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Abstract—Total harmonic distortion (THD) is one of the 

most essential parameters that define the operational efficiency 

and power quality in electrical systems applied to solutions like 

cascaded H-bridge multilevel inverters (CHB-MLI). The 

reduction of THD is crucial due to the fact that improving the 

system’s power quality and minimizing the losses are key for 

performance improvement. The purpose of this work is to 

introduce a new DMO-based approach to optimize the THD of 

the output voltage in a three-phase nine-level CHB-MLI. The 

proposed DMO algorithm was also subjected to intense 

comparison with two benchmark optimization techniques, 

namely Genetic Algorithm and Particle Swarm Optimization 

with regards to three parameters, namely convergence rate, 

stability, and optimization accuracy. A series of MATLAB 

simulations were run to afford the evaluation of each algorithm 

under a modulation index of between 0.1 and 1.0. The outcome 

of the experiment amply proves that in comparison with THD 

minimization for the given OP, the DMO algorithm was 

significantly superior to both RSA-based GA and PSO 

algorithms in their ability to yield higher accuracy while 

requiring lesser computational time. Consequently, this work 

could expand the application of the DMO algorithm as a reliable 

and effective means of enhancing THD in CHB-MLIs as well as 

advancing the overall quality of power systems in different 

electrical power networks. 

Keywords—Total Harmonic Distortion (THD) Optimization; 

Cascaded H-Bridge Multilevel Inverter (CHB-MLI); Dwarf 

Mongoose Optimization (DMO) Algorithm; Meta-Heuristic 

Algorithms. 

I. INTRODUCTION 

Multilevel inverters (MLIs) are indispensable parts of 

present-day electrical power system to accomplish the vital 

responsibility of conversion of direct current (DC) to pseudo 

sinusoidal Alternating Current (AC) [1]-[4]. They are used 

for many applications notably in renewable energy resources 

like photovoltaic system used for conversion solar energy to 

electrical energy that is synchronized to the grid as pointed 

out in Panigrahi et al., 2020. Over the last few years, MLIs 

have been widely used in the high power and high voltage 

applications owing to their increased capability of improving 

the quality of power while operating at lower frequency of 

switching. These features make MLIs highly efficient and 

reliable for use in these key technologies like High Voltage 

Direct Current (HVDC) transmission and Flexible 

Alternating Current Transmission Systems (FACTS) devices 

for the stability and efficiency of large-scale power systems 

[5]-[7]. In the same way, the incorporation of MLIs into 

electric vehicles especially in asynchronous and synchronous 

motor drives has also become standard hence enhancing their 

use in efficient energy systems in vehicles [8]-[12]. 

The foremost issue widely related to MLIs is the 

minimization of THD, which is the evaluation of the 

harmonics in the voltage or current waveform apart from the 

fundamental frequency. Minimizing THD is always desirable 

in power systems because harmonics have adverse impacts 

on the system such as increased energy loss, elevated 

operating temperatures, degradation of other components, 

and system instability. Lower THD also reduces heating and 

noise and increases the life span of loads electrical 

components, and electromagnetic interference [13]-[18]. 

Moreover, decreasing THD improves the functionality of 

other instruments connected to the power supply and helps to 

strengthen the stably of power supply networks, and 

therefore, is a major goal in power quality. 

In response, numerous approaches have been proposed to 

mitigate THD, all of which are applicable to different circuits 

of power system networks. The Newton-Raphson technique 

amongst other conventional procedures indicating 

mathematical probable solving approaches have been used to 

solve harmonic elimination problems. The most frequent 
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method is Selective Harmonic Elimination (SHE) which was 

developed to cancel out certain low order dominant 

harmonics in the waveform [19]-[23]. Nevertheless, for the 

purpose of implementing SHE, certain complications arise 

due to certain requirements for switching regime and 

calculation parameters: the method needs complicated 

change-over schemes which may be quite challenging in high 

power applications. 

Besides SHE, PWM and sinusoidal PWM and SVM, have 

been shown to be suitable methods for minimizing the THD. 

These methods make use of generation of several voltage 

levels as well as the management of switching states in order 

to reduce the number of harmonics. However, they also have 

limitations because they need to switch between the channels 

at high speeds which may be challenging, and need complex 

circuitry to set up that physically complicate a system and 

place hardware restrictions. 

