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Abstract—A significant challenge in deploying bipedal 

robots for human-oriented real-world applications is their 

ability to maintain balance when externally disturbed. Current 

momentum-based balance control strategies often exhibit 

inadequate robustness to disturbances due to reliance on simple 

proportional controllers and imprecise incorporation of desired 

angular momentum changes. Furthermore, the sequential 

activation of momentum and posture correction controllers 

compromises system stability when confronted with consecutive 

disturbances. This paper proposes and validates a new Variable 

Power Reaching Law for Sliding Mode Control (SMC) to 

enhance the regulation of linear momentum against 

disturbances. The proposed reaching law adjusts dynamically to 

the system's errors, ensuring fast convergence and minimal 

chattering. In this paper, we precisely define the desired angular 

momentum change in relation to the Center of Pressure (CoP), 

a crucial stability metric, as well as the desired linear 

momentum and ground reaction forces.  The null-space method, 

which allows for simultaneous task execution by using unused 

degrees of freedom, is employed to ensure effective balance and 

upright posture without interference. The posture correction 

control is projected onto the null-space of momentum control. 

Simulation results confirm that the proposed control system 

effectively stabilizes the robot against external disturbances, 

regulating momentum and restoring upright posture. The null-

space method proves effective in maintaining balance under 

multiple disturbances by simultaneously controlling momentum 

and posture. Comparative evaluations show that our approach 

outperforms traditional momentum-based controls and 

nonadaptive reaching laws, reducing CoP fluctuations, 

managing disturbances up to 117 N, and minimizing chattering 

and steady-state error. These advancements underscore the 

potential for deploying bipedal robots in dynamic environments. 

Keywords—Push Recovery; Dynamic Stability; Bipedal 

Robots; Sliding Mode Control; Null-Space Method; Center of 

Pressure. 

I. INTRODUCTION 

Bipedal robots play a major role in many fields, like 

industrial automation, search-and-rescue missions, and 

healthcare services [1]. The ability of these robots to navigate 

over complex environments designed for human beings, such 

as stairs and uneven terrain, making them efficient for 

applications where wheeled robots fail to perform tasks in 

these conditions. One of the significant limitations that these 

robots face when conducting the aforementioned applications 

is the ability to maintain balance while experiencing external 

disturbances, such as pushes or uneven ground surfaces. 

Therefore, there is still a high need to develop push recovery 

control methods, which are important for the practical 

deployment of bipedal robots in real-world environments 

where unpredictability is common. 

Previous studies conducted on the standing balance of a 

bipedal robot can be classified into two types of control 

schemes: joint control strategies and whole-body motion 

control methods. Joint control strategies involve using 

particular joints, such as the ankle, hip, or knee, to react and 

respond to disturbances [2]-[11]. The ankle strategy includes 

using the robot’s ankle joint to effectively control 

disturbances, while keeping the other joints immobile. The 

Linear Inverted Pendulum Model is often adopted to develop 

an ankle-based push recovery control system. This strategy 

can only handle minor disturbances, as the ankle joints 

produce a restricted amount of torque. As an alternative, 

some researchers have concentrated on using the hip strategy, 

which is effective when dealing with relatively higher 

disturbances, while the ankle strategy alone is insufficient for 

maintaining balance. The objective of the hip strategy is to 

produce angular momentum that is complementary to the 

angular momentum caused by an external disturbance. The 

Center of Mass (CoM) of the robot is pushed towards the 

support polygon area by the angular momentum that is 

created around the hip. The Linear Inverted Pendulum Model, 

which incorporates a hip-mounted flywheel, is frequently 

utilized to describe the dynamics in the hip strategy.  The hip 

strategy assumes that the CoM is precisely located at the hip 

joint, which is not typical in the majority of bipedal robots. 

This assumption simplifies the control problem but may 

result in inaccuracies in balance and motion control. 

On the contrary, numerous studies have investigated the 

use of whole-body motion in bipedal robots to preserve 

standing stability. The literature has presented several whole-

body balance control methods of bipedal robots [12]-[29], 

one of which is momentum-based balance control. This 

method focuses on regulating linear momentum, angular 

momentum, or both in order to attain stability when standing. 

Prior to the research conducted by Popovic and his colleagues 

in [30], momentum-based balance control studies primarily 

focused on regulating linear momentum. [30] emphasized the 

significance of efficiently controlling angular momentum to 

maintain balance. The Centre of Pressure (CoP) is the specific 

location where the resultant ground reaction forces (𝐹𝐺𝑅) are 
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concentrated. A bipedal robot achieves stability when its CoP 

remains inside the bounds of the support polygon. It was 

noted that the location of the CoP has a non-linear correlation 

with both the force (𝐹𝐺𝑅) and the CoM position. Therefore, in 

order to have complete control over the CoP, it is essential to 

stabilize both linear and angular momentum. 

In [21] derived the motion equation of the humanoid robot 

in relation to the combined linear and angular momentum. 

