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Abstract—Robotic grippers are becoming increasingly vital in
modern agriculture, especially in tasks like harvesting delicate
crops such as tomatoes, where precision and care are crucial.
These advanced tools are designed to handle tomatoes without
causing damage, significantly improving efficiency and reducing
labor costs. Research on gripper robots for fruit picking continues
to be developed using various methods in an effort to achieve
accurate picking results. This study proposes a hybrid method
that combines Finite State Machine (FSM) for behavior control
with Fuzzy Logic Control (FLC) to optimize the positioning of the
gripper. The system utilizes a PixyCam2 CMUcam5 for tomato
detection, an Arduino microcontroller for image processing, and
a servo mechanism to precisely align the gripper with the target.
The experimental results confirm that each component functions
as expected, with the gripper successfully performing actions
such as idling, gripping, and placing in accordance with the
FSM model.Furthermore, the FLC model was tested against
simulations, resulting in error rates of 1.004% for the elbow
angle and 0.826% for the base angle. The entire system was
validated by comparing the performance of the system using
FLC and non-FLC in ten tests, each with tomatoes placed in
different positions. The results indicate that the proposed gripper,
utilizing the FSM-FLC model, achieved a 100% success rate in
grasping the target, significantly outperforming the FSM-non-FLC
gripper, which achieved only a 20% success rate. These findings
have important implications for the agricultural industry. The
successful integration of the FSM and FLC models in robotic
grippers paves the way for fully automated harvesting systems,
potentially reducing costs and enhancing productivity.

Keywords—Finite State Machine; Fuzzy Logic Control; Robotic
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I. INTRODUCTION

The agricultural sector has recently witnessed a surge in
technological advancements aimed at enhancing efficiency and
productivity. Among these innovations, robotic grippers de-
signed specifically for agricultural applications have garnered
significant attention. These robots play a crucial role in tasks
such as harvesting and handling delicate produce, offering the

precision and dexterity necessary for such operations [1]. Mod-
eled to replicate the sensitivity and precision of human hands,
these grippers gently interact with crops while maintaining
operational efficiency [2]. For instance, a study focused on
developing a robotic gripper for tomato harvesting emphasizes
the need to consider factors such as the growing environment,
fruit size, and human physiological characteristics related to
grasping [3]. Additionally, the complexity of grasping agricul-
tural products, which necessitates the use of various sensors to
enhance flexibility and control, surpasses the requirements of
industrial applications [4]–[10].

Robotic grippers play a critical role across various sectors,
including agriculture, manufacturing, and healthcare, due to
their capacity for precise object manipulation [11]–[15]. Re-
cent advancements, such as reconfigurable finger bases and
selectively lockable joints, have enhanced the dexterity of
these systems while maintaining operational efficiency [16].
The effectiveness of object manipulation relies heavily on the
coordination between gripper control and manipulator move-
ment [17], [18]. Furthermore, the integration of advanced real-
time systems, which predict object motion and dynamically
adjust control commands, has significantly enhanced the overall
performance of robotic systems in tasks such as object picking
and placing [19].

The integration of bioimpedance sensors and artificial in-
telligence (AI) has further revolutionized the functionality
of robotic grippers in agriculture. AI-driven robotic systems
equipped with vision-based sensors, path manipulators, and
end-effectors have improved precision in tasks such as seedling
pickup and soil analysis, contributing to more sustainable
farming practices [20]. Soft robotic grippers, utilizing advanced
materials like anisotropic composites, offer adaptability and
gentle handling of diverse crops, ensuring efficient grasping
with minimal damage [21], [22].
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To execute complex tasks, robotic grippers require multiple
local controllers working in unison [23]. A meta-control mech-
anism, such as a finite state machine (FSM), is necessary for
switching between controllers [24]. FSMs are widely employed
in modeling and controlling robotic systems, including robot
grippers, to govern behavior and decision-making processes
based on predefined states and transitions [25]–[29]. In robotic
grippers, FSMs provide a structured approach for managing
actions, allowing grippers to adapt to various scenarios and
perform specific tasks efficiently [30], [31]. The FSM frame-
work defines the gripper’s states, the conditions for transitioning
between these states, and the corresponding actions, ensuring a
clear, organized method for controlling the gripper’s operations.

Recent advancements in 3D perception and manipulation
technologies have further enhanced the role of robotic grippers
in agricultural tasks such as tomato harvesting. The integration
of end-effectors, 3D perception systems, and precise cutting
mechanisms has improved both the efficiency and accuracy of
robotic harvesting [32]. FSMs, through their structured control
and behavior mechanisms, continue to play a vital role in
enabling grippers to adapt to different tasks and scenarios [30],
[31].

Fuzzy Logic Control (FLC) has emerged as a crucial tool for
improving robotic systems by handling uncertainties and impre-
cise data, thus enabling more accurate decision-making [33]. In
robotic grippers, FLC is integrated with impedance and iterative
learning methods to enhance grasping performance [34]. This
approach demonstrates the flexibility of fuzzy logic, providing
an adaptable control mechanism for a variety of robotic tasks.

The application of FLC in robotics extends beyond simple
control tasks. It has been widely implemented in fields such
as regulation [35]–[37], the motion control of robot [38],
[39], monitoring [40], decision-making [41]–[43], and accuracy
enhancement [44]. Research has shown that fuzzy controllers
enable robots to navigate complex and dynamic environments
while avoiding obstacles [45]–[51]. In particular, fuzzy logic
has significantly enhanced the trajectory tracking control of ma-
nipulators like tendon-driven truss-like manipulators, utilizing
advanced fuzzy logic methodologies [52].