From the same perspective of the AI field, other 

approaches such as fuzzy logic and artificial neural networks 

(ANN) have also been adopted in THD minimization. These 

approaches give flexibility and adaptability but they are 

limited by the modulation index (M) and cannot furnish 

solutions in all the range of M values [24]-[27]. In addition, 

it is often observed that numerous AI-related techniques 

employ simple basic optimization algorithms, such as 

Genetic Algorithms (GA) [28]-[30] and Particle Swarm 

Optimization (PSO) [31]-[36], but the problem is that they 

have limitations in terms of computational efficiency, 

convergence speed, and parameters tuning [37]-[40]. 

As the limitations of traditional optimization methods 

have been identified, the society has a high need towards 

optimization methods that would provide higher yield with 

decreased number of parameters and less model complexity 

[41]-[46]. In this research, a brand new meta-heuristic 

concept is presented with the DMO algorithm in an attempt 

to enhance THD in a three-phase nine-level MLI [47]-[53]. 

In this point, the DMO algorithm can be considered as an 

advantageous method over conventional optimization 

approaches because it can solve the multiple objective 

problems deterministically and decrease the use of stochastic 

parameters for reducing computational time [54]-[57]. This is 

especially important for applications involving high power 

where switching speed, signal distortion and system 

simplicity are critical [58]-[62]. 

The proposed DMO algorithm not only handles 

fundamental issues such as shortcomings of SHE and PWM 

but also combines well with sophisticated higher AI-oriented 

methods creating a fair optimized mix [63]-[66]. Because the 

DMO algorithm reduces THD across multiple conditions, the 

algorithm improves the efficiency and stability of MLIs 

primarily used in high voltage power systems and renewable 

energy. In my opinion, this idea may play a great role in the 

continuous construction of improved power systems, and 

MLI in other sectors as well [67]-[69]. 

II. DWARF MANGOS OPTIMIZATION ALGORITHM  

Dwarf Mongoose Optimization Algorithm (DMO) is a 

meta-heuristic optimization algorithm developed by drawing 

inspiration from natural life. This algorithm is utilized to 

solve optimization problems in various domains by 

mimicking the feeding behavior of the dwarf mongoose, a 

small carnivorous mammal found in Africa [70]-[74].  

Dwarf mongooses live in communities and exhibit 

cooperative feeding strategies to efficiently provide 

sustenance to the entire group. Drawing inspiration from the 

adaptive behaviors of dwarf mongooses, such as the selection 

of prey size, area utilization, group size, and food provision, 

the DMO algorithm finds optimal solutions to complex 

optimization problems [75]-[78]. The algorithm is 

population-based, utilizing social groups consisting of alpha 

groups and caregivers (babysitters) to perform search and 

optimization tasks [79]-[81]. The alpha group makes crucial 

decisions such as initiating feeding, choosing the feeding 

path, and determining the distance covered. Caregivers take 

care of young mongooses and are altered during the group's 

feeding, contributing to the algorithm's exploration and 

exploitation stages. 

DMO has demonstrated positive results in solving various 

optimization problems and has been compared to other 

contemporary algorithms, proving its effectiveness and 

efficiency in finding near-optimal solutions [82]. The 

optimization procedures of the DMO algorithm are 

represented in three stages, as shown in Fig. 1. The DMOA 

model, pseudo-code, and algorithmic structure are presented 

below.

 

Fig. 1. The optimization procedures of the DMO 
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A. Initial Population 

The DMO method initiates by generating a population of 

potential solutions in a random manner, as described in 

Equation (1). The variable Np represents the overall 

population size, while the variable Q denotes the quantity of 

decision factors pertaining to the dwarf mongoose. The 

population is stochastically created through the utilization of 

Equation (2). 

