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Abstract—Obstacle avoidance (OA) is necessary for any path 

planning in outdoor environment to prevent any collision with 

the obstacles in natural environment. In this paper, a quadrotor 

navigates using Active Simultaneously Localization and 

Mapping (ASLAM) in GNSS-denied outdoor environment. In 

ASLAM, the quadrotor path is defined using real-time 

Observability Based Path Planning (OBPP) method, 

autonomously. To prepare using of the OBPP in outdoor 

environment, it is necessary to add the ability of OA to it. So, the 

OA-OBPP method is introduced which defines the path based 

on terrestrial landmarks while preventing any collision with the 

obstacles. This approach is developed by redefining a dataset of 

in range landmarks while all of the landmark in the vicinity of 

the obstacles are removed from the in-range landmarks dataset.  

To evaluate the performance of the proposed method, 

simulations of the OA-OBPP algorithm are conducted for a 

simplified 6-Degree of Freedom (DOF) quadrotor using 

MATLAB. The simulations evaluate the efficiency, accuracy 

and robustness of the proposed method. Results across various 

scenarios show that the method effectively avoids collisions with 

obstacles while simultaneously determining a path to the goal. 

Additionally, a comparison of the position estimation RMSE 

with Monte Carlo PP highlights the accuracy of the OA-OBPP. 

The robustness of the method, tested with varying initial 

positions, demonstrates its success in real-time path planning 

(PP) from any starting point to the destination without 

collisions. The results confirm that the OA-OBPP enhances the 

robot's capability to perform real-time, autonomous, and robust 

path planning in outdoor environments, even in the absence of 

GNSS signals, through visual navigation. 

Keywords—Obstacle Avoidance; Observability Based Path 

Planning; Real-Time Autonomous Path Planning; Active 

Simultaneously Localization and Mapping; GNSS-Denied 

Environment; Observability Degree.  

I. INTRODUCTION 

The main aim of the paper is to propose a real-time 

autonomous path planning method for quadrotors operating 

in unknown, GNSS-denied outdoor environments, with a 

focus on accurate positioning. This topic addresses several 

key areas including SLAM for robot and landmark 

positioning within the environment, OBPP for real-time 

autonomous motion of the quadrotor, and OA to adapt the 

OBPP method for practical applications in environments 

cluttered with obstacles. The following sections discuss these 

aspects in detail.      

Autonomous robot navigation of mobile robots is a 

significant topic in robotic investigation. They have received 

special attention in recent research due to constraints in 

communication link budgets, the limited range of remote 

control, the complexity of manual operation in challenging 

environments, and the increasing use of robots in swarm 

formations [1]–[5]. One of the most challenging issues in 

autonomous robotics is navigating in outdoor environments 

where GNSS (Global Navigation Satellite System) signals 

are unavailable or unreliable [6]–[8]. In this environment, the 

robot relies solely on its IMU sensors for localization and 

navigation. Over long distances in outdoor settings, 

integrating acceleration data from the IMU to compute 

velocity and position can introduce significant errors that 

accumulate over time, especially in large environments. 

Effective navigation in such scenarios necessitates robust 

localization techniques, real-time autonomous path planning 

[9], [10],  and obstacle avoidance (OA) to prevent collisions 

with external obstacles [6], [9], [11]. The literature explores 

each of these challenges from various perspectives. To 

enhance understanding, we will examine these critical 

aspects in greater detail.  

To prepare a robot to move in such an environment, it 

must be able to localize itself. SLAM is introduced as a 

solution for robot localization in an unknown GNSS-denied 

environment, as it enables the robot to build a map of its 

surroundings and determine its position using visual sensors 

to detect terrestrial landmarks [12], [13]. Various issues are 

investigated in SLAM including sensor types [13]–[15], 

estimation filters [16]–[20] and path planning [21]–[23]. The 

trajectory taken by the robot to reach its destination 

significantly impacts the SLAM accuracy different paths may 

expose the robot to varying sets of landmarks [24]–[27]. 

Numerous methods have been proposed for the robots motion 

planning [28]–[32]. Many of these methods such as A*, D*, 

RRT, potential field and optimization rely on prior 

knowledge of the environment. In these approaches, the path 

is predefined, and the robot navigates through the established 

map from the starting point to the destination. These 

traditional methods are often unsuitable for real-time path 

planning in outdoor environments. Modern approaches, such 

as neural networks and artificial intelligence, require 

extensive training to handle the challenges of dynamic and 

complex environments [33].  
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The proposed approach for real-time path planning in 

unknown environments within SLAM applications involves 

utilizing terrestrial features. These features are essential for 

accurate SLAM estimation and are also utilized in real-time 

Adaptive SLAM (ASLAM) for path planning. Key methods 

in real-time ASLAM include the expected information policy 

[21], cognitive based adaptive optimization [34], 

environment information gathering [35] and observability 

based path planning [36]. As in OBPP, the position 

estimation is more accurate due to higher observability in the 

path, so OBPP has been chosen for guiding the robot to its 

destination.  

