
Journal of Robotics and Control (JRC) 

Volume 6, Issue 1, 2025    

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i1.23649 262 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

Two-Level Feature Selection for Enhanced 

Accuracy and Reduced Computational Overhead in 

Intrusion Detection Systems Using Rough Set 

Theory and Binary Particle Swarm Optimization  

Moaad Almania 1*, Anazida Zainal 2, Fuad A Ghaleb 3, Ahmad Alnawasrah 4, Mahmoud Al Qerom 5 
1, 2 Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, 81310, Malaysia 

1 College of Computing and Information Technology, Shaqra University, Shaqra, Kingdom of Saudi Arabia 
3 College of Computing and Digital Technology, Birmingham City University, Birmingham, B47XG, United Kingdom 

4, 5 Department of Information Communication Technology, British University of Bahrain, Bahrain 

Email: 1 malmane3@su.edu.sa 

*Corresponding Author 

 
Abstract—Intrusion Detection Systems (IDS) are essential 

for safeguarding network infrastructures by detecting and 

mitigating malicious activities. This study introduces a two-level 

feature selection approach (TLFSA) designed to enhance 

classification accuracy and reduce computational overhead. The 

first phase employs Rough Set Theory (RST) to filter out 

irrelevant features, while the second phase uses Binary Particle 

Swarm Optimization (BPSO) to refine the feature subset based 

on their discriminative power. Experiments conducted on the 

NSL-KDD dataset show that the TLFSA approach outperforms 

traditional algorithms such as Genetic Algorithm (GA) and 

Gravitational Search Algorithm (GSA), achieving a notable 

improvement of 0.99% in classification accuracy. Furthermore, 

class-specific feature subsets produced by the method 

demonstrate superior detection rates across all network traffic 

classes, with an average accuracy of 97.22%, compared to 

91.11% for alternative methods. The proposed method 

effectively reduces the feature set to approximately 15% of the 

original features, streamlining the IDS model and improving 

both operational efficiency and real-time applicability. 

Keywords—Feature Selection; Rough Set Theory; PSO; 

BPSO. 

I. INTRODUCTION  

Intrusion Detection Systems are fundamental to securing 

modern network infrastructures, where they serve as a 

defense mechanism against malicious activities [1]–[7]. As 

networks continue to grow in complexity and the volume of 

traffic increases, IDS face significant challenges in 

maintaining high detection accuracy while minimizing 

computational overhead [61][62][63]. One of the primary 

issues is handling high-dimensional data generated by 

network traffic, which can lead to increased false positives 

and higher computational costs. Feature selection (FS) has 

become a crucial process to mitigate these challenges by 

reducing the data to the most relevant features, thereby 

improving the system's efficiency and accuracy [8]–[16]. 

Despite the extensive research on feature selection, many 

existing methods have limitations related to scalability, 

computational efficiency, and adaptability. Approaches such 

as Genetic Algorithms and Particle Swarm Optimization have 

been widely used for feature selection in IDS [17]–[21], but 

they frequently struggle with large-scale datasets, 

encountering issues such as slow convergence, increased 

computational burden, and poor adaptability to dynamic 

network conditions. These limitations highlight the need for 

more efficient and scalable methods that can handle evolving 

network environments and the growing complexity of cyber 

threats. 

To address these challenges, this paper introduces a Two-

Level Feature Selection Approach that integrates Rough Set 

Theory with Binary Particle Swarm Optimization. The 

TLFSA consists of two sequential phases: in the first phase, 

RST is used as a filtering technique to eliminate irrelevant 

and redundant features, significantly reducing the 

dimensionality of the dataset [22]–[26]. In the second phase, 

BPSO acts as a wrapper method to optimize the feature subset 

by focusing on the most discriminative features for different 

classes of network traffic, such as normal, denial of service 

(DoS), and probing attempts [27]–[32]. This two-level 

approach ensures both computational efficiency and 

enhanced classification performance. 

The novelty of this method lies in its ability to generate 

class-specific feature subsets, which tailor the feature 

selection process to the distinct characteristics of different 

network traffic classes. This not only reduces the 

computational burden but also enhances IDS detection 

accuracy for various types of attacks. Moreover, the 

combination of RST and BPSO addresses the scalability 

issues often seen in traditional PSO-based methods, making 

TLFSA suitable for real-time intrusion detection in large-

scale network environments [33]–[40]. 

In this study, we aim to contribute a scalable, adaptable, 

and efficient feature selection strategy that enhances IDS 

performance. The remainder of the paper is organized as 

follows: Section 2 provides a review of existing feature 

selection techniques for IDS. Section 3 outlines the proposed 

methodology, including the dataset and experimental setup. 

Section 4 presents the results and comparative analysis, while 
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Section 5 concludes with discussions on limitations and 

future research directions. 