𝑆 = [

𝑠1,1 ⋯ 𝑠1,𝑄

⋮ ⋱ ⋮
𝑠𝑁𝑝,1 ⋯ 𝑠𝑁𝑝,𝑄

] (1) 

𝑆𝑢,𝑣 = 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝐿𝐵, 𝑈𝐵, 𝑄) (2) 

B. The DMO Model 

The procedure of the DMO algorithm is divided into three 

groups. These groups are presented below: 

• Alpha group: In the first step, the fitness of each solution 

in the population is calculated using Equation (3) (the 

value of the fitness function). Based on fitness, the alpha 

female is selected as specified in Equation (3). The 

number of dwarf mongooses in the  𝛼, the baby-sitter 

count (bs), and the calling probability of the dominant 

female (p) in dwarf mongooses are updated using 

Equation (4). ∅, is a randomly selected number. For each 

iteration, the sleeping nest is calculated using Equation 

(5). The average of 𝜀𝑗 values is calculated using Equation 

(6). When the criteria for the babysitter are met, the next 

step is initiated, which involves forming the discovery 

group. 

𝛼 =
𝑓𝑖𝑡𝑗

∑
𝑗=1

𝑁𝑝  𝑓𝑖𝑡𝑗
 (3) 

𝑆𝑗+1 = 𝑆𝑗 + ∅ ∗ 𝜌  (4) 

𝜀𝑗 =
𝑓𝑖𝑡𝑗+1 − 𝑓𝑖𝑡𝑗

𝑚𝑎𝑥{|𝑓𝑖𝑡𝑗+1, 𝑓𝑖𝑡𝑗|}
 (5) 

𝜎 =
∑

𝑗=1

𝑁𝑝  𝜀𝑗

𝑁𝑝

 (6) 

• Scout group: The discovery group, based on the 

information that dwarf mongooses do not return to their 

previous sleeping nests, searches for the next sleeping 

nest, ensuring the discovery. The logic predicts that the 

family will discover a new sleeping nest if it continues its 

food search far enough. This situation is mathematically 

expressed in Equations (7) and (8). where, the "rand" 

value is a random number between [0, 1]. DF is a 

parameter to control the collective movement of the dwarf 

mongoose group, and �⃗�  is the movement vector. These 

parameters are calculated using Equations (9) and (10). 

if     𝜃𝑗+1 > 𝜃𝑗: 𝑆𝑗+1 = 𝑆𝑗 − 𝐷𝐹 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑆𝑗 − �⃗� ]  (7) 

𝑒𝑙𝑠𝑒                   𝑆𝑗+1 = 𝑆𝑗 + 𝐷𝐹 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑆𝑗 − �⃗� ] (8) 

𝐷𝐹 = (1 −
𝑚

𝑚𝑎𝑥−𝐺
)
(2∗

𝑚
𝑚𝑎𝑥−𝐺

)

 (9) 

�⃗⃗� = ∑
𝑗=1

𝑁𝑝  
𝑆𝑗 × 𝜀𝑗

𝑆𝑗
 (10) 

• The babysitters: The babysitter is a supplementary 

collective that remains in the company of the progeny. 

Babysitters are frequently rotated to support the dominant 

female, while additional team members coordinate daily 

hunting excursions. The pseudo code of DMOA is 

presented in Table I. 

TABLE I.  PSEUDO-CODE OF THE DMO ALGORITHM 

DMO Algorithms 

begin 

Set the parameters of DMOA: Np, bb 
Np = Np - bb  Set the value 

Set the value of the babysitter change parameter, K. 

for  m=1 : max_G 

Calculate the fitness value of mongooses. 

Set the time counter, D. 

Calculate Equation (3). 

Calculate the candidate food location (Equation 4). 

Evaluate the new fitness value. 

Evaluate the sleeping nest (Equation 5). 

Calculate the average of sleeping nests (Equation 6). 

Calculate the movement vector (Equation 10). 

If D ≥ K, change the babysitter. 

Initialize the bb position using (Equation 1) and calculate fitness 
values. 

Update the best solution. 

end 

Return the best solution. 

end 

III. RESULTS AND DISCUSSIONS 

The babysitter is a supplementary collective that remains 

in the company of the progeny. Babysitters are frequently 

rotated to support the dominant female, while additional team 

members coordinate daily hunting excursions. 

