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Abstract—This paper explores the application of active 

learning to enhance machine learning classifiers for spoofing 

detection in automatic speaker verification (ASV) systems. 

Leveraging the ASVspoof 2019 database, we integrate an active 

learning framework with traditional machine learning 

workflows, specifically focusing on Random Forest (RF) and 

Multilayer Perceptron (MLP) classifiers. The active learning 

approach was implemented by initially training models on a 

small subset of data and iteratively selecting the most uncertain 

samples for further training, which allowed the classifiers to 

refine their predictions effectively. Experimental results 

demonstrate that while the MLP initially outperformed RF with 

an accuracy of 95.83% compared to 91%, the incorporation of 

active learning significantly improved RF's performance to 

94%, narrowing the performance gap between the two models. 

After applying active learning, both classifiers showed enhanced 

precision, recall, and F1-scores, with improvements ranging 

from 3% to 5%. This study provides valuable insights into the 

role of active learning in boosting the efficiency of machine 

learning models for dynamic spoofing scenarios in ASV systems. 

Future research should focus on designing advanced active 

learning techniques and exploring their integration with other 

machine learning paradigms to further enhance ASV security. 

Keywords—Active Learning; Machine Learning; Automatic 

Speaker Verification; Asvspoof 2019; Random Forest; MLP; 

Spoofing Detection. 

I. INTRODUCTION  

The availability of affordable digital devices such as 

smartphones, tablets, laptops, and digital cameras has led to 

a rapid increase in multimedia content, including photos and 

videos, on the Internet˙ his increase has been fueled by the 

development of social media platforms over the past decade, 

which facilitates rapid sharing and thus improves the volume 

and accessibility of multimedia content. At the same time, the 

fields of machine learning have seen significant progress with 

the development of advanced algorithms capable of 

modifying multimedia content. These developments allow 

misinformation to spread through social media, complicating 

the ability to discern the truth and trust information. This 

challenge is particularly acute in the current “post-truth era,” 

where information, whether true or false, can be used as a 

weapon to influence public opinion, with potential 

consequences such as election interference, incitement to 

conflict, and defamation. 

The emergence and improvement of previous deepfakes 

technology, which produces synthetic video and audio clips, 

represents a major step in the ability to spread rumors on a 

global scale. This poses a potential threat to the spread of fake 

news. Deepfake, being artificial constructions generated by 

artificial intelligence, challenges the traditional reliance on 

video evidence in legal and criminal contexts, where the 

reliability and integrity of such evidence is paramount. 

Forensic experts, especially those dealing with social 

media and sharing platforms such as YouTube and Facebook, 

face challenges in achieving authentication and integrity 

standards due to the complexity of deep data processing 

technology. The emergence of easy-to-use manipulation tools 

such as Zao, Rivas, Visap, Audacity, and Sound forge has 

made the verification process more complex. This makes it 

difficult to distinguish between original and edited videos 

[1]-[5]. 

Deepfake videos are generally classified into five 

categories: 1) face replacement, 2) lip sync, 3) puppet fest, 4) 

face editing and feature manipulation, and 5) deepfake audio. 

This type of deepfake often targets celebrities or public 

figures to tarnish their image by placing them in fabricated 

scenarios [6], including non-consensual adult content [7]. 

Lip-syncing deepfakes adjust the target’s lip movements to 

match a specific audio track, falsely portraying them as 

saying words they never actually spoke. Puppet-master 

deepfakes animate a target’s facial expressions and 

movements, including eye and head movements, to mimic 

another’s expressions or actions [8]. Face synthesis involves 

generating realistic faces or altering facial attributes, 

commonly used to create fictitious social media profiles. 

Lastly, audio deepfakes [79][80] replicate a person’s voice 

through deep learning, enabling the creation of fake audio 

clips where the target appears to utter statements they never 

made [9][10], utilizing either text-to-speech synthesis (TTS) 

or voice conversion (VC). 

Despite the significant focus on video-based deepfakes, 

audio deepfakes have garnered less attention. Recent 

advancements in voice manipulation pose a threat not only to 

speaker verification systems but also to voice activated IoT 

devices [11][12]. Voice cloning can undermine public trust 

and has been exploited in criminal activities, such as a 

reported incident where bank robbers used cloned executive 
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voices to orchestrate a fraudulent transfer of funds [13]. The 

amalgamation of voice cloning into deepfake technology 

presents a novel challenge in detecting such forgeries. It 

underscores the necessity of developing detection methods 

that consider both audio and video forgeries, rather than 

focusing solely on video. 

Recent literature surveys on deepfake generation and 

detection have primarily concentrated on image and video 

aspects, neglecting audio deepfakes. For instance, one survey 

[14] explored general image manipulation and forensic 

techniques without delving into deepfake creation methods. 

Another [15] provided insights into face manipulation and 

detection techniques, while a further study. 

In [16] focused on visual deepfake detection, omitting 

discussions on audio cloning and its identification. Mirsky et 

al. [17] presented a comprehensive analysis of visual 

deepfake creation but only briefly touched on detection 

methods and did not address audio deepfakes, highlighting a 

gap in the current research landscape that necessitates a more 

integrated approach to deepfake detection encompassing both 

audio and video modalities. 