ASLAM methods are applicable to various types of robots 

including aerial, space, terrestrial, and marine systems [37]–

[41]. For this research, quadrotors are chosen due to their 

distinct advantages, such as low development and operation 

cost, ease of use, lightweight and compact design, excellent 

mobility, and high maneuverability [42]. These advantages 

enable the quadrotors to be effectively used in a variety of 

applications including high quality of remote sensing [43], 

[44], precision agriculture [45]–[47],  surveillance [48]–[50]  

and other fields [51]–[54] contributing to the rapid 

development of these vehicles. Consequently, this research 

focuses on applying ASLAM to quadrotors. 

The final challenge in autonomous navigation in outdoor 

environments is ensuring the robot can move safely without 

colliding with obstacles. Different types of robots encounter 

specific obstacles based on their intended use, whether in 

indoor or outdoor settings, as well as their movement 

capabilities. When a quadrotor operates in an outdoor 

environment, it encounters obstacles such as tall trees, 

towers, buildings, other flying devices, or even birds. 

Therefore, path planning methods must incorporate effective 

obstacle avoidance capabilities. Several path planning 

methods are specifically designed with collision avoidance in 

mind including Cell decomposition and potential field (PF) 

[23], [55]–[57] and optimization-based approaches. are all 

categorized within this domain. However, it is crucial to 

develop collision avoidance capabilities for all path planning 

methods to ensure safe flight, particularly in outdoor 

environments. Each path planning method integrates obstacle 

avoidance according to its own principles. For example, 

collision avoidance strategies have been applied to methods 

such as D* [58], RRT [59], [60], optimal path based on 

Genetic Algorithm (GA) [61], and international regulations 

for preventing collisions at sea (COLREGs) [62], [63].  

Additionally, combination of these methods with other 

traditional PP techniques have been explored in various 

studies [64]–[66].   

Obstacle avoidance (OA) is a critical consideration in the 

implementation of ASLAM in various research studies [22], 

[34], [67]–[71]. ASLAM is employed when a robot 

autonomously plans its path from the start to the end point in 

an unknown environment while simultaneously performing 

SLAM [24], [36], [72]. To enhance robot safety and protect 

surrounding objects, incorporating effective obstacle 

avoidance is essential for practical applications of 

autonomous robot motion in ASLAM. Numerous papers 

have explored different approaches to obstacle avoidance in 

this context. 

The key aspect of all these methods is that obstacle 

avoidance (OA) is developed in relation to the underlying 

principles of the path planning (PP) method. In other words, 

to effectively prevent collisions with obstacles, the OA 

approach must align with the principles on which the path 

planning method is based. For example, in potential field path 

planning, obstacles are modeled as repulsive forces that affect 

the robot's path determination by creating repulsion fields 

around obstacles [73]. In methods like A*, D*, and RRT, path 

planning involves evaluating a list of open nodes surrounding 

the robot at each step [74]. Therefore, to define an appropriate 

OA method for these approaches, obstacles should be 

represented as nearby nodes to prevent the robot from moving 

in their direction. In fuzzy logic PP, OA is implemented 

through the definition of appropriate rules [75], [76]. In 

optimization-based path planning methods, such as Particle 

Swarm Optimization (PSO), the path is determined based on 

a defined cost function [77]. To incorporate obstacle 

avoidance, penalty terms are added to the cost function to 

guide the robot's movement away from obstacles and toward 

the optimal path.  

The reviewed literature primarily focuses on pre-planned 

paths or autonomous path planning in known environments. 

In response, this paper proposes an enhanced obstacle 

avoidance method to improve the Observability-Based Path 

Planning (OBPP) framework for ASLAM in unknown 

GNSS-denied environments specifically for a quadrotor. 

OBPP is designed for real-time path planning in such 

challenging conditions and is based on the concept of 

observability degree [36]. In an observable system, the input 

state vector can be accurately estimated by measuring the 

output [38], [78]–[80]. By increasing the degree of 

observability, the accuracy of state vector estimation is 

improved, which in turn enhances the accuracy of the 

environment map in ASLAM.  

The research contributions are: 

• Implementation of EKF-SLAM for a quadrotor in 3D 

environment: Extended Kalman Filter (EKF) SLAM 

technique is employed for autonomous path planning of a 

quadrotor in unknown outdoor environments. This 

implementation incorporates simplified six-degree-of-

freedom (6-DOF) equations and employs Proportional-

Integral-Derivative (PID) controllers for both the internal 

and external control loops of the quadrotor.  

• Real-time OBPP with Obstacle Avoidance: Development of 

a real-time Observability-Based Path Planning (OBPP) 

method that incorporates obstacle avoidance capabilities 

for autonomous navigation of quadrotors in unknown 

outdoor environments. 

• Evaluation of the Proposed Method by Monte Carlo PP: The 

assessment of the proposed path planning method 

confirms its effectiveness in navigating the quadrotor 

from the starting point to the destination without 

collisions, and it shows reduced error compared to 

conventional Monte Carlo (MC) path planning 

techniques.  