In robotic grippers, the implementation of FLC has proven
valuable, particularly when combined with other control ar-
chitectures such as impedance and iterative learning methods.
This combined approach enhances the grasping capabilities
of robotic grippers by providing adaptive and flexible control
mechanisms [34], [53]. The integration of fuzzy logic within
robotic systems showcases its versatility in improving perfor-
mance and decision-making processes, even in uncertain and
complex environments [33].

In the other side, robotic grippers continue to evolve through
the integration of advanced control strategies, sensing modali-
ties, and material sciences. In this study, a robotic gripper is de-

veloped using digital image recognition to detect objects. Prior
research has applied multiple techniques, such as Convolutional
Neural Networks [54], muscle electrical signals [55], reinforce-
ment learning [56], and hybrid brain-machine interfaces [57], to
model robotic arm movement. This study adopts a combination
of finite state machine and fuzzy logic control to calculate the
arm’s angles, ensuring accuracy during object picking.

In conclusion, robotic grippers are continuously evolving
through the integration of advanced technologies and design
principles, significantly enhancing their manipulation capabili-
ties across various industries. By incorporating control strate-
gies, sensing technologies, and innovations in material science,
robotic grippers are becoming increasingly adept at performing
precise and efficient manipulation tasks. Previous research has
explored the development of robotic grippers using methods
such as Convolutional Neural Networks (CNN) [54], Muscle
Electrical Signals [55], Reinforcement Learning [56], Hybrid
Gaze–Brain Machine Interfaces [57], and Fuzzy Logic Control
(FLC) [58]. However, there remains limited research on hybrid
approaches that combine multiple methods for gripper robots.
The novelty of this study lies in combining two methods,
namely Finite State Machine (FSM) and FLC, to optimize the
gripper’s performance in tomato-picking tasks.

This paper is organized into four sections. The first section
provides an introduction. Section two details the methods,
including FSM and fuzzy control, for developing the robotic
gripper for tomato picking. Section three presents and discusses
the results. Finally, section four concludes by summarizing
the findings on the implementation of the FSM-FLC hybrid
approach in robotic gripper systems for tomato-picking appli-
cations.

II. METHOD

The design process of our proposed robotic gripper consists
of four main stages: robot design, development of the FSM
model, development of the FLC model, and implementation.
These stages will be further elaborated upon in this section. The
flow process of our system is illustrated in Fig. 1. Based on Fig.
1, the system consists of three main stages: input, process, and
output. In this system, the input is the target position (x, y),
which is captured by the Pixy2 CMUCam5 camera. The Pixy2
CMUCam5 detects the target by recognizing its color, with the
target in this case being identified by its red hue. Furthermore,
the target position will be sent to the Arduino microcontroller,
where it will be processed using the FSM and FLC models.
The system’s output from this process will be the elbow angle
and the base angle. Illustrations of these angles can be seen in
Fig. 5 and Fig. 6. These angles will be used to control the servo
motors, enabling them to perform the primary task of grasping
the tomatoes. Next, the angle output is transmitted to the servos
to carry out the tomato harvesting process. After harvesting, the
robot gripper places the tomatoes into a designated basket.
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Fig. 1. Block diagram system.

The design of our proposed system is illustrated in Fig. 2,
showcasing both 2D and 3D concepts. As depicted in Fig. 2, the
proposed system consists of six main components. The main
components of the system include a robotic arm, a 5V power
supply unit (PSU) for power, an Arduino enclosure measuring
130 mm x 160 mm, a Pixy2 CMUCam5 for target detection, a
servo motor for moving the robotic arm to capture the target,
and a gripper servo for grasping the tomatoes. The selection
of the Pixy2 CMUCam5 as the target-tracking camera is based
on its integrated artificial intelligence capabilities, which make
it highly efficient in color-based image capture. The Arduino
microcontroller was chosen due to its compatibility with the
Pixy2 CMUCam5 camera.

(a) (b)
Fig. 2. Design of robot gripper: (a) schematic design; (b) 3D design.

In this study, we employ a hybrid model that integrates a
Finite State Machine (FSM) and Fuzzy Logic Control (FLC)
to regulate the movement behavior of the robotic gripper.
The FSM model consists of a set of states and transitions
between state pairs [59]–[61]. Each transition is labeled with a
condition/action pair: the condition triggers the transition, while
the action is executed when the transition occurs [62]–[65].

In this study, the Finite State Machine (FSM) model is
employed to manage the robot’s behavior by defining specific
states and corresponding actions. The system transitions be-
tween states based on the occurrence of actions. Therefore, the
first step in FSM modeling involves identifying the relevant
states and actions. An illustration of these states and actions is
presented in Fig. 3. As shown in Fig. 3, our FSM model consists
of three states and six actions. The relationships between these
states are explained in detail below.

1) Idle: The state refers to the phase in which the robot
actively searches for the target object to be detected. Upon
successfully identifying the object, the robot transitions
to the Gripping state, adjusting its position by rotating

towards the detected object.
2) Gripping: The state refers to the condition in which

the robot securely holds an object. After successfully
completing the gripping action, the robot transitions to the
”Placing” state, where it moves the object to its designated
location.

3) Placing: The state refers to the phase in which the
robot positions an object at a designated location and
subsequently returns to its initial position following the
completion of the Gripping State. During this process, the
robot’s rotational angle varies between 50 and 145 degrees,
contingent on the location of the target object.

Fig. 3. State diagram model.

