
Journal of Robotics and Control (JRC) 

Volume 5, Issue 6, 2024 

ISSN: 2715-5072, DOI: 10.18196/jrc.v5i6.23505 1736 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

Formation Control of Multiple Unmanned Aerial 

Vehicle Systems using Integral Reinforcement 

Learning 

Ngoc Trung Dang 1*
, Quynh Nga Duong 2 

1, 2 Faculty of Electrical Engineering, Thai Nguyen University of Technology, Thai Nguyen, Vietnam 

Email: 1 trungcsktd@tnut.edu.vn, 2 duongquynhngaktd@tnut.edu.vn 

*Corresponding Author 

 
Abstract—Formation control of Unmanned Aerial Vehicles 

(UAVs), especially quadrotors, has many practical applications 

in contour mapping, transporting, search and rescue. This 

article solves the formation tracking requirement of a group of 

multiple UAVs by formation control design in outer loop and 

integral Reinforcement Learning (RL) algorithms in position 

sub-system. First, we present the formation tracking control 

structure, which uses a cascade description to account for the 

model separation of each UAV. Second, based on value function 

of inner model, a modified iteration algorithm is given to obtain 

the optimal controller in the presence of discount factor, which 

is necessary to employ due to the finite requirement of infinite 

horizon based cost function. Third, the integral RL control is 

developed to handle dynamic uncertainties of attitude sub-

systems in formation UAV control scheme with a discount factor 

to be employed in infinite horizon based cost function. 

Specifically, the advantage of the proposed control is pointed out 

in not only formation tracking problem but also in the 

optimality effectiveness. Finally, the simulation results are 

conducted to validate the proposed formation tracking control 

of a group of multiple UAV system. 

Keywords—Integral Reinforcement Learning (RL); 

Unmanned Aerial Vehicles (UAVs); Formation Control; 

Approximate/Adaptive Dynamic Programming (ADP); Model-

Free Based Control. 

I. INTRODUCTION 

The formation tracking control of Unmanned Aerial 

Vehicles (UAVs) has been investigated in recent time with 

many applications, such as in transportation, agriculture, 

military, etc. [1]-[8]. In [1], according to conventional sliding 

mode control (SMC), the disturbance in UAV was handled 

by the term of sign function to obtain the finite time 

performance. Moreover, the obstacle of finite time 

convergence has been carried out by the existence of 

exponential function in control scheme [1]. The extension of 

handling finite-time control introduced in [1] was considered 

with event-triggered mechanism (ETM) [2]. In order to 

improve the control performance of each UAV, the optimal 

control law has been presented in [3] with the Model-free 

solution, which was developed by integral RL technique and 

data collection method. Additionally, to address the obstacle 

of input saturation, the back correction technique was 

discussed by establishing the dynamic equation of error 

between the actual control input and computational control 

input to achieve the stability of closed control system. For 

handling the dynamic uncertainty, Neural Network method 

has been applied to combine with exponential function to 

obtain the Fixed-Time Cooperative Control design for 

uncertain systems [5]. The consideration of formation control 

was extended for the case of heterogeneous multi-agent 

systems with UAV and USV [6]. As we have all known, it is 

difficult to obtain the state variables due to the measurement 

technique and physical property. The authors in [7] 

developed disturbance observer (DO) to improve the 

formation tracking control of multiple UAVs. By employing 

state observer, output formation tracking control of 

heterogeneous multi-agent systems was implemented with 

the optimality [8]. On the other hand, optimal control 

problem has been discussed in connection to classical 

consideration of NN and sliding mode control [9]. The 

constraint problem was mentioned in formation tracking 

control with an UAV team [10]. However, the above 

references of formation control mainly focus on 

implementing the Lyapunov control method, which only 

guarantee the tracking problem. Moreover, this approach met 

the difficulties of actuator saturation and expanding the 

control performance. The optimality consideration with two 

main directions of optimization and optimal control is able to 

handle actuator saturation by transforming the constraint in 

optimal control into optimization, which can be obtained the 

general solutions. It follows that the optimal control design 

can be known as the significant approach to satisfy the 

tracking problem in the presence of constraints in UAV. 

