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Abstract—Accurate control robotic arms in two-

dimensional environments present significant challenges, 

particularly in dynamic, real-time applications. Traditional 

model-based approaches require substantial system modeling, 

rendering them computationally extensive. This paper presents 

an adaptive Artificial Intelligence (AI)-driven approach 

through the use of Deep Q-Networks (DQN) control for a two–

link robotic arm thus supporting better scalability. The DQN 

algorithm, a model-free Reinforcement Learning (RL) 

technique, allows the robotic arm to independently learn 

optimal control strategies by interaction with the environment 

and adapting to dynamic conditions. The task of the robot 

established reaches a specific target (red point) within a limited 

number of episodes. Key components of the methodology 

contain problem statement, DQN architecture, representation 

of the state and action spaces, a reward function, and the 

training process. Experimental results indicate that the DQN 

agent effectively learns to find optimal actions with high 

accuracy and robustness in guiding the arm to the target. The 

performance steadily improves during initial training, followed 

by stabilization, indicating an effective control policy. This 

study contributes to the knowledge of reinforcement learning 

in robotic control tasks and demonstrates, in particular, the 

potential of DQN for solving complex, goal-oriented tasks with 

minimal prior modeling. Compared to conventional control 

approaches, the DQN-driven one reveals higher flexibility, 

scalability, and efficiency. Although carried out in a simplified 

2D environment, the novelty of this research lies in its 

emphasis on enabling the robotic arm to accomplish goal-

oriented reaching tasks, lays a strong foundation for future 

applications in industrial automation and service robotics. 

Keywords—Artificial Intelligence (AI); Autonomous Robotic 

Systems; Robotic Arm; Deep Q Network (DQN); Reinforcement 

Learning (RL); Model-Free Control; Goal-oriented Control. 

I. INTRODUCTION 

Artificial Intelligence (AI) that describe computers as 

devices that depend on humans. Other activities include 

perception, learning, and cognition, comprehension of 

natural language, speech recognition and vision. In various 

contexts, people use AI to attempt at emulating the way 

human brains work to make complex tasks easier. Although 

the overall concept of AI includes a wide range of 

technologies, it necessitates many definitions in different 

businesses. Engineers describe AI as constructing robots 

that can execute jobs that humans would typically be able to 

achieve [1]. Regardless of their sophistication, it is critical 

to understand that these robots and programs lack actual 

human intelligence; rather, they demonstrate intelligent 

behaviors [2]. The idea of intelligence remains relative, as 

no system can reach complete intelligence. The intelligence 

of systems can vary depending on their ability to gather 

knowledge, reorganize information, and adapt to changing 

circumstances [3]. 

AI entails employing technology systems to execute 

activities that mirror human cognitive capacities. The basic 

aspect of AI is machine learning. This refers to the ability of 

a computer system to simulate intelligent behavior. More 

specifically, AI is the study and appropriate application of 

computer systems that were able to perform tasks previously 

based on human intelligence. These tasks include speech 

recognition, visual perception, decision making, language 

translation, and data analysis [4][5]. AI is established in the 

modern world as innovations that are improving people’s 

quality of life. Autopilot systems, telemedicine, chatbots, 

Big Data, smart home, automated monitoring, as well as 

some of the AI fields including cyber justice, education, and 

defense have become more apparent. Consequently, with 

daily interactions of the practical tasks, the AI-powered 

devices undergo modifications that reveal the learning 

capabilities that would make the processes more efficient 

[6][7]. 

The rapid advancement of AI, machine learning, 

robotics, and automation is driving profound 

transformations in industries and societies worldwide. These 

changes are poised to revolutionize how we work, live, and 

interact with one another, surpassing anything seen in 

human history in terms of speed and scale. While this new 

industrial revolution holds the promise of enhancing and 

improving our lives and societies, it also carries the 

potential for significant disruptions to our way of life and 

societal norms. The window for understanding the impact of 

these technologies and mitigating their negative effects is 

rapidly closing. Humanity must adopt a proactive approach 

to managing this new industrial revolution rather than 

merely reacting to its consequences [8]-[11].  

The importance of technological automation through AI 

is picking up across development sectors such as in banking, 

data analysis, healthcare, marketing among others. This 

development triggers questions concerning the impacts that 

AI is likely to have over the industry, consumer and the 

global economy at large [12]. 
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Employees are becoming more and more interested in 

the effects that AI will have on their employment and 

wages. In more existing and potentially areas, the ability of 

AI automation to revolutionize manufacturing is now well 

understood, and numerous companies across numerous 

industries on the planet anticipate that AI in manufacturing 

will address central global issues. Driven automation came 

around has many advantages for the corporations namely 

increased tendency towards optimization of the process as 

well as overall increase in production and stability of the 

final quality of the products. The benefit of employing 

artificial intelligence in manufacturing is that manufacturers 

may benefit from the technology to improve performance 

and efficiency. Moreover, such solutions allow the creation 

of smart factories with the flexibility of manufacturing, by 

which manufacturing can be adapted immediately according 

to the demand [13][14]. 