In section Ⅱ, a brief review of ASLAM is provided, 

highlighting its importance for positioning both the quadrotor 
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and landmarks in unknown environments. This section also 

includes an overview of OBPP and its fundamental 

principles, given that the development of the OA method is 

closely linked to the underlying path planning approach. 

Section Ⅲ details MATLAB simulations used to evaluate the 

performance of the Collision-Aware OBPP (CA-OBPP) 

method across three key scenarios: trajectory analysis, 

accuracy metrics, and the effect of initial positioning. The 

paper concludes with a discussion of the limitations of the 

proposed method, suggestions for future work, and a 

summary of the findings.   

II. METHODS 

The motion of a quadrotor in an environment is governed 

by three main components: guidance, control, and navigation 

as depicted in Fig. 1. The guidance block calculates the 

desired destination values for the quadrotor motion. The 

control block then determines the commands needed to adjust 

the quadrotor’s current position and attitude to match these 

destination values. In this research, PID controllers are 

employed for both internal control (which manages the roll, 

pitch, and yaw angles) and external control (which governs 

position vectors in the x, y, and z directions). The navigation 

block measures the quadrotor’s current attitude and calculates 

its position. The EKF-SLAM framework is then employed to 

estimate the position of both the quadrotor and terrestrial 

landmarks.  

 

Fig. 1. Quadrotor motion block-diagram with SLAM   

This paper focuses on the implementation of the guidance 

block for the robot path planning incorporating obstacle 

avoidance capabilities. This block calculates the desired 

position of the quadrotor using the path planning algorithm 

while ensuring that obstacles scattered throughout the 

environment are avoided. We propose an autonomous real-

time path planning method that functions independently of 

GNSS signals and does not require prior knowledge of the 

environment or the path. This method is based on the concept 

of observability degree and achieves high accuracy in SLAM 

estimation, as described below.  

A. ASLAM and OBPP 

Autonomous motion of the robot in outdoor environments 

has been extensively researched [32], [81], [82]. The 

promising performance of SLAM [83]–[85] in real-world 

applications has encouraged scientists to utilize it as a basis 

for the further development. This has led to the creation of 

fully autonomous systems capable of navigating in unknown 

GNSS-denied environments without external interference 

[69], [86], [87]. By incorporating concurrent autonomous 

path planning with SLAM, known as ASLAM, these systems 

achieve a high level of autonomy in such challenging 

environments.  

SLAM is a computational problem with various solutions 

proposed, including the Extended Kalman Filter (EKF) and 

Particle Filter (PF). Given the promising results of EKF-

SLAM, its relatively simple implementation, and its low 

computational demands for real-time path planning, EKF-

SLAM is selected for this research. EKF-SLAM developed 

based on the state and covariance matrix with two 

propagation and update steps. The state vector for a quadrotor 

operating in 3D space is defined as follows (1). 

𝑋 = [𝑥𝑟  𝑦𝑟  𝑧𝑟   𝑢  𝑣  𝑤  𝜑  𝜃  𝜓  𝑥𝑙1 𝑦𝑙1 𝑧𝑙1…  𝑥𝑙𝑚  𝑦𝑙𝑚 𝑧𝑙𝑚]
𝑇 (1) 

The state matrix in EKF-SLAM includes data of both the 

quadrotor and the landmarks. For the quadrotor, this data 

encompasses the position; (𝑥𝑟 , 𝑦𝑟, 𝑧𝑟), linear velocities; (𝑢, 

𝑣, 𝑤) aligned with the coordinate axes, and Euler angles; (𝜑, 

𝜃, 𝜓) defined in navigation frame. The position of the 𝑖𝑡ℎ 

landmarks is represented by (𝑥𝑙𝑖 , 𝑦𝑙𝑖 , 𝑧𝑙𝑖) in the navigation 

frame. The prediction of the state (2) and covariance (3) 

matrices in EKF-SLAM are computed using the process and 

measurement model ((4), (5)), respectively. 

𝑋̂𝑛+1
− = 𝐹𝑋̂𝑛

+ + 𝑤𝑛+1 (2) 

𝑃𝑛+1
− = 𝐹𝑛+1𝑃𝑛

+𝐹𝑛+1
𝑇 + 𝑄 (3) 

𝑓 = [

∆𝑃𝑛(𝑘 + 1)

∆𝑉𝑛(𝑘 + 1)

∆𝜓𝑛(𝑘 + 1)
] = [

𝑣𝑛(𝑘)𝛥𝑡

[𝐶𝑏
𝑛(𝑘)𝑎𝑏(𝑘) + 𝑔𝑛]∆𝑡

𝐸𝑏
𝑛(𝑘)𝑤𝑏(𝑘)𝛥𝑡

]  (4) 

ℎ = [
𝜌𝑅𝐿
𝑎𝑧
𝑒𝑙
] =

[
 
 
 
 
 √(𝛿𝑥

2 + 𝛿𝑦
2 + 𝛿𝑧

2)

𝑡𝑎𝑛−1(
𝛿𝑦

𝛿𝑥
)

𝑡𝑎𝑛−1(
𝛿𝑧

𝑑𝑅𝐿
) ]