Moreover, the optimal control is able to achieve not only 

formation tracking problem in an UAV team but also 

minimization of a given cost function, which has not been 

mentioned in the previous UAV researches [22]-[80].  

Reinforcement Learning (RL) control (or 

Approximate/Adaptive Dynamic Programming (ADP)) has 

been developed with numerous results [11]-[21]. In [11], 

authors proposed the appropriate constraint set to satisfy 

tracking problem. In RL control problem, as we have all 

known, due to the challenge of solving Hamilton-Jacobi-

Bellman for nonlinear system and Riccati for linear model, 

learning methods was developed to solve for finding the 

roots. In [12] and [14], the disturbance influence was 

integrated into optimal control problem to solve the HJB, 

Ricatti equations. Authors in [13] developed the model-based 

RL control by using two Neural Networks, which are used to 

approximate optimal value function and control policy [13]. 

The learning process was described by obtaining the training 
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method of weights based on the minimization of square of 

error between computed Hamilton function and actual 

Hamilton function [13]. Additionally, Data-driven technique 

was improved to handle the actuator saturation and nonlinear 

model [15].  Nonzero‐sum tracking games has been known 

as the establishment was considered with many cost function 

[16]. Authors in [16] pointed out the Event‐triggered neural 

experience replay learning, which is able to relax the 

Persistence of excitation (PE) condition. The work in [17] 

address the time-varying systems by lifting method and 

presenting two On-Policy and Off- Policy iterations. 

Additionally, the Actor/Critic method for multi-agent 

systems introduced in [18] was the extension of the work in 

[13]. The work of [19][20] develops the learning technique 

for linear systems with disturbance to be integrated in [11]. 

The formation tracking problem has been handled in a group 

of multiple Surface Vessels with cascade controller [21]. To 

my best knowledge, the development of optimal control for 

multi-agent systems with fully dynamic model has not been 

much done yet [22]-[80]. The research contribution is 

described as follows. This paper focuses on formation control 

structure of a team of multiple UAVs with integral RL 

method and the consideration of dynamic model in each UAV 

to achieve both the formation tracking control effectiveness 

and minimization of a given cost function in model-free 

situation.             

The rest of the paper is structured as follows. In Section 

II, we briefly introduce the algebraic graph theory and 

attitude models of UAVs. In Section III, we further develop 

the RL control for nonlinear systems with a discount factor, 

the formation control of outer loop and a model-free RL 

algorithms is developed for attitude sub-system. In Section 

IV, the proposed algorithms are illustrated with a group of 

UAV control system to demonstrate their performance. This 

article concludes with a summary of the findings in Section 

V. 

II. PRELIMINARIES AND PROBLEM STATEMENTS 

In this section, the basic theories are mentioned to 

describe the research problem, including graph theory, 

mathematical model of each quadrotor and control objective.  