Meanwhile FLC model we proposed is employed to ad-
just the robot arm’s angle to pick the target accurately. The
controlling principle of fuzzy-logic method involves one or
more inputs and results in one or more outputs to be process
for the next step. The fuzzy control basic structure includes
fuzzification unit, fuzzy inference system, knowledge base as
well as defuzzification unit [66]–[71]. As the notion of fuzzy
logic is based on uncertainty, an idea of having an empirical
formula to determine membership function defies with the gen-
eralized applicability of the fuzzy logic system. Optimization
of membership function has always been a field of research in
fuzzy logic systems [72]–[74].

In this study, the input of this fuzzy model is the position of
the object detected by the Pixy2 CMUCam5, which is defined
as (x,y) in pixels unit. The output of this fuzzy model is the
inclination angle of the robot arm (θ). This output consists of
two angles that will control the servo motor, corresponding to
the robot arm’s horizontal and vertical positions, allowing it to
grasp the targeted object precisely.

After determining the inputs and outputs of the fuzzy model,
the next step is to define the membership functions. The mem-
bership function is utilized to categorize input and output pa-
rameters into distinct categories. The membership function for
the input variable (x) is classified into three distinct categories:
left, center1, and right. Meanwhile, the input (y) is categorized
into three regions: top, center, and bottom. In general, the input
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parameters are represented by images captured by the camera,
which are divided into nine grids, as illustrated in Fig. 4. The
values of the membership functions for the inputs are presented
in Table I and Table II, represented as mathematical equation
models.

Fig. 4. Illustration of input‘s membership function.

TABLE I. MEMBERSHIP FUNCTION OF INPUT x

Linguistic EquationTerm (x)

Left µleft =

{ 1 , x ≤ 70
100−x

30
, 70 ≤ x ≤ 100

0 , x ≥ 100

Center1 µcenter1 =

{ x−70
30

, 70 ≤ x ≤ 100
1 , 100 ≤ x ≤ 130

180−x
50

, 130 ≤ x ≤ 180

Right µright =

{ x−130
50

, 130 ≤ x ≤ 180
1 , x ≥ 180
0 , others

TABLE II. MEMBERSHIP FUNCTION OF INPUT y

Linguistic EquationTerm (y)

Top µtop =

{ 1 , x ≤ 55
70−x
15

, 55 ≤ x ≤ 70
0 , x ≥ 70

Center2 µcenter2 =

{ x−55
15

, 55 ≤ x ≤ 70
1 , 70 ≤ x ≤ 80

110−x
30

, 80 ≤ x ≤ 110

Bottom µbottom =

{ x−80
30

, 80 ≤ x ≤ 110
1 , x ≥ 110
0 , others

Meanwhile, the output of this fuzzy model is represented by
angles, which are utilized to control the movement of the robot
arm, enabling precise execution of the picking process. The
first is the elbow angle, which enables vertical movement of
the robot arm, while the second is the base angle, responsible
for its horizontal movement. The elbow angle is classified
into three categories: narrow, average, and wide. Likewise, the
base angle is divided into three groups: right slant, straight,
and left slant. The categorization of the elbow angle from the
robot’s side view is presented in Fig. 5, while Fig. 6 depicts
the categorization of the base angle from the top view. The
membership function values for the output are presented in
Tables III and IV, represented in the form of mathematical
equations.

Fig. 5. Illustration of elbow angle.

Fig. 6. Illustration of base angle.

TABLE III. MEMBERSHIP FUNCTION OF OUTPUT ELBOW

Linguistic EquationTerm(θ1)

Narrow µnarrow =

{ 1 , x ≤ 75
95−x
20

, 75 ≤ x ≤ 95
0 , x ≥ 95

Average µaverage =

{ x−75
20

, 75 ≤ x ≤ 95
1 , 95 ≤ x ≤ 105

110−x
5

, 105 ≤ x ≤ 110

Wide µwide =

{ x−105
5

, 105 ≤ x ≤ 110
1 , x ≥ 110
0 , others

TABLE IV. MEMBERSHIP FUNCTION OF OUTPUT BASE

Linguistic EquationTerm(θ2)

Left Slant µleftslant =

{ 1 , x ≤ 70
90−x
20

, 70 ≤ x ≤ 90
0 , x ≥ 90

Average µstraight =

{ x−70
20

, 70 ≤ x ≤ 90
1 , 90 ≤ x ≤ 100

105−x
5

, 100 ≤ x ≤ 105

Right Slant µrightslant =

{ x−100
5

, 100 ≤ x ≤ 105
1 , x ≥ 105
0 , others

After establishing the membership function, the subsequent
step involves modeling a fuzzy rule-based system, which acts
as a reference framework for decision-making within the fuzzy
logic system. The fuzzy model is composed of nine potential
rules, which are presented in detail in Table V. The rule-based
system is logically defined by correlating the output results with
the corresponding input data. For example, in Rule number
one (R1), if the detected input corresponds to the object’s
position in the upper-left area of the image (left and top), the
output angles necessary for the robot to accurately grasp the
target would be a base angle categorized as ’left slant’ and an
elbow joint classified as ’wide. The output, which is still in the
defuzzification stage, produces a numerical angle value.

III. RESULTS AND DISCUSSION

In this study, we developed a prototype of a robotic grip-
per specifically designed for harvesting tomatoes. The system
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TABLE V. FUZZY RULE BASED

Rule Input Output
x y Base Elbow

R1 Left Top Left Slant Wide
R2 Left Center Left Slant Average
R3 Left Bottom Left Slant Narrow
R4 Center Top Straight Wide
R5 Center Center Straight Average
R6 Center Bottom Straight Narrow
R7 Right Top Right Slant Wide
R8 Right Center Right Slant Average
R9 Right Bottom Right Slant Narrow

integrates a Finite State Machine (FSM) model to control the
robot’s behavior, while a Fuzzy Logic Controller (FLC) model
was implemented to ensure precise movement of the robotic
gripper. The prototype is capable of harvesting tomatoes with
a maximum width of 5 cm and a height of up to 7 cm. Fig.
7 presents both front and top views of the system developed
in this research. The constructed gripper robot successfully
meets the initial design specifications and requirements. Upon
completion of the implementation, several tests were conducted
to assess the performance of the proposed system.

