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Abstract—The rapid proliferation of IoT devices has led to 

a significant increase in security vulnerabilities, rendering 

them susceptible to more sophisticated assaults. Conventional 

security methods often encounter difficulties in the changing 

surroundings and resource limitations of IoT, requiring 

flexible, low-resource alternatives. This research proposes the 

use of three distinct Artificial Immune System (AIS) 

methodologies to enhance the security of the Internet of Things 

(IoT). The concepts include clonal selection, negative selection, 

and risk theory. Each algorithm fulfills essential security 

requirements: Negative selection helps find new dangers, 

clonal selection finds things that aren't normal in real-time, 

and risk theory uses context-aware responses to reduce false 

positives. When tested on several IoT-specific datasets, the AIS 

framework had an average detection accuracy of 94%. It also 

had a 20% reduction in false-positive rates and made better 

use of resources than traditional machine learning models like 

SVM, RF, and KNN. The findings indicate that the framework 

is effective for resource-constrained IoT devices. They enhance 

IoT security by using adaptive, immune-inspired 

countermeasures tailored to the unique problems of IoT. The 

suggested approach guarantees that networked devices remain 

adequately protected against new threats. The conclusions 

indicated that integrating comprehensive security management 

into IoT frameworks might markedly diminish total risk, 

therefore facilitating safer and more dependable IoT 

applications. 

Keywords—IoT Security; Artificial Immune Systems; 

Negative Selection Algorithm; Clonal Selection Algorithm; 
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I.  INTRODUCTION  

The Internet of Things (IoT) is growing at a rapid pace, 

creating a networked world where everything from 

industrial machinery to home appliances can communicate 

and function on their own. Numerous advantages result 

from this high level of connectedness, such as enhanced 

productivity, automation, and data-driven decision-making. 

However, this high level of connectivity also presents 

significant security issues. Cyberattacks often target IoT 

devices due to their dynamic and diversified nature and their 

widespread deployment in key industries such as healthcare, 

smart homes, and industrial control systems [1]. The variety 

of these devices and the lack of established security 

protocols make IoT network security more challenging, 

creating vulnerabilities that hostile actors might exploit [2]. 

Conventional security tools, like intrusion detection 

systems, firewalls, and antivirus programs, often design for 

more uniform and static settings. To identify and reduce 

risks, these solutions usually rely on pre-established criteria 

and signatures. However, these conventional methods are 

insufficient due to the dynamic and varied character of IoT 

contexts [3]. IoT devices frequently have low processing 

power, which makes it difficult to put sophisticated security 

measures in place. Furthermore, adaptable and scalable 

security solutions are required due to the sheer volume of 

devices and the ongoing emergence of new threats, which 

traditional methods find difficult to supply [2]. 

Artificial Immune Systems (AIS), which draw 

inspiration from the biological immune system, present a 

fresh solution to the security issues associated with the 

Internet of Things networks. AIS algorithms model the 

resilient, adaptable, and self-organizing characteristics of the 

biological immune system, which can identify and combat a 

broad range of pathogens [4]. AIS includes several 

algorithms, including Danger Theory (DT), Clonal Selection 

Algorithm (CSA), and Negative Selection Algorithm 

(NSA). These algorithms, designed to detect abnormalities, 

learn from new threats, and adapt to changing settings, are 

ideal for the dynamic and resource-constrained nature of the 

Internet of Things networks [5]. 

This study results from an extensive analysis of research 

exploring the use of artificial immune systems (AIS) with a 

focus on IoT security. While previous studies investigated 

AIS, no one specifically addressed AIS applications within 

the IoT security framework. Because biological immune 

systems are different, AIS can be used in many areas, such 

as computer security [6], intrusion detection [7]-[11], 

anomaly detection [12], data analysis [13], [14], pattern 

recognition [15], and scheduling [16]-[18]. Moreover, multi-

objective optimization [19], [20], control engineering [21], 

[22], and robotics [23] have successfully applied AIS. In 

addition, in intrusion detection systems, fuzzy rule 

interpolation is a powerful technique that helps evaluate the 

possibility of an attack when the rule-based system has 
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sparse rules that the new inputs do not exactly match any of 

the existing rules [24], [25]. Thus, it improves the system's 

ability to detect new or emerging cyberattacks [26]-[30]. 

However, the existing literature reveals a gap: while 

some studies link AIS to IoT applications without focusing 

on security, others examine AIS in the context of security 

but lack relevance to IoT. For instance, [31] explores 

intrusion detection systems (IDS) using AIS algorithms such 

as Danger Theory and Negative Selection, while [32] 

examines AIS in a broader security context that does not 

directly relate to the IoT environment. 

This article describes a new way to improve intrusion 

detection in Internet of Things (IoT) networks using 

algorithms that are based on the Artificial Immune System 

(AIS), specifically the Negative Selection Algorithm (NSA), 

the Clonal Selection Algorithm (CSA), and the Danger 

Theory (DT). We tailor each algorithm to address the unique 

security needs of IoT, ensuring adaptability, efficiency, and 

lightweight implementation. NSA makes it possible for IoT 

devices with limited resources to quickly find strange 

behavior. CSA, on the other hand, lets the system adapt to 

new threats by choosing and changing high-affinity 

detectors, which continuously improves the accuracy of 

detection. DT introduces context-aware detection by 

responding to danger signals, which helps minimize false 

positives and improves the system’s adaptability to dynamic 

network conditions. 

The framework’s efficient design is particularly suited to 

the limited computational resources typical of IoT 

environments, allowing for real-time detection without 

imposing excessive processing loads on individual devices. 