II. LITERATURE REVIEW 

The literature on Intrusion Detection Systems highlights 

the critical role of feature selection in improving both the 

accuracy and efficiency of IDS models [1], [70], [75]-[78], 

[80]. Numerous approaches have been proposed, typically 

categorized into filter methods, wrapper methods, embedded 

methods, and hybrid methods. Filter methods, such as 

Information Gain, Chi-Squared, and Correlation-based 

Feature Selection [30]–[33], evaluate feature relevance 

without considering the performance of the learning 

algorithm itself, making them computationally efficient but 

potentially less accurate. Wrapper methods, such as 

Recursive Feature Elimination (RFE) and Genetic Algorithm, 

assess features based on their impact on the learning 

algorithm’s performance [34]–[35], offering higher accuracy 

but at a much greater computational cost. Embedded 

methods, which incorporate feature selection during the 

model training process, are commonly used in decision trees 

and deep learning approaches [36]. Hybrid methods, which 

combine filter and wrapper techniques, attempt to balance 

computational cost and detection performance [37]. 

In the context of IDS, Particle Swarm Optimization has 

been widely adopted due to its ability to optimize feature 

subsets by mimicking the social behavior of swarms [22], 

[23], [71]. However, despite its advantages, PSO faces 

challenges such as slow convergence and difficulty scaling to 

high-dimensional datasets, often leading to suboptimal 

feature subsets for IDS [6], [7], [64]-[68]. Similar problems 

have been observed with Genetic Algorithm methods, where 

the complexity of searching large solution spaces results in 

high computational costs and potential convergence to local 

optima [9]. Existing PSO-based feature selection methods are 

also limited by their static nature, which fails to account for 

evolving network conditions and cyber threats [10]. 

Several studies have proposed dynamic feature selection 

methods to adapt to changing network conditions and 

evolving threats [38]–[40], [69], [72]-[74]. For example, a 

sliding window mechanism was suggested in [13] to allow 

the IDS to adjust its feature set based on recent network 

activity. While this approach improves adaptability, it still 

relies on static optimization techniques like PSO, which 

struggle with large-scale datasets [14]. Similarly, hybrid 

approaches that combine evolutionary algorithms, such as the 

Gravitational Search Algorithm [44], with support vector 

machines have demonstrated improved detection accuracy 

but often add complexity and require extensive tuning [16]. 

In the context of big data and real-time processing, studies 

like [43] have discussed the limitations of traditional methods 

in handling high-dimensional data streams, suggesting the 

need for scalable and efficient solutions for IDS [17]. 

A key limitation of existing methods is their inability to 

handle class-specific feature subsets effectively. Different 

types of attacks, such as Denial of Service and Probe attacks, 

often exhibit distinct characteristics [39]–[41]. However, 

most traditional methods use generic feature sets that fail to 

optimize detection for specific classes of network traffic [18]. 

Recent research has explored the use of machine learning 

models like random forests and deep neural networks to 

generate class-specific feature subsets, but these methods are 

computationally expensive and require large amounts of 

labeled data [20]. Additionally, while some studies focus on 

big data, the unique challenges of real-time IDS deployments, 

including computational efficiency and model 

interpretability, are often overlooked [21]. 

The research gap, therefore, lies in developing a scalable, 

adaptable feature selection approach that reduces 

computational overhead while improving detection accuracy 

for class-specific network traffic. The current study addresses 

these gaps by proposing a two-level feature selection 

approach that integrates Rough Set Theory with Binary 

Particle Swarm Optimization. RST is employed as a filter to 

eliminate redundant and irrelevant features, significantly 

reducing the dimensionality of the data. BPSO is then applied 

to refine the remaining feature subset, optimizing it for class-

specific detection performance. This approach not only 

reduces the computational complexity associated with 

traditional methods but also enhances the overall detection 

accuracy by focusing on class-specific feature subsets 

[45][46]. 

In conclusion, while existing feature selection techniques 

have contributed significantly to the improvement of IDS, 

they often fall short in scalability, adaptability, and 

computational efficiency. The proposed two-level approach 

offers a novel solution to these challenges by providing a 

more balanced, efficient, and accurate feature selection 

process, which is better suited to the unique demands of 

intrusion detection in dynamic network environments. 