The total momentum is a six-dimensional vector that 

characterizes the macroscopic behavior of the complete 

robot. In [21], the desired momenta were first defined using 

a simple proportional- derivative (PD) controller, and then 

the joint velocities corresponding to these desired momenta 

were computed using the Centroidal Momentum Matrix 

(CMM). However, the stability criteria—which include 

keeping the CoP position within the support region—were 

neglected, so the robot could become unstable when the input 

momenta values are high. The authors of [22], [23] included 

the CoP position in the definition of the desired momenta. In 

[23], the authors used the CoM and CoP position errors to 

define the desired rate of change of angular momentum. In 

[22], the admissible values of 𝐹𝐺𝑅 and CoP positions which 

correspond to the desired momenta were determined. Then, 

the admissible rate of changes in momenta was calculated 

using the admissible 𝐹𝐺𝑅 and CoP position values. CMM was 

subsequently employed to calculate the necessary joint 

accelerations in accordance with the momenta rate of change. 

In [13] created a balance control that compensates for the 

external pushing force by adjusting the foot contact force. 

The external forces in all axes were estimated using the 

centroidal dynamics and sensor measurements obtained from 

the Inertia Measurement Unit (IMU) and foot force sensors. 

Subsequently, an optimization problem is formulated to 

compute the optimal contact forces necessary to achieve the 

desired momenta. In [14], the authors introduced a model-

based approach known as Dynamic Balance Force Control 

(DBFC) to compute the whole-body joint torques. The 

contact forces that control the rate of change of linear and 

angular momentum were established via an optimization 

problem with CoP position constraint. However, because the 

balancing stability problem assumed a zero desired rate of 

change of angular momentum, it did not incorporate the 

contribution of angular momentum.  

The study conducted in [20] employed the PD controller 

to define the desired rate of change of angular momentum in 

terms of CoP position and velocity. A multi-objective 

optimization technique was formulated in [20] to obtain 

feasible joint accelerations with varying weights for linear 

and angular momentum terms. In cases where it was not 

feasible to achieve both desired momenta, a higher priority 

was given to the linear momentum [20], [24]. Insufficient 

rotational stability is the consequence of prioritizing linear 

momentum over angular momentum. 

In [23], the two main phases of balancing were defined: 

the reflex phase, which involves promptly reacting to external 

forces by adjusting the rate of momentum changes using a 

simple proportional controller, and the recovery phase, which 

tries to return the robot to an upright position. A 

maximization optimization problem was developed to obtain 

the control law for the recovery phase, with the objective of 

maximizing the potential energy. In [23], the reflex and 

recovery phases were carried out sequentially. If a push 

happens during the recovery phase, the reflex phase, which 

regulates momenta, will not be triggered. Consequently, the 

robot behaves like a stiff pendulum, causing the CoP to move 

outside the area of support and losing stability. 

Despite the advancements, there are still some limitations 

that need to be addressed to allow bipedal robots to 

effectively conduct real-world tasks in the presence of 

disturbances. Several previous studies used simple 

proportional controllers to regulate linear momentum, but 

these controllers may not offer enough robustness against 

disturbances. Furthermore, the desired rate of change of 

angular momentum was either presumed to be zero or it 

lacked the ability to adequately incorporate crucial 

components such as CoP, ground reaction forces, and desired 

linear momentum. This results in inadequate coordination 

between the upper and lower parts of the robot, making it 

challenging to maintain balance when subjected to 

disturbances. The bipedal robots’ inability to maintain 

stability when subjected to multiple pushes is a result of 

dividing the balance control into two separate phases: one for 

regulating desired momenta and the other for posture control, 

and performing them sequentially. 

This paper's contributions are threefold, each addressing 

critical gaps identified in the existing literature. First, we 

develop and validate a new reaching law for Sliding Mode 

Control (SMC) to stabilize the linear momentum of bipedal 

robots. The proposed reaching law uses variable power that 

adapts dynamically to changes in the system, guaranteeing 

minimal chattering and rapid convergence time to the sliding 

surface. Second, our research successfully manages the 

angular momentum by generating the desired rate of angular 

momentum change around the CoM, taking into account 

important factors such as the desired linear momentum, the 

position of the CoP, and the ground reaction forces. This 

definition, based on the principles of balance, assists in 

properly calculating the necessary angular momentum in the 

presence of external disturbances. Third, we use the null-

space method to execute momentum and posture recovery 

controllers simultaneously, without any interference. By 

employing the null-space method, our bipedal robot can 

effectively regain its balance and return to an upright 

position, even when faced with several consecutive 

disturbances. 

The remainder of this paper is organized as follows: 

Section II provides a detailed description of the methodology 

used in developing the proposed push recovery controller. 

Section III presents the results of the proposed controller, 

including comparisons with previous studies. Finally, Section 

IV presents conclusions and outlines future work. 

II. METHODOLOGY 

A. Robot Model 

Our robot, HURON, is a lower body of a humanoid robot 

designed after human anatomy, with two lower limbs, 

including hips, thighs, shins, and feet. The robot is 

manufactured where all components are rigid and 
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interconnected via electric- actuated revolute joints (see Fig. 

1). It weighs about 40 kg, stands 1.2 m tall, and provides 12 

Degrees of Freedom (DoF) when both feet are flat on the 

ground—six on each limb, including hip joint roll, pitch, and 

yaw, knee joint pitch, and ankle joint roll and pitch.  

Additionally, the robot is equipped with force sensors to 

measure 𝐹𝐺𝑅, necessary for calculating CoP position. 