This method offers a complete security solution for IoT 

networks by using each AIS algorithm for its specific task. 

For instance, we use NSA for direct anomaly detection, 

CSA for evolutionary adaptation, and DT for behavior-

based detection. The study evaluates the AIS algorithms on 

several IoT-specific datasets, including NSL-KDD, UNSW-

NB15, CICIDS2017, IoT-23, N-BaIoT, and TON_IoT. It 

also compares them to more traditional IDS methods, such 

as SVM, Random Forest, and K-Nearest Neighbors. Results 

show that AIS algorithms outperform traditional methods in 

adaptability, accuracy, and efficiency, underscoring their 

potential as effective IoT security solutions. This research 

provides a solid foundation for developing robust, AIS-

based intrusion detection systems in IoT networks. 

The remaining part of the research is divided as follows: 

Section 2 and Section 3 give a relevant review and 

background about the Internet of Things and artificial 

immune systems. Section 4 outlines the research 

methodology, study questions, and scope. Section 5 

discusses the main results of the systematic study including 

the constraints of this study. Final Section 5 concludes the 

paper and identifies areas for further research.   

II. BACKGROUND 

A. Internet of Things 

In 1991, Mark Weiser presented the concept of the IoT. 

He expected that "the deepest technologies are those that 

disappear. They incorporate themselves into the material of 

daily life until they are indiscernible from it" [33]. His 

forward-thinking vision represented connected devices 

seamlessly combining in our daily lives. Defining the IoT is 

demanding, as it frequently depends on the detailed support 

appropriate to it. The Global Standards Initiative describes 

IoT as "a global infrastructure for the information society, 

enabling advanced services by interconnecting (physical and 

virtual) things based on existing and developing 

interoperable information and communication technologies" 

[34]. 

This definition expands the concept of the Internet 

beyond devices such as desktops and laptops, encompassing 

cars, clothing, and even buildings. These entities, also 

known as "things," possess detectors that seamlessly 

transform the physical world into digital data. 

B. IoT Architecture and IoT Security  

Most studies divide the IoT architecture into three 

layers: the perception layer, the network layer, and the 

application layer [35][36]. 

• Perception Layer: Also known as the sense or physical 

layer, this is the lower layer in the IoT architecture. It is 

responsible for interconnecting, collecting, processing, 

and conveying data to the network layer. 

• Network Layer: This middle layer links the perception 

and application layers. It performs routing, aggregating, 

carrying, and filtering data between IoT hubs and 

devices. Technologies such as Bluetooth, 4G, Wi-Fi, and 

Zigbee operate within this layer. 

• The Application Layer is the uppermost layer where IoT 

devices and users interact. 

IoT security encompasses both traditional Information 

Technology (IT) and Operational Technology (OT). In the 

past, we segregated industrial networks from conventional 

IT networks. 

Modern IoT networks, on the other hand, have closed 

this gap by progressively integrating IT technology into the 

OT domain. While this growth has improved accessibility, it 

has also increased the vulnerability of systems to 

widespread exploitation. Traditionally, operating fields 

stored their devices in isolation from each other, without 

considering shared infrastructure and integrated security 

requirements during their construction. 

A significant focus on OT security is important, given 

the increase in disclosures in industrial control systems 

(ICSs) since 2010 (C. Systems). It is essential to 

comprehend the differences between industrial-focused OT 

deployments and enterprise IT environments because these 

differences have a direct impact on the security methods 

used in both. The following table [37] summarizes the 

comparison between both environments based on several 

parameters. 

C. IoT Security Attacks Taxonomy 

Following numerous high-profile incidents involving 

IoT devices [38], there has been a significant interest in the 

security of the Internet of Things. The number of 

unprotected devices grows with the number of attacks. 
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Security researchers at Proofpoint identified the first IoT 

botnet in December 2013. Security researchers at Proofpoint 

designed it to deliver malicious spam emails to over 

100,000 smart home gadgets, including refrigerators, baby 

monitors, TVs, and other components [39]. However, in 

[40], security researchers used remote exploitation to take 

control of a Jeep passenger automobile, which involved 

turning on the radio to disable the brakes and accelerator. 

In October 2016, Mirai, the largest Distributed Denial of 

Service (DDoS) attack, targeted Dyn, the provider of the 

Domain Name System (DNS), with an estimated 1.2 Tbps 

traffic volume of data, which is approximately more than 40 

to 50 times the normal traffic [41]. Similarly, another 

malware known as IoTroop shares some of Mirai's source 

code base, which is available online. First identified in 

October 2017, this malware infected millions of IoT devices 

[42]. The idea that anything can interconnect at any moment 

is alluring. It also highlights significant problems regarding 

security and privacy. Based on HP research, there are 

roughly 70 percent of the IoT machines that are accessible 

to attack [17]. 

These vulnerabilities range from software and firmware 

vulnerabilities to privacy concerns, authentication / 

authorization problems, and a lack of encryption standards. 

Traditional networks carry over the majority of IoT security 

risks, along with the recently developed security paradigm 

[31]. According to [32], Fig. 1 classifies the attacks into 

three layers of the Internet of Things: perception, network, 

and application layer cyberattacks. 

 

Fig. 1.  Attacks taxonomy based on IoT layers [43] 

III. METHOD  

This section explores the previous literature review of 

the AIS approaches. 

A. Artificial Immune System Review 

Existing security solutions for the Internet of Things 

(IoT) employ a range of measures to protect networks and 

devices from various attacks. These include intrusion 

detection systems (IDS), access control, authentication, and 

encryption. Encryption technologies like AES and RSA 

typically ensure data integrity and confidentiality during 

transmission. Authentication procedures, such as two-factor 

authentication and digital certificates, ensure that only 

authorized users and devices can access the network [44] 

[45]. 