(a) (b)
Fig. 7. A prototype of robotic gripper implemented in this study (a) front view; (b) top
view.

The performance evaluation of each component of the robot
gripper revealed that the Pixy2 CMUCam5 successfully de-
tected tomato objects at a maximum range of 40 cm under
varying light intensities, ranging from 25 to 3000 lux. Further-
more, the data transmission between the Pixy2 camera and the
Arduino was tested and confirmed to function effectively. Servo
motor testing was also conducted to assess the accuracy of the
angles generated. The results demonstrated that the servo motor
operated efficiently, achieving an accuracy of 99.7%.

Several studies that have developed FSM methods for mod-
eling robot behavior have demonstrated optimal performance
outcomes [75]. To validate the accuracy of the robot’s behavior
in accordance with the initial design, the FSM method was
implemented and tested, as depicted in the state machine
diagram in Fig. 3. The test results, summarized in Table VI,
confirm that all state transitions were consistent with the state
diagram initially defined during the modeling process. These

findings suggest that the robot’s behavior aligns effectively with
its original design specifications.

TABLE VI. FSM MODEL TESTING ON ROBOTS

Robot Initial State Action Robot Final State

State: Idle Action: Robot rotates State: Grippingtowards target

State : Gripping Action: Robot gripped State:Placingthe object

State : Placing Action: Robot rotates State:Placingtowards the destination
point

In tomato harvesting, a critical factor determining the success
of the picking process is the accuracy of the robot arm’s angle.
This angle is precisely calculated using fuzzy logic control. A
case study was conducted by selecting a specific object position,
followed by experimental testing. The experimental results were
then compared with simulation data. A comparison of the robot
arm angles obtained from the experiment and the simulation is
presented in Table VII. According to Table VII, the error rate
for the elbow angle is 1.004%, while for the base angle, it is
0.826%. These findings demonstrate that the fuzzy logic model
implemented in the robot has performed effectively.

TABLE VII. COMPARISON OF FUZZY MOD-
ELS ON GRIPPER ROBOTS AND SIMULATION

Input (x, y) Ouput Proposed System Simulation

(158, 153) Elbow Angle 69.0 69.7
Base Angle 72.0 72.6

The comprehensive performance testing of the gripper robot
was conducted, as illustrated in Fig. 8. In this testing, ten trials
were performed, each with different object placements. In all
ten trials, the robot successfully completed the task of picking
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tomatoes. Fig. 8 provides a detailed illustration of the overall
performance testing process for the robotic system.

(a) (b)
Fig. 8. Scenario testing of picking tomatoes (a) front view; (b) top view.

The performance of the proposed method was evaluated by
comparing the robot gripper’s performance using a FSM and
FLC model against a gripper without FLC (Non-FLC). The
tests were conducted using 10 different positions, as shown in
Table VIII. Based on this results, the robot gripper utilizing the
FSM and FLC model achieved a 100% success rate in grasping
the target, whereas the Non-FLC gripper achieved only a 20%
success rate.

TABLE VIII. COMPARISON OF FUZZY MOD-
ELS ON GRIPPER ROBOTS AND SIMULATION

No Input (x, y) FLC Non FLC
1 (70, 66) Failed Success
2 (98, 99) Failed Success
3 (94, 153) Failed Success
4 (163, 65) Failed Success
5 (161, 99) Success Success
6 (158, 153) Success Success
7 (248, 49) Failed Success
8 (262, 101) Failed Success
9 (262, 101) Failed Success

10 (253, 153) Failed Success

The implementation of the FLC model in controlling the
robot’s positioning significantly enhanced the gripper’s perfor-
mance for tomato picking. This improvement is attributed to the
more diverse range of outputs generated by the FLC compared
to the Non-FLC model. Additionally, the increased accuracy
provided by the FLC method is partly due to the proper
modeling of input and output membership functions, which
are essential for accurate categorization. For future research,
we recommend incorporating fuzzy control to regulate grasping
force during tomato harvesting, similar to previous studies on
strawberries [76].

The success of this experiment is partly due to the consistent
light intensity maintained during testing. Since the camera
used to detect objects is influenced by light intensity, future
research is needed to develop a more robust system capable of
functioning under varying lighting conditions. This can also be
enhanced by integrating machine learning technology to address
these limitations.

IV. CONCLUSION

In this study, a robotic arm control system was successfully
developed using a Pixy2 CMUCam5, an Arduino Uno micro-
controller, and servo motors. The results demonstrate that the
hybrid model combining a Finite State Machine (FSM) and
Fuzzy Logic Controller (FLC) is effective in controlling the
robotic arm’s behavior and adjusting the gripper’s angle to
perform tasks such as grasping tomatoes.

The FSM model designed in this research was success-
fully implemented and produced behaviors consistent with
the specified system requirements, enabling it to perform
tasks efficiently. Comparisons between FSM model testing
and simulation results showed minimal error, indicating that
the FLC model was effectively implemented. Further system
performance tests compared the robotic gripper’s performance
using the hybrid FSM-FLC method with the hybrid FSM-Non
FLC method. The results indicate that the system utilizing
the fuzzy logic approach outperformed the non-fuzzy method.
These findings suggest that the combination of FSM and FLC
in a hybrid model significantly improves the accuracy of the
robotic system in harvesting tomatoes.