  
 

(a) (b) (c) 

Fig. 1. HURON lower body. (a) physical robot, (b) simulation model, (c) 

robot frames 

B. Mechanics of Balance 

In the absence of external disturbances, the standing 

bipedal robot’s momentum results solely from 𝐹𝐺𝑅 and 

gravitational forces. 𝐹𝐺𝑅  is [𝐹𝐺𝑅𝑥, 𝐹𝐺𝑅𝑦, 𝐹𝐺𝑅𝑧 ]
⊤ applied to 

the CoP,  𝑝   is the CoP position [𝑝𝑥 , 𝑝𝑦 , 0]⊤, and c is the 

CoM of the robot [𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧]⊤. The rate of change of the 

angular momentum about CoM in the sagittal plane, under 

the influence of a horizontal pushing force, as shown in 

Fig. 2, results in (1). 

�̇�𝐶𝑜𝑀,𝑦 = ∑ 𝜏𝐶𝑜𝑀,𝑦 = (𝑝𝑥 − 𝑐𝑥)𝐹𝐺𝑅𝑧 + 𝑐𝑧𝐹𝐺𝑅𝑥 − 𝑢𝑧𝐹𝑝𝑢𝑠ℎ𝑖𝑛𝑔 (1) 

where 𝑢𝑧 is the location of the pushing force with 

respect to CoM. Replacing 𝐹𝐺𝑅𝑥  and 𝐹𝐺𝑅𝑧  with their 

equivalent linear momentum terms, we obtain (2). 

𝑝𝑥 = 𝑐𝑥 +
�̇�𝐶𝑜𝑀,𝑦 − 𝑐𝑧�̇�𝑥

�̇�𝑧 + 𝑚𝑔
+

𝑢𝑧𝐹𝑝𝑢𝑠ℎ𝑖𝑛𝑔

�̇�𝑧 + 𝑚𝑔
 (2) 

Equation (2) implies that when a positive pushing force is 

applied, 𝑝𝑥  shifts forward, moving toward the edge of the foot 

as the force magnitude increases. To prevent the robot from 

tipping in a clockwise direction, for instance, it’s necessary 

to apply a clockwise �̇�𝐶𝑜𝑀,𝑦 [23].  Accordingly, this paper’s 

balance control approach focuses on adjusting both CoM and 

CoP by regulating linear and angular momenta. 

C. Disturbance Absorption Phase 

The objective of this phase is to generate �̇�𝐶𝑜𝑀,𝑦 to absorb 

the disturbance while regulating the CoM via the proposed 

reaching law-based Sliding Mode Control (SMC). 

1) Linear Momentum Controller: Controlling the robot’s 

linear momentum, equivalent to control the CoM motion as   

per Newton’s laws, is achieved in this paper through an SMC. 

SMC is a robust control method that has been extensively 

employed in robotic control systems because of its ability to 

effectively handle uncertainties and external disturbances. Its 

application spans from legged robot systems, where the 

challenges of dynamic stability and adaptable locomotion are 

common [31]-[36], to robotic manipulators, which require 

high precision control and reliability to various operational 

conditions [37]-[43].  SMC involves two main elements: 

reaching and sliding [44]. The sliding phase’s reaching 

condition is usually expressed as 𝑠�̇� ≤ 0. The typical 

switching function 𝑠 is given by (3). 

𝑠 = �̇� + 𝜆𝑒 (3) 

where 𝜆 is a nonzero constant, that determines the 

chattering level and reaching time, and 𝑒, �̇� are the error in 

the CoM position and velocity, respectively. 

 

Fig. 2. A disturbing force applied to the robot 

The generalized forces 𝜏 should be designed to derive the 

system to the equilibrium point, and the sliding condition 

𝑠�̇� ≤ 0 should be satisfied for all time. The sliding condition 

indicated above can be satisfied by developing a reliable 

reaching law, which is the differential expression of 𝑠. 

Nevertheless, it is crucial to acknowledge that the SMC does 

have its limitations. The occurrence of an undesired behavior 

known as chattering arises due to the non-instantaneous 

transition between the reaching and sliding phases. 

Chattering is characterized by rapid, high-frequency 

oscillations in the control signal. Excessive wear and tear on 

mechanical components, increased control effort, and noise 

generation may result from these oscillations. Thus, several 

studies [45]-[59] have been undertaken to examine the SMC 

with reaching laws, which was initially proposed by Gao and 

Hung [ 6 0 ] .  

The reaching law-based SMC proposed by Gao and Hung 

[60] includes different types: the Constant Rate Reaching Law 

(CRRL) and the Constant Power Reaching Law (CPRL). The 

Constant Rate Reaching Law can be mathematically 

represented as (�̇� = −𝑘 𝑠𝑔𝑛(𝑠)),  where  𝑘  is  a positive 

constant gain. Raising 𝑘 shortens the time it takes to reach the 

sliding surface, but it also makes the control action aggressive 

(quick response to minimize the system errors), which causes 

chattering. The Constant Power Rate Reaching Law is 

expressed as (�̇� = −𝑘 |𝑠|𝜌𝑠𝑔𝑛(𝑠)), where 𝑘 and 𝜌 are 

constant and positive parameters. The reduction of the 
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parameter 𝜌 has the potential to mitigate chattering 

phenomena; nevertheless, it is necessary to note that this 

adjustment may result in an increase in the time required to 

accomplish the desired outcome. Therefore, to mitigate the 

chattering phenomenon and simultaneously enhance the rate 

at which the sliding mode is approached, this study proposes 

the improved reaching law-based SMC designed to regulate 

the linear momentum or CoM motion. 