 
 
 
 
 

  (5) 

In this context, w and Q represent the process Gaussian 

noise and its covariance, respectively. The superscripts n and 

b denote parameters in the navigation frame and body frame, 

respectively. Specifically, 𝑎𝑏 represent linear acceleration 

measured in the body frame, 𝑔𝑛 denotes gravitational vector 

in the North-East-Down (NED) navigation frame, and 𝑤𝑏  

refers to the rotation rates in the body frame. The direction 

cosine matrix 𝐶𝑏
𝑛 and rotation rate transfer matrix 𝐸𝑏

𝑛 which 

transform data from the body frame to the navigation frame, 

are given by Equations (6) and (7); 

𝐶𝑏
𝑛 = [

𝐶𝜓𝐶𝜃 −𝑆𝜓𝐶𝜑 + 𝐶𝜓𝑆𝜃𝑆𝜑 𝑆𝜓𝑆𝜑 + 𝐶𝜓𝑆𝜃𝐶𝜑
𝑆𝜓𝐶𝜃 𝐶𝜓𝐶𝜑 + 𝑆𝜓𝑆𝜃𝑆𝜑 −𝐶𝜓𝑆𝜑 + 𝑆𝜓𝑆𝜃𝐶𝜑
−𝑆𝜃 𝑆𝜑𝐶𝜃 𝐶𝜑𝐶𝜃

] (6) 

𝐸𝑏
𝑛 = [

1 𝑆𝜑𝑡𝜃 𝐶𝜑𝑡𝜃
0 𝐶𝜑 −𝑠𝜑
0 𝑆𝜑𝑠𝑒𝑐𝜃 𝑐𝜑𝑠𝑒𝑐𝜃

] (7) 

Control Block

Reference 

Position

Estimated 

Position 

Guidance Block

Navigation Block

Quadrotor mechanization 

Equation

Path Planning Algorithm (OA-OBPP)

Inner Loop Attitude Controller 

Outer Loop Position  Controller 

EKF Based SLAM 
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More extensively detailed computations of EKF-SLAM 

are presented in [88], [89]. For a quadrotor to travel from its 

initial to final point, a path must be defined at each step of its 

movement. Therefore, an autonomous real time path planning 

method for enhancing the positioning accuracy is chosen. 

OBPP is developed based on the concept of observability 

degree (OD) [90]–[93], which autonomously determines a 

path using terrestrial landmarks. The observability of a 

system reflects its ability to accurately estimate its inputs 

based on measured outputs [80], [92], [94]. Methods for 

measuring OD vary: some methods, like the system 

observability matrix, simply assess whether the system is 

observable, while others quantify the degree of observability. 

Utilizing the OD for path determination allows for the 

comparison of system accuracy in state estimation by 

measuring different system outputs. This capability is applied 

in various contexts, such as sensor positioning [78], [95], [96] 

and navigation [93], [97], [98]. In OBPP, the goal is to 

determine the next point of motion in a way that maximizes 

the observability degree of the system at each step. 

Among various matrices used for observability 

measurement—such as the covariance matrix, observability 

matrix, and Gramian matrix—the eigenvalues and 

eigenvectors are selected for assessing OD in path planning 

methods [91], [99]. Eigenvalues and eigenvectors are 

advantageous because they not only quantify the degree of 

observability but also indicate the direction in which the 

system achieves the highest observability. For nonlinear 

systems, the Gramian matrix is computed by defining the 

transition and output matrices and then linearizing the 

nonlinear system through Taylor expansion. The Gramian is 

calculated as follows (8), 

𝑊𝑜 ≈ 𝑂𝑑
𝑇𝑂𝑑  (8) 

That Od is a discrete-time observability matrix (9). 

𝑂𝑑 =

[
 
 
 
 

𝐶𝑑
𝐶𝑑𝐴𝑑
𝐶𝑑𝐴𝑑

2

⋮
𝐶𝑑𝐴𝑑

𝑛−1]
 
 
 
 

 (9) 

The next point for the quadrotor's motion is determined 

by the eigenvectors corresponding to the maximum 

eigenvalue of the Gram matrix as given by Equations (10) 

and (11). 

𝜆𝑡𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝜆𝑡𝑖1. … . 𝜆𝑡𝑖𝑛) (10) 

𝑣𝑡𝑖𝑚𝑎𝑥 = 𝑣𝑡𝑖(𝜆𝑡𝑖−𝑚𝑎𝑥) (11) 

Further details on the principles of OBPP are discussed in 

[43] for a terrestrial robot in a 2D environment. In the context 

of ASLAM, the quadrotor navigates towards the most 

observable direction using an in-range landmarks dataset, 

aiming to maximize observability and thereby enhance 

accuracy in state estimation. The next step is to integrate OA 

capabilities with OBPP.  