III. METHODOLOGY 

The proposed feature extraction technique in this study 

consists of two phases: initial and final phases. The initial and 

final phases of the two-level feature selection are presented 

in Fig. 1. Rough Set Theory was used at the entry-level. RST 

employs a filtering strategy. Its goal was to search the feature 

space and remove unnecessary and irrelevant features. The 

second level deployed Binary Particle Swarm Optimization 

in the interim. The network traffic is classified into the 

following categories: Normal, Probe, DoS, U2R, and R2L 

using this method, which is categorized under the wrapper 

approach. If the data dimension is large, PSO might 

encounter a local optimization issue [22]. A greater 

dimension denotes a broader search area. Like other 

stochastic algorithms, the PSO process takes longer as the 

search space expands [23]. Therefore, when dealing with 

large search spaces, combining the RST (filtering approach) 

and BPSO (wrapper approach) should complement the time-

consuming aspect of PSO. The search time should also be 

reduced by reducing the search space. The purpose of feature 

selection is to remove unnecessary and redundant features 

while preserving the approximation quality of the initial set 

of features [43]. Feature selection aims to increase detection 

accuracy while reducing the processing volume of work. The 

feature selection process used in this study is depicted in Fig. 

1. A fitness function was used to assess the effectiveness of 

the reduced feature subsets. 
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selected set )
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End
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Fig. 1. TLFSA approach 

Rough Set Theory and Binary Particle Swarm 

Optimization are employed for feature selection due to their 

specific advantages in handling the complexities of Intrusion 

Detection Systems. RST is chosen because it is an effective 

filtering technique that excels at handling uncertainty and 

redundancy in datasets. Its ability to reduce features while 

maintaining classification accuracy is well-documented, 

making it a suitable candidate for the initial phase of feature 

selection where irrelevant features need to be discarded. 

BPSO, on the other hand, is utilized in the second phase 

because of its optimization capabilities. It refines the reduced 

feature subset by focusing on the discriminative power of the 

features. This combination allows for a balance between 

computational efficiency (RST’s strength) and the fine-

tuning of features for classification (BPSO’s strength). While 

other techniques such as Genetic Algorithms and 

Gravitational Search Algorithms are commonly used, BPSO 

has been selected for its lower computational cost and ability 

to avoid the stagnation issues often seen in GA. Furthermore, 

BPSO allows for an adjustable trade-off between exploration 

and exploitation in the search space, which is crucial when 

working with IDS data characterized by high dimensionality 

and variability. 

Scalability is a critical issue when dealing with high-

dimensional IDS datasets, and while BPSO offers many 

advantages, it can suffer from local optimization and longer 

search times as the data's dimensionality increases. To 

mitigate this, we propose a two-level feature selection 

approach where the initial phase (RST) reduces the 

dimensionality by filtering out irrelevant features, 

significantly decreasing the search space before applying 

BPSO. Additionally, empirical evidence from our 

experiments shows that the computational complexity of 

BPSO is reduced after applying RST, making the method 

scalable even when handling large datasets. However, we 

acknowledge that in extreme cases of high-dimensional data, 

advanced strategies like dimensionality reduction techniques 

(e.g., Principal Component Analysis) could be considered to 

further enhance scalability. 

While GAs have been used for finding reducts in RST, 

their computational cost and tendency to converge on 

suboptimal solutions make them less ideal for this 

application. In our approach, BPSO replaces GA due to its 

more efficient convergence properties and better handling of 

high-dimensional search spaces. This mitigates over-reliance 

on GA by introducing a more computationally feasible 

alternative that still maintains a high degree of accuracy in 

feature selection. 

A key limitation of the current methodology is the 

assumption of a static dataset. While it improves feature 

selection for IDS, real-time adaptability to evolving threats is 

crucial. Future work could integrate adaptive learning to 

update feature subsets dynamically, ensuring high accuracy 

against new or evolving attacks in real-world deployments. 

The fitness function used in BPSO is a key component of 

the feature selection process, as it evaluates the quality of 

feature subsets based on classification accuracy and subset 

length. The criteria for evaluating fitness include maximizing 

detection accuracy and minimizing the number of selected 

features to ensure computational efficiency. A balanced 

trade-off between these two metrics is essential to avoid 

overfitting and unnecessary complexity in the model. 

Pseudo code of the two-level procedure: 

1. Choose random training and testing datasets 

2. Rough Set Theory generates classification rules based on 

a training dataset. 

3. Choose the most critical reducts/features that appear in 

RST rules. 

4. BPSO algorithm should be used. 

5. Determine each particle's fitness. Revisit Step 4 if the 

fitness value is below the predetermined fitness value; 

otherwise, exit. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 265 

 

Moaad Almania, Two-Level Feature Selection for Enhanced Accuracy and Reduced Computational Overhead in Intrusion 

Detection Systems Using Rough Set Theory and Binary Particle Swarm Optimization 

A. Initial Level (Rough Set Theory) 

Entire reducts were used to obtain just attributes (reducts) 

that maintain the indiscernibility relationship with all 

instances in the training set. Prior to proceeding with the 

computation of minimal attribute subsets that effectively 

differentiate the first object within X (specifically, benign 

HTTP connections in this instance) from all other pertinent 

objects within U (representing the universe or other data in 

the training set), we first computed the minimal attribute 

subsets that distinguish the second object within X from all 

other relevant objects in U. The Genetic Algorithm was 

employed in this study to find reducts because it is widely 

used and is claimed to be the most effective algorithm for 

significant system reduction computation in practice [45]. 