With the improvement in accuracy, this development enables
the creation of a robotic gripper system that can assist in the
automatic fruit-picking process, thereby reducing labor costs.
Future developments could involve transforming the robotic
gripper into a mobile robot, allowing it to operate more ef-
ficiently.

REFERENCES

[1] J. F. Elfferich, D. Dodou and C. D. Santina, “Soft Robotic Grippers for
Crop Handling or Harvesting: A Review,” in IEEE Access, vol. 10, pp.
75428-75443, 2022, doi: 10.1109/ACCESS.2022.3190863.

[2] M. A. Mousa, M. Soliman, M. A. Saleh and A. G. Radwan, “Biohybrid
Soft Robots, E-Skin, and Bioimpedance Potential to Build Up Their
Applications: A Review,” in IEEE Access, vol. 8, pp. 184524-184539,
2020, doi: 10.1109/ACCESS.2020.3030098.

[3] Z. Li, F. Miao, Z. Yang, P. Chai, and S. Yang, “Factors affect-
ing human hand grasp type in tomato fruit-picking: A statistical in-
vestigation for ergonomic development of harvesting robot,” Comput-
ers and electronics in agriculture, vol. 157, pp. 90–97, 2019, doi:
10.1016/j.compag.2018.12.047.

[4] B. Zhang, Y. Xie, J. Zhou, K. Wang, and Z. Zhang, “State-of-the-
art robotic grippers, grasping and control strategies, as well as their
applications in agricultural robots: A review,” Computers and Electronics
in Agriculture, vol. 177, 2020, doi: 10.1016/j.compag.2020.105694.

[5] S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. Hellmann Santos, and
E. Pekkeriet, “Agricultural robotics for field operations,” Sensors, vol. 20,
no. 9, 2020, doi: 10.3390/s20092672.

[6] S. G. Vougioukas, “Agricultural robotics,” Annual review of control,
robotics, and autonomous systems, vol. 2, no. 1, pp. 365–392, 2019, doi:
10.1146/annurev-control-053018-023617.

[7] T. Duckett, S. Pearson, S. Blackmore, B. Grieve, W.-H. Chen, G. Cielniak,
J. Cleaversmith, J. Dai, S. Davis, C. Fox et al., “Agricultural robotics:
the future of robotic agriculture,” arXiv, 2018, doi: 10.31256/WP2018.2.

[8] G. Ren, T. Lin, Y. Ying, G. Chowdhary, and K. Ting, “Agri-
cultural robotics research applicable to poultry production: A re-
view,” Computers and Electronics in Agriculture, vol. 169, 2020, doi:
10.1016/j.compag.2020.105216.

Rina Mardiati, Combining Finite State Machine and Fuzzy Logic Control for Accuracy Enhancing Performance of a
Tomato-Handling Robot Gripper



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2033

[9] L. F. Oliveira, M. F. Silva, and A. P. Moreira, “Agricultural robotics:
A state of the art survey,” in 23rd international conference series on
climbing and walking robots and the support technologies for mo-
bile MachinesAt: Moscow, Russian federation, 2020, pp. 279–286, doi:
10.13180/clawar.2020.24-26.08.44.

[10] L. F. Oliveira, A. P. Moreira, and M. F. Silva, “Advances in agricul-
ture robotics: A state-of-the-art review and challenges ahead,” Robotics,
vol. 10, no. 2, 2021, doi: 10.3390/robotics10020052.

[11] Z. Samadikhoshkho, K. Zareinia and F. Janabi-Sharifi, “A Brief Review
on Robotic Grippers Classifications,” 2019 IEEE Canadian Conference
of Electrical and Computer Engineering (CCECE), pp. 1-4, 2019, doi:
10.1109/CCECE.2019.8861780.

[12] A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot in-
teraction in industrial collaborative robotics: a literature review of the
decade 2008–2017,” Advanced Robotics, vol. 33, pp. 764–799, 2019, doi:
10.1080/01691864.2019.1636714.

[13] N. R. Sinatra, C. B. Teeple, D. M. Vogt, K. K. Parker, D. F. Gruber,
and R. J. Wood, “Ultragentle manipulation of delicate structures using
a soft robotic gripper,” Science Robotics, vol. 4, no. 33, 2019, doi:
10.1126/scirobotics.aax5425.

[14] Z. Long, Q. Jiang, T. Shuai, F. Wen, and C. Liang, “A systematic review
and meta-analysis of robotic gripper,” in IOP Conference Series: Mate-
rials Science and Engineering, vol. 782, no. 4, 2020, doi: 10.1088/1757-
899X/782/4/042055.

[15] S. Zaidi, M. Maselli, C. Laschi, and M. Cianchetti, “Actuation tech-
nologies for soft robot grippers and manipulators: A review,” Current
Robotics Reports, vol. 2, no. 3, pp. 355–369, 2021, doi: 10.1007/s43154-
021-00054-5.

[16] N. Elangovan, L. Gerez, G. Gao and M. Liarokapis, “Improving Robotic
Manipulation Without Sacrificing Grasping Efficiency: A Multi-Modal,
Adaptive Gripper With Reconfigurable Finger Bases,” in IEEE Access,
vol. 9, pp. 83298-83308, 2021, doi: 10.1109/ACCESS.2021.3086802.

[17] C.-S. Chen and N.-T. Hu, “Eye-in-hand robotic arm gripping system based
on machine learning and state delay optimization,” Sensors, vol. 23, no. 3,
2023, doi: 10.3390/s23031076.