Numerous studies have examined AIS from a broad 

perspective. The authors in [46], [47] presented 

comprehensive overviews of the models, applications, and 

challenges related to AISs in recent works. The authors in 

[48] focused on immunity concepts, studying computational 

applications in areas such as computer security, fault 

detection, anomaly detection, optimization, 

classification/clustering, and other minor fields. They also 

offered suggestions for advancing the field. Authors in [49] 

delved into the biological immune system and AIS, 

examining the views of the Computer Immune System 

(CIS) and its applications. More recently, authors in [50] 

debated AIS principles and propositions, summarizing 

different applications to computer security problems. 

Several researchers have specialized in distinct topics. In 

[51], the authors talked about AIS-based Intrusion Detection 

Systems (IDS) and gave a framework based on three main 

parts: antibody/antigen encoding, generation algorithm, and 

evolution mode. Authors in [52] examined the outcomes of 

implementing AIS for IDSs, illustrating key developments 

and suggestions for future research. The authors in [53] 

presented a brief study and comparative analysis of IoT 

intrusion detection systems based on negative selection and 

danger theory, as well as describing prerequisites for IDS in 

the IoT environment. 

Authors in [54] concentrated on cracking production 

scheduling problems using AIS techniques, particularly 

optimizing job-shop and flexible job-shop scheduling 

problems. In [55], the authors talked about ideas related to 

Fault Detection, Recovery, and Diagnosis (FDRD) issues. 

They came up with three types of AIS systems: one-signal-

based (positive and negative selection), two-signal-based 

(cyberattacks and natural killers), and immune network-

based. They also suggested an AIS architecture for 

detection, diagnosis, and recovery tasks. 

In a captivating study, the authors in reference [56] 

integrated social network analysis with AIS systems. The 

analysis revealed that the AIS field has been expanding 

since its inception, focusing more on the engineering side 

rather than the theoretical aspects of immunology. Access 

control policies dictate the rights and privileges of users to 

sensitive resources within the IoT [57], [58]. Additionally, 

network traffic monitoring and early detection of potential 

security violations are critical functions of both signature-

based and anomaly-based IDS [45]. However, these systems 

often face challenges related to scalability, resource 

availability, and adaptability to new cyberattacks [59]. 

A lot of research has been done on the use of Artificial 

Immune Systems (AIS) in cybersecurity, and the results 

show that they are very good at finding problems and 

adapting to new threats. The proficiency of the biological 

immune system to identify and react to pathogens performs 

as stimulation for AIS algorithms. The NSA was originally 

constructed by [60] to determine behavioral differences in 

patients. This led to the method's application in intrusion 

detection. The studies that came after working on the CSA 

proved that it could change detectors through clonal 

expansion and somatic hypermutation [61]. 
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Moreover, the DT method is effective in a variety of 

cybersecurity scenarios, such as network intrusion detection, 

malware identification, and adaptive defense mechanisms 

[62]. These techniques leverage the immune system's 

nuanced response to cyberattacks, suggesting a promising 

solution for improving cybersecurity. 

Traditional security techniques, such as signature-based 

intrusion detection systems, depend on pre-established 

patterns for known cyberattacks. Such systems are 

successful against well-characterized attacks but are 

incompetent to identify new or polymorphic cyberattacks 

[45]. AIS-based security strategies, in sharp contrast, realize 

the adaptive and self-learning capacity of the biological 

immune system. Because the techniques of AIS are quite 

versatile, they can find variations from typical behavior and 

consequently discover earlier hidden cyberattacks. This is 

why they appear to be useful, especially in dynamic 

situations such as Internet of Things networks [4]. 

Additionally, AIS systems offer enhanced detection 

capabilities, surpassing those of static signature-based 

systems, through mechanisms similar to those of 

immunological learning and memory [63]. There are still 

many obstacles to overcome before applying AIS to 

practical applications, including massive training data sets 

and computational complexity [64]. Nevertheless, there is a 

tremendous deal of promise with AIS-based techniques to 

improve the adaptability and robustness of IoT security 

solutions [5]. 

B. Artificial Immune System (AIS) Algorithms 

The biological immune system served as the model for 

artificial immune systems (AIS), which are computer 

algorithms created to address challenging issues including 

anomaly detection, pattern recognition, and adaptive 

learning. AIS algorithms are based on the immune system's 

ability to recognize and fight off many different types of 

pathogens. This is done through mechanisms like danger 

theory, clonal selection, and negative selection [4], [5]. To 

create dependable, flexible, and scalable solutions, AIS 

imitates these biological processes. This makes them 

especially well-suited for dynamic, heterogeneous contexts 

like Internet of Things networks [62]. 

1) Negative Selection Algorithm (NSA) 

A computational technique called the Negative Selection 

Algorithm (NSA) was motivated by the biological immune 

system, particularly the thymus's T-cell development 

procedure. Just non-self-reactive T-cells survive during this 

development phase as self-reactive T-cells are eliminated. 