Apart from cost-effectiveness, AI automation presents 

an opportunity for creating solutions for factors of 

sustainable development and efficient use of limited 

resources in the world. By using AI industries enforced 

environmentally conscious approach, minimized 

environmental impacts, and maximized efficient utilization 

of the resources. Further, AI-based systems can solve the 

problem of personnel deficit and skills mismatch by 

supplying human employees with devices and programs that 

increase personnel productivity [15]. Automation systems 

are composed of a network of actuators, controllers, and 

sensors through which tasks are performed with little human 

input. Most, of these systems have developed from 

manually operated including welding, drilling and cutting, 

in which robotic arms are used to manipulate tools that 

perform the operations [16]-[21].  

In process control which is the third layer, automation 

systems are applied to control actuating parameters for 

devices such as motors, pumps, heaters, and compressors. 

These systems are available in many forms, and some are 

specially developed for a single purpose. Many procedures, 

including but not limited to cutting, milling, threading, 

welding, and inspection, employ automation. While it may 

be used to increase efficiency and improve the product value 

added, the primary goal of automation is to eliminate the 

operators from the process so that the process is less likely 

to be affected by their shortcomings. Through automation, 

the probity of the company can improve alongside with 

attainability, security, and quality of production [22][23]. In 

addition to automation, the capabilities of AI are also hailed 

for unprecedented ability to revolutionize the manufacturing 

industry as well as other operations around the world and 

solving some of the world’s biggest challenges [24]. 

In recent years, the innovations and new technologies 

coupled with their proliferation across various sectors, have 

hastened the pace of digital transformation. The combined 

use of automation and AI is likely to result in innovative 

business models and advanced technologies with enhanced 

productivity in all sectors of the economy. With the 

continuous improvement of robotic technologies, the 

practical utilization of AI is becoming clearer. Such sectors 

as self-driving cars, medicine, service, and industrial 

robotics are being rapidly enhanced with AI [25]-[27]. 

The term robot is defined as a machine, automatic in 

function and capable of being instructed by a computer that 

can take over the actions of a human and be programmable. 

Software development, electronics, and mechatronics fuse in 

order to design and control the robot. Machine cannot be left 

unattended to complete a whole task hence there are 

applications whereby robots perform certain parts of the 

operation effectively. It is the application of software and 

processes to increase production using machines, and 

processes or machine may be used to increase efficiency in 

various processes and practices [28]-[30]. 

Employment of robotic technologies is among the most 

effective methods of process automation in industrial 

systems including logistics and transportation. Present day 

autonomous robots can complete order picking, order 

retrieval from the shelves, and order assembly for shipping 

tasks independently. They provide great value for logistics 

optimization by mechanization of operations such as the 

assembly processes of the complex integrating loading and 

unloading of products from the storage spaces [31]. The 

industrial entrepreneurs have witnessed the recent trends of 

utilizing robotics and its accompanying technology. Firstly, 

it raises the boiler and productivity, since robots work round 

the clock without tiresome leading to the suitable use of 

time. Secondly, robots increase the degree of accuracy and 

reliability reducing the human elements which could lead to 

disadvantageous quality. Thirdly, even though automation is 

costly at first, it helps in reducing the costs in future by 

lowering the number of workers required and waste, while 

also improving operational efficiency. Fourthly, the working 

robots reduce improved workplace hazards by taking care of 

dangerous operations, thus lowering the susceptibility to 

injuries. Fifthly, there is programmable and adjustable 

character of robotic systems which enables engineers to use 

them for other operations thus more efficient. Lastly, 

robotics automation is effective in encouraging quality 

without fewer defects in production due to accurate and 

consistent production methods like repetition [32]-[35]. 

Robotics can be considered the link between action and 

perception, and thus, it is self-evident that AI is necessarily 

connected with the ability to control a robotic system in an 

intelligent manner. AI provides answers to key issues such 

as what kind of knowledge is necessary for the completion 

of given cognitive tasks, the representation of the acquired 

knowledge, and its utilization in the required manner [37], 

[36]. At the same time, the area of robotics is a strong 

challenger to AI because the incorporation of the real-time 

physical world comes with methods and representations 

which are more than cognitive activities usually done within 

a desktop setting. The purpose of the document is not to 

describe robotics as such but rather the tasks of AI in the 

embodiment of this technology when extending traditional 

approaches of AI into a physical platform that includes 

positioning systems, control elements, sensors, and 

computing resources [38]. Robotics and AI, while separate 

fields of study, have been coupled both from their outset in 

the 1950s as well as historically. These fields were 

coalesced for many years and did not in fact differentiate 

much, due to the common use of the term "intelligent 

machines" which applied equally to robots as it did to AI 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1874 

 

Murad Bashabsheh, Autonomous Robotic Systems with Artificial Intelligence Technology Using a Deep Q Network-Based 

Approach for Goal-Oriented 2D Arm Control 

[39]. Robotics, in particular, and industrial systems more 

generally have been a fruitful interaction. The 

characterization of the industrial robotics research is to 

intelligently controlling of robotic manipulators, with 

special attention to using them in manufacturing 

environments. The traditional methodologies on in industrial 

robotics are coming from automatic control theory, which 

takes a feedback based approach to handle the interactions 

of robots with their environment [40]–[42]. 

Controlling robotic arms and other similar devices 

remains a challenging task even with great progress. The 

capacity of traditional control systems to manage uncertain 

circumstances is limited since they frequently rely on exact 

mathematical models and inflexible rule-based reasoning. 

Robotic systems find it challenging to adjust to real-