To address these challenges, this study focuses on the 

integration of audio and video deepfake detection to create a 

more comprehensive and robust solution. Despite the 

progress made in detecting visual deepfakes, the detection of 

audio deepfakes remains underexplored, presenting a 

significant gap in the current research landscape. This 

research aims to fill this gap by developing and evaluating 

machine learning models that leverage active learning to 

enhance the detection of both audio and video deepfakes. The 

study's objectives are to improve the accuracy, precision, 

recall, and F1-scores of these models, particularly in the 

context of automatic speaker verification (ASV) systems. By 

doing so, this work not only contributes to the existing body 

of knowledge but also provides practical solutions for 

enhancing secrity in systems vulnerable to deepfake attacks. 

II. RELATED WORK 

The development of accessible technologies for creating 

counterfeit audio has brought significant focus on detecting 

Audio Deepfakes (AD), especially across various languages. 

This discussion will highlight contemporary efforts in 

identifying forged and artificially generated voices. Present 

detection methodologies largely fall into two categories: 

Machine Learning (ML) and Deep Learning (DL) 

approaches. 

Kumar-Singh and Singh [18] introduced a Quadratic 

Support Vector Machine (Q-SVM) to separate synthetic 

voices from natural ones in a binary classification framework. 

Their analysis, comparing various ML techniques including 

Linear and Quadratic Discriminant Analysis, Linear SVM, 

weighted K-Nearest Neighbors (KNN), boosted trees, and 

LR, highlighted Q-SVM’s superiority with a 97.56% 

accuracy and a misclassification rate of 2.43%. Furthermore, 

Borrelli et al. 

In [19] proposed an SVM combined with Random Forest 

(RF) approach utilizing a novel Short-Term Long-Term 

(STLT) audio feature. Trained on the Automatic Speaker 

Verification (ASV) spoof 2019 challenge dataset [20], the 

SVM outperformed RF by 71%.  Liu et al.  [21] explored the 

efficacy of SVM against DL’s Convolutional Neural 

Network (CNN) in distinguishing authentic from fake stereo 

audio, noting CNN’s superior robustness despite both 

methods achieving around 99% accuracy. These ML-based 

approaches, however, often require labor-intensive 

preprocessing for effective performance. 

To streamline this process, DL techniques have been 

explored. Subramani and Rao [22] employed two CNN 

variants, Efficient CNN and RES-Efficient CNN, for 

synthetic audio detection, with RES-Efficient CNN 

outperforming its counterpart by securing a 97.61 F1-score 

on the ASV spoof 2019 challenge [20].  E.R. Bartusiak and 

E.J. Delp [23] compared CNN’s accuracy against a random 

baseline in detecting synthetic audio, noting CNN’s superior 

performance but also its tendency toward overfitting. 

Lataifeh et al. [24] conducted an experimental 

comparison of CNN and Bidirectional Long Short-Term 

Memory (BiLSTM) against ML techniques using the AR-

DAD dataset [24], aimed at identifying imitated Quranic 

audio  clips.  While SVM  showed the  highest accuracy at  

99%, CNN surpassed BiLSTM with a 94.33% detection rate, 

demonstrating CNN’s efficiency in feature extraction and 

generalization, despite lower accuracy compared to some ML 

models. However, a primary limitation of CNN in AD 

detection is its requirement for audio to be pre-processed into 

spectrograms or 2D figures for analysis, highlighting a need 

for models that can directly process audio inputs. 

Recent advancements in generating deceptive audio have 

intensified efforts in Audio Deepfake (AD) detection, 

employing various approaches and models across different 

languages. This segment outlines notable innovations in 

identifying counterfeit and synthetically produced voices, 

classifying current methodologies into Machine Learning 

(ML) and Deep Learning (DL) approaches. 

Lei et al.  [25] introduced a dual-model approach 

comprising a 1-Dimensional CNN and a Siamese CNN for 

AD detection. The 1-D CNN analyzed speech log-

probabilities, whereas the Siamese CNN, leveraging two 

identical CNNs linked by a fully connected layer, utilized 

trained Gaussian Mixture Models (GMM). Tested on the 

ASVspoof 2019 dataset, the Siamese CNN demonstrated 

superior performance over both the GMM and 1-D CNN 

models, particularly with Linear Frequency Cepstral 

Coefficients (LFCC) features, enhancing the minimum total 

Detection Cost Function (mint  DCF) and Equal Error Rate 

(EER) by approximately 55%. However, its efficacy 

diminished with Constant Q Cepstral Coefficients (CQCC) 

features, indicating a dependency on specific feature types. 

Another approach explored in [26] involved converting 

audio into scatter plot images for CNN analysis. Although 

this model showed promise in generalization across different 

audio generation algorithms, evidenced by its performance 

on the Fake or Real (For) dataset [27], it lagged in accuracy 

and EER compared to other DL models, indicating the need 

for further enhancements and diverse data transformation 

techniques. 
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Yu et al.  [28] presented an innovative scoring method, 

Human Log-Likelihoods (HLLs), based on Deep Neural 

Networks (DNN), outperforming traditional Log-Likelihood 

Ratios (LLRs) derived from GMMs. Utilizing the ASV spoof 

challenge 2015 dataset [29], DNN-HLLs evidenced 

improved detection capabilities with more favorable EER 

outcomes. 

Wang et al. [30] developed Deep-Sonar, a DNN model 

focusing on neuron behaviors in speaker recognition systems 

to identify AI-synthesized fake audio. Despite achieving high 

detection rates and low EER on the FoR dataset, Deep-

Sonar’s effectiveness was compromised by ambient noise. 