[18] T. Wang, T. Jin, Q. Zhang, L. Li, G. Wang, Y. Tian, S. Yi, and Y. Lin, “A
bioinspired gripper with sequential motion and mutable posture enabled
by antagonistic mechanism,” Advanced Intelligent Systems, vol. 5, no. 3,
2023, doi: 10.1002/aisy.202200304.

[19] C. -C. Wong, M. -Y. Chien, R. -J. Chen, H. Aoyama and K. -Y. Wong,
“Moving Object Prediction and Grasping System of Robot Manipulator,”
in IEEE Access, vol. 10, pp. 20159-20172, 2022, doi: 10.1109/AC-
CESS.2022.3151717.

[20] E. Elbasi et al., “Artificial Intelligence Technology in the Agricultural
Sector: A Systematic Literature Review,” in IEEE Access, vol. 11, pp.
171-202, 2023, doi: 10.1109/ACCESS.2022.3232485.

[21] Y. Chen, J. Zhang and Y. Gong, “Utilizing Anisotropic Fabrics Com-
posites for High-Strength Soft Manipulator Integrating Soft Gripper,”
in IEEE Access, vol. 7, pp. 127416-127426, 2019, doi: 10.1109/AC-
CESS.2019.2940499.

[22] K. Blanco, E. Navas, L. Emmi and R. Fernandez, “Manufacturing of 3D
Printed Soft Grippers: A Review,” in IEEE Access, vol. 12, pp. 30434-
30451, 2024, doi: 10.1109/ACCESS.2024.3369493.

[23] J. Halim, P. Eichler, S. Krusche, M. Bdiwi, and S. Ihlenfeldt, “No-
code robotic programming for agile production: A new markerless-
approach for multimodal natural interaction in a human-robot col-
laboration context,” Frontiers in Robotics and AI, vol. 9, 2022, doi:
10.3389/frobt.2022.1001955.

[24] Y. Onishi and M. Sampei, “Priority-based state machine synthesis that
relaxes behavior design of multi-arm manipulators in dynamic environ-
ments,” Advanced Robotics, vol. 37, no. 5, pp. 395–405, 2023, doi:
10.1080/01691864.2023.2177122.

[25] J. Li and Y. Tan, “A probabilistic finite state machine based strategy
for multi-target search using swarm robotics,” Applied Soft Computing,
vol. 77, pp. 467–483, 2019, doi: 10.1016/j.asoc.2019.01.023.

[26] C. A. My, D. X. Bien, C. H. Le, and M. Packianather, “An efficient finite
element formulation of dynamics for a flexible robot with different type
of joints,” Mechanism and Machine Theory, vol. 134, pp. 267–288, 2019,
doi: 10.1016/j.mechmachtheory.2018.12.026.

[27] D. Faconti, “Mood2be: Models and tools to design robotic behaviors,”
Autonomous System Group Eurecat Centre Tecnol‘ogic Barcelona, Spain,
vol. 4, pp. 1–17, 2019.

[28] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Wood-
cock, “Robochart: modelling and verification of the functional behaviour
of robotic applications,” Software & Systems Modeling, vol. 18, pp. 3097–
3149, 2019. doi: 10.1007/s10270-018-00710-z.

[29] A. Cavalcanti, A. Sampaio, A. Miyazawa, P. Ribeiro, M. Conserva Filho,
A. Didier, W. Li, and J. Timmis, “Verified simulation for robotics,”
Science of Computer Programming, vol. 174, pp. 1–37, 2019, doi:
10.1016/j.scico.2019.01.004.

[30] S. Supratno, Rohamid, P. W. A. Sucipto, A. Firasanti, R. A. Adara and E.
A. Z. Hamidi, “Obstacle Avoidance Behavior Design in Hexapod Robots
using Finite State Machine,” 2023 IEEE 9th International Conference
on Computing, Engineering and Design (ICCED), pp. 1-4, 2023, doi:
10.1109/ICCED60214.2023.10425666.

[31] D. S. Catherman, J. Tomasz Kaminski and A. Jagetia, “Atlas Hu-
manoid Robot Control with Flexible Finite State Machines for Playing
Soccer,” 2020 SoutheastCon, pp. 1-7, 2020, doi: 10.1109/Southeast-
Con44009.2020.9368291.

[32] J. Jun, J. Kim, J. Seol, J. Kim and H. I. Son, “Towards an Ef-
ficient Tomato Harvesting Robot: 3D Perception, Manipulation, and
End-Effector,” in IEEE Access, vol. 9, pp. 17631-17640, 2021, doi:
10.1109/ACCESS.2021.3052240.

[33] C. Dumitrescu, P. Ciotirnae, and C. Vizitiu, “Fuzzy logic for intelligent
control system using soft computing applications,” Sensors, vol. 21, no. 8,
2021, doi: 10.3390/s21082617.

[34] S. Cortinovis, G. Vitrani, M. Maggiali, and R. A. Romeo, “Control
methodologies for robotic grippers: A review,” in Actuators, vol. 12, no. 8,
2023, doi: 10.3390/act12080332.

[35] A. E. Setiawan, R. Mardiati and E. Mulyana, “Design of Automatic Under
Water Robot System Based on Mamdani Fuzzy Logic Controller,” 2020
6th International Conference on Wireless and Telematics (ICWT), pp. 1-5,
2020, doi: 10.1109/ICWT50448.2020.9243615.

[36] A. L. Shuraiji and S. W. Shneen, “Fuzzy logic control and pid controller
for brushless permanent magnetic direct current motor: A comparative
study,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 762–
768, 2022, doi: 10.18196/jrc.v3i6.15974.