A. Fitness Function for THD Minimization 

The purpose of the fitness function is to obtain a 

fundamental voltage value with a lower THD. The fitness 

function is given in Equation (11).  where, θi represents the 

switching angles. Since there will be a single switching for 

each bridge in the nine-level CHB-MLI, a total of four angles, 

𝜃1, 𝜃2, 𝜃3, and 𝜃4, are considered. The inclusion of these 

angles in the calculation results in the voltage value V1p, and 

Vref is the desired reference fundamental voltage value. 

Where, V1p is the peak value of the calculated output voltage, 

while Vref is the peak value of the desired fundamental 

voltage. The fundamental voltage modulation index M is 

controlled. The modulation index is defined as the ratio of the 

desired peak value of the fundamental voltage to the total DC 

voltage value, as given in Equation (12). 

𝐹𝐹 = min𝜃𝑖
{|𝑉1𝑝 − 𝑉𝑟𝑒𝑓| + ∑ 𝑉𝑗

49
𝑗=5,7,11… }  (11) 

𝑀 =
𝑉1𝑝

∑𝑉𝐷𝐶

 (12) 

B. Optimization of Switching Angles for THD Minimization 

THD minimization for a 9-level CHB-MLI inverter using 

the DMO algorithm has been performed. The results were 
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validated using the FFT analysis tool in MATLAB Simulink. 

For GA, PSO, and DMO algorithms, 5 independent runs were 

conducted, each consisting of 50 individuals. Each run 

comprised 100 iterations. 

For modulation index range between 0 and 1, each 

algorithm was run 5 times, and the best results for GA are 

presented in Table II, for PSO in Table III, and for DMO in 

Table IV. Table II shows the switching angles calculated with 

GA and the simulation results when these angles are applied 

to the inverter. Table III and Table IV present the switching 

angles calculated with PSO and DMO algorithms, along with 

the simulation results. Upon examination of the tables, it is 

observed that, for the given modulation index range, the 

algorithm that controls the fundamental voltage with the most 

minor error and achieves the best THD value is the DMO 

algorithm. PSO, on the other hand, outperformed the GA 

algorithm. Fig. 2 shows the convergence curves of the 

algorithms for a modulation index of 1.0. As seen, the 

algorithm that finds a solution earliest and with a better 

fitness value is the DMO algorithm. When compared to other 

optimization methods like GA and PSO, the DMO algorithm 

has the following advantages: 

• Higher Divergence: DMO exhibits higher diversity in 

the problem space. This characteristic often assists in 

finding better global solutions. 

• Better Speed and Convergence: DMO can converge 

faster and generate solutions more rapidly in certain 

situations. This has been demonstrated in THD 

optimization. 

• Parameter Sensitivity: DMO is an algorithm that, in 

some cases, shows less sensitivity or is less responsive to 

parameter settings. 

• Complexity: DMO is less complex than GA and PSO, 

requiring fewer adjustments. 

However, each optimization algorithm may perform 

better or worse for different problems and application 

scenarios. The choice of which algorithm to use should be 

evaluated based on the specific characteristics and 

requirements of a given situation (Çelik, 2023). The 

advantages and disadvantages of each algorithm are different, 

and the preferred algorithm can vary depending on the 

application context (Çelik & Kumar, 2021). In conclusion, 

for THD optimization, DMO proves to be superior to GA and 

PSO algorithms. 

 

Fig. 2. Convergence curves for GA, PSO, and DMO for M=1.0 

C. Consistency Test 

The standard deviation is a measure of how much values 

in a data set deviate from the mean. In other words, it 

indicates how much the data points are spread out around the 

mean value. A low standard deviation means that the results 

obtained are more consistent and show less variability, 

indicating that the algorithm is more reliable and its 

performance is more predictable. 

For each algorithm, the consistency of results was tested 

by comparing the best FF (fitness value), worst FF, average 

FF, and standard deviation (SD). The statistical analysis 

results for GA, PSO, and DMO are given in Table V, Table 

VI, and Table VII, respectively. As observed, the algorithm 

with the lowest standard deviation values is the DMO 

algorithm. PSO outperformed GA in terms of consistency. 

D. Speed Test 

An optimization speed test is a method used to evaluate 

an optimization algorithm's working speed and result 

generation speed. This test assesses the performance of an 

algorithm by measuring its solution time and speed. 