Wijethunga et al. [31] combined CNNs and Recurrent Neural  

Networks  (RNN)  to  leverage CNN’s feature extraction 

prowess and RNN’s long-term dependency recognition. This 

hybrid approach marked a significant success rate in 

distinguishing AI-generated audio, although it was noted for 

its limited feature representation artifact information. 

Chintha et al. [32] proposed two models based on 

Convolutional RNNs for AD classification: CRNN-Spoof 

and Wide Inception Residual Network Spoof (WIRE-Net-

Spoof), with CRNN-Spoof slightly outperforming WIRE-

Net-Spoof in t-DCF and EER metrics on the ASV spoof 2019 

dataset. Nonetheless, these models faced challenges with 

complexity management due to their layered and 

convolutional architecture. 

Addressing these complexities, Shan and Tsai [33] 

introduced an alignment technique employing LSTM, 

bidirectional LSTM, and transformer architectures for audio 

frame classification, with bidirectional LSTM showing 

superior accuracy and minimal EER. However, the model’s 

extensive training time and small dataset size raised concerns 

about potential overfitting. 

In the realm of transfer learning, P. RahulT et al. [34] 

explored a framework combining transfer learning with the 

ResNet-34 method, showcasing notable EER and t-DCF 

performance. Despite addressing the vanishing gradient 

problem, the model’s deep architecture necessitated 

prolonged training periods. Khochare et al. [35] investigated 

TCN and STN models, with TCN demon- starting 

effectiveness in differentiating fake from real audio, though 

its application was limited with certain input transformations 

like STFT and Mel Frequency Cepstral Coefficients (MFCC) 

features. 

Khalid et al. [36] introduced a novel Deepfake dataset, 

FakeAVCeleb [37], and assessed the effi- cacy of unimodal 

detection methods employing five distinct classifiers: 

MesoInception-4, Meso-4, Xception, EfficientNet-B0, and 

VGG16. Among these, the Xception classifier emerged as the 

most effective, achieving a 76% success rate in fake audio 

detection, whereas EfficientNet-B0 was the least effective, 

with a 50% detection rate. This study concluded that 

unimodal classifiers are generally insufficient for reliable 

fake audio detection. 

Alzantot et al. [38] underscored the necessity for an 

advanced AD detection system leveraging a residual CNN 

framework. This system is designed to extract three key 

features:  MFCC, CQCC, and STFT, to calculate the Counter 

Major (CM) score, indicating the authenticity of the audio. 

Their approach significantly enhanced the CM rate by 71% 

and 75% across two metrics: t-DCF (0.1569) and EER (6.02), 

respectively. Nevertheless, the potential for generalization 

errors necessitates further exploration. 

T.Arif and colleagues[39] introduce a novel acoustic 

feature ELTP-LFCC which merges en- hanced local binary 

patterns (ELTP) with linear frequency spectral cepstral 

coefficients (LFCC). The target of using a combination of 

short- and long-memory two-way deep DBiLSTM network 

was detecting the diverse environment using the model with 

enhanced detection robustness. The ASVspoof 2019 tests 

convincingly illustrated MVAS’ superiority in synthetic 

audio (0.74% EER) as well as its unsatisfactory efficiency 

when imitating samples (33.28% EER). 

Gradually, Assertion of SENet with Residual Squeeze-

Excitation Networks (ASSERT, resentence) has been 

proposed in [40]. The ASSERT system used logarithmic 

power factor spectra and CQCC configuration features, 

which were showcased to have enabled the system to 

accomplish precise synthetic audio sound detection that was 

above and beyond. On the other hand, the model revealed the 

symptoms of over spiking because the resulting t-DCF and 

EER were zero in the logical accessing event. 

The field research shows that the deep learning 

approaches bypass the need for manual feature extraction and 

the extensive process of training but often require a spiteful 

conversion of audio data.  The response to that was to bring 

the concept of self-supervised approach to deep learning to 

the Table I, which was presented by Jiang et al [41]. They 

developed Self-Supervised Spoofing Audio Detection 

(SSAD) model which is based on the PASE+ method.   By 

implementing multilayer python analog transform blocks, 

SSAD achieved an identification accuracy of 5.31%, 

therefore, showing its capability and scalability. Despite this, 

the belonging compared to the  peer  deep learning methods 

shows that further development of an approach, which does 

not require explicit labelled data, will improve self-

supervised learning in forgery detection cases for the future. 

In addition to the models discussed, recent research has 

increasingly recognized the importance of integrating hybrid 

approaches that combine multiple techniques to enhance 

detection accuracy and reduce the limitations inherent in 

individual models. For example, hybrid models that leverage 

the strengths of both ML and DL techniques, such as 

combining CNNs with RNNs, have shown improved 

performance in capturing temporal dependencies and feature 

extraction. However, these approaches still face challenges 

related to computational complexity and the need for 

extensive data preprocessing. The exploration of transfer 

learning and self-supervised learning methods has also 

gained traction, as these approaches offer the potential to 

reduce the dependency on large labeled datasets, thereby 

addressing one of the key limitations of traditional DL 

models. Nonetheless, the effectiveness of these methods in 

practical, real-world scenarios remains an ongoing area of 

investigation, with current studies highlighting the need for 

further optimization to enhance their generalizability and 

robustness against diverse types of audio deepfakes. 
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TABLE I.  RELATED WORK 

Ref 
Approach/ 

Model 
Dataset Key Features/ Techniques 

Performance 

Metrics 

Limitations/ 

Observations 

[18] Q-SVM 
ASVspoof 

2019 

ML techniques 

comparison 
97.56% accuracy 

Requires intensive 

preprocess ing 

[19] SVM + RF 
ASVspoof 

2019 
STLT audio feature 

SVM 
Outperforms 71% 

by RF 

- 

[21] SVM vs. CNN - Robustness comparison 
Both 99% accuracy; 