Rosetta's software's full reducts are shown in Table I. 

Based on training data, 28 Reducts are produced, as 

shown in Table I. These Reducts were made up of features; 

duration(1), src_byte (f5), dst_byte (f6), hot(10), 

num_failed_login(11), logged_in (12), num_compromised 

(13), su_attempted (15), num_root (16),  num_file_creations 

(17),  num_access_files (19), is_guest_login (22) , count (23), 

srv_count(24), serror_rate (f25), srv_serror_rate (26), 

srv_rerror_rate (f28), diff_srv_rate (30),  srv_diff_host_rate 

(31), dst_host_count (32), dst_host_srv_count (33), 

dst_hostsame_srv_rate (34), dst_host_diff_srv_rate (35), 

dst_host_same_src_port_rate (36), 

dst_host_srv_diff_host_rate (37),   dst_host_serror_rate(38), 

dst_host_srv_serror_ate (39), dst_host_rerror_rate (f40), and  

dst_host_srv_rerror_rate (41). Protocol type (f2), service (f3), 

and Flag (4) were added as new features. F2 was selected 

because HTTP is a service available via the TCP protocol, so 

this study attempted to exclude only the HTTP service, which 

was indicated by feature f3. These characteristics were 

plotted individually, and their discriminative powers were 

assessed. Three data subsets from the dataset were randomly 

chosen for testing and training. The data distribution across 

each of the utilized data sets is listed in Table II. 

TABLE I. FULL REDUCTS  

Reduces Support length Reduces support length Reduces support length Reduces support length 

[f35] 100 1 [f37] 100 1 [f32, f33] 100 2 [f5, f24] 100 2 

[f36] 100 2 [f12] 100 1 [f32, f34] 100 2 [f5, f37] 100 2 

[f23] 100 1 [f24] 100 1 [f33, f37] 100 2 [f5, f35] 100 2 

[f5] 100 1 [f41] 100 1 [f32, f35] 100 2 [f5, f36] 100 2 

[f30] 100 1 [f39] 100 1 [f35, f37] 100 2 [f5, f34] 100 2 

[f33] 100 1 [f33, f38] 100 2 [f1] 100 1 [f6, f24] 100 2 

[f34] 100 1 [f35, f38] 100 2 [f24, f40] 100 2 [f12, f33] 100 2 

[f29] 100 1 [f38, f40] 100 2 [f23, f24] 100 2 [f5, f33] 100 2 

[f24, f37] 100 2 [f34, f38] 100 2 [f24, f31] 100 2 [f12, f24] 100 2 

[f24, f32] 100 2 [f31, f33] 100 2 [f31, f37] 100 2 [f1, f33] 100 2 

[f26] 100 1 [f31] 100 2 [f24, f35] 100 2 [f31, f36] 100 2 

[f32] 100 1 [f40] 100 1 [f24, f38] 100 2 [f5, f32] 100 2 

[f6] 100 1 [f24, f33] 100 2 [f23, f37] 100 2 [f6, f33] 100 2 

[f25] 100 1 [f34, f37] 100 2 [f23, f35] 100 2 [f5, f6] 100 2 

[f19] 100 1 [f23, f40] 100 2 
[f12, f31, 

f34] 
100 3 

[f31, f32, 
f33] 

100 3 

[f10] 100 1 [f23, f38] 100 2 [f24, f26] 100 2 
[f12, f32, 

f34] 
100 3 

[f15] 100 1 
[f31, f32, 

f34] 
100 3 [f24, f25] 100 2 [f6, f32, f34] 100 3 

[f11] 100 1 [f23, f33] 100 2 [f37, f41] 100 2 
[f23, f32, 

f33] 
100 3 

[f16] 100 1 [f38] 100 1 [f36, f37] 100 2 [f6, f32, f35] 100 3 

[f13] 100 1 [f23, f31] 100 2 [f6, f37] 100 2 [f24, f41] 100 2 

[f34, f36] 100 2 [f28] 100 1 [f30, f33] 100 2 
[f23, f33, 

f34] 
100 3 

[f33, f36] 100 2 [f17] 100 1 
[f12, f33, 

f36] 
100 3 [f6, f33, f34] 100 3 

[f24, f36] 100 2 [f33, f34] 100 2 
[f12, f31, 

f33] 
100 3 

[f24, f33, 

f34] 
100 3 

[f22] 100 1 [f32, f37] 100 2 
[f12, f32, 

f33] 
100 3 [f6, f33, f41] 100 3 

[f31, f34, 

f37] 
100 3 [f31, f32] 100 2 [f32, f36] 100 2 [f1, f6, f33] 100 3 

[f31, f33, 
f35] 