B. Obstacle Avoidance in OBPP 

In OBPP, the path is defined using terrestrial landmarks 

within the robot’s FOV. This principle also forms the basis 

for implementing OA. Specifically, to incorporate OA into 

OBPP, the dataset of in-range landmarks used for path 

planning is adjusted by excluding landmarks that are close to 

detected obstacles. The proposed method focuses on the 

distance between in-range landmarks and obstacles. When 

obstacles are detected within the quadrotor’s FOV, their 

positions are determined based on the quadrotor’s absolute 

estimated position and the relative distance of the obstacles 

within the coordinate framework. Landmarks within a 

specified radius of each detected obstacle are removed from 

the quadrotor’s in-range dataset. In OBPP, the quadrotor’s 

movement direction is determined based on the observability 

of the remaining landmarks in the dataset. If an area lacks 

landmarks, the quadrotor avoids moving in that direction. 

Consequently, by defining detected obstacles as landmark-

free regions within a specified radius, the robot effectively 

avoids paths that would lead to collisions. The OA-OBPP 

flowchart illustrating this process is shown in Fig. 2.    

 

Fig. 2. OA-OBPP process 

At each step of the robot’s motion, the detected obstacles 

are treated as a center of a forbidden area. Landmarks within 

a specified radius around each obstacle are added to the list 
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of removed landmarks, as described in (12). This forbidden 

area is modeled as a circle with the obstacle at its center and 

a radius of 10 meters (𝑅𝑐𝑜𝑙𝑚𝑎𝑥 = 10 𝑚). 

𝑅𝑐𝑜𝑙 = √(𝑥𝑜𝑏𝑠𝑡 𝑖 − 𝑥𝑙𝑚𝑘 𝑗)
2
+ (𝑦𝑜𝑏𝑠 𝑖 − 𝑦𝑙𝑚𝑘 𝑗)

2
 (12) 

Landmarks within a radius of less than 10 meters from an 

obstacle are considered part of the forbidden movement area 

and are removed from the in-range landmarks dataset as 

defined by (13) to (14). Additionally, the maximum range for 

landmarks within the quadrotor’s FOV is set to 50 meters 

(𝑅𝑞𝑢𝑎𝑑.𝑚𝑎𝑥 = 50 𝑚). 

𝑅𝑞𝑢𝑎𝑑 = √(𝑥𝑞𝑢𝑎𝑑 − 𝑥𝑙𝑚𝑘 𝑗)
2
+ (𝑦𝑞𝑢𝑎𝑑 − 𝑦𝑙𝑚𝑘 𝑗)

2
 (13) 

𝑙𝑚𝑘𝑞𝑢𝑎𝑑

=

{
 
 

 
 {𝑙𝑚𝑘𝑖}   𝑖𝑓  𝑅𝑙𝑚𝑘𝑖 < 𝑅𝑞𝑢𝑎𝑑.𝑚𝑎𝑥    𝑓𝑜𝑟 𝑖 = 1: 𝑛     𝑛𝑜 𝑂𝐴

{𝑙𝑚𝑘𝑖}  𝑖𝑓 {

𝑅𝑙𝑚𝑘𝑖 < 𝑅𝑞𝑢𝑎𝑑.𝑚𝑎𝑥    𝑓𝑜𝑟 𝑖 = 1: 𝑛

𝑎𝑛𝑑
𝑅𝑐𝑜𝑙 < 𝑅𝑐𝑜𝑙.𝑚𝑎𝑥      𝑓𝑜𝑟𝑖 = 1: 𝑛

  𝑤𝑖𝑡ℎ 𝑂𝐴
 

(14) 

To clarify the concept of landmark redefinition, an 

example of the datasets is provided by the the quadrotor’s in-

range landmarks (𝑙𝑚𝑘𝑞𝑢𝑎𝑑), landmarks near obstacles 

(𝑙𝑚𝑘𝑜𝑏𝑠), and the final landmarks dataset for path planning 

decision-making (𝑙𝑚𝑘𝑑𝑎𝑡𝑎𝑠𝑒𝑡) as illustrated in (15) to (17). 

𝑙𝑚𝑘𝑞𝑢𝑎𝑑 = {𝐿1. 𝐿7. 𝐿81. 𝐿9. 𝐿11. 𝐿46. 𝐿53. 𝐿21. 𝐿34. 𝐿74} (15) 

𝑙𝑚𝑘𝑜𝑏𝑠 = {𝐿7. 𝐿88. 𝐿46. 𝐿53. 𝐿13} (16) 

𝑙𝑚𝑘𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = {𝐿1. 𝐿81. 𝐿9. 𝐿11. 𝐿21. 𝐿34. 𝐿74} (17) 

The list of landmarks used for PP decisions is then 

finalized. The algorithm for the OA-OBPP is detailed in 

Table Ⅰ and the concept is illustrated in Fig. 3. 

TABLE I.  OA-OBPP ASLAM ALGORITHM WITH  

 Algorithm 1:    Algorithm of the ASLAM with OA-OBPP  

1: Mission Starts   

2: EKF-ASLAM Starts 

3: Path-Planning Starts 

4:     Search any obstacles in the quadrotor’s FOV 

5:         Find the landmarks in the defined bound of the obstacle   

6:         omit in bound landmarks from the dataset  

7:     Make Observability dataset 

8:         For i=1:numLmk do  

9:             Calculate the observability matrix (O) according to (7).  