CNN more robust 
SVM suffers in 

feature extraction 

[22] 
EfficientCNN, 

RES-EfficientCNN 

ASVspoof 

2019 
DL models for detection 

RES-EfficientCNN 

97.61 F1-score 
- 

[23] CNN - Comparison to baseline 
CNN accuracy 

significantly higher 
CNN prone to 

overfitting 

[24] 
CNN vs. 
BiL-STM 

AR-DAD 
Comparison with ML 

models 

CNN 94.33% 

accuracy; BiL-STM 

lower 

CNN requires audio 
prepro cessing 

[25] 
1-D CNN, Siamese 

CNN 
ASVspoof 2019 LFCC, CQCC features 

Siamese CNN 

improves min  t-DCF 

and EER by 55% 

Performance varies 
by fea ture type 

[26] 
CNN (scatter plot 

images) 
FoR 

Generalization across 
algorithms 

88.9% accuracy 
Lower performance 
compared to others 

[28] 
DNN-HLLs  vs. 

GMM-LLRs 

ASV spoof 

challenge 2015 

Scoring methods 

comparison 

EER of 12.24 for 

DNN-HLLs 
- 

[30] Deep-Sonar FoR 
Neuron behaviors in SR 

systems 

98.1% detection 

rate; 2% EER 

Affected by real-

world noise 

[31] CNN + RNN - 
Hybrid model for feature 

extraction 
94% success rate 

Limited artifact 

information 

[32] 

CRNN-Spoof, 

WIRE-Net- 

Spoof 

ASVspoof 
2019 

Convolutional 
RNNs 

CRNN-Spoof 

slightly better in t-

DCF and  EER 

Complexity 
management 

[33] 
LSTM, BiL-STM, 

Trans former 
- Alignment technique 

BiLSTM 99.7% 
accuracy; 0.43% 

EER 

Long training, 

potential overfitting 

[34] 
Transfer learn ing + 

ResNet-34 
- 

Addressing van ishing 
gradient 

Best EER and t-
DCF metrics 

Long training due to 
deep architecture 

[35] TCN, STN - 
Feature-based vs. image-

based 
TCN 92% accuracy; 

STN 80% 

TCN’s limita tion 

with STFT and 

MFCC 

[36] Various classi fiers FakeAVCeleb 
Unimodal detec tion 

methods 

Xception 76% 

accuracy; 

EfficientNet-B0 
50% 

Unimodal clas sifiers 

generally  insufficient 

[38] Residual CNN - 
MFCC, CQCC, STFT 

for CM score 

CM rate im proved 

by 71% and 75% 
Generalization  errors 

[39] 
ELTP-LFCC + 

DBiLSTM 
ASVspoof 2019 

ELTP-LFCC feature 
descrip tor 

Better with 
synthetic (0.74% 

EER) than 

imitated (33.28% 
EER) 

- 

[40] 
ASSERT (SENet 

+ ResNet) 
ASVspoof 2019 logspec, CQCC  features 

Over 17% 

improvements; 
zero t-DCF and 

EER 

High overfitting 

[41] 
SSAD 

(PASE+inspired) 
- 

Self-supervised DL 

method 
5.31% EER 

Lower performance 

compared to other 
DL methods 

 

III. PROPOSED  METHODOLOGY 

A. Data Preparation 

The diagram illustrates a method, which is categorized by 

a sequence of steps dealing with the management of a 

machine learning project including a systematic and 

structured plan. 

1) Exploratory Data Analysis (EDA) 

 At first, the stage takes data from the data set.  Later, 

exploratory data analysis (EDA) is performed with a goal of 

comprehending the prevailing pattern and variation among 

the data [42]. The EDA results are conducted further to make 

the data ready for processing such as that includes imperative 

duties of handling missing values and balancing the data [43]. 

After completing the data preparation, the project 

branches into two main machine learning tracks:  the first 

approach talks active learning using the classifiers such as 

MLP and RF[44], while the second follows more classical 

machine learning approach with the same classifiers[45]. In 

both scenarios, the training set is made up from 80% to the 

data set and the test is left out of the remaining 20% [46]. 
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Active learning focuses on the process of choosing up to 

the best subset of unlabeled data into multiple groups to be 

labelled for training [47], which in some cases can even aid 

in building foolproof models with fewer labeled samples 

[48]. As with the standard machine learning approach, which, 

involves building and evaluating the model based on well-

de[U+FB01] Ende training and test set. 

Both paths run towards the measurement stage where the 

trained models are evaluated by different metrics exemplified 

by accuracy, recall, precision, and f1 ratio [49]. These metrics 

gives estimation of model performance at large and one more 

thing about confusion matrix is starting from this one can 

analyze in detail how the model predict the different classes 

[50]. Systematic approach enables us to rehearse, grade, and 

develop machinery learning model, which eventually leads 

the way to its accomplishment. 

Fig. 1 shows the full process employed in our 

investigation. It should begin by taking the dataset through 

Exploratory Data Analysis (EDA) to explore basic patterns 

and ascertain the data characteristics. Here, down sampling 

and filling of missing values come under data preparation 

stage. train_test_split — to split the data into training and 

testing. Side by Sidetracks one active learning way or another 

traditional machine-learning two. Population side-by-side 

For both tracks MLP and RF classifiers are used. This stage 

is the evaluation of model algorithms using metrics like 

accuracy, recall,presicion,f1_score and confusion matrix. 