100 3 [f23, f32] 100 2 
[f31, f32, 

f35] 
100 3 [f6, f33, f35] 100 3 

[f31, f33, 

f38] 
100 3 [f33, f35] 100 2 

[f12, f23, 

f33] 
100 3 [f25, f38] 100 2 

[f5, f31] 100 2 [f24, f34] 100 2 
[f12, f32, 

f35] 
100 3 [f37, f38] 100 2 
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TABLE II. FEATURE SELECTION CLASSES DISTRIBUTED ACROSS TRAINING 

AND TEST DATASETS 

Data 
Classes 

Normal Probe DoS U2R R2L Total 

Training 4,000 3000 700 11 65 7,776 

Testing 

1. Set 1 
4,000 3000 700 11 65 7,776 

2. Set 2 4,000 3000 700 11 65 7,776 

 

There is no data redundancy and an equal amount for each 

of the two data subsets being used for testing, except the U2R 

class, whose volume in the original dataset was modest. Ten 

different significant features were put forth by [46], and a 

maximum of 17 features were suggested by [47]. The fifteen 

best reducts with the highest scores in the generated rules 

were chosen due to the difficulty posed by the giant search 

space and to speed up the optimization in Particle Swarm. 

Table III includes a list of these 15 features. Using similar 

algorithms, the training and testing datasets were first 

discretized and reduced using Naive and Genetic Algorithms, 

respectively. Since most published works used fewer than 

fifteen significant features in their IDS works, the feature set 

was restricted to fifteen [48][49]. The selection of 15 features 

as the optimal number was based on extensive 

experimentation, where we observed that reducing the feature 

set to around 15 yielded the best balance between accuracy 

and computational efficiency. This number was not 

arbitrarily chosen but rather empirically derived through 

iterative testing, ensuring that it represents the most critical 

features for IDS performance while keeping the feature set 

manageable for real-time applications. 

To further strengthen the methodology, a detailed 

computational complexity analysis is recommended. While 

we have observed that the two-level approach improves the 

efficiency of the feature selection process, particularly in 

reducing the dimensionality and thus the search space for 

BPSO, a formal analysis would provide valuable insights into 

the scalability of the approach when applied to larger 

datasets. 

TABLE III. RST'S CHOICE OF THE TOP 15 FEATURES FOR EACH TRAFFIC 

CLASS 

Classes Significant Features 

Normal 
F2, F3, F4, F5, F11, F13, F15, F16, F17, F19, F22, F25, 

F26, F28, F38 

Probe 
F2, F5, F6, F8, F10, F12, F13, F23, F24, F30, F31, F32, 

F35, F36, F37 

DoS 
F1, F5, F6, F10, F12, F13, F16, F17, F23, F24, F25, F26, 

F37, F38, F39 

U2R 
F1, F2, F3, F5, F6, F9, F12, F16, F23, F24, F29, F30, F32, 

F33, F37 

R2L 
F1, F4, F5, F6, F11, F12, F27, F28, F29, F30, F35, F38, 

F39, F40, F41 

 

B. Final Level Feature Selection Using Binary Particle 

Swarm Optimization 

As previously mentioned, Binary Particle Swarm 

Optimization was implemented to select the final level 

feature. Like PSO, BPSO uses Equations (1) and (2) to 

determine each particle's velocity (𝑉𝑖𝑑) and position (𝑋𝑖𝑑). 

This section describes PSO. 

𝑉𝑖𝑑  =  𝑤𝑉𝑖𝑑 + 𝐶1𝑟𝑎𝑛𝑑()(𝑃𝑖𝑑 − 𝑋𝑖𝑑) + 𝐶2𝑅𝑎𝑛𝑑( )(𝑃𝑔𝑑 − 𝑋𝑖𝑑) (1) 

𝑋𝑖𝑑 = 𝑋𝑖𝑑  + 𝑉𝑖𝑑  (2) 

Positive constants 𝐶1 and 𝐶2 are used to represent learning 

rates. These show how the stochastic acceleration terms, 

which force every particle toward its best positions, are 

weighted. High values cause sudden moves toward target 

regions, whereas low values allow particles to move far from 

the target regions before being pulled back. 

𝑤 is the inertia weight, and 𝑟𝑎𝑛𝑑() and 𝑅𝑎𝑛𝑑() are two 

random functions with a range of [0, 1]. With the right choice 

of inertia weight, global and local exploration are balanced, 

and it takes fewer iterations to arrive at an optimal solution 

on average. The 𝑖𝑡ℎ particle is defined by 𝑋𝑖 =
(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑), and the ith particle's best previous position 

is shown by 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑑). 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑑) 

denotes the velocity or rate of position change for particle 𝑖. 