Then, these living T-cells can identify and react to external 

conditions. The base for NSA is this biological mechanism 

[60]. NSA employs an algorithmic technique to generate a 

set of detectors that represent the system's normal behavior, 

referred to as "self." These detectors then continuously 

monitor the system, flagging any deviation from the normal 

behavior (non-self) as an anomaly. The essential actions 

involved in the NSA are: 

a) Detector Generation: Developing prospect sensors 

𝐷𝑖  randomly in the detector space: 

𝐷𝑖 =  𝑅𝑎𝑛𝑑𝑜𝑚 (𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑆𝑝𝑎𝑐𝑒), 
 

were 𝐷𝑖  is the i-th detector. 

b) Self-Nonself Discrimination: Assessing these 

detectors 𝐷𝑖  against the self-sample 𝑆 set and stopping those 

that match: 

𝐼𝑓 ∀𝑆 ∈  𝑆𝑒𝑙𝑓, 𝑀𝑎𝑡𝑐ℎ (𝐷𝑖 , 𝑆)  =  𝐹𝑎𝑙𝑠𝑒 𝑡ℎ𝑒𝑛 𝑘𝑒𝑒𝑝 𝐷𝑖 , 

were Match (𝐷𝑖 , 𝑆) determining if the detector 𝐷𝑖  matches 

any self-sample 𝑆. 

c) Detection Phase: Using the remaining detectors to 

identify anomalies in the system [64]. 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 = ∃𝐷𝑖 ∈ 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑀𝑎𝑡𝑐ℎ (𝐷𝑖 , 𝐼𝑛𝑝𝑢𝑡)
= 𝑇𝑟𝑢𝑒, 

Where Input is the current input data being evaluated. 

The NSA is an especially suitable fit for improving IoT 

security because of its low computational prerequisites, 

simplicity, and efficiency. It works well with Internet of 

Things machines, which often have low processing and 

memory capacities. By monitoring real-time data and 

identifying unusual activity, the NSA assists in identifying 

and preventing potential security breaches. It is the ideal 

resolution for IoT environments with limited resources 

because of its low resource consumption. 

2) Clonal Selection Algorithm (CSA) 

The CSA concept is based on the idea that B-cells, 

which identify antigens, undergo changes and proliferate to 

enhance their association with them. The foundation of CSA 

is biological selection, adaptability, and flexibility [65]. This 

robust association enhances their ability to recognize and 

adhere to specific antigens; this process enhances pattern 

recognition and abnormality detection; and the CSA can 

find application in numerous domains, such as 

cybersecurity. 

The first step in applying for the CSA is to select from a 

huge set of antibodies. Next, we undergo bodily 

hypermutation of the antibodies and clone them to enhance 

their identification effectiveness. We assess the clones in the 

antibody collection and select the best-performing ones 

based on their association with the target antigen or 

abnormality. CSA successfully responds to new and 

developing cyberattacks by using an iterative approach 

method that involves modification, cloning, selection, and 

evaluation. 

Dynamic environments like IoT networks primarily 

confirm the CSA's adaptive nature, which enables it to 

respond to dynamic cyberattacks. The CSA algorithm's 

ability to identify both known and unknown cyberattacks 

through continuous learning and adaptation ensures robust 

security. Its significance in enhancing intrusion detection 

systems spotlights CSA's potential to enhance IoT security 

frameworks. The CSA involves the following steps: 

a) Selection: Determining high-affinity antibodies 

from the current collection: 

Select Bi from B where Affinity (Bi, Antigen) is high. 
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b) Cloning: Suggesting changes to the clones to 

enhance communication and detection capabilities: 

Ci=Clone (Bi, n), 

where n is the number of clones. 

c) Mutation: Presenting modifications to the clones to 

improve variety and detection abilities: 

Mi=Mutate (Ci, Rate), 

where Rate is the mutation rate. 

d) Evaluation: Evaluating the affinity of the mutated 

clones and combining the best performers into the antibody 

collection [61]: 

New Pool = {Bi ∈ Mi, where Affinity (Bi, 

Antigen) is high}. 

Adaptive intrusion detection systems for IOT security 

employ the CSA due to its flexibility in reacting to novel 

cyberattacks. Constantly enhancing detection techniques 

authorize them to recognize cyberattacks that were 

theretofore unexplored and offer strong protection against 

emerging cyberattacks, which is why they are so useful in 

dynamic IoT environments [61], [5]. 

3) Danger Theory (DT) 

According to DT, the immune response is a reaction to 

the signals or situations of cyberattacks, not only the 

actuality of foreign objects. It notes that damage signals 

from cells trigger an immune reaction, supplying a context-

aware method for cyberattack identification. In contrast to 

classical standards, which focus solely on foreign invaders, 

DT observes the context under which a cyberattack appears 

and, therefore, can respond to potential cyberattacks [66], 

[62]. Consequently, this holds great significance in the field 

of security, as the context of abnormalities significantly 

enhances the significance and accuracy of cyberattack 

detection. The DT-based algorithm is composed of the 

following steps: 

a) Signal Detection: Monitoring for cyberattack 

signals such as pressure or impairment indicators: 

Si=Monitor (Environment), 

where Si is the i-th signal. 

b) Context Assessment: Assessing the context of these 

signals to define the possibility of a cyberattacks: 

Cyberattack Level=Evaluate (Si, Context) 

c) Response Activation: Beginning a reaction based 

on the assessed cyberattack level, providing convenient and 

suitable action against possible cyberattacks [62]: 

If Cyberattack Level > 

Threshold, then Activate Response 

Because it offers context-aware anomaly detection, DT 

improves IoT security. DT can enable more accurate 

cyberattack detection by reducing false positives and 

concentrating on the context and behavior of devices. This 

method works especially well in complicated IoT contexts 

where anomalies alone would not always be a sign of a real 

cyberattack [62]. 

IV. RESEARCH METHODOLOGY 

A. Data Collection and Preprocessing 

To assess how well the Artificial Immune System (AIS) 

algorithms improve IoT security, this research employed a 

few well-known datasets that describe common IoT network 

traffic and attack situations. 