The dataset [51] was employed in this challenge as we 

participate in the ASVspoof Challenge 2019. This challenge, 

being organized with the primary aim to explore and establish  

better  ways  to prevent spoofing attacks during  automatic  

voice  identity  verification  (ASV),  acts  as  a  testbed for 

robust ASV systems. The workshop primary organizers were 

authors of Junichi Yamagishi and Massimiliano Todesco, and 

as well as others, who based called their session on a 

collection of previous workshops led at the INTERSPEECH 

conferences since 2013. The initial main task of the 

ASVspoof Challenge initiative was to introduce the issues of 

ASVs false denominations perception and create relevant 

countermeasures to this problem. 

The 2019 ASVspoof Challenge, following its 

predecessors in 2015 and 2017, is a comprehensive endeavor 

to address all three major types of spoofing attacks: TTS 

(text-to-speech), VC (voice- to-voice) and in addition to these 

attacks an unlimited number of other attacks can be 

categorized as attacks on speech. The 2019 exercise mirrored 

the 2017 edition by striking back at the attacks perpetrated by 

the unsupervised environment but moved from merely a 

detailed understanding of the problem to a more structured 

evaluation that included fashioning simulations of monitored 

settings. 

Additionally, it included updated and sophisticated TTS 

and VC spoofing techniques, reflecting the technological 

advancements made since the last challenge. 

Distinctive to this edition is the integration with the 

automatic speaker verification field through the incorporation 

of the tandem decision cost function (t-DCF) as an evaluation 

metric, emphasizing the interplay between ASV systems and 

countermeasures. 

The dataset for ASVspoof 2019 is based on the VCTK 

corpus, featuring voice recordings from 107 speakers.   It is 

split into two main partitions designed to evaluate 

countermeasures in both logical access (LA) and physical 

access (PA) scenarios. Each partition consists of three 

subsets: training, development, and evaluation, with 20, 10, 

and 48 speakers in each subset respectively. The subsets are 

exclusive in speaker identity, and the conditions for the 

original recordings are consistent throughout. 

 

Fig. 1. Proposed scheme 
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The training and development sets include ‘known 

attacks,’ created using identical TTS, VC, and replay 

configurations, whereas the evaluation set introduces 

‘unknown attacks’ generated with different methodologies, 

highlighting the necessity for countermeasures that are 

effective against new and unseen spoofing techniques. 

This set of data is not only critical for the current 

calibration and evaluation of anti-counterfeiting measures but 

is also considered an indicator of the strength of voice identity 

verification (ASV) systems against the continuing evolution 

of counterfeiting technologies [69]-[73]. More details and a 

comprehensive description of the dataset and its structures 

can be found in the ASVspoof 2019 evaluation plan. 

2) Preprocessing 

The implementation process begins with the data 

processing phase to ensure the integrity and quality of the 

data before it enters the machine learning production line. 

The ‘features.csv‘ and ‘labels.csv‘ files containing the raw 

data are uploaded to the working environment. Subsequently, 

the features within the ‘features.csv‘ file are optimized using 

a standard data normalization measure, which ensures that 

each feature contributes equally to the analysis and improves 

the convergence of the classifiers during training. At the same 

time, the labels from ‘labels.csv‘ are converted through hot 

encoding to convert the categorical labels into a binary 

graphic representation, which is suitable for classification 

algorithms. 

B.  Machine Learning Approaches 

1) Classical Machine Learning 

After preprocessing, the data is split into training and 

testing sets with an 80-20 ratio, using stratified sampling to 

maintain the distribution of classes from the original dataset. 

Two machine learning models are selected for the 

classification task: Random Forest and MLP. Both models 

are known for their superior performance on a variety of 

classification tasks. 

During each training process, each model undergoes 

careful training on the specific training set. Random Forest, 

known for its ensemble learning technique using multiple 

decision trees, aims to reduce overfitting and improve its 

generalization ability at the same time. 

2) Active Learning 

This paper utilizes active learning to increase the 

performance of models based on standard machine learning 

methods. Active learning [64]-[68] begins by training the 

model on a small, random subset of the data so that it can 

learn initial patterns. The fundamental principle behind active 

learning is to determine which samples have the largest 

prediction uncertainty of the model for query. These are the 

lesser confident examples and these types of samples help in 

learning most for model. 

The active learning process starts with training the 

classifiers on 2% of selected data points randomly. Every 

cycle through, the model selects which samples from the pool 

to teach next; specifically which data points that are less 

confident on. The model will eventually be retrained and fine-

tuned with the addition of these samples to your training set. 

This is done for certain number of iterations, each time we 

train the model to learn more effectively (or so that it can 

generalize well). 

In every loop iteration, have the classifiers get trained and 

retrained in each iteration focusing on a number of samples 

closest to uncertainty. Representatives of this class enable the 

model to generally upgrade his predictive performance by 

showing him an increasing level of difficulties. 

For both passive and active learning methodologies, 

metrics such as precision, recall, F1-score and accuracy gets 

calculated to evaluate the models. These metrics are essential 

to evaluate the performance of classifiers and compare how 

well traditional machine learning methods perform against 

active learning approaches. Also, the confusion matrix which 

comprises performance indices evaluation is generated by 

both of the approaches. The confusion matrix is a key to do 

deep dive about how our model can perform the 

classifications. 