The proposed reaching law for SMC is the Variable Power 

Rate Reaching Law (�̇�), which utilizes a variable power 

function, denoted as (𝛿 (𝑠)). The variable power is a function 

that increases exponentially with the system state 𝑠. The 

Variable Power Rate Reaching Law is as follows, 

�̇� = −𝑘1 |𝑠|𝛿𝑠𝑔𝑛(𝑠) (4) 

where the variable power (𝛿 (𝑠)) is 

𝛿 (𝑠) = 𝑘3(1 − 𝑒−𝜎|𝑠|𝜂
), 𝛿 (𝑠) ∈ [0, 𝑘3] (5) 

and 𝑘1, 𝑘3, 𝜎, 𝜂 are strictly positive parameters. Analyzing the 

Variable Power Rate Reaching Law (�̇�) presented in (4) 

reveals that the controller can adapt dynamically to changes 

in the switching function, as shown in Fig. 3. As |𝑠| grows, 

the variable power 𝛿 (𝑠) tends toward 𝑘3, implying that the 

further the sliding mode state 𝑠 is to the equilibrium state, the 

more quickly it approaches, as shown in Fig. 3. If |𝑠| goes 

down, the Variable Power Rate Reaching Law (�̇�) gets closer 

to zero at a slower rate as the variable power 𝛿 (𝑠) approaches 

a small value close to 0. This behavior indicates that the 

variable power 𝛿 (𝑠) decreases as 𝑠 approaches the 

equilibrium state, and chatter hardly occurs. Therefore, the 

proposed Variable Power Reaching Law can successfully 

resolve the problem of chattering and accelerate the rate at 

which the system reaches the sliding surface.  Additionally, 

𝜎 and 𝜂 are included into the variable power function 𝛿 (𝑠) 

to enhance adaptability, enabling accurate fine-tuning. 𝜎 

effects the steepness of the exponential decay, while 𝜂 

enhances the sensitivity 𝛿 (𝑠) to variations in the system state 

(𝑠). 

 

Fig. 3. System state 𝑠 versus reaching law �̇� and variable power 𝛿 

Theorem 1. The stability condition holds for the reaching 

law given by (4). 

Proof. A Lyapunov function is considered: 

𝑉 =
1

2
𝑠2 (6) 

Integrating (4), the time derivative of 𝑉 is represented by 

�̇� = 𝑠�̇� = −𝑘1 |𝑠|𝛿𝑠𝑔𝑛(𝑠)𝑠 (7) 

�̇� = 𝑠�̇� = −𝑘1 |𝑠|𝛿+1 (8) 

where 𝑘1 > 0, and then �̇� < 0, and the stability condition is 

satisfied. This means that the system state 𝑠 will converge to 

the sliding surface (𝑠 = 0) and remain on it, leading to the 

desired CoM motion against disturbances. 

The Double-Exponential (DE) transformation and 

trapezoidal rule [61]-[63] are used in this paper to perform 

numerical integration to determine the time required to reach 

the sliding surface 𝑠 = 0. The MATLAB implementation 

yields finite reaching times, 𝑡𝑟, during which the system 

reaches 𝑠 = 0 irrespective of the initial state value of 𝑠. 

Since this study focuses on sagittal pushes, where the 

robot is standing (Double Support Phase), the lower body of 

HURON is simplified as a triple-inverted pendulum model 

(𝑛 = 3). By substituting (4) along with the acceleration 

kinematics, �̈�𝑥 = 𝐽𝑥�̈� + 𝐽�̇��̇� into the derivative of the typical 

sliding surface, �̇� = �̈� + 𝜆�̇�, we obtain the following 

equation: 

−𝑘1|𝑠|𝛿𝑠𝑔𝑛(𝑠) − 𝜆�̇� = 𝐽𝑥�̈� + 𝐽�̇��̇� (9) 

where 𝐽𝑥 ∈ ℝ1×𝑛 is the Jacobian matrix related to the 

linear velocity of the CoM along  x-axis. 

2) Angular Momentum Controller: This section focuses 

on generating a counteracting �̇�𝐶𝑜𝑀,𝑦  to control the CoP 

according to (2). The angular momentum about the CoM is 

defined by 

𝐻𝐶𝑜𝑀,𝑦 = 𝐴(𝑞)�̇� (10) 

where 𝐻𝐶𝑜𝑀,𝑦 is the angular momentum of the robot about 

the CoM around the y-axis, 𝐴(𝑞) is 3 × 𝑛 inertia matrix 

and a function of 𝑞 and its calculation is available in [21]. 