A. Algebraic Graph Theory 

In this paper, the multiple UAVs are depicted by a 

connected graph 𝐺 = (𝑉,℧, 𝐴), where 𝑉 = (𝜐1, 𝜐2, . . . , 𝜐𝑛) is 

the set of node, in which each node is used to describe an 

UAV. Matrix 𝐴 = [𝑎𝑖𝑗] denotes the adjacency matrix, ℧ ⊆

𝑉 × 𝑉 defines the edge set. If the existence of a connection 

from node 𝜐𝑗 to node 𝜐𝑖, then the edge 𝜐𝑖𝑗 = (𝜐𝑖 , 𝜐𝑗) ∈ ℧, and 

node 𝜐𝑗 is known as a neighbor of node 𝜐𝑖. Additionally, we 

obtain the neighbor set of 𝜐𝑖 is defined by 𝑁𝑖 = {𝜐𝑗: (𝜐𝑖 , 𝜐𝑗) ∈

℧}. The adjacency matrix 𝐴 = [𝑎𝑖𝑗]  is defined as 𝑎𝑖𝑗 = 1 if 

𝜐𝑖𝑗 = (𝜐𝑖 , 𝜐𝑗) ∈ ℧, and 𝑎𝑖𝑗 = 0 if 𝜐𝑖𝑗 = (𝜐𝑖 , 𝜐𝑗) ∉ ℧. The 

graph 𝐺 = (𝑉,℧, 𝐴)is known as undirected if and only if 

𝑎𝑖𝑗 = 𝑎𝑗𝑖 . An undirected graph is called as connected if the 

existence of a path between an abitrary pair 

(𝜐𝑖 , 𝜐𝑖1), (𝜐𝑖1 , 𝜐𝑖2), . . . , (𝜐𝑖𝑘 , 𝜐𝑗). Consider the Graph 𝐺 =

(𝑉,℧, 𝐴), it leads to the Laplacian matrix to be known as 

𝐿𝑛×𝑛 = 𝐷 − 𝐴, where 𝐷 = 𝑑𝑖𝑎𝑔{∑ 𝑎1𝑘, . . . ,𝑛
𝑘=1 ∑ 𝑎𝑛𝑘

𝑛
𝑘=1 }. In 

the formation control design as described in next sections, the 

neighbor set 𝑁𝑖 = {𝜐𝑗 : (𝜐𝑖 , 𝜐𝑗) ∈ ℧} plays an important role.  

B. Mathematical Model of each UAV 

Fig. 1 depicts the kinematics and dynamics of an UAV 

with two reference frames to be considered as a Body-fixed 

frame 𝐵 = {𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵} and a earth-fixed inertial frame 𝐸 =
{𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸}. In Fig. 1, each UAV is steered via four propeller 

force 𝐹1, 𝐹2, 𝐹3, 𝐹4. 

 

Fig. 1. UAV model and two reference frames [2] 

In the view of [1], the positions vector of each UAV and 

the angels vector are considered under the earth-fixed inertial 

frame, the Euler angles Roll-Pitch-Yaw, which are bounded 

as −𝜋/2 < 𝜙 < 𝜋/2, −𝜋/2 < 𝜃 < 𝜋/2 and −𝜋 < 𝜓 < 𝜋. 

This is an important assumption for formation control design. 

The following rotation matrix is employed to describe UAV 

model: 

𝑅 =  [

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃

𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑐𝜃

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑐𝜃

]  (1) 

The relation between the angular velocities vector given 

by 𝜔 = (𝑝, 𝑞, 𝑟)𝑇, and the Euler angles rate 𝛺̇ = (𝜙̇, 𝜃̇, 𝜓̇)𝑇 

as: 

𝜔 = (

1 0 −𝑠𝜃

0 𝑐𝜙 𝑠𝜙𝑐𝜃

0 −𝑠𝜙 𝑐𝜙𝑐𝜃

) 𝛺̇  (2) 

In the light of [1], the dynamics model of each quadrotor 

can be written as: 

𝑚𝑟̈𝑖 = 𝑅𝑖𝑓𝑖

𝐽𝛺̈𝑖 = 𝐶(𝛺𝑖,𝛺̇𝑖)𝛺̇𝑖 + 𝜏𝑖
 (3) 

The control objective is to design a formation control for 

multiple quadrotors to guarantee both the tracking problem, 

which is known as 𝐿𝑖𝑚
𝑡→∞

𝑝𝑖 = 𝑝𝑖
∗,  and minimize the discount 

factor-based cost function (5). Moreover, it can be seen that 

in the proposed control system (Fig. 2), the optimal control 

law is developed for rotational sub-systems in Eqn. (3) by 

integral reinforcement learning and the position control law 

plays the important role of outer loop controller.  

Remark 1. Unlike the conventional formation tracking 

control objective only consider the convergence of tracking 

error, the control objective in this article considers both the 

trajectory tracking performance and the minimization of the 

given performance index. Moreover, the formation tracking 

control problem is also necessary to be guaranteed in outer 

control loop. 
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Fig. 2. The formation control schematic of multiple UAV [2]

III. FORMATION CONTROL DESIGN 

In this part, a formation control structure illustrated in Fig. 

2 is presented with two control loops, including Position 

Controller and Attitude Controller after considering each 

UAV as two sub-systems (see Eqn. (3)) The Position 

Controller is designed to satisfy the formation tracking 

problem and its outputs are the desired Euler angles 

(𝜙𝑑𝑒𝑠 , 𝜃𝑑𝑒𝑠, 𝜓𝑑𝑒𝑠)𝑇. The Attitude Control Design plays the 

role of not only tracking problem but also minimizing the cost 

function. Moreover, it should be noted that the optimal 

control problem of inner loop control is solved by integral RL 

strategy to handle the disadvantage of complete uncertainty, 

which has not been studied in conventional methods. 