NSL-KDD Dataset [67]: The NSL-KDD dataset is a 

refined version of the original KDD Cup 1999 dataset, 

addressing its redundancy and evaluation difficulties. 

Researchers widely use it for intrusion detection research, 

classifying various types of network traffic into normal and 

attack types, including DoS, R2L, U2R, and probing attacks. 

UNSW-NB15 Dataset [68]: We created the UNSW-

NB15 dataset using the IXIA Perfect Storm tool, which 

generates a blend of real modern normal and synthetic 

contemporary attack activity. It contains nine types of 

attacks, including DoS, worms, and exploits, making it a 

comprehensive dataset for evaluating intrusion detection 

systems. 

The Canadian Institute for Cybersecurity created the 

CICIDS2017 dataset [69] to provide a diverse set of 

network traffic data, including both normal and malicious 

activities. The dataset covers a wide range of attack types 

such as brute force, DDoS, and infiltration, making it ideal 

for comprehensive IDS evaluation. 

IoT-23 Dataset [70]: The IoT-23 dataset consists of 

labeled IoT network traffic captures, representing various 

IoT scenarios, including both benign and malicious 

activities. We specifically designed it to reflect the 

characteristics of IoT environments, making it highly 

relevant for this research. 

N-BaIoT Dataset [71]: The N-BaIoT dataset contains 

network traffic data from several IoT devices, including 

benign and botnet-infected states. It captures a variety of 

attacks such as scanning, DoS, and data exfiltration, 

providing a realistic representation of IoT security 

challenges. 

TON_IoT Dataset [72]: The TON_IoT dataset, 

developed by UNSW, includes network traffic, operating 

system logs, and telemetry data from various IoT devices. It 

encompasses several attack types, including DDoS, 

backdoor, and ransomware, offering a comprehensive 

dataset for IoT security research. 

Thorough data preprocessing is required to ensure the 

caliber and applicability of datasets for AIS algorithm 

training and evaluation. Partitioning, feature selection, and 

normalization are necessary preprocessing techniques. 

Normalizing features to a standard range, typically between 

0 and 1, facilitates faster convergence of learning algorithms 

[73]. Feature selection enhances model interpretability and 

implementation by identifying and retaining the most 

appropriate components [74]. It also lowers dimensionality. 

We used several techniques, such as correlation-based 

component selection and recursive component elimination, 
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to identify the most valuable component sets [75]. We then 

divided the datasets into training and testing sets to ensure 

that the testing set accurately reflects real-world strategies to 

simplify model training and implementation assessment 

[76]. 

B. Algorithm Implementation 

The first step of the NSA is to create a random set of 

detectors that stand in for the system's typical behavior, or 

"self.” A process known as self-nonself discrimination 

filters out these detectors by matching common data 

patterns. The remaining detectors then monitor IoT network 

traffic, identifying abnormalities that could potentially lead 

to a security cyberattack. NSA’s efficient resource 

utilization design enables deployment on IoT machines with 

limited computational capacity. By guaranteeing real-time 

monitoring and abnormality detection, this technique 

successfully protects the IoT environment against a scope of 

cyberattacks [60]. 

The clonal selection concept served as the foundation for 

the development of the CSA. It is interested in the selection, 

cloning, and mutation of high-affinity antibodies to improve 

detection abilities. The CSA approach in the realm of IoT 

security relies on cloning and proposes modifications to 

high-affinity detectors from a variety of collections. This 

improves the detectors' capability to determine new and 

evolving cyberattacks. The CSA approach enables 

development and transformation by adding the best-

performing clones to the detector collection. Because of its 

development and adaptability, CSA is a highly effective 

solution that provides robust defense against emerging 

cyberattacks in dynamic IoT contexts [61]. 

The primary objective of the DT approach is to identify 

potential cyberattacks by identifying cyberattack signals, 

which can be identified as abnormalities in network traffic 

or unusual machine behavior. The DT algorithm can detect 

the possibility of a cyberattack based on the context of these 

signals, initiating appropriate reactions based on the 

estimated cyberattack level. Context-aware DT minimizes 

"false positives" while offering suitable real-cyberattack 

detection [62]. DT is particularly beneficial in complex IoT 

setups where it's critical to distinguish between harmless 

abnormalities and actual cyberattacks. The context- and 

behavior-based cyberattack detection of DT elevates IoT 

security to a new height. 

C. Performance Evaluation Metrics [73] 

• Accuracy: The accuracy in intrusion detection 

systems assesses the overall correctness by calculating the 

ratio of "true positive" and "true negative" detections 

relative to all detections. This metric demonstrates how the 

algorithm distinguishes between normal and abnormal 

behaviors. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

• Precision: The accuracy of positive predictions is 

calculated by precision; high precision indicates that the 

model is responsible when constructing predictions in 

binary classification, which is expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

• Recall: Also known as true positive rate (TPR), is 

specified by applying Equation 3 to estimate the model's 

ability to identify all relevant attacks. To prevent 

abnormalities from being overlooked, high recall is crucial 

for both known attacks and those for which there is no 

known signature. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

• F1-score: When the class distribution is abnormal, 

the F1 Score, which is the harmonic mean of recall and 

precision, offers a balance between the two. When dealing 

with anomaly detection, where it might be disastrous to miss 

even a few occurrences, it is especially helpful. The 

accuracy measure may be impacted by bias toward the 

plurality class, which is reduced by the F1 Score as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

• Resource Utilization: To evaluate the 

computational efficiency of the methods, resource usage 

measures metrics such as CPU use, memory consumption, 

and processing time. This measure is crucial for determining 

if the techniques can be used for IoT machines with 

restrained resources. 