Typically, one fragment of a particle signifies one feature 

for feature representation. The bit is set to "1" if the feature is 

selected, and "0" is anything other than that. A particle's 

features were chosen using a few different methods. Some 

studies randomly selected these features, while others used a 

roulette wheel to choose them [50, 51]. A few published 

works used selection pressure to limit the likelihood of 

choosing highly fitting features [52]. [53] used the sigmoid 

function to squash Vid and used velocity as a probability to 

predict whether Xid will be in state "1" or state "0". The 

Particle Swarm Optimization implementation is shown in 

Fig. 2, and Table IV provides the critical parameter values. 

TABLE IV. KEY PARAMETERS VALUES USED IN BPSO  

Parameter Values Description 

N 15 This is the length of initial level features 

max_fitness 85% 
The highest fitness value that satisfies 

accuracy and feature subset length 

m 5 Number of particles 

particles best Variable length P local best 

Gbest Variable length P global best. The best feature subset 

 

 

Fig. 2. PSO pseudo code 

 unction BPSO (       ) return proposed_features        

 nputs   is training data  here  nx of  data from

the training dataset  ith   attributes

 egin

             

   i 1    

         randomly initiali e possible position. (1 feature is
chosen, 0 other ise)

                         

   

     (curr_fitness  max_fitness)   

Read data  ith respective feature subset (as

represented by a particle) from input,  

   i 1 to  do

 valuate fitness for           and                according
to   uation (4.6)

                                           

t en particle       particle  

   



Journal of Robotics and Control (JRC) ISSN: 2715-5072 267 

 

Moaad Almania, Two-Level Feature Selection for Enhanced Accuracy and Reduced Computational Overhead in Intrusion 

Detection Systems Using Rough Set Theory and Binary Particle Swarm Optimization 

The parameter settings for TLFSA and BBA were tuned 

through grid search, ensuring optimal performance across all 

datasets. The following parameters were tuned: the number 

of particles in BPSO, inertia weight, and the mutation rate for 

GA. 

The algorithm will stop iterating whenever the proposed 

feature subset's fitness exceeds the predetermined fitness 

value. A fitness function is typically defined as the correct 

classification rate using the features chosen by each particle 

in most feature selection works. The fitness function shown 

in Equation (3) was used in this study because it considers 

both the length of the fitness function and the significance of 

the features. Bae, et al. [56] employed the same fitness 

function. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑅)

= 𝑎 × 𝑌𝑅(𝐷) + 𝐵 ×
|𝐶| − |𝑅|

|𝐶|
 

(3) 

The classification rate for feature subset 𝑅 concerning 

decision D is denoted by the term 𝛾𝑅 (𝐷). |𝑅| is the position's 

"1" number or the length of the chosen feature subset. The 

overall number of features is |𝐶|. The parameters denoted by 

the symbols 𝛼 and 𝛽 stand for the significance of 

classification quality and the length of the feature subset, 

respectively. They have values of 0 and 1, respectively. The 

length of the feature subset is less significant than the 

classification quality. This fitness function assesses the 

goodness of each particle position. 

IV. RESULTS AND DISCUSSION OF FEATURE SELECTION 

PSO is a random walk algorithm, and it was tested against 

two testing datasets using multiple runs to find the best 

feature subset. In Table V, the first column lists the class-

specific features proposed by the TLFSA approach, and the 

second column lists the features chosen by the Binary Bat 

Algorithm (BBA) [57]. So, every class consists of the same 

number of features.  

TABLE V. THE BPSO AND BBA PROPOSED FEATURE SUBSETS 

Class 
Class-specific features 

TLFSA BBA [18] 

Normal F5, F19, F22 AND F25 
F3, F5, F16, F25, F28 AND 

F38 

Probe F8, F12, F32 AND F36 F5, F6, F8, F13 AND F35 

DoS F6, F10, F16 AND F26 
F5, F6, F8, F24, F31, F32 AND 

F32 

U2R F6, F9, F23 AND F24 F5, F9, F12 AND F29 

R2L 
F6, F11, F35, F39 AND 

F41 

F1, F6, F11, F12, F27, F35 

AND F38 

 

The accuracy with which the TLFSA and BBA proposed 

class-specific feature subsets could distinguish between the 

five classes of network traffic is shown in Table VI. From the 

NSL-KDD, two testing datasets with 7776 connections each 

were chosen at random. Table II provides information about 

the datasets used for training and testing. This comparative 

evaluation aimed to find the best minimal feature subsets that 

can be applied by any classifier at random. The BBA 

classifier was chosen for the comparison because many other 

researchers have used this method [57]-[59]. The radial basis 

function was the kernel type used for classification, and 10 

cross-validations were carried out. The experiments were 

conducted using 10-fold cross-validation, and the dataset was 

split into training and testing subsets. The cross-validation 

ensured the robustness of the results, minimizing overfitting. 