Because only the angular momentum about the y-axis is 

computed, 𝐴(𝑞) is reduced to 1 × 𝑛. Taking the time 

derivative of (10), we obtain 

�̇�𝐶𝑜𝑀,𝑦 = �̇��̇� + 𝐴�̈� (11) 

The desired �̇�𝐶𝑜𝑀,𝑦 is defined through two approaches: 

First Approach: It is evident in the mechanics of balance 

that the absence of intersection between the CoP and CoM 

results in the generation of angular momentum around the 

CoM. Hence, the desired rate of change of angular 

momentum is defined by 

�̇�𝐶𝑜𝑀,𝑦 = −𝑘𝐻(𝑝𝑥 − 𝑐𝑥) (12) 

where 𝑘𝐻   is a positive tuning parameter. This parameter 

amplifies the influence of the difference between CoP and 

CoM on the generation of the desired  �̇�𝐶𝑜𝑀,𝑦. 

Second Approach: In this approach, the third term of (2) 

is eliminated under the assumption that both the magnitude 
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and position of the pushing force are unknown. In addition, 

the 𝐹𝐺𝑅𝑥  is substituted by the linear momentum controller 

suggested in this paper. The desired �̇�𝐶𝑜𝑀,𝑦  is defined as 

follows: 

�̇�𝐶𝑜𝑀,𝑦 = −𝑘𝐻[(𝑝𝑥 − 𝑐𝑥)𝐹𝐺𝑅𝑧 − 𝑐𝑥(−𝑚(�̇� −  𝜆�̇�))] (13) 

The desired �̇�𝐶𝑜𝑀,𝑦 is determined by applying the 

principles of balance (2), which takes into account all 

significant factors that influence the desired �̇�𝐶𝑜𝑀,𝑦. 

Consequently, we believe that this method allows for the 

calculation of a precise value of the desired �̇�𝐶𝑜𝑀,𝑦 around 

the CoM to counteract the momentum produced or induced 

by the pushing force. 

3) Combination of Momentum Controllers: The 

objective in this phase is to generate �̇�𝐶𝑜𝑀,𝑦 to absorb the 

pushing force while regulating the CoM via the proposed 

SMC. By solving (9) and (11) simultaneously with the 

Moore-Penrose pseudoinverse, we obtain the joint 

accelerations �̈� that satisfy the linear and angular momentum 

controllers as 

�̈�𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = [
𝐽𝑥

𝐴
]

†

[
−𝐾1|𝑠|𝛿𝑠𝑔𝑛(𝑠) − 𝜆�̇� − 𝐽�̇��̇�

�̇�𝐶𝑜𝑀,𝑦 − �̇��̇�
] (14) 

D. Posture Recovery Phase 

For complete push recovery, a “posture task” is essential 

to return the robot to an upright position. However, 

integrating this task with momentum control can create 

conflicts [23]. In the case of a redundant robot (the number of 

joints exceeds the number of tasks), resolving this challenge 

entails utilizing extra DoF to adjust the robot’s behavior 

without affecting the primary task or causing conflicts. 

In robotic control, the null-space method has been 

substantially employed to facilitate the execution of multiple 

tasks simultaneously with minimum interference by applying 

the hierarchy of task priorities [64]-[70]. This method 

involves projecting lower priority tasks into the null space of 

higher-priority tasks, ensuring that the lower-priority tasks do 

not interfere with the higher-priority ones. Various 

generalized frameworks for managing tasks with 

prioritization have been developed at different levels, 

including velocity [71]-[73], acceleration [74], [75], and 

torque [76]-[79]. The characteristics of these different 

approaches are discussed in [80]. Our aim is to 

simultaneously perform both the higher-priority momentum 

task and the lower priority posture recovery task with 

minimal conflicts. In our push-recovery application, where 

the task dimension (two) is less than the number of joints 

(three), indicating kinematic redundancy, this method can be 

utilized to execute an additional posture task to return the 

joints to the desired configuration, specifically, the home 

configuration (upright posture), after push recovery. To 

address both momentum-based balance control and posture 

recovery simultaneously, our final control law with control 

torque 𝜏𝑐 ∈ 𝑅𝑛 is computed by adding the momentum and 

posture torques as 

𝜏𝑐 = 𝑀(𝑞)�̈�𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞)
+ 𝑀(𝑞)�̈�𝑝𝑜𝑠𝑡𝑢𝑟𝑒 

(15) 

where 

�̈�𝑝𝑜𝑠𝑡𝑢𝑟𝑒 = (𝐼 − 𝐽†𝐽)∅𝑁  (16) 

and 𝐽 = [
𝐽𝑥

𝐴
] ∈ ℝ2×3  is the momentum task (main task) 

Jacobian, 𝐽† denotes the Moore-Penrose inverse of 𝐽, and 𝐼 ∈
ℝ3×3 is the identity matrix.  The projection matrix (𝐼 − 𝐽†𝐽) 

projects any vector onto the null space of 𝐽.  Therefore, the 

joint accelerations for the posture recovery �̈�𝑝𝑜𝑠𝑡𝑢𝑟𝑒 have not 

impact on the momentum task (𝐽�̈�𝑝𝑜𝑠𝑡𝑢𝑟𝑒 = 0). 

The acceleration ∅𝑁 is developed to minimize the errors 

in joint angular position and velocity. It is defined as: 

∅𝑁 = −𝑘𝑞 |𝑠𝑞| 𝑠𝑔𝑛(𝑠𝑞) − (𝜆𝑞�̇�𝑞) (17) 

where 𝑘𝑞 , 휀, 𝜆𝑞 > 0 and 𝑠𝑞 = �̇�𝑞 + 𝜆𝑞𝑒𝑞 with 𝑒𝑞 being the 

error in joint angular position. 