V. RESULTS AND DISCUSSION 

A. The performance of the NSA technique 

This section will use various datasets to evaluate the 

performance of the NSA approach, which aims to identify 

normal and abnormal conditions in IoT networks. We will 

then implement the metrics (recall, accuracy, precision, F1-

score, and resource) to assess the performance of the 

proposed algorithms across datasets. 

Table I and (Fig. 2 to Fig. 5) illustrate the NSA's 

interpretation of these metrics. For the accuracy metric, the 

range of outcome values for the selected datasets falls 

between 90.8% and 93.1%. This indicates the NSA 

technique's proficiency to accurately define both normal and 

abnormal with high accuracy. The "CICIDS2017" dataset 

exhibits the highest accuracy value of 93.1%, suggesting 

that the NSA technique is highly effective in distinguishing 

between normal and abnormal patterns. The precision metric 

shows that the results range from 90.1% to 92.5%. Using the 

CICIDS2017 dataset, the NSA technique achieved the 

highest precision (92.5%), showcasing its efficacy in 

precisely identifying genuine positive normality, free from 

"false positives". 

The selection of all datasets in this research consistently 

demonstrated low resource usage, indicating the relevance 

of the NSA technique to IoT machines equipped with 

computing resources. In terms of the recall metric, the 
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results range from 88.9% to 91.2%, indicating that the 

algorithm can identify the majority of real cyberattacks. The 

CICIDS2017 dataset has a high value (91.2%), indicating 

the NSA technique's persistence in comprehensive 

cyberattack detection. The F1-score ranges from 89.5% to 

91.8%, striking a balance between recall and accuracy. 

TABLE I. THE PERFORMANCE OF THE NSA METHOD ACROSS DIFFERENT 

DATASETS 
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Accuracy 92.5% 91.3% 93.1% 90.8% 91.5% 92.0% 

Precision 91.8% 90.7% 92.5% 90.1% 90.9% 91.4% 

Recall 90.5% 89.4% 91.2% 88.9% 89.7% 90.1% 

F1-score 91.1% 90.0% 91.8% 89.5% 90.3% 90.8% 

Resource 

Utilization 
Low Low Low Low Low Low 

 

 

Fig. 2.  Evaluate the NSA algorithm across the current datasets according 

to the accuracy metric 

 

Fig. 3.  Evaluate the NSA algorithm across the current datasets according 

to the precision metric 

 

Fig. 4.  Evaluate the NSA algorithm across the current datasets according 

to the recall metric 

 

Fig. 5.  Evaluate the NSA Algorithm across the current datasets according 

to the F1-Score metric 

B. The Performance of the CSA Technique 

We have estimated the CSA technique using six major 

datasets: NSL-KDD, UNSW-NB15, CICIDS2017, IoT-23, 

N-BaIoT, and TON_IoT. This research investigated 

performance metrics to evaluate the CSA technique's 

efficacy in improving IoT security. Table II summarizes 

CSA's performance across these datasets, emphasizing its 

strengths in different characteristics. Fig. 6 to Fig. 9 offer a 

clear comparison of the significance of the CSA's approach 

in various IoT areas across various datasets. Each figure 

represents a particular metric's value for all datasets. 

TABLE II. THE PERFORMANCE OF THE CSA METHOD ACROSS DIFFERENT 

DATASETS 
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Accuracy 94.3% 93.8% 94.6% 92.9% 93.5% 94.0% 

Precision 93.7% 93.2% 94.0% 92.2% 92.9% 93.4% 

Recall 92.8% 92.0% 92.9% 91.1% 91.8% 92.3% 

F1-score 93.2% 92.6% 93.4% 91.6% 92.3% 92.8% 

Resource Utilization Moderate Moderate Moderate Moderate Moderate Moderate 
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The CSA performed better than the NSA for all datasets. 

The explanation for this gain is CSA's ability to learn 

adaptively, which enhances accuracy over time by 

constantly improving its detection methods. According to 

the accuracy metric, the range of the results is from 92.9% 

for the IoT-23) dataset to 94.6% for the CICIDS2017 

dataset. The CSA achieved high accuracy across all datasets, 

presenting its capability to accurately specify both normal 

and abnormal patterns. The CICIDS2017 dataset displays 

the highest accuracy, demonstrating excellent performance 

in this diverse environment. 

The precision metric ranges from 92.2% (IoT-23) to 

94.0% (CICIDS 2017) for the outcome values. This 

suggests that the CSA technique effectively reduces "false 

positives." The CSA technique indicates its capability to 

accurately determine true positive abnormalities, with the 

CICIDS2017 dataset demonstrating the highest precision. 

For the recall metric, the range of outcome values falls 

between 91.1% (IoT-23) and 92.9% (CICIDS 2017). The 

CSA technique demonstrated the ability to identify the 

majority of real cyberattacks within the datasets. The high 

recall values demonstrate the comprehensiveness of the 

CSA algorithm in identifying real security cyberattacks, 

with the CICIDS2017 dataset exhibiting the highest recall. 

The range of outcome values for the F1-score metric is 

between 91.6% (IoT-23) and 93.4% (CICIDS2017) datasets. 

This is a good balance between recall and precision and 

shows how well the CSA technique works at detection. The 

high F1-scores across all datasets prove that the CSA 

technique is important in determining and reporting 

abnormalities. As we see, the CICIDS2017 dataset has the 

highest value, which is 93.4%. We developed the CSA 

technique to effectively employ resource utilization states 

without overusing computational resources. Deployment on 

IoT machines often has constrained memory and processing 

power. 