Each of the three algorithms was run in 5 different trials, 

and each trial was conducted with 100 repetitions. The results 

obtained are presented in Table VIII. According to these 

results, the DMO algorithm is identified as the fastest, while 

GA is determined as the slowest algorithm.

TABLE II.  SWITCHING ANGLES CALCULATED WITH GA 

GA-THD 

m θ1 θ2 θ3 θ4 Vref(max) Vref(rms) V1p(rms) error(%) THD (%) 

Low 

0.1 1.25324 1.56987 1.57080 1.57080 31.1 22 21.88 0.55% 81.98 

0.2 0.91551 1.55388 1.57080 1.57080 62.2 44 43.74 0.59% 31.56 

0.3 0.72382 1.38037 1.56991 1.57080 93.3 66 65.61 0.59% 17.17 

Medium 

0.4 0.68755 1.08395 1.55905 1.57080 124.4 88 87.46 0.61% 15.24 

0.5 0.70103 0.97232 1.33031 1.57080 155.5 110 109.3 0.64% 12.50 

0.6 0.44427 0.90939 1.20066 1.57080 186.6 132 131.2 0.61% 8.95 

High 

0.7 0.63771 0.85119 1.05783 1.32974 217.7 154 153 0.65% 8.29 

0.8 0.41486 0.81670 1.03502 1.16486 248.8 176 174.9 0.62% 7.78 

0.9 0.08328 0.27442 0.56629 1.54637 279.9 198 197.3 0.35% 5.25 

1.0 0.19495 0.40987 0.72392 1.05394 311.0 220 219.3 0.32% 5.32 
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TABLE III.  SWITCHING ANGLES CALCULATED WITH PSO 

PSO-THD 

m θ1 θ2 θ3 θ4 Vref(max) Vref(rms) V1p(rms) error(%) THD (%) 

Low 

0.1 1.25227 1.57080 1.57080 1.57080 31.1 22 21.86 0.64% 81.80 

0.2 0.91357 1.55745 1.56867 1.57080 62.2 44 43.75 0.57% 31.51 

0.3 0.83233 1.29807 1.57080 1.57080 93.3 66 65.81 0.29% 18.74 

Medium 

0.4 0.71650 1.05657 1.56019 1.57080 124.4 88 87.71 0.33% 14.70 

0.5 0.72671 0.93416 1.33979 1.57080 155.5 110 109.7 0.27% 12.28 

0.6 0.62987 0.89079 1.20133 1.48478 186.6 132 131.5 0.38% 8.02 

High 

0.7 0.66086 0.77720 1.05472 1.36595 217.7 154 153.5 0.32% 8.19 

0.8 0.44211 0.84467 0.96275 1.18738 248.8 176 175.4 0.34% 7.16 

0.9 0.09049 0.56487 0.76939 1.29990 279.9 198 197.2 0.40% 5.89 

1.0 0.16927 0.42080 0.73278 1.04751 311.0 220 219.2 0.36% 5.09 

TABLE IV.  SWITCHING ANGLES CALCULATED WITH DMO 

DMO-THD 

m θ1 θ2 θ3 θ4 Vref(max) Vref(rms) V1p(rms) error(%) 
THD 

(%) 