A. RL Control Law with a Discount Factor 

The optimal control design is studied for the nonlinear 

continuous system: 

𝑑

𝑑𝑡
𝜁 = 𝐹(𝜁) + 𝐺(𝜁)𝑢(𝑡)  (4) 

with the following infinite horizon performance index in 

the presence of a positive discount factor 𝜆 > 0. 

𝑉(𝜁(𝑡), 𝑢(𝑡)) = ∫ 𝑒−𝜆(𝑠−𝑡)∞

𝑡
𝑈(𝜁(𝑠), 𝑢(𝑠))𝑑𝑠,  (5) 

where 𝑈(𝜁, 𝑢(𝑠)) ≜ 𝜁𝑇𝑄𝜁 + (𝑢(𝑠))𝑇𝑅𝑢(𝑠), 𝑄 and 𝑅 ∈
ℝ𝑛×𝑛 are two positive-definite symmetric constant matrices. 

It can be seen that the addition of discount factor in cost 

function (8) is to guarantee the finite value of the cost 

function as time converges to infinity. The Bellman function 

obtained from Dynamic programming is described as 

follows: 

𝑉∗(𝜁(𝑡)) = 𝑚𝑖𝑛
𝑢(𝜁(𝑡))∈𝛶(𝑈)

𝑉(𝜁(𝑡), 𝑢(𝜁))  (6) 

In the light of [21], it follows that: 

𝑈(𝜁(𝑡), 𝑢∗(𝑡)) − 𝜆𝑉∗((𝜁(𝑡)) +
𝜕𝑉∗

𝜕𝜁
(𝐹(𝜁) + 𝐺(𝜁)𝑢∗) = 0  (7) 

and the following optimization problem: 

𝑉∗(𝜁(𝑡)) = 𝑚𝑖𝑛
𝑢(𝜁)∈𝛶(𝑈)

(∫ 𝑈(𝜁, 𝑢(𝑡))𝑑𝑠
𝑡+𝛥

𝑡
+ 𝑒−𝜆𝛥𝑉∗((𝜁(𝑡 + 𝛥)))  (8) 

Therefore, it implies the following modified optimization 

problem: 

𝑚𝑖𝑛
𝑢(𝑡)(𝜁)∈𝛶(𝑈)

[ 𝑈(𝜁, 𝑢(𝑡)) − 𝜆𝑉∗(𝜁) +
𝜕𝑉∗

𝜕𝜁
(𝐹(𝜁) +

𝐺(𝜁)𝑢(𝑡))] = 0  
(9) 

We define the modified Hamiltonian function being 

associated with a discount factor 𝜆 > 0 as: 

𝐻(𝜁, 𝑢(𝑡), 𝛻𝑉, 𝑉) = 𝜁𝑇𝑄𝜁 + (𝑢(𝑡))𝑇𝑅 𝑢(𝑡) −
𝜆𝑉(𝜁) + ∇𝑉𝑇(𝜁)(𝐹(𝜁) + 𝐺(𝜁)𝑢(𝜁))  

(10) 

Then, it follows that: 

𝑢∗(𝜁) = argmin
𝑢∈𝛶(𝛺)

[𝐻(𝜁, 𝑢(𝑡), 𝛻𝑉∗(𝜁))] =

−
1

2
𝑅−1𝐺𝑇(𝜁)𝛻𝑉∗(𝜁)  

(11) 

and the partial derivative equation (PDE) is achieved as: 

𝐻∗(𝜁, 𝑢∗, 𝛻𝑉∗, 𝑉∗) = 𝜁𝑇𝑄𝜁 −
1

4
𝛻𝑉∗𝑇(𝜁)𝐺(𝜁)𝑅−1𝐺𝑇(𝜁)𝛻𝑉∗(𝜁 − 𝜆𝑉∗(𝜁) +

𝛻𝑉∗𝑇(𝜁)𝐹(𝜁) = 0  

(12) 

However, it is impossible to analytically solve the PDE 

(12) to find the Bellman function from the optimal control 

signal 𝑢∗(𝜁). Therefore, the proposed algorithm is considered 

to solve in Sections C. 