[37] W. P. Sari, R. S. Dewanto, and D. Pramadihanto, “Implementation and
integration of fuzzy algorithms for descending stair of kmei humanoid
robot,” EMITTER International Journal of Engineering Technology,
vol. 8, no. 2, pp. 372–388, 2020, doi: 10.24003/emitter.v8i2.535.

[38] E. Marliana, A. Wahjudi, L. Nurahmi, I. M. L. Batan, and G. Wei,
“Optimizing the tuning of fuzzy-pid controllers for motion control of
friction stir welding robots,” Journal of Robotics and Control (JRC),
vol. 5, no. 4, pp. 1002–1017, 2024, doi: 10.18196/jrc.v5i4.21697.

[39] I. Suwarno, Y. Finayani, R. Rahim, J. Alhamid, and A. R. Al-Obaidi,
“Controllability and observability analysis of dc motor system and a de-
sign of flc-based speed control algorithm,” Journal of Robotics and Con-
trol (JRC), vol. 3, no. 2, pp. 227–235, 2022, doi: 10.18196/jrc.v3i2.10741.

[40] S. R. Utama, A. Firdausi, and G. P. Hakim, “Control and monitoring
automatic floodgate based on nodemcu and iot with fuzzy logic testing,”
Journal of Robotics and Control (JRC), vol. 3, no. 1, pp. 14–17, 2022,
doi: 10.18196/jrc.v3i1.11199.

[41] J. N. Juwono, N. D. B. Julienne, A. S. Yogatama, and M. H. Wid-
ianto, “Motorized vehicle diagnosis design using the internet of things
concept with the help of tsukamoto’s fuzzy logic algorithm,” Journal
of Robotics and Control (JRC), vol. 4, no. 2, pp. 202–216, 2023, doi:
10.18196/jrc.v4i2.17256.

[42] M. Daffa Fadillah, N. Ismail, R. Mardiati and A. Kusdiana, “Fuzzy
Logic-Based Control System to Maintain pH in Aquaponic,” 2021 7th
International Conference on Wireless and Telematics (ICWT), pp. 1-4,
2021, doi: 10.1109/ICWT52862.2021.9678404.

[43] I. Agustian, B. I. Prayoga, H. Santosa, N. Daratha, and R. Faurina,
“Nft hydroponic control using mamdani fuzzy inference system,” Jour-
nal of Robotics and Control, vol. 3, no. 3, pp. 374–383, 2022, doi:
10.18196/jrc.v3i3.14714.

[44] T. Q. Ngo, T. H. Tran, and T. T. H. Le, “Robust adaptive tracking control
for uncertain five-bar parallel robot using fuzzy cmac in order to improve

Rina Mardiati, Combining Finite State Machine and Fuzzy Logic Control for Accuracy Enhancing Performance of a
Tomato-Handling Robot Gripper



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2034

accuracy,” Journal of Robotics and Control (JRC), vol. 5, no. 3, pp. 766–
774, 2024, doi: 10.18196/jrc.v5i3.21742.

[45] S. M. Nasti, Z. Vámossy, and N. Kumar, “Obstacle avoidance during robot
navigation in dynamic environment using fuzzy controller,” International
Journal of Recent Technology and Engineering, vol. 8, no. 2, pp. 817–822,
2019, doi: 10.35940/ijrte.A1428.078219.

[46] A. Soetedjo, M. I. Ashari, and C. E. Septian, “Implementation of
fuzzy logic controller for wall following and obstacle avoiding robot,”
Journal of Applied Intelligent System, vol. 4, no. 1, pp. 9–21, 2019, doi:
10.33633/jais.v4i1.2168.

[47] M. Al-Mallah, M. Ali, and M. Al-Khawaldeh, “Obstacles avoidance for
mobile robot using type-2 fuzzy logic controller,” Robotics, vol. 11, no. 6,
2022, doi: 10.3390/robotics11060130.

[48] F. Ahmad Fauzi, E. Mulyana, R. Mardiati and A. Eko Setiawan, “Fuzzy
Logic Control for Avoiding Static Obstacle in Autonomous Vehicle
Robot,” 2021 7th International Conference on Wireless and Telematics
(ICWT), pp. 1-5, 2021, doi: 10.1109/ICWT52862.2021.9678436.

[49] A. A. Zaki, E. Mulyana, R. Mardiati and Ulfiah, “Modeling Wall Tracer
Robot Motion Based on Fuzzy Logic Control,” 2020 6th International
Conference on Wireless and Telematics (ICWT), pp. 1-6, 2020, doi:
10.1109/ICWT50448.2020.9243624.

[50] R. D. Puriyanto and A. K. Mustofa, “Design and implementation of fuzzy
logic for obstacle avoidance in differential drive mobile robot,” Journal
of Robotics and Control (JRC), vol. 5, no. 1, pp. 132–141, 2024, doi:
10.18196/jrc.v5i1.20524.

[51] F. Wildani, R. Mardiati, E. Mulyana, A. E. Setiawan, R. R. Nurmalasari
and N. Sartika, “Fuzzy Logic Control for Semi-Autonomous Naviga-
tion Robot Using Integrated Remote Control,” 2022 8th International
Conference on Wireless and Telematics (ICWT), pp. 1-5, 2022, doi:
10.1109/ICWT55831.2022.9935458.

[52] S. Ding, L. Peng, J. Wen, H. Zhao, and R. Liu, “Trajectory tracking
control of underactuated tendon-driven truss-like manipulator based on
type-1 and interval type-2 fuzzy logic approach,” International Jour-
nal of Intelligent Systems, vol. 37, no. 6, pp. 3736–3771, 2022, doi:
10.1002/int.22745.