Low 

0.1 1.25155 1.57080 1.57080 1.57080 31.1 22 22 0.00% 81.53 

0.2 0.90035 1.56281 1.57080 1.57080 62.2 44 43.96 0.09% 31.15 

0.3 0.74652 1.35878 1.57079 1.57080 93.3 66 65.98 0.03% 16.59 

Medium 

0.4 0.70201 1.06326 1.56251 1.57050 124.4 88 87.9 0.11% 14.56 

0.5 0.72771 0.95647 1.32300 1.56534 155.5 110 109.9 0.09% 12.08 

0.6 0.61719 0.91465 1.17107 1.49344 186.6 132 132.1 -0.08% 7.97 

High 

0.7 0.64445 0.84405 1.06562 1.31157 217.7 154 153.8 0.13% 7.89 

0.8 0.43091 0.84920 0.96353 1.18695 248.8 176 175.4 0.34% 7.09 

0.9 0.09255 0.26872 0.57777 1.54006 279.9 198 197.4 0.30% 5.14 

1.0 0.17221 0.41732 0.72942 1.04757 311.0 220 219.4 0.27% 5.08 

TABLE V.  CONSISTENCY TEST RESULTS FOR THE GA ALGORITHM 

TABLE VI.  CONSISTENCY TEST RESULTS FOR THE PSO ALGORITHM 

TABLE VII.  CONSISTENCY TEST RESULTS FOR THE DMO ALGORITHM 

 M Best FF Worst FF Average FF SD 

Low 

0.1 639.1005 681.4048 646.0766 22.08179178 

0.2 402.1548 628.7134 449.9921 99.95809935 

0.3 343.3644 625.0000 428.5866 113.8551927 

Medium 

0.4 325.0000 760.9142 483.1489 174.5489118 

0.5 411.8874 594.4970 468.6769 75.26091957 

0.6 350.0000 476.1420 398.6683 52.50764789 

High 

0.7 322.1084 369.4670 340.9151 20.79198513 

0.8 350.0000 527.0231 405.6887 73.8926317 

0.9 350.5010 527.0231 415.7465 67.76408978 

1.0 412.0000 521.0000 443.4694 46.33881392 

 M Best FF Worst FF Average FF SD 

Low 

0.1 639.9195 639.9193 0.000151658 639.9191 

0.2 373.4845 372.5665 0.523020136 372.2170 

0.3 243.4628 241.6354 1.346578969 240.0000 

Medium 

0.4 335.8261 332.3950 2.173133603 330.0449 

0.5 318.6277 316.2707 2.089369069 313.2210 

0.6 239.7146 233.5729 3.615158234 230.3388 

High 

0.7 343.5299 336.0832 4.719616123 331.7954 

0.8 239.7378 236.2114 3.355964747 231.7386 

0.9 215.9969 213.5371 2.260840591 210.2884 

1.0 252.4363 249.6602 1.658498588 248.2629 

 M Best FF Worst FF Average FF SD 

Low 

0.1 639.9397 640.0677 639.9709 0.054494 

0.2 372.2047 394.2057 378.9300 8.915979 

0.3 242.5685 309.2399 259.8002 27.90816 

Medium 

0.4 330.8299 405.0950 349.1023 31.66964 

0.5 350.5683 418.7842 367.8205 28.78559 

0.6 223.0783 229.9863 226.9226 2.723931 

High 

0.7 321.5113 441.7283 390.5902 62.22153 

0.8 317.7837 326.2569 320.8432 3.273073 

0.9 208.0000 291.3917 245.6687 38.21190 

1.0 253.4175 268.9137 261.7454 6.995747 
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TABLE VIII.  COMPARATIVE TABLE OF CALCULATION TIMES FOR EACH EXPERIMENT OF THE ALGORITHMS 

Algorithm 
Run Order 

Average Time (s) 
1 2 3 4 5 

GA 1.156 1.141 1.146 1.176 1.173 1.1584 

PSO 0.620 0.710 0.712 0.669 0.728 0.6878 

DMO 0.450 0.452 0.408 0.441 0.468 0.4438 

As seen in Table II, Table III, and Table IV, for low, 

medium, and high modulation index values, GA, PSO, and 

DMO algorithms found suitable solutions. Multilevel 

inverters are generally not operated at low modulation 

indices. The modulation value used in applications exceeds 

the medium modulation value. As shown in the table, for 

low, medium, and high modulation indices, the DMO 

algorithm found more suitable solutions. Switching angles 

obtained for low, medium, and high modulation indices 

with GA, PSO, and DMO algorithms were applied to the 

three-phase 9-level inverter Simulink model. The voltage 

waveform obtained with GA, PSO, and DMO algorithms 

is presented in Fig. 3, Fig. 4, and Fig. 5, respectively. 

Fig. 3 presents the harmonic analysis of the waveform 

obtained with GA. For a modulation index of 0.3, the 

calculated fundamental voltage value has a peak value of 

92.79V with a 0.59% error and an rms value of 65.61V. 

Under this condition (Fig. 6), the THD value is measured 

as 17.17%. For a modulation index of 0.6, the fundamental 

voltage value reaches a peak value of 185.5V with a 0.61% 

error and an rms value of 131.2V. The THD value for this 

modulation index is calculated as 8.91%. For a modulation 

index of 1.0, the fundamental voltage value has a peak 

value of 310.1V with a 0.32% error and an rms value of 

219.3V. In this case, the THD value is measured as 5.32%.  