3) Error Analysis and Model Robustness:   

To ensure the robustness of the models, error analysis was 

performed by examining the confusion matrix in detail. The 

confusion matrix helps to identify misclassifications, 

particularly the distribution of false positives and false 

negatives across classes. In the context of spoofing detection, 

false negatives (i.e., misclassifying a spoof as genuine) are 

particularly critical as they directly impact the security of 

ASV systems. By analyzing these errors, we can better 

understand the limitations of the models and identify areas 

for improvement. Furthermore, stratified k-fold cross-

validation was employed to assess model performance and 

minimize bias introduced by data splitting. This technique 

ensures that each fold maintains the original class 

distribution, thereby reducing the risk of overfitting and 

providing a more reliable evaluation of the models. 

4) Justification for Model Selection:   

Random Forest (RF) was chosen due to its ensemble 

learning capability, which combines multiple decision trees 

to reduce variance and improve generalization, making it 

well-suited for handling complex classification tasks like 

spoofing detection. Multi-Layer Perceptron (MLP) was 

selected for its strong performance in learning non-linear 

patterns and its flexibility in adjusting network layers and 

neurons to optimize model accuracy. Both models were 

compared to alternatives, such as Support Vector Machines 

(SVM) and k-Nearest Neighbors (k-NN), and were found to 

outperform these models in preliminary experiments, 

particularly in terms of handling large, high-dimensional 

datasets like ASVspoof 2019. 

5) Evaluation Metrics:   

Accuracy, precision, recall, and F1-score were chosen as 

the primary evaluation metrics due to their relevance in 

classification tasks with imbalanced datasets. Accuracy 

provides a general performance measure, while precision and 

recall offer insights into how well the models differentiate 

between genuine and spoofed audio. The F1-score balances 

precision and recall, making it particularly useful when the 
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cost of false positives and false negatives varies, as is the case 

in ASV systems. Additionally, the Equal Error Rate (EER) 

and Detection Cost Function (DCF) were included as 

secondary metrics, aligning with the ASVspoof Challenge's 

evaluation standards. 

IV. EXPERIMENT  RESULTS 

A. Machine Learning Before Active Learning 

In the experimental phase to evaluate machine learning 

performance before incorporating active learning, two 

classifiers were evaluated: RF (Random Forest) [52] or MLP 

(Multilayer Perceptron) [53]. At-random forest model 

demonstrated good performance by having 91% overall 

usefulness. The model behaved precisely for both classes, 

with the category 0 (has been likely recognized as “fake”) 

giving the precision and recall of 0.92 and F1-metric of 0.92. 

In the second, lesser way, Class 1(probably belonging to “real 

speech”) failed, since the precision was a bit lower, that is, 

0.91, and the recall was 0 The same pattern continued in other 

measurements where I used micro, macro, and weighted 

averages of precision, recall, and F1 score all of which were 

at approximately 0.91 thus demonstrating the model’s ability 

to perform well irrespective of the overall number of data 

points containing 100. 

Then, on the opposite side of the picture, MLP defeated 

the random forest algorithm in a 95.825% accuracy contest.  

It ended up with an approximate perfectly class zero precision 

of 0.96 and with the same recall ratio getting an F1 score of 

0.95. It was possible to detect 96% of the cases in Class 1 

with precision. The efficiency in recall was also high at 0.96, 

which resulted in F1 score precision of 0.95. Across the 

method, MLP demonstrated superior performance with 

micro, macro, and weighted averages of precision, recall, and 

F1 score [54] of 0.96 uniformly. This consistent result across 

100 samples indicates a robust classifier with excellent 

generalization capabilities for both categories, constituting a 

major breakthrough in the trial phase before active learning 

(Table II). 

- RF: Accuracy 91%, Precision 0.91-0.92, Recall 0.89-

0.92, F1-Score 0.90-0.92. 

- MLP: Accuracy 95.825%, Precision 0.96, Recall 0.96, 

F1-Score 0.96. 

TABLE II.  SUMMARY OF CLASSIFIER RESULTS BEFORE ACTIVE LEARNING 

 Accuracy Precision Recall 
F1-

Score 

Random 

Forest 
91% 0.91-0.92 

0.89-
0.92 

0.90-
0.92 

MLP 95.825% 0.96 0.96 0.96 

B. Machine Learning After Active Learning 

After applying active learning [55] techniques, we 

observed a significant improvement in the performance 

metrics for both classifiers used in the study (Table III). The 

random forest classifier [74]-[78] achieved an accuracy of 

94%, reflecting a significant improvement over the phase 

before active learning. Precision increased by this percentage 

with a uniform distribution across precision and recall for 

both classes, with Class 0 and Class 1 each achieving a 

precision and recall of 0.94, resulting in an F1 score of 0.94. 

This consistent performance across the two classes, shown in 

the macro and weighted averages of 0.94, indicates that the 

active learning phase helped the random forest model 

improve decision making, resulting in more accurate 

classifications of the percentile samples in the data set. 

Similarly, the accuracy of the MLP classifier remained high 

at 96% after active learning. Nevertheless, the product had 

some alterations in precision and recall values, Class 1 

showing a slight edge with precision of 0.95, while Class 0 

had recalled 0.97 and precision of 0.96. While both courses 

finished with f1-score of 0.95, the result proves the fact that 

after active learning the model not only takes the stable 

performance but keeps high performance. The macro and 

weighted averages of precision, recall, and F1 score that 

steadily showed 0.96 adequately depicts the MLP classifier’s 

capability to utilize the active learning process to its 

advantage for maintaining its excellent predictive influence. 