10:             Calculate observability Gramian (Wo) by (6) 

11:              Determine max eigenvalue of W0  

12:         End  

13:     Search the most observable direction 

14:         Find max eigenvalue of all eigenvalues in each step 

15:         Select the eigenvector of the max eigenvalue  

16:         θrot = θMOD – θrob (MOD: most observable direction) 

17: Perform Remaining EKF-ASLAM Tasks 

18: Path-Planning Ends 

19: EKF-ASLAM Ends 

20: Mission Decision Making Tasks 

21: Mission Ends  

 

As seen in Fig. 3, the landmarks in the defined radius from 

the center of the obstacle, are depicted as faded landmarks. 

Means that they can’t put into the landmarks dataset for PP 

decision.   

 

10 m

(xobst, yobst)

(xlmk j, ylmk j)

Rcol

Rcol max=

Rcol < Rcol max

Rcol > Rcol max

 

Fig. 3. Forbidden area around a detected obstacle 

By integrating OA capability into the OBPP method, it 

evolves into a comprehensive real-time autonomous path 

planning (PP) method suitable for diverse outdoor 

environments for quadrotor motion This enhanced method is 

capable for various applications such as monitoring 

vegetation, wildlife, or coastal areas. By distributing the 

artificial features within the monitoring area, the quadrotor 

can autonomously assess plant and animal coverage or 

shoreline conditions. The method is also applicable for 

planning in unfamiliar plant environments, where specific 

trees can be used as landmarks to create detailed maps of 

these areas. Furthermore, it has potential applications in 

emergency situations; by identifying and mapping key 

features in such environments, it can aid in locating and 

providing better identification for injured individuals.  

In practical applications, the complexity of feature 

extraction in real-world scenarios and the requirement for a 

sufficient number of landmarks within the quadrotor's field 

of view at all times are significant challenges that limit the 

application of OA-OBPP. However, there is no limitation on 

the number of obstacles that can be included. 

III. SIMULATION SCENARIOS AND RESULTS 

In this section, we present the simulation results for OA-

OBPP with EKF-SLAM across various scenarios. In the 

simulated environment, the position of the landmarks and 

obstacles, represented by ‘+’ and ‘●’ symbols respectively, 

are randomly selected on a 2D plane on the ground with an 

altitude of zero.  

Three main scenarios are defined, each with different 

obstacle positions. These positions are chosen to ensure that 

there are always at least ten landmarks within the robot's in-

range dataset. Subsequently, the robot's initial position is 

varied across five different locations on the landmarks plane 

at ground level. The obstacles considered in these scenarios 

include communication towers and tall buildings, which are 

relevant for communication operations.       

The quadrotor utilizes internal and external sensors to 

determine its position and measure the distance and bearing 
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to landmarks and obstacles. The Specifications of these 

sensors are detailed in Table Ⅱ. Each terrestrial landmark is 

represented as a tree with unique features, which are 

identified using feature extraction algorithms. The 

performance of the proposed method is assessed by 

evaluating the quadrotor's trajectory from the initial point to 

the endpoint, ensuring that there are no collisions with 

obstacles along the path and maintaining high accuracy, as 

illustrated in Fig. 4. In this figure, the quadrotor’s path, as 

determined by the OBPP method, is shown as a dotted line. 

When obstacles are added and faded landmarks are removed 

from the main landmark dataset, the updated path, depicted 

by a solid line, is determined using the OA-OBPP method.  

TABLE II.  QUADROTOR INTERNAL AND EXTERNAL SENSORS 

SPECIFICATION 

IMU Vision camera specification 

Sampling rate 200 Hz Sampling rate 2 Hz 

Acc noise 0.12 m/s2 Max. view range 55 m 

Gyro Noise 0.28 deg/s FOV 60ver×180hordeg 

 

 

Fig. 4. Quadrotor CA-OBPP test scenarios in the designed outdoor 

environment  

The robot's path is visualized using two trajectories: True 

Path (TP) and Estimated Path (ESTP) for scenarios with and 

without obstacles. TP represents the trajectory the quadrotor 

follows using simplified 6-DOF (Degree of Freedom) 

equations without any noise in the measured data. This path 

is derived from measurements of acceleration and angular 

rates obtained using internal accelerometers and gyroscope 

sensors 

The ESTP is determined by the EKF-SLAM algorithm, 

which integrates attitude measurements from internal sensors 

with observations from external sensors, alongside Dead 

Reckoning (DR) equations. External sensors detect a set of 

in-range landmarks and obstacles. Using this data, the 

quadrotor constructs a safe dataset, which includes the in-

range landmarks, excluding those near the detected obstacles. 

In both TP and ESTP, the next position of the robot’s 

trajectory is calculated utilizing the attitude and estimated 

current position, along with the OA-OBPP algorithm applied 

to the established safe dataset. 

