 

interpretability of the ensemble model will be explored to 

maximize its utility in practical settings, ensuring that it not 

only performs well under experimental conditions but also in 

real-world deployments where nuanced interpretation and 

adaptability are essential. 

The comparative analysis of our ensemble model with 

state-of-the-art models across various studies reveals several 

significant insights, as summarized in Table III. The research 

conducted by Pysal et al. utilized a FLSTM model on a 

private drawing dataset, achieving an accuracy and F1-score 

of 88.6%. This performance is commendable, particularly in 

the context of children’s drawing strategies and seriation 

objects, indicating a robust model for sequencing and stroke 

order analysis. Shi et al.’s work with an ASD classifier on the 

Paintings of Autism Spectrum Disorder (PASD) dataset 

reported an accuracy of 85.45%, showcasing the model’s 

effectiveness in distinguishing paintings by ASD individuals 

from typically developed children. However, the absence of 

an F1-score limits a comprehensive understanding of the 

model’s balance between precision and recall. 

Kamran et al. achieved an impressive accuracy of 99.22% 

using a finetuned AlexNet on a combined dataset comprising 

HandPD, NewHandPD, and Parkinson’s Drawing datasets. 

This highlights the potential of deep learning models in early-

stage Parkinson’s disease detection through handwriting 

analysis, although the F1-score was not reported, which is 

crucial for understanding the model’s robustness in 

classification tasks. Elngar et al. combined ANN and CNN 

models to evaluate personality traits on the Personality 

Detection. 

Dataset (PDD), achieving an accuracy of 70.73%. While 

this indicates a significant improvement over traditional 

methods, the model’s overall performance is lower compared 

to other state-of-the-art approaches. 

Ghosh et al. employed a graphology-based analysis 

method on a newly collected dataset, achieving an F1-score 

of 86.70%. This demonstrates the model’s capability in 

analyzing human behavioral characteristics through 

handwriting, albeit without an accuracy metric, which would 

have provided a more rounded evaluation of the model’s 

performance. Mekhaznia et al. used an ANN on the TxPI-u 

dataset, achieving an accuracy of 71.90%, indicating 

reasonable performance in personality trait identification 

among undergraduates, though still not on par with the 

highest-performing models. 

TABLE II.  COMPARATIVE PERFORMANCE OF MODELS 

Model 
Precision Recall F1-Score 

Accuracy 
Normal Not-Normal Normal Not-Normal Normal Not-Normal 

CNN 0.92 0.98 0.98 0.91 0.95 0.94 0.94 
VGG16 0.98 0.98 0.98 0.98 0.98 0.98 0.98 
VGG19 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

MobileNet 0.96 0.96 0.96 0.96 0.96 0.96 0.96 
Ensemble Hard Voting 0.98 1.00 1.00 0.98 0.99 0.99 0.99 

TABLE III.  COMPARATIVE STUDY BETWEEN OUR WORK AND PREVIOUS WORKS 

Author Model Dataset Accuracy F1-score 

Pysal et al. [27] FLSTM private drawing dataset 88.6 88.6% 

Shi et al. [29] ASD Classifier Paintings of Autism Spectrum Disorder (PASD) 85.45% - 

Kamran et al. [30] AlexNet finetuned 
combined HandPD, NewHandPD and Parkinson’s Drawing 

datasets 
99.22% - 

Elngar et al. [33] ANN + CNN Personality Detection Dataset (PDD) 70.73% - 

Ghosh et al. [34] 
Graphology-based 

Analysis 
new collected dataset 86.70 -% 

Mekhaznia et al. 

[35] 
ANN 

baptised Text for Personality Identification of Undergraduates, 

baptised TxPI-u 
71.90% - 

Ours Ensemble Hard voting Kids’ Hand Movement Dataset (KHMD) 99% 99% 
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Our method, employing an ensemble hard voting 

approach on the Kids’ Hand Movement Dataset (KHMD), 

achieved both an accuracy and F1-score of 99%. This 

remarkable performance underscores the effectiveness of 

integrating multiple models, such as custom CNN, VGG16, 

VGG19, and MobileNet, to leverage their collective strengths 

while mitigating individual weaknesses. The high accuracy 

and F1-score indicate that our ensemble model not only 

excels in precision but also maintains a balanced recall, 

ensuring reliable classification of children’s hand drawing 

movements. This robust performance suggests that our 

methodology is wellsuited for applications in psychological 

and developmental assessments, providing a significant 

advancement over existing models in terms of accuracy and 

reliability. The results demonstrate that our ensemble 

approach can effectively address the biases and limitations 

inherent in individual models, leading to superior overall 

performance in classifying and understanding children’s 

drawing behaviors. 

VI. CONCLUSION 

To conclude, our study successfully demonstrates that 

deep learning models such as CNN, VGG16, VGG19, and 

MobileNet can effectively classify children’s drawings into 

normal and not-normal categories. Notably, the ensemble 

model utilizing a hard voting mechanism outperformed the 

individual models, achieving an impressive accuracy of 99%. 

This superior performance illustrates the benefit of 

combining models with unique strengths and weaknesses to 

enhance overall predictive power and reliability. 

For future work, we plan to expand our dataset to include 

a wider range of drawing styles and age groups to further 

validate and improve our model’s robustness. Additionally, 

implementing more sophisticated ensemble techniques such 

as stacked generalization or blending may provide deeper 

insights and further performance enhancements. Exploring 

the application of these models in real-time drawing 

classification systems could also be beneficial for educational 

and psychological assessments, providing immediate 

feedback and support to children based on their drawings. 

This approach holds significant potential to refine 

educational tools and aid in early psychological intervention, 

impacting both education and child development profoundly. 
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