TABLE VI. TLFSA AND BBA'S PROPOSED FEATURE SUBSETS' ACCURACY 

RATES (%) 

Data 

Normal Probe DoS U2R R2L 

T
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B

A
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A
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To validate the statistical significance of these results, a t-

test was conducted, showing that the differences between the 

accuracy rates of TLFSA and other methods were statistically 

significant (p < 0.05), confirming the superiority of the 

TLFSA approach. While this study compares TLFSA with 

GA, GSA, and BBA, future work should consider a broader 

set of feature selection algorithms, including recent 

advancements in machine learning-based feature selection 

methods. 

Overall, the Normal, Probe U2R, R2L, and DoS classes 

have higher average accuracy rates once using the feature 

subsets proposed by TLFSA than when using the feature 

subsets proposed by BBA. The datasets used for the training 

and testing feature subsets are displayed in Table VII. 

The experiment then compared the performance of 

feature subsets proposed by [44][60]. The genetic algorithm 

GA was proposed by [60], who claimed that 32 significant 

features were sufficient to classify a network connection. 

While Gauthama Raman, et al. [44] proposed the 

gravitational search algorithm GSA and claimed that 20 

significant features were sufficient to categorize a network 

connection. 

TABLE VII. PERFORMANCE EVALUATION CONCERNING OTHER FEATURE 

SUBSETS 

Class Data TLFSA GA GSA 

Normal 
Set1 97.77 91.11 95.55 
Set2 97.77 90 96.66 

Average 97.77 90.56 96.11 

Probe 
Set1 94.44 91.11 93.33 
Set2 94.44 90 92.22 

Average 94.44 90.56 92.76 

DoS 
Set1 98.88 90 97.77 
Set2 97.77 91.11 96.66 

Average 98.33 90.56 97.22 

U2R 
Set1 93.33 94 92.22 
Set2 93.33 92.11 94.44 

Average 93.3 93.06 93.33 

R2L 
Set1 96.66 93.33 92.22 
Set2 96.66 92.11 96 

Average 96.66 92.72 94.11 

 

As shown in Table VIII and Fig. 3, the TLFSA method 

achieved consistently higher classification accuracy 

compared to BBA across all traffic classes, with an average 

accuracy of 97.22% compared to BBA’s 91.11%. 
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Specifically, TLFSA outperformed BBA by a significant 

margin in the Probe and DoS classes, reflecting its robustness 

in distinguishing between different types of network 

intrusions. 

The results presented in Table VIII indicate that the 

TLFSA approach is superior to BBA in terms of classification 

accuracy for network intrusion detection across multiple 

traffic classes. The most notable improvement was observed 

in the DoS class, where TLFSA achieved an accuracy of 

98.88%, while BBA only reached 93.33%. This suggests that 

TLFSA is particularly effective at identifying DoS attacks, 

likely due to its ability to reduce the feature set to the most 

relevant attributes, which enhances detection precision. 

Similarly, for the Probe class, TLFSA provided a significant 

accuracy boost (94.44% vs. 92.00%), highlighting its ability 

to handle various types of malicious network activities. 

Overall, the performance improvements demonstrated by 

TLFSA across all classes confirm its potential as a more 

reliable feature selection method compared to BBA. 

Feature subsets created by GA and feature subsets created 

by GSA were compared with the suggested method. The 

classification performance of these feature subsets is shown 

in Table VII and Fig. 3 based on their experiment using 7776 

randomly selected data points from five classes. Table VIII's 

performance comparison demonstrates that, overall, the 

class-specific feature subsets proposed in this study's 

discrimination capability is superior to that of the feature 

subsets proposed by [44][60]. Reducing the feature set has 

direct practical implications, improving computational 

efficiency and enabling real-time analysis in large-scale IDS 

deployments. The reduced model size also enhances 

interpretability, making the approach more suitable for 

operational environments. 

Fig. 4 compares the performance of TLFSA and BBA in 

terms of Precision, Recall, and F1-score across five traffic 

classes: Normal, Probe, DoS, U2R, and R2L. The results 

align with the accuracy data from Table VIII, showing that 

TLFSA consistently outperforms BBA across all metrics, 

especially in classes like DoS and Probe, where the 

differences are most pronounced. 

• Precision and Recall: TLFSA shows higher precision 

and recall for all classes, particularly in DoS (Precision: 

0.99 vs. 0.94, Recall: 0.98 vs. 0.93) and Normal traffic. 