Therefore, the active learning application was affecting 

positively on both models judging by the outcomes with high 

precision and recall. recall metrics. 

- RF: Accuracy 94%, Precision 0.94, Recall 0.94, F1-Score 

0.94. 

- MLP: Accuracy 96%, Precision 0.96, Recall 0.96, F1-

Score 0.96. 

TABLE III.  SUMMARY OF CLASSIFIER RESULTS AFTER ACTIVE LEARNING 

 Accuracy Precision Recall 
F1-

Score 

Random 

Forest 
94% 0.94 0.94 0.94 

MLP 96% 0.96 0.96 0.96 

 

C. Comparison Results 

In this part, the tables of the performances of machine 

learning classifiers in the first and second steps are provided 

below. The observed improvements were validated by 

performing statistical significance tests. The results of the 

evaluation of the active learning models will be displayed 

using key parameters to see the generalities in a way error 

rate [56] changes after this method is implemented. 

An interactive classifier was tried next, and this was the 

turning point in our learning. In Fig. 3 There was an 

improvement from the baseline Random Forest classifier 

efficiency of 91% to 94% which also influenced the 

precision, recall and F1 score to be 0.94 as well. 

In Fig. 2, we observe the classification outcomes for the 

Random Forest (RF) model before the application of active 

learning. The pie chart indicates that the majority of 

predictions fall into the correct categories, with True 

Positives [57] accounting for 49% and True Negatives for 

42% of the outcomes. This suggests that the model is quite 

accurate in its predictions. False Negatives [58] make up 5% 

of the outcomes, indicating instances where the model 

incorrectly predicts the negative class. False Positives [59] 

are the smallest group, at 4%, representing instances where 

the model incorrectly predicts the positive class.  Overall, the 

chart suggests a well-performing model with a higher 

tendency to correctly predict the negative class than the 

positive class. 
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Fig. 4 shows the classification outcomes for the same RF 

model, but after active learning has been applied. There is a 

slight improvement in the distribution of the classification 

outcomes. True Positives now constitute a slightly larger 

proportion of the outcomes at 50%, while True Negatives also 

increase marginally to 44%. False Positives and False 

Negatives have both decreased to 3% each, which indicates 

that the model’s predictive accuracy has improved after the 

application of active learning. The reduction in False 

Negatives and False Positives demonstrates that active 

learning has contributed to the model’s ability to generalize 

better and make predictions that are more accurate across 

both classes. 

The MLP classifier [60] saw an increase in accuracy from 

95% to 96% in Fig. 5, with corresponding enhancements in 

precision, recall, and F1-score, all rising to a consistent 0.96. 

 

 

 

Fig. 2. The Random Forest (RF) model before the application of active learning 

 

Fig. 3. RF before and after active learning 
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Fig. 4. The Random Forest (RF) model after the application of active learning 

 

Fig. 5. MLP before and after active learning 

Fig. 6 depicts the classification outcomes for a Multilayer 

Perceptron (MLP) model before the application of active 

learning. In the pie chart, we see a dominant proportion of 

correct predictions, with True Positives and True Negatives 

comprising 52% and 44% of the outcomes, respectively. 

These two segments make up the bulk of the chart, indicating 

a high rate of accurate classifications by the model. False 

Positives are relatively minimal, constituting only 1% of the 

outcomes, while False Negatives make up a slightly larger 

segment at 3%. This distribution of classification out- 

comes highlights the MLP’s strong performance in 

correctly identifying both positive and negative classes, 

with a lower rate of false classifications. 

Fig. 7 illustrates the classification outcomes for the MLP 

after active learning has been integrated into the training 

process. There’s a noticeable improvement in True Positive 

outcomes, which have increased to 52%, maintaining the 

highest share of the outcomes. True Negatives [61-63] also 

see a slight increase to 44%, further signifying an 

enhancement in the model’s predictive ability. Meanwhile, 

the proportions of both False Positives and False Negatives 

remain low at 3% and 1%, respectively. The decrease in False 
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Negatives suggests that active learning has had a positive 

impact, leading to a reduction in the instances where the 

model incorrectly predicts the negative class. Accordingly, 

this progress means that the act of ML has basically tuned the 

MLP to provide more accurate and reliable advancements. 

Tests of statistical significance (e.g., t-tests) compared 

performance metrics before and after active learning. Finally, 

the results also showed that improvements in accuracy, 

precision, recall and F1-score for both RF and MLP 

classifiers is statistically significant (p < 0.05), confirming to 

a good degree that active learning improves model 

performance. 

Active learning was found to be effective in improving 

classification performance, particularly in situations where 

the model was able to pay attention to a subset of data through 

a constructive guided process taking input from uncertain 

data points. Such findings demonstrate that the random forest 

classifier, which is advantageous over the SVM especially 

through training, can still perform better and be more useful 

to tasks automatic speaker verification. 

 

Fig. 6. The MLP model before the application of active learning  

 

Fig. 7. The MLP model after active learning 
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D. Discussion 

Upon applying active learning, a detailed error analysis 

was conducted to assess the impact on model performance. 

The confusion matrices before and after active learning 

(shown in Fig. 2 and Fig. 4 for RF, and Fig. 6 and Fig. 7 for 

MLP) highlight a significant reduction in both false positives 

and false negatives. For instance, the Random Forest 

classifier showed a decrease in false negatives from 5% to 

3%, and false positives from 4% to 3% after active learning 

was implemented. This reduction indicates that the model is 

now better at correctly identifying both genuine and spoofed 

audio samples. 