Fig. 4 shows the block diagram of the proposed push 

recovery control, which comprises momenta controllers for 

mitigating external disturbances and posture recovery 

controller for maintaining an upright posture. 

 

Fig. 4. Proposed push recovery control block diagram 

III. RESULTS 

A. Performance of Proposed Control using the First 

Approach of �̇�𝐶𝑜𝑀,𝑦 

To evaluate the efficacy of the proposed push recovery 

control, an analysis was conducted on the performance of the 

control algorithm within a simulated environment (Gazebo). 

A pushing force of 80 N for a duration of 0.1 s is exerted at 

0.1 m from the hip joint (waist), as seen in Fig. 5(a). Table I 

illustrates the control parameters.  

TABLE I.  CONTROL PARAMETERS 

Parameter 𝝀 𝒌𝟏 𝒌𝟑 𝝈 𝜼 𝒌𝑯 
Value 1.9 0.001 7 1 1 2 

Parameter 𝒌𝒒 𝝀𝒒 𝝐 

Value diag([1.95, 1.95, 1.95]) diag([6.1, 6.1, 6.1]) [1, 1, 1]⊤ 
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The effectiveness in preserving the stability and upright 

position of the robot is depicted in Fig. 5. The peak of the 

CoP is measured to be 0.122 m, which is below the maximum 

limit of 0.18 m, as depicted in Fig. 6(c). The magnitude of the 

error in the steady state for both the CoP and CoM is 0.0002 

m, as depicted in Fig. 6(c). The proposed control also 

demonstrates apparent effectiveness in mitigating chattering 

in joint torques, as well as eliminating oscillations, as shown 

in Fig. 6(a). By minimizing chattering and oscillations in joint 

torques, the distribution of ground reaction forces at the 

robot's feet may be precisely controlled. This leads to a more 

stable position of the CoP and enhances overall balance. 

The ankle, knee, and hip joints exhibit maximum torques 

of 19, 18.1, and 10.4 Nm, respectively. The use of the null-

space for posture recovery is depicted in Fig. 6(b), 

demonstrating the robot’s recovery of an upright standing 

posture with minimal interference to the main controllers, 

specifically the momenta controllers. Upon analyzing the 

movement of the joints, it is evident that the knee and hip 

joints demonstrate forward rotation with angular 

displacements of -0.11 and -0.57 rad, respectively. In 

contrast, the ankle joint exhibits an initial backward 

displacement of 0.03 rad, succeeded by a forward rotation of 

-0.108 rad. This behavior exhibits similarities to the human 

response to pushing. 

B. Performance of Proposed Control using the Second 

Approach of �̇�𝐶𝑜𝑀,𝑦 

To determine the effectiveness of the Second Approach 

utilized in the angular momentum controller, a repetition of 

the test conducted in the first section of the findings was 

performed. It is noteworthy to remark that this study 

exclusively considers the positive �̇�𝐶𝑜𝑀,𝑦 component, which 

corresponds to the direction of the applied force, in order to 

counterbalance the external disturbances. Fig. 7 shows the 

positive �̇�𝐶𝑜𝑀,𝑦 generated in the Second Approach due to the 

applied pushing force and the difference between the CoP and 

CoM positions, as shown in Fig. 8(c). 

The peak torques observed in the Second Approach are 

smaller compared to those in the First Approach, as illustrated 

in Fig. 8(a). The joint movements demonstrate identical 

behavior as observed in the First Approach (see Fig. 8(b)). 

Fig. 8(c) shows that the peak of the CoP is measured at 0.116 

m, and the steady state error for both CoP and CoM is 0.001 

m. As result, there is an approximate reduction of 6 mm in 

the CoP peak reducing the CoP fluctuation. This indicates 

that the Second Approach exhibits improved stability when 

subjected to a higher pushing force.

 

          
( a )  ( b )  ( c )  ( d )  ( e )  ( f )  ( g )  ( h )  ( i )  ( j )  

Fig. 5. The simulation response to 80 N at 0.1 m from the hip joint (waist) for 0.1 s with the First Approach (youtube.com/watch?v=zvh4cghN9b8) 

   
(a) (b) (c) 

Fig. 6. The proposed control with the First Approach at a pushing force 80 N at 0.1 m from the hip joint (waist) for 0.1 s (a) Joint Torques, (b) Joint Angles, 

(c) CoP and CoM positions 

 

Fig. 7. The desired rate of change of angular momentum defined in (13)

https://www.youtube.com/watch?v=zvh4cghN9b8
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(a) (b) (c) 

Fig. 8. The proposed control with the Second Approach at a pushing force 80 N at 0.1 m from the hip joint (waist) for 0.1 s (a) Joint Torques, (b) Joint Angles, 

(c) CoP and CoM positions

Previous research, as the one conducted in [23], employed 

a push recovery control system that switches between 

Disturbance Avoidance Phase and the Posture Recovery 

Phase. If the robot is pushed during the Posture Recovery 

Phase, the control system does not initiate the Disturbance 

Avoidance Phase to stabilize the linear and angular momenta. 