MATLAB simulations are conducted to analyze the 

performance of the OA-OBPP method across the designed 

scenarios. To provide a comprehensive evaluation of the 

proposed method, simulations are divided into three 

subsections: 

• Trajectory Analysis: The first subsection investigates the 

ability of the proposed method to avoid obstacles while 

guiding the robot from initial to the end point with OA-

OBPP method. 

• Localization Accuracy: The second subsection compares 

the robot localization error between the proposed and 

Monte Carlo Path Planning (MCPP) method. A key 

difference is that the MCPP method requires prior 

knowledge of the environment to determine the path, 

whereas the OA-OBPP method generates the path 

autonomously. The accuracy of both methods is evaluated 

by comparing the RMSE of the robot's position. 

• Effect of Initial Position: Accurate initialization is 

critical for predetermined path planning (PP) methods in 

quadrotors, as errors in the initial position can lead to 

significant deviations in the robot's path. The final 

subsection examines how variations in robot initialization 

affect the trajectory from the starting point to the 

endpoint, evaluating the robustness of the path planning 

method. 

A. Trajectory Analysis 

The results are demonstrated for different arrangements 

of the obstacles in the environment. The path that the 

quadrotor follows from the start to the end point, in an 

obstacle-free (OF) and including obstacles (showcase by OA) 

environment using OBPP for different arrangements of the 

obstacles in the environment, in three scenarios, is depicted 

in Fig. 5 to Fig. 7. In these figures, the true path and estimated 

path by EKF-SLAM are displayed. The error of position in 

the x and y directions, between the true and estimated values, 

are depicted in Fig. 8 and Fig. 9, respectively. The Root Mean 

Square Error (RMSE) of the path for different scenarios is 

compared in Table Ⅲ. 

TABLE III.  POSITION AND ATTITUDE RMSE FOR VARIOUS 

ARRANGEMENT OF THE OBSTACLES 

Scenario 

Pos. 

RMSE 

total 

Att. 

RMSE 

total 

x 
RMSE 

y 
RMSE 

z 
RMSE 

SCN 1 2.0078 0.1360 1.5648 1.2579 0.0159 

SCN 2 2.2717 0.1339 1.7270 1.4757 0.0162 

SCN 3 1.4996 0.1282 1.4687 0.3025 0.0172 

 

 

Fig. 5. Quadrotor motion with OA-OBPP for scenario 1 

Start

 Point

Zone of 

Interest

Landmark in collision area

Landmark

CA path 

Primary path
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Fig. 6. Quadrotor motion with OA-OBPP for scenario 2 

 

Fig. 7. Quadrotor motion with OA-OBPP for scenario 3 

The results demonstrate that with the CA-OBPP method, 

the quadrotor can autonomously determine its path from the 

initial to the end point without requiring any prior 

information about the environment or access to GNSS 

signals, even in the presence of the obstacles and without any 

collision with them. So the first goal of the OA-OBPP is 

achieved. In each of the scenarios the quadrotor defines the 

path considering the landmarks in the dataset to gain the most 

observability of the system by passing through the defined 

trajectory.  

 

Fig. 8. Quadrotor x-position error with OA-OBPP for scenarios 1-3 

 

Fig. 9. Quadrotor y-position error with OA-OBPP for scenarios 1-3 

The comparison of RMSE for scenarios 1 and 2 indicates 

that they are nearly identical. This similarity is due to the fact 

that, in both scenarios, the path is navigated through regions 

with obstacles. When the quadrotor moves between 

obstacles, the landmark dataset remains relatively consistent 

because obstacles reduce the number of landmarks and 

remove those in their vicinity. In contrast, scenario 3 

landmarks a more densely arranged obstacle layout, resulting 

in a more extensive landmark dataset compared to scenarios 

1 and 2. As a result, the RMSE in scenario 3 is lower than in 

the other scenarios.   

B. Localization Accuracy 

To provide a comprehensive evaluation of the proposed 

method, this section compares its accuracy with that of the 

MCPP method [100] using the same scenario. Given that the 

OA-OBPP method prioritizes the most observable directions, 

it is expected to achieve higher estimation accuracy. 

Consequently, we compare the RMSE of both position and 

attitude estimation for scenario 2 (identified as having the 

highest RMSE in subsection A) with the MCPP method. This 

comparison is illustrated in Fig. 10. 

The results demonstrate that with OA-OBPP lower value 

of RMSE is obtained in comparison with MCPP method and 

the proposed method gives better accuracy as shown in Table 

Ⅳ. Accordingly, the second goal of the proposed method is 

passed successfully. 

 

Fig. 10. Quadrotor motion with MCPP for scenario 2 
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TABLE IV.  POSITION AND ATTITUDE RMSE FOR OA-OBPP AND MCPP 

IN SCENARIO 2 

Scenario Pos. RMSE total Att. RMSE total 

SCN 2 2.2717 0.1339 

MC_SCN 1 3.4355 0.2923 

MC_SCN 2 2.8683 0.2836 

MC_SCN 3 3.4323 0.3052 

MC_avg 3.2453 0.2937 

C. Effect of Initial Position 

In pre-planned PP methods if a quadrotor starts from a 

different initial point, the quadrotor reaches to a different 

destination. To evaluate the robustness of the proposed 

method with respect to changes in the initial position, 

simulations are conducted from various starting points. This 

provides a comprehensive assessment of the trajectories 

generated by the proposed method, as shown in Fig. 11, along 

with the associated errors depicted in Fig. 12 and Fig. 13. In 

this simulation, the positions of the obstacles are kept 

constant across all scenarios. However, changes in initial 

positions impact the landmark dataset within the quadrotor’s 

field of view, particularly at the start of its mission. As a 

result, the quadrotor follows different paths, leading to 

varying RMSE values, as illustrated in Table Ⅴ.  