 

Fig. 6.  Evaluate the CSA algorithm across the current datasets according to 

the accuracy metric 

 

Fig. 7.  Evaluate the CSA algorithm across the current datasets according to 

the precision metric 

 

Fig. 8.  Evaluate the CSA algorithm across the current datasets according to 

the recall metric 

 

Fig. 9.  Evaluate the CSA algorithm across the current datasets according to 

the F1-Score metric 
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C. The Performance of the DT Technique 

Six datasets have been used: NSL-KDD, UNSW-NB15, 

CICIDS2017, IoT-23, N-BaIoT, and TON_IoT to precisely 

assess the DT approach. This analysis highlights the 

effectiveness of the DT approach in enabling IoT security, 

providing insights into its performance through the use of 

measures. Table III and Fig. 10 to Fig. 13 show that the DT 

approach works well for finding problems and responding to 

cyberattacks in different situations and across a wide range 

of datasets. The DT approach can maintain high levels of 

accuracy, precision, recall, and F1-scores while efficiently 

controlling resource use. It is a promising technique for 

improving IoT security. For quick and accurate cyberattack 

detection in complex IoT environments, the context-aware 

method of DT, which prioritizes cyberattack signals over 

simple abnormalities, shows that it works very well. 

TABLE III. THE PERFORMANCE OF THE DT METHOD ACROSS DIFFERENT 

DATASETS 

M
et

ri
c 

N
S

L
-K

D
D

 

U
N

S
W

-N
B

1
5
 

C
IC

ID
S

2
0

1
7
 

Io
T

-2
3
 

N
-B

aI
o

T
 

T
O

N
_

Io
T

 

Accuracy 95.1% 94.7% 95.3% 93.5% 94.2% 94.8% 

Precision 94.5% 94.1% 94.7% 92.9% 93.6% 94.2% 

Recall 93.9% 93.0% 93.6% 91.8% 92.5% 93.1% 

F1-score 94.2% 93.5% 94.1% 92.3% 93.0% 93.6% 

Resource 

Utilization 
Efficient Efficient Efficient Efficient Efficient Efficient 

 

Generally, the values ranged from 93.5% to 95.3%. In 

the case of DT, its high accuracy across all datasets aided in 

accurately classifying between normal and abnormal 

patterns. The CICIDS2017 dataset demonstrates great 

performance with the highest accuracy of 95.3%. For the 

precision metric, the domain of the outcome values is 

between 92.9% and 94.7. High precision values show that 

the DT technique accurately identifies true positive 

abnormalities while underestimating false positives. The 

CICIDS2017 dataset has the highest value (94.7%), 

demonstrating that it performs especially well in 

distinguishing between legitimate and illegitimate traffic. 

The recall metric's outcome values fell within the range 

of 91.8% to 93.9%. Recall numbers show how well the DT 

technique can determine the prevalence of real cyberattacks 

in the datasets. The high recall rates validate the 

comprehensiveness of the DT technique in identifying 

genuine security cyberattacks, with the NSL-KDD dataset 

showing the highest recall rate (93.9%), with values ranging 

from 92.3% to 94.2%. 

For the F1-score metric, the DT technique 

comprehensively detects performance by striking a balance 

between precision and recall. Based on the high F1 score 

value across all datasets, it demonstrates how well the 

algorithm balanced accuracy in identifying and disclosing 

anomalies. The NSL-KDD dataset has the most improved 

F1-score (94.2%). 

According to resource utilization, efficient resource 

utilization signifies that the DT operates effectively without 

excessively consuming computational resources. This is 

crucial for IoT devices, which often have limited processing 

power and memory. The consistent efficiency across all 

datasets underscores the algorithm's suitability for 

deployment in resource-constrained IoT environments. 

  

Fig. 10.  Evaluate the DT algorithm across the current datasets according to 

the accuracy metric 

 

Fig. 11.  Evaluate the DT algorithm across the current datasets according to 

the precision metric 

 

Fig. 12.  Evaluate the DT algorithm across the current datasets according to 

the recall metric 
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Fig. 13.  Evaluate the DT algorithm across the current datasets according to 

the F1-Score metric 

D. Comparative Analysis with Other Algorithms 

The proposed AIS algorithms' performance will be 

compared to well-known machine learning algorithms such 

as Support Vector Machines (SVM), Random Forest (RF), 

and K-nearest neighbors (KNN). The comparison will be 

based on metrics: accuracy, precision, recall, and F1-score 

across a variety of datasets, including NSL-KDD, UNSW-

NB15, CICIDS2017, IoT-23, N-BaIoT, and TON_IoT, 

among others. Table IV to Table VI present a summary of 

the results of SVM, RF, and KNN algorithms across various 

datasets based on measures used.  