B. Formation Control Scheme 

In this part, to develop the formation control design, the 

outer model of UAV can be described by (13). 

{
𝑟̇𝑖 = 𝑣𝑖

𝑣̇𝑖 = 𝑢𝑖 + 𝑑𝑢𝑖
  (13) 

where 𝑟𝑖 ∈ 𝑅𝑑 denotes the agent position, 𝑣𝑖 , 𝑢𝑖 are the 

velocity and control input of each agent, respectively. The 

disturbance 𝑑𝑢𝑖 satisfies that ‖𝑑𝑢𝑖‖ ≤ 𝐷𝑢𝑖 . 

The formation control objective is to find the control 

scheme to satisfy that 𝐿𝑖𝑚
𝑡→∞

𝑝𝑖 = 𝑝𝑖
∗. It can be seen that, the 

following control signal is guaranteed the convergence (14). 

𝑝̇𝑖 = 𝑢𝑖 = 𝑘𝑝(𝑝𝑖
∗ − 𝑝𝑖), 𝑖 = 1, . . . , 𝑛  (14) 

where 𝑘𝑝 is a positive number. 

Based on graph theory of describing the connectivity in 

quadrotors team, we can improve the control performance of 
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formation control design with the traditional control input to 

be modified as: 

𝑝̇𝑖 = 𝑢𝑖 = 𝑘𝑝(𝑝𝑖
∗ − 𝑝𝑖) + ∑ 𝑎ij((𝑝𝑗

∗ − 𝑝𝑗) −𝑗∈𝑁𝑖

(𝑝𝑖
∗ − 𝑝𝑖)), 𝑖 = 1, . . . , 𝑛   

(15) 

where 𝑎ij > 0 is the weight number to be connected to 

(𝑣𝑗 , 𝑣𝑖) ∈ 𝐸(𝐺). Therefore, the dynamic of closed system is 

expressed as: 

𝑝̇ = 𝑘𝑝(𝑝∗ − 𝑝) − (ℒ ⊗ 𝐼𝑑)(𝑝∗ − 𝑝)   (16) 

where 𝑝 = 𝑣𝑒𝑐(𝑝1, . . . 𝑝𝑛), 𝑝∗ = 𝑣𝑒𝑐(𝑝1
∗, . . . , 𝑝𝑛

∗ ) and 𝑒𝑝 ≜

𝑝∗ − 𝑝. 

After obtaining the control signal in the control structure 

(Fig. 1), the reference of the attitude control scheme can be 

obtained 𝑢𝑟 = (𝑢𝑟𝑛, 𝑢𝑟𝑒, 𝑢𝑟𝑑). According to [1], the desired 

yaw angle 𝜓𝑑𝑒𝑠 can be chosen as zero and 𝜓𝑑𝑒𝑠 , 𝜃𝑑𝑒𝑠 can be 

easily solved as follows: 

𝑢𝑟𝑝 = √𝑢𝑟𝑛
2 + 𝑢𝑟𝑒

2 + (𝑢𝑟𝑑 + 𝑢𝑟0
)2, 𝜓𝑑𝑒𝑠 = 0, 

𝜙𝑑𝑒𝑠 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑢𝑟𝑛 sin(𝜓𝑑𝑒𝑠) − 𝑢𝑟𝑒 cos(𝜓𝑑𝑒𝑠)

𝑢𝑟𝑝
) , 

𝜃𝑑𝑒𝑠 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑢𝑟𝑛 cos(𝜓𝑑𝑒𝑠) + 𝑢𝑟𝑒 sin(𝜓𝑑𝑒𝑠)

𝑢𝑟𝑑 + 𝑢𝑟0

) 

(17) 

C. IRL for Attitude Control Design 

After the desired attitudes are obtained in Section B, we 

continue to design the attitude controller in Fig. 1 for 

satisfying the optimal control problem. The model in Eq. (3) 

can be written as: 