Disabling the momentum controllers causes the system to 

function as a stiff pendulum model, with just the joint space 

control in the Posture Recovery Phase being active. By 

exclusively relying on the joint space control, the CoP is 

pushed towards the front of the foot, ultimately resulting in a 

loss of balance and subsequent fall. As we mentioned earlier, 

in this study we propose using the null-space method to 

simultaneously execute both the Disturbance Avoidance 

Phase and the Posture Recovery Phase. We conducted 

another experiment by exerting force on the robot on two 

separate times. The initial push of 70 N is applied with a 

distance of 0.1 m from the (waist) and a duration of 0.1 s. The 

second push occurs after one second from the first push, when 

the robot is returning to an upright position as shown in Fig. 

9. Fig. 10 illustrates the ability of our robot (HURON) to 

maintain balance and an upright posture, even when 

subjected to two successive pushing forces. 

 

      

( a )  ( b )  ( c )  ( d )  ( e )  ( f )  

Fig. 9. The simulation response to 70 N at 0.1 m from the waist for 0.1 s with the Second Approach with two successive pushing forces separated by one 

second (youtube.com/watch?v=aWAKxNK5P1Y) 

   

(a) (b) (c) 

Fig. 10. The simulation response to 70 N at 0.1 m from the waist for 0.1 s with the Second Approach with two successive pushing forces 

 

 

 

 

https://www.youtube.com/watch?v=aWAKxNK5P1Y
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C. Comparison with Other Controllers 

To compare our proposed push recovery control to 

previous works, the following four controllers were chosen: 

1) Benjamin’s controller [75]: A balance controller 

that enables a humanoid to maintain a standing position while 

recovering from disturbances. This controller consists of two 

sub-controllers. The first one is the unconstrained balance 

controller, which calculates the appropriate torques without 

imposing any constraints on the position of the CoP. The 

unconstrained balance controller employed joint space linear 

quadratic regulator (to drive the joint angles to zero) and CoM 

controller (to drive the CoM to zero). However, the torque 

produced by these unrestricted controllers was just utilized to 

determine the desired position of the CoP. Afterward, the 

second controller, a decoupled integral controller, was 

employed to control the position of the CoP precisely. Posture 

recovery is not used here since CoP does not depend on the 

torque from posture recovery. Benjamin’s controller was 

chosen to compare our momentum-based control strategy 

with the CoP integral controller presented in [75]. 

2) Abdallah et al. [23]: A control technique consists of 

two phases aiming to maintain balance in a force disturbance. 

During the reflex phase, the desired momentum change rate 

was determined to be L̇x = −k2Lx and ḢCoM = −k1(CoPx −
CoMx). This phase was responsible for mitigating the 

destabilizing effects of the disruption. The second phase, 

known as the recovery phase, was responsible for moving the 

robot to a stable static posture. The authors of [23] stated that 

maximizing the potential energy or minimizing the static joint 

torques G(q) leads to achieving a static stable configuration. 

We have built the Hessian method, which minimizes the 

function G(q). The control law for determining the minimal 

G was established by developing a relationship between the 

rate of change of G and the joint velocities q̇, (Ġ = J(q)q̇). 

3) Constant Power Rate Reaching Law 

(CPRL)/Constant Rate Reaching Law (CRRL): In the linear 

momentum controller, we initially replaced the proposed 

Variable Power Rate Reaching Law with CPRL and 

subsequently substituted it with CRRL. The controllers were 

chosen to showcase the chattering issue, the error steady state 

difficulty, and the efficacy of the proposed SMC in 

addressing these problems. For the angular momentum 

controller, we employed the First Approach. We utilized the 

same posture recovery approach presented in this study. 

4) Linear Quadratic Regulator (LQR): The control law 

is defined as τLQR = −kLQR [q
q̇
]. The LQR was chosen for 

comparison because it is a joint space control in which the 

CoP has no control, showing the importance of CoP control 

presented by our approach. 

In this study, the control settings of the aforementioned 

controllers were fine-tuned to ensure their best performance 

on our bipedal robot (HURON) in terms of achieving the 

minimum CoP distance from the reference frame. We 

implemented all the controllers within a wide range of forces 

from low to high forces. 

5) CoP Comparison under Low Pushing Force: Fig. 11 

illustrates the comparison of CoP fluctuations when using 

different controllers under a 45 N force applied for 0.1 s at 

0.1 m from the waist. LQR and Benjamin’s controller [75] 

show larger CoP fluctuation hence higher CoP peaks at 0.132 

m and 0.179 m, respectively. The joint space LQR is 

anticipated to result in a high CoP position, as its purpose is 

to drive the joint angles to zero without imposing any 

restrictions on the CoP position. The robot equipped with the 

joint space LQR controller exhibits characteristics similar to 

a stiff inverted pendulum, without the ability to avoid 

disturbances by generating angular momentum to accelerate 

forward. The knee joint in Benjamin’s work [75] was 

considered locked, simplifying the robot model through a 

two-links robot model. This simplification could potentially 

result in the loss of the ability of the knee joint to absorb 

disturbances. These, together with ignoring dynamics 

uncertainties in an ideal simulation environment, might be the 

possible reasons why Benjamin’s controller is not showing 

satisfactory results in Fig. 11. 

Upon performing an analysis of the Constant Rate SMC, 

it becomes apparent that the joint torques exhibit chattering. 