[53] E. A. Nugroho, J. D. Setiawan, and M. Munadi, “Handling four dof robot
to move objects based on color and weight using fuzzy logic control,”
Journal of Robotics and Control (JRC), vol. 4, no. 6, pp. 769–779, 2023,
doi: 10.18196/jrc.v4i6.20087.

[54] G. Li, H. Tang, Y. Sun, J. Kong, G. Jiang, D. Jiang, B. Tao, S. Xu, and
H. Liu, “Hand gesture recognition based on convolution neural network,”
Cluster Computing, vol. 22, pp. 2719–2729, 2019, doi: 10.1007/s10586-
017-1435-x.

[55] X. Zhao, X. Chen, Y. He, H. Cao and T. Chen, “Varying Speed Rate
Controller for Human–Robot Teleoperation Based on Muscle Electri-
cal Signals,” in IEEE Access, vol. 7, pp. 143563-143572, 2019, doi:
10.1109/ACCESS.2019.2944794.

[56] A. A. Shahid, L. Roveda, D. Piga and F. Braghin, “Learning Continuous
Control Actions for Robotic Grasping with Reinforcement Learning,”
2020 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 4066-4072, 2020, doi: 10.1109/SMC42975.2020.9282951.

[57] H. Zeng, Y. Shen, X. Hu, A. Song, B. Xu, H. Li, Y. Wang, and
P. Wen, “Semi-autonomous robotic arm reaching with hybrid gaze–
brain machine interface,” Frontiers in neurorobotics, vol. 13, 2020, doi:
10.3389/fnbot.2019.00111.

[58] M. H. M. Hamzah, N. M. Thamrin, and M. Tajjudin, “Robotic arm
position control using mamdani fuzzy logic on arduino microcontroller.”
Journal of Mechanical Engineering, vol. 19, no. 3, pp. 235–255, 2022.

[59] Y. Yan, D. Cheng, J.-E. Feng, H. Li, and J. Yue, “Survey on applica-
tions of algebraic state space theory of logical systems to finite state
machines,” Science China Information Sciences, vol. 66, no. 1, 2023,
doi: 10.1007/s11432-022-3538-4.

[60] Z. Zhang, C. Xia, S. Chen, T. Yang and Z. Chen, “Reachability Analysis
of Networked Finite State Machine With Communication Losses: A
Switched Perspective,” in IEEE Journal on Selected Areas in Communica-
tions, vol. 38, no. 5, pp. 845-853, 2020, doi: 10.1109/JSAC.2020.2980920.

[61] R. Kibria, N. Farzana, F. Farahmandi and M. Tehranipoor, “FSMx: Finite
State Machine Extraction from Flattened Netlist With Application to
Security,” 2022 IEEE 40th VLSI Test Symposium (VTS), pp. 1-7, 2022,
doi: 10.1109/VTS52500.2021.9794151.

[62] M. Ben-Ari and F. Mondada, “Finite State Machines,” in Elements of
Robotics, pp. 55–61, 2018, doi: 10.1007/978-3-319-62533-1 4.

[63] R. Hussain, T. Zielinska, and R. Hexel, “Finite state automaton based
control system for walking machines,” International Journal of Advanced
Robotic Systems, vol. 16, no. 3, 2019, doi: 10.1177/1729881419853182.

[64] R. Balogh and D. Obdrzalek, “Using Finite State Machines in Introduc-
tory Robotics: Methods and Applications for Teaching and Learning,” in
Robotics in Education, pp. 85–91, 2019, doi: 10.1007/978-3-319-97085-
1 9.

[65] M. Rossander and H. Lideskog, “Design and implementation of a con-
trol system for an autonomous reforestation machine using finite state
machines,” Forests, vol. 14, no. 7, 2023, doi: 10.3390/f14071340.

[66] A. Hamada, H. Melik, and S. Raheem, “The use of fuzzy logic theory in
control charts (a comparative study),” International Journal of Innovation,
Creativity and Change, vol. 11, no. 7, pp. 389–402, 2020.

[67] K. Mittal, A. Jain, K. S. Vaisla, O. Castillo, and J. Kacprzyk, “A
comprehensive review on type 2 fuzzy logic applications: Past, present
and future,” Engineering Applications of Artificial Intelligence, vol. 95,
2020, doi: 10.1016/j.engappai.2020.103916.

[68] L. A. Zadeh, Fuzzy logic, Springer Dordrecht, 2023, doi: 10.1007/978-
94-011-2014-2.

[69] A. Jain and A. Sharma, “Membership function formulation methods
for fuzzy logic systems: A comprehensive review,” Journal of Critical
Reviews, vol. 7, no. 19, pp. 8717–8733, 2020.

[70] J. M. B. Flores et al., “A review on applications of fuzzy logic control
for refrigeration systems,” Applied Sciences, vol. 12, no. 3, 2022, doi:
10.3390/app12031302.

[71] C. Dumitrescu, P. Ciotirnae, and C. Vizitiu, “Fuzzy logic for intelligent
control system using soft computing applications,” Sensors, vol. 21, no. 8,
2021, doi: 10.3390/s21082617.

[72] J. R. G. Martı́nez et al., “A pid-type fuzzy logic controller-based approach
for motion control applications,” Sensors, vol. 20, no. 18, 2020, doi:
10.3390/s20185323.

[73] W. Ba, X. Dong, A. Mohammad, M. Wang, D. Axinte and A. Norton,
“Design and Validation of a Novel Fuzzy-Logic-Based Static Feedback
Controller for Tendon-Driven Continuum Robots,” in IEEE/ASME Trans-
actions on Mechatronics, vol. 26, no. 6, pp. 3010-3021, 2021, doi:
10.1109/TMECH.2021.3050263.
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