𝛺̈ = 𝐽−1𝑇 − 𝐽−1𝐶(𝛺,𝛺̇)𝛺̇ (18) 

According to the states vector 𝑥𝛺 = [𝜙, 𝜙̇, 𝜃, 𝜃̇, 𝜓, 𝜓̇]𝑇, 

and the model in Eq. (3), we can obtain the following attitude 

model as: 

𝑋̇𝛺𝑑 = [
𝑒̇𝛺

𝑥̇𝛺𝑑
] = [

𝐹𝛺 𝐹𝛺 − 𝐹𝛺𝑑

06,6 𝐹𝛺𝑑
] 𝑋𝛺𝑑 + [

𝐺𝛺

06,3
] 𝑢𝛺  (19) 

Therefore, the attitude control design in Fig. 2 can be 

developed in the following algorithm (Fig. 3). 

Algorithm 1: IRL Control scheme 

Step 1 (Initialization): Selecting stabilizing control policy 

and the disturbance term 𝑢𝛺𝑒(𝑡), the threshold to satisfy the 

PE condition, and implementing the data collection.  

Step 2 (Policy Evaluation): For each control signal 

𝑢𝛺
𝑖 (𝑋𝛺), solve simultaneously the  𝑉𝛺

𝑖+1(𝑋𝛺) and 𝑢𝛺
𝑖+1(𝑋𝛺) 

by the equation (20).  

𝑉𝛺
𝑖+1(𝑋𝛺(𝑡 + 𝛿𝑡)) − 𝑉𝛺

𝑖+1(𝑋𝛺(𝑡)) =

− ∫ (𝑋𝛺(𝜏)𝑇𝑄𝛺𝑋𝛺(𝜏) +
𝑡+𝛿𝑡

𝑡

(𝑢𝛺
𝑖 (𝑋𝛺(𝜏)))

𝑇
𝑅𝛺𝑢𝛺

𝑖 (𝑋𝛺(𝜏))) 𝑑𝜏 +

∫ 𝜆
𝑡+𝛿𝑡

𝑡
𝑉𝛺

𝑖+1(𝑋𝛺(𝜏))𝑑𝜏 +

2 ∫ (𝑢𝛺
𝑖+1(𝑋𝛺(𝜏)))

𝑇𝑡+𝛿𝑡

𝑡
𝑅𝛺𝑢𝛺

𝑖 (𝑋𝛺(𝜏))𝑑𝜏 −

2 ∫ (𝑢𝛺
𝑖+1(𝑋𝛺(𝜏)))

𝑇𝑡+𝛿𝑡

𝑡
𝑅𝛺(𝑢𝛺

0 (𝜏) + 𝑢𝛺𝑒)𝑑𝜏   

(20) 

Step 3 (Policy Improvement): Update the control policy 

𝑢𝛺
𝑖 (𝑋𝛺) = 𝑢𝛺

𝑖+1(𝑋𝛺), 𝑖 → (𝑖 + 1)  and come back to Step 2 

until ‖𝑢𝑝
𝑖+1 − 𝑢𝑝

𝑖 ‖ < 𝜖𝑝. 

Start

Initialization:

Choosing

0 ( ), ( ),eu X u t   

Policy Evaluation

1 1( ), ( )i iV X u X+ +

   

Solving simultaneously the

by the equation (24) or (28)

Policy Improvement

Update the control policy

1( ) ( ), ( 1)i iu X u X i i+

   = → +

1i i

p p pu u+ − ‖ ‖

Stop

Yes

No

 
Fig. 3. Flowchart of Algorithm 1 

In this part, it can be seen that the learning time is 

considered from the initial time to the time of completing RL 

Algorithms 1.  Furthermore, under the dynamic uncertainties 

in models (3), the proposed RL Algorithms 1 are 

implemented with data collection in the practical system, 

which are utilized to solve the Eq. (15)−(20). However, it is 

worth noting that the existence of root in Eq. (15)−(20), 

(Algorithms 1), requires the Persistence of Excitation (PE) 

condition as shown in [10][11]. To guarantee the PE 

condition in Alg.1, it is necessary to insert the disturbance 

term 𝑢𝛺𝑒(𝑡) into the input signal at each step of Alg. 1. The 

computational efficiency is absolutely depended on collected 

data, which are implemented in many time periods. 