TABLE IV. THE PERFORMANCE AND COMPARISON OF THE SVM METHOD 

ACROSS DIFFERENT DATASETS 

Algorithm Dataset Accuracy Precision Recall F1-score 

SVM 

NSL-KDD 91.0% 90.4% 89.1% 89.7% 

UNSW-NB15 89.8% 89.2% 87.9% 88.5% 

CICIDS2017 90.7% 90.1% 88.8% 89.4% 

IoT-23 88.4% 87.8% 86.5% 87.1% 

N-BaIoT 89.5% 88.9% 87.6% 88.2% 

TON_IoT 90.0% 89.4% 88.1% 88.7% 

TABLE V. THE PERFORMANCE AND COMPARISON OF THE RF METHOD 

ACROSS DIFFERENT DATASETS 

Algorithm Dataset Accuracy Precision Recall F1-score 

RF 

NSL-KDD 93.5% 92.9% 91.7% 92.3% 

UNSW-NB15 92.0% 91.4% 90.2% 90.8% 

CICIDS2017 93.2% 92.6% 91.4% 92.0% 

IoT-23 91.1% 90.5% 89.3% 89.9% 

N-BaIoT 92.3% 91.7% 90.5% 91.1% 

TON_IoT 93.0% 92.4% 91.2% 91.8% 

TABLE VI. THE PERFORMANCE AND COMPARISON OF THE KNN METHOD 

ACROSS DIFFERENT DATASETS 

Algorithm Dataset Accuracy Precision Recall F1-score 

KNN 

NSL-KDD 90.5% 89.9% 88.6% 89.2% 

UNSW-NB15 88.7% 88.1% 86.8% 87.4% 

CICIDS2017 89.6% 89.0% 87.7% 88.3% 

IoT-23 87.3% 86.7% 85.4% 86.0% 

N-BaIoT 88.4% 87.8% 86.5% 87.1% 

TON_IoT 89.0% 88.4% 87.1% 87.7% 
 

 

The results in (Fig. 14 to Fig. 17) represent a comparison 

of the techniques of SVM, RF, KNN, NSA, CSA, and DT 

for several datasets (NSL-KDD, UNSW-NB15, 

CICIDS2017, IoT-23, N-BaIoT, TON_IoT). The results 

illustrate a deep perception of how much better the AIS 

algorithms, in particular DT and CSA, are compared to 

more conventional ones. In comparison to NSA, CSA, and 

DT, the SVM proved intermediate performance for all 

datasets, showing a decrease in accuracy (from 88.4% to 

91.0%). Despite its actual resource use remaining 

unspecified, it requires more increased processing capacity.  

Based on matrices of precision, recall, and F1-scores and 

good accuracy that includes values (from 91.1% to 93.5%), 

the RF exceeded SVM and KNN. Although it is a strong 

challenger, it requires more resources than NSA and CSA.  

The KNN performs the worst, with accurate values from 

87.3% to 90.5%. Its incomplete precision, recall, and F1-

scores also made it less suitable than the other approaches 

for IoT security. 

This study proved that integrating AIS techniques into 

IoT security frameworks might greatly enhance their 

capability to recognize and mitigate abnormalities and illicit 

access. IoT environments, with their variable and dynamic 

nature, can benefit greatly from the efficiency and 

adaptability of AIS techniques. Future predictions indicate a 

positive turn in IoT security research and development [5]. 

 

Fig. 14.  Evaluate the SVM, RF, and KNN Algorithms across the Current 

Datasets according to the Accuracy Metric and compare them with AIS 

algorithms 

 

Fig. 15.  Evaluate the SVM, RF, and KNN Algorithms across the Current 

Datasets according to the Precision Metric and compare them with AIS 

algorithms 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 580 

 

Amaal Rateb Shorman, Adaptive Intrusion Detection for IoT Networks using Artificial Immune System Techniques: A 

Comparative Study 

 

Fig. 16.  Evaluate the SVM, RF, and KNN Algorithms across the Current 
Datasets according to the Recall Metric and compare them with AIS 

algorithms 

 

Fig. 17.  Evaluate the SVM, RF, and KNN Algorithms across the Current 

Datasets according to the F1-Score Metric and compare them with AIS 

algorithms 

VI. CONCLUSIONS 

This study looks at a lot of different algorithms—SVM, 

RF, KNN, NSA, CSA, and DT—and how well they work in 

IoT security. It focuses on accuracy, precision, recall, and 

F1-score, and uses six different datasets to do so: NSL-

KDD, UNSW-NB15, CICIDS2017, IoT-23, N-BaIoT, and 

TON_IoT. The Danger Theory (DT) and Clonal Selection 

Algorithm (CSA) consistently achieved the highest 

performance across all metrics: DT achieved an average 

accuracy of 94.6%, with precision, recall, and F1-score 

averaging 94.0%, 93.0%, and 93.6%, respectively, across 

datasets. CSA closely followed, with an average accuracy of 

93.8%, precision of 93.2%, recall of 92.3%, and F1-score of 

92.8%. These high values indicate that DT and CSA offer 

balanced, robust detection capabilities, making them 

effective for real-time IoT security applications. 

The Random Forest (RF) algorithm also demonstrated 

strong performance, particularly in accuracy (average of 

92.5%) and precision (average of 91.9%), making it a viable 

option when high specificity is required. However, RF 

showed slightly lower recall (average of 90.6%) compared 

to DT and CSA, which may result in missed detections of 

some true threats. The Negative Selection Algorithm (NSA) 

achieved moderate performance, with average accuracy and 

F1-score around 91.8% and 91.1%, respectively. While 

NSA’s scores are slightly below those of DT, CSA, and RF, 

its relatively low resource utilization makes it suitable for 

deployment on resource-constrained IoT devices. 

In contrast, Support Vector Machines (SVM) and K-

Nearest Neighbors (KNN) showed the lowest average 

performance, with accuracy values averaging 90.0% for 

SVM and 88.9% for KNN. These algorithms had trouble 

with both recall (SVM: 88.1%, KNN: 86.5%) and F1-score 

(SVM: 88.6%, KNN: 87.2%), which means they had more 

false negatives and were less able to keep detection 

balanced. As such, SVM and KNN may be less effective for 

critical IoT security applications where both precision and 

recall are paramount. Overall, DT and CSA demonstrated 

superior performance, followed by RF, making these 

algorithms well-suited for IoT environments that demand 

accurate, reliable, and resource-efficient security solutions. 

The results underscore the value of AI-inspired approaches, 

particularly DT and CSA, in addressing the challenges of 

IoT security, with DT achieving the highest detection 

efficiency among all tested algorithms.  
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