Chattering is the consequence of the irregular movement of 

the CoP caused by the torques applied to the joints. To 

address the issue of chattering, we utilized a saturation 

function in combination with the Constant Power Reaching 

Law. However, this solution led to a steady-state error of 

0.005 m in the CoP position. It is obvious that the proposed 

Variable Power Reaching Law eliminates the chattering issue 

while providing a small steady-state error of 0.0004 m in the 

CoP position. 

The CoP peaks for the proposed controller (First and 

Second Approaches), Constant Power Rate SMC, Constant 

Rate SMC and Abdallah et al. [23] are 0.078 m, 0.073 m, 

0.082 m, 0.080 m and 0.078 m, respectively. Although the 

proposed controller has the lowest CoP value, the reduction 

compared to Constant Power Rate SMC, Constant Rate SMC 

and Abdallah et al. [23] is not statistically significant. This is 

partly due to the similarity in behavior among all three 

momentum-based controllers when low forces are applied. 

Another experiment with a high force of 75 N was conducted 

to distinguish controller behaviors, as described in the next 

section. 

6) CoP Comparison under High Pushing Force: Fig. 

12 shows the comparison of CoP fluctuations when using 

different controllers under a higher pushing force of 75 N 

applied for 0.1 s. LQR and Benjamin’s controllers [75] 

proved to be ineffective under high-force conditions. The 

comparison with high pushing force does not include the 

Constant Rate and Constant Power SMC controllers because 

they were only used to emphasize the chattering and steady-

state error problems. The proposed controller (First 

Approach), proposed controller (Second Approach), and 

Abdallah et al. [23] have CoP peaks of 0.120 m, 0.116 m, and 

0.167 m, respectively. Given that the proposed push recovery 

control using the Second Approach yields the smallest CoP 

fluctuation, we can infer that our robot (HURON) can 

maintain standing stability even when subjected to large 

pushing forces. The high CoP position observed in [23] is 

likely due to the implementation of a simple proportional 

controller for linear momentum. 
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Fig. 11. CoP position comparison is simulated for 3 s with disturbance 45 N applied for 0.1 s 

 

Fig. 12. CoP position comparison is simulated for 3 s with disturbance 75 N 

applied for 0.1 s. 

7) Maximum Force Tolerance: We continued our 

comparison scenarios by increasing the pushing force to find 

the maximum force tolerated by each controller before the 

bipedal robot (HURON) loses stability. The results showed 

that our proposed control (Second Approach) is able to 

withstand a force of 117 N applied for 0.1 s making it the most 

robust among the other controllers. It is important to note that 

the feet are no longer flat when a pushing force exceeding 117 

N is applied, which is considered an unstable state. 

Comparing with implemented controllers, the maximum 

force was 52% higher than Abdallah et al. [23], 113% higher 

than LQR’s, and 134% higher than Benjamin’s controller 

[75]. 

IV. CONCLUSIONS AND FUTURE WORK 

This work presented a momentum-based balance control 

method for bipedal robots when faced with external pushing 

forces. First, we have developed and validated a Variable 

Power Rate Reaching Law for Sliding Model Control (SMC) 

that effectively controls the linear momentum by adapting to 

changes in the Center of Mass (CoM) states. Hence, the 

suggested reaching law successfully resolved the problem of 

chattering and accelerated the rate at which the system 

reaches the sliding surface. Second, to effectively maintain 

balance, we have defined the desired rate of change of angular 

momentum in terms of Center of Pressure (CoP) position, the 

ground reaction forces, and the desired linear momentum rate 

of change to counteract the angular momentum induced by 

the disturbance. This ensured an accurate incorporation of the 

angular momentum's contribution. Third, our approach 

proposed utilizing the null-space method for posture recovery 

without interfering with the primary momentum controllers. 

The proposed push recovery controller has been implemented 

and validated on our robot, HURON, within Gazebo, a robust 

physics-engine simulation environment that delivers results 

closely resembling real-world conditions with high accuracy. 

The findings demonstrated the effectiveness of our proposed 

work in maintaining the stability of HURON under high 

external forces while addressing the chattering problem. 

Furthermore, the presented controller enabled our robot to 

preserve stability in the presence of two successive pushing 

forces, which is attributed to the employment of null-space 

method. Comparing with other established controllers, the 

proposed controller showed superior performance in keeping 

the CoP within the support polygon with minimum CoP 

fluctuation, resulting in tolerating higher pushing forces up to 

117 N. Based on the findings, we can conclude that HURON 

has the capability to maintain its standing stability even while 

it is being subjected to external pushing forces while 

interacting with its surroundings. 

Our future plans include implementing our proposed 

controller to our manufactured bipedal, HURON, once it is 

ready for experimental tests. In order to accomplish this, we 

are developing a robust and open-source software framework 

constructed using the C++ programming language. This 

software encompasses the development of a framework and 

validation of hardware for implementing our push recovery 

method on the HURON system. Furthermore, the plan 

involves the derivation of the complex whole-body dynamics 

of HURON using Roy Featherstone's algorithms, as well as 

the implementation of the proposed push recovery method in 

both the sagittal and frontal planes to effectively maintain 

balance in the presence of external forces acting from various 

directions. 
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