The observed improvements were statistically validated 

using paired t-tests. The results confirmed that the 

enhancements in accuracy, precision, recall, and F1-score are 

statistically significant (p < 0.05), indicating that the 

improvements are not due to random chance but rather the 

direct effect of the active learning process. This statistical 

significance further supports the robustness of the models in 

real-world scenarios, where the accurate detection of 

spoofing is critical. 

To provide a benchmark for the performance of our 

models, we compared the results with other classifiers such 

as Support Vector Machines (SVM) and Convolutional 

Neural Networks (CNN). Although SVM achieved a 

precision of 0.93, it struggled with recall, achieving only 

0.88, which is lower than both RF and MLP post-active 

learning. On the other hand, CNN, while achieving high 

accuracy, required significantly more computational 

resources and exhibited a tendency to overfit on the 

ASVspoof 2019 dataset. This comparison highlights the 

effectiveness of integrating active learning with RF and MLP, 

offering a balance between performance and computational 

efficiency. 

The improvements seen in the RF and MLP classifiers are 

particularly relevant for deployment in real-world ASV 

systems. The balanced enhancement across precision, recall, 

and F1-score after active learning suggests that these models 

can reliably detect spoofing attempts while minimizing false 

alarms. This is crucial in high-stakes environments, such as 

financial systems or secure communications, where the cost 

of false negatives (missed spoofing attempts) could be 

substantial. The active learning approach, by continuously 

refining the model with the most uncertain samples, ensures 

that the system remains robust against evolving spoofing 

techniques. 

Table IV presents a comparative analysis of various deep 

learning models and their performance metrics in the context 

of detecting spoofing attacks. The table highlights the 

accuracy and limitations of several existing approaches, 

including CNN with scatter plot images, TCN (Feature-

based), CNN combined with RNN, and CNN versus 

BiLSTM. Notably, the accuracy of these models ranges from 

88.9% to 94.33%, with each approach facing specific 

challenges, such as lower performance, limitations with 

feature extraction techniques, or the need for extensive 

preprocessing. 

In contrast, the proposed work, which employs a 

Multilayer Perceptron (MLP) enhanced with active learning, 

demonstrates a superior accuracy of 96%. This improvement 

is attributed to the effective generalization capabilities of the 

MLP model, which, when combined with active learning, 

achieves high precision and recall rates. The table 

underscores the effectiveness of the proposed methodology 

in outperforming existing models, making it a more robust 

and reliable solution for real-world applications in automatic 

speaker verification systems. 

TABLE IV.  COMPARISON OF RELATED WORK AND PROPOSED WORK 

Ref 
Approach/Mo

del 

Performan

ce Metrics 

Limitations/Observati

ons 

[26] 
CNN (scatter 

plot images) 

88.9% 

Accuracy 

Lower performance 

compared to others 

[35] 
TCN (Feature-

based) 

92% 

Accuracy 

Limitation with STFT 

and MFCC 

[31] CNN + RNN 

94% 

Success 

Rate 

Limited artifact 
information 

[24] 
CNN vs. 

BiLSTM 

94.33% 

Accuracy 

CNN requires audio 

preprocessing 

Propose

d Work 

Multilayer 

Perceptron 

(MLP) + 

Active 

Learning 

96% 

Accuracy 

Excellent 

generalization, high 

precision, and recall 

 

V. CONCLUSION 

This study effectively demonstrates the significant impact 

of active learning on improving machine learning classifiers 

for spoofing detection in Automatic Speaker Verification 

(ASV) systems. Specifically, the Random Forest model 

showed a marked increase in accuracy, precision, recall, and 

F1-scores, narrowing the performance gap with the 

Multilayer Perceptron (MLP) model. After applying active 

learning, the Random Forest model achieved an accuracy of 

94%, compared to its initial 91%, while the MLP model 

further improved to 96%. These quantitative results 

underscore the practical benefits of integrating active 

learning, particularly in enhancing model robustness and 

accuracy in detecting spoofed audio. 

However, the study is not without limitations. One of the 

primary challenges encountered was the potential for 

overfitting, especially with the iterative nature of active 

learning, which requires careful tuning and monitoring. 

Additionally, the computational resources needed for active 

learning, particularly with large datasets like ASVspoof 

2019, are substantial and may limit the scalability of the 

approach. Addressing these issues in future research will be 

crucial for developing more efficient and generalizable 

models. 

Future research should focus on advancing active learning 

techniques, such as exploring more sophisticated uncertainty 

sampling methods or combining active learning with other 

machine learning paradigms, like transfer learning or 

ensemble methods. Moreover, real-world validation of these 

models in varied and dynamic environments will be essential 

to confirm their efficacy in combating emerging threats. 
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The findings of this study have significant implications 

for real-world security, particularly in enhancing the 

robustness of ASV systems against increasingly sophisticated 

spoofing attacks. By refining model predictions and 

improving detection accuracy, this research contributes to the 

broader field of ASV system security, providing a foundation 

for future developments. 

In conclusion, while this study contributes valuable 

insights into the application of active learning for spoofing 

detection, it also opens the door for further exploration, 

particularly in optimizing these methods for broader and 

more practical applications. By comparing and aligning these 

results with existing literature, it is clear that active learning 

offers a promising path forward, not only in improving 

classifier performance but also in enhancing the overall 

security and reliability of ASV systems. 
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