Fig. 4 presents the harmonic analysis of the waveform 

obtained with PSO. For a modulation index of 0.3, the 

calculated fundamental voltage value has a peak value of 

93.06V with a 0.29% error and an rms value of 65.81V. 

The THD value for a modulation index of 0.3 is measured 

as 18.74%. For a modulation index of 0.6, the fundamental 

voltage value reaches a peak value of 186V with a 0.38% 

error and an rms value of 131.5V. In this case (Fig. 7), the 

THD value is calculated as 8.02%. For a modulation index 

of 1.0, the fundamental voltage value has a peak value of 

310V with a 0.36% error and an rms value of 219.2V. The 

THD value for a unit modulation index is measured as 

5.09%. 

Fig. 5 includes the harmonic analysis of the waveform 

obtained with DMO. For a modulation index of 0.3, the 

calculated fundamental voltage value has a peak value of 

93.31V with a 0.03% error and an rms value of 65.98V. In 

this case (Fig. 8), the THD value is measured as 15.59%. 

For a modulation index of 0.6, the fundamental voltage 

value reaches a peak value of 186.8V with a 0.08% error 

and an rms value of 132.1V. The THD value for a 

modulation index of 0.6 is calculated as 7.97%. For a 

modulation index of 1.0, the fundamental voltage value has 

a peak value of 310.3V with a 0.27% error and an rms value 

of 219.2V. The THD value for a modulation index of 1.0 is 

measured as 5.08%. 

 

Fig. 3. Inverter output waveforms for modulation indices M=0.3, M=0.6, and M=1.0 (GA) 

 

Fig. 4. Inverter output waveforms for modulation indices M=0.3, M=0.6, and M=1.0 (PSO) 
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Fig. 5. Inverter output waveforms for modulation indices M=0.3, M=0.6, and M=1.0 (DMO) 

 

Fig. 6. THD analysis for (a) M=0.3, (b) M=0.6, and (c) M=1.0 (GA) 

 

Fig. 7. THD analysis for (a) M=0.3, (b) M=0.6, and (c) M=1.0 (PSO) 

 

Fig. 8. THD analysis for (a) M=0.3, (b) M=0.6, and (c) M=1.0 (DMO) 

IV.  CONCLUSION 

In this study, we focused on the DMOA, which is a new 

metaheuristic algorithm that was only used in this current 

research to solve the THD issue. The primary focus of this 

research was to evaluate the performance of the DMOA in 

the context of a three-phase, nine-level cascaded H-bridge 

multilevel inverter, where it was compared with two 

established optimization techniques: these two algorithms are 

the Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO). 

The performance analysis has of the three algorithms 

demonstrated that it was possible to get acceptable solutions 

in the modulation index of between 0.1 and 1.0. Peculiarly, 

both GA and PSO approximated the THD in the inhibition of 

which range was between 0.8 to 1.0 only; nonetheless, the 

DMOA was able to optimize the successful results across a 
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broader modulation index range of between 0.6 to 1.0. This 

discovery suggests the relative advantage of DMOA finding 

a better level of flexibility and optimality for THD than other 

approaches. 

By considering critical aspects like sensitivity, speed, and 

statistical estimates, subsequent assessment of the algorithms 

pointed to superiority of DMOA in all assessed scenarios. In 

particular, it was more efficient and accurate than GA and 

PSO for the specific problem reported. As compared to GA, 

the PSO algolithm’s fundamental voltage control error was 

higher, though the analysis proves that the DMOA is less 

likely to experience control error and therefore is more 

suitable for practical application. However, the errors 

observed in the fundamental voltage control were 

considerable lower in the GA algorithm case, showing that 

this technique is far from optimal in this regard. 

To sum up, the DMOA has been described as an effective 

method for the THD optimization in MLIs without requiring 

high computational resources for its application contrary to 

some other methods. Furthermore, flexibility in applying 

DMOA to derive solutions to other contingencies of 

optimization problems in different fields extends its 

application potential in the field of engineering and power 

system. 
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