TABLE V.  POSITION AND ATTITUDE RMSE FOR VARIOUS INITIAL 

POSITIONS IN SCENARIO 1 

initial 

point  

(x, y, z) 

Pos. 

RMSE 

total 

Att. 

RMSE 

total 

RMSE 

x 

RMSE 

y 

RMSE 

z 

(0, 0, 0) 2.0078 0.1360 1.5648 1.2579 0.0159 

(-10, 10, 0) 1.6963 0.1209 1.4340 0.9061 0.0149 

(-10, 0, 0) 1.7293 0.1206 1.5909 0.6778 0.0138 

(-5, 15, 0) 1.9469 0.1164 1.9050 0.4015 0.0142 

(5, 30, 0) 1.5785 0.1390 1.4590 0.5945 0.0980 

 

 

Fig. 11. Quadrotor motion path for various initial positions 

The results indicate that variations in initial position do 

not affect the robot's path to the defined destination. With the 

proposed method, the quadrotor can determine its trajectory 

to the endpoint from different starting positions while 

maintaining optimal observability. Scenarios 2, 4, and 5, 

which feature initial positions farther from the destination 

compared to scenarios 1 and 3, benefit from a higher density 

of landmarks at the start of their paths, resulting in lower 

RMSE values. However, as the quadrotor progresses, the 

dataset of in-range landmarks becomes similar across all 

scenarios, leading to comparable paths in these later stages.  

 

Fig. 12. Quadrotor x-position error with OA-OBPP for various initial 

position 

 

Fig. 13. Quadrotor y-position error with OA-OBPP for various initial 

position 

Although the path during the second part of the 

quadrotor's motion is nearly identical across scenarios, 

variations in estimation accuracy during the initial part result 

in differing overall RMSE for the entire path. 

IV. FUTURE WORK  

The proposed method shows promising results in 

simulations. However, two key considerations are essential 

for adapting this method to real-world applications. First, 

feature extraction and matching are crucial. The current 

research assumes that terrestrial landmarks are readily 

detected and available to the robot. In practical scenarios, 

however, these features must be extracted from images 

captured by visual sensors which requires advanced image 

processing algorithms and substantial computational power.  

Another critical aspect for real-world implementation is 

the type of obstacles. In this research, it is assumed that 

obstacles are fixed in the environment. However, in real-

world applications, obstacles can be both fixed (such as tall 

buildings, towers, and mountains) and dynamic (such as other 

aerial vehicles and birds). In dynamic environments, moving 

obstacles cause the list of nearby landmarks to change 

rapidly. This situation affects the obstacle avoidance 
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performance, as it depends on the quadrotor's velocity, the 

movement of obstacles, and the range of the quadrotor’s 

vision. 

The OA-OBPP method for ASLAM, may face challenges 

in real-world scenarios with numerous and moving obstacles, 

potentially leading to performance limitations. Future work 

should explore solutions for feature extraction and adapt the 

method to handle dynamic environments effectively to 

facilitate practical implementation.         

V. CONCLUSION 

In this paper, autonomous motion of a quadrotor in a 

GNSS-denied unknown outdoor environment polluted with 

several obstacles is implemented utilizing OA-OBPP. The 

quadrotor navigates through such environment using EKF-

SLAM while its path is defined by the OA-OBPP algorithm. 

In OBPP the quadrotor defines its path in the direction leads 

to most observability of system for better estimation. 

Utilizing the concept of observability degree and the 

landmarks distributed in the environment, quadrotor defines 

its path in most observable direction achieved by eigenvector 

of Gram matrix. Accordingly, OA is implemented by 

redefinition of the landmarks dataset. In this dataset the 

landmarks in a specified radius of the obstacle are removed 

from landmark dataset which is used for path planning.    

To assess the performance of the proposed method, three 

categories of analysis is performed including Trajectory 

analysis, localization accuracy and effect of initial position. 

In first evaluation the results demonstrated by OA-OBPP 

quadrotor can autonomously moves from initial to the end 

point without any collision to the obstacles in the 

environment. The comparison of RMSE between the 

proposed method and the MCPP shows that the OA-OBPP 

method achieves approximately 30% lower localization error. 

Additionally, the evaluation of the impact of initial position 

on path planning with the proposed method demonstrates its 

robustness against variations in starting position. It can 

autonomously determine the most observable path from the 

initial point to the endpoint in an unknown, GNSS-denied 

environment while effectively avoiding collisions with 

obstacles.         
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