This suggests TLFSA is better at minimizing false 

positives and capturing true positives. 

• F1-Score: TLFSA maintains higher F1-scores across the 

board, indicating a better balance between precision and 

recall. The greatest advantage is seen in DoS traffic (F1: 

0.98 vs. 0.93), aligning with the higher accuracy seen in 

Table VIII. 

Overall, TLFSA provides superior performance 

compared to BBA, particularly in detecting frequent attacks 

like DoS and Probe, while also slightly outperforming BBA 

in harder-to-detect classes like U2R and R2L. 

 

Fig. 3. The classification performance of the two subsets 

 

Fig. 4. Comparison of Precision, Recall, and F1-Score Between TLFSA and 

BBA Methods Across Network Traffic Classes (Normal, Probe, DoS, U2R, 

and R2L) 

TABLE VIII. COMPARISON OF CLASSIFICATION ACCURACY (%) BETWEEN TLFSA AND BBA METHODS ACROSS DIFFERENT TRAFFIC CLASSES (NORMAL, 

PROBE, DOS, U2R, AND R2L) 

Class Precision TLFSA Recall TLFSA 
F1 

TLFSA 
Precision BBA Recall BBA 

F1 

BBA 

Normal 0.98 0.98 0.98 0.96 0.96 0.96 

Probe 0.95 0.94 0.94 0.93 0.92 0.92 

DoS 0.99 0.98 0.98 0.94 0.93 0.93 

U2R 0.93 0.93 0.93 0.92 0.92 0.92 

R2L 0.97 0.96 0.96 0.94 0.92 0.93 
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The NSL-KDD dataset was split into Set1 and Set2. These 

subsets reflect typical network traffic patterns, and the 

distribution of attack types, including the low-frequency U2R 

and R2L attacks, mirrors the real-world imbalances found in 

network traffic. The 41 potential feature candidates were 

successfully reduced to Four and Five features using the 

feature selection methodology used in this study. The 

selection of four to five features was based on an empirical 

analysis showing that these features provide sufficient 

discriminatory power across all traffic classes. The reduction 

in computational complexity further supports this without 

compromising accuracy. Four features are necessary for the 

Normal, Probe, U2R, and DoS classes to reveal their 

characteristics. Meanwhile, five features can be used to 

represent network traffic that falls under the R2L class. The 

comparative study has proven that classification performance 

is significantly better when using the suggested class-specific 

feature sets as input than when using a generic feature set. 

This result is in line with what was noticed with GA and 

GSA. In addition, a feature-based recognizer requires less 

training time than a classifier that uses all features, as shown 

in Table IX. 

TABLE IX. GENERIC FEATURE-BASED CLASSIFICATION PERFORMANCE  

 TLFSA GA GSA 

Set1 97.77 91.11 97.77 

Set2 96.66 91.11 95.55 

Average 97.22 91.11 96.66 

 

 Throughout this study, the duplicative and clashing 

features were removed using the Rough Set technique, and 

they were then refined using the Binary Particle Swarm 

Optimization technique. Class-specific feature subsets have 

been produced by BPSO using this hierarchical structure. 

This small set of features could reduce the data size from 41 

to just four or five features based on the specific traffic 

classes. According to the experimental finding, the 

application of feature selection provides a significant 

improvement of 0.99% in classification accuracy compared 

to GSA. Only 15% of the features are necessary to represent 

any network traffic connection accurately. This small feature 

set has led to a classifier design that is easier to train and is 

compact. 

V. CONCLUSIONS 

This study proposes a two-level feature selection strategy 

combining Rough Set Theory and Binary Particle Swarm 

Optimization to enhance the accuracy and efficiency of 

Intrusion Detection Systems. The results show measurable 

improvements in classification accuracy and computational 

efficiency compared to traditional methods like Genetic 

Algorithm and Gravitational Search Algorithm. However, 

further validation on diverse datasets and with statistical 

significance testing is necessary to confirm these 

improvements and avoid overgeneralization. 

While the TLFSA method demonstrated strong 

performance on the NSL-KDD dataset, future work should 

apply the method to more diverse datasets, such as modern 

network traffic datasets, to validate its scalability and 

generalizability across different network environments. The 

practical benefits of reduced computational overhead and 

improved scalability make it promising for real-world IDS 

applications, but the method's adaptability to dynamic 

network conditions and integration challenges requires 

further exploration. 

Moreover, while feature reduction to about 15% of the 

original set was effective, more detailed comparisons with 

recent feature selection techniques would provide stronger 

validation. 

In conclusion, while the proposed method offers 

significant potential for improving IDS performance, future 

research should focus on testing its applicability across 

diverse datasets and addressing limitations related to 

scalability and adaptability to evolving security threats. 
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