Furthermore, the reference of the inner model (Fig. 2) is time 

varying function implies the difficulties in designing the 

inner controller. On the other hand, it is emphasizing that the 

advantage of the proposed integral RL is described in 

uncertain model, which has been mentioned in the almost 

researches on robotic control systems [21]-[80]. 

IV. SIMULATION STUDIES 

Consider a group of three perturbed UAV with the 

parameters to be given as follows:𝑚 = 2.0(𝑘𝑔), 𝑘𝑤 =
1(𝑁𝑠2), 𝑘𝑡 = 1, 𝑔 = 9.8(𝑚/𝑠2), 𝑙𝜏 = 0.2(𝑚). The desired 

velocities   and input disturbances are existed in force 𝛿 =

0.1 𝑠𝑖𝑛(𝜋𝑡) (𝑁𝑚). The existence of disturbance guarantees 

the relation between the simulation studies and practical 

systems. Additionally, thanks to the model-free property of 
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the proposed integral RL method, the given parameters are 

sufficient to implement the simulation. It follows that the 

robustness and reliability of the proposed control system is 

satisfied. The formation control implementation is evaluated 

as follows. To develop RL control for inner control loop, the 

activation functions of the critic and actor parts are second-

order polynomials and first-order polynomials, respectively. 

In the light of [13], the selection of activation function can be 

developed and kept in learning process. The training weights 

of value function and optimal control are computed as 

described in Alg. 1. For the purpose of satisfying the 

existence of solution in Alg. 1, the PE conditions in inner 

control loop is necessary to guaranteed under the probing 

noises 𝑢𝛩𝑒 = ∑ 0500
𝑚=1 . 002𝑠𝑖𝑛(𝑤𝑚𝑡) (𝑤𝑚 is a frequency 

chosen in range randomly), which are added to the position 

and attitude controllers respectively.  

 Based on the above simulation scenario, it is worth 

noting that the convergence of the weights in algorithms 1 is 

shown in Fig. 4, which validates the optimal control problem. 

The fact is that the convergence of learning process points out 

the Bellman function as well as the optimal control law. 

Moreover, the control performance is satisfied not only the 

optimal control problem but also the tracking effectiveness as 

shown in Fig. 5, Fig. 6. It follows that the unification of 

tracking problem and optimality is guaranteed to obtain the 

advantage in comparison with the previous researches [50 – 

60]. On the other hand, under the integral RL method for 

inner sub-system and formation control law for outer model, 

it can be seen that the formation control is guaranteed as 

shown in Fig. 7. Finally, the advantage of the proposed 

integral RL is also shown in Fig. 8 with the better 

performance index in comparison with the relating research 

[39]. 

 

Fig. 4. The weight convergence of the learning stage 

 

Fig. 5. The tracking of Attitude sub-system 

 

Fig. 6. The tracking of Position sub-system 

 

Fig. 7. The formation tracking control 
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Fig. 8. The comparison of performance index between the Actor/Critic in 

[39] and the proposed integral RL method 

V. CONCLUSION 

This paper has proposed the formation control of multiple 

UAVs with model-free data integral RL strategy to be 

considered for attitude sub-system in multiple UAVs to 

effectively address both formation tracking and optimal 

control, which has not mentioned in the previous researches. 

The advantage of the proposed integral RL strategy is to 

implement the control law without the knowledge of UAV 

model. Therefore, the possibility of extending the proposed 

method for practical systems is determined. The main 

approach is to employ the Off-Policy RL algorithm using a 

discount factor in cost function to guarantee the bound of cost 

function and solve the model-free disadvantage without UAV 

model knowledge. Additionally, implementing data 

collection and considering computation techniques are 

analyzed to obtain simultaneously the actor and critic parts. 

Additionally, simulation studies are developed to point out 

the performance of the proposed Integral RL algorithms in 

the UAV control system. However, it should be noted that the 

proposed method requires the computation on many 

equations, which are established from collected data. In 

future work, we will consider extending the proposed 

strategies to the formation control problem of multiple 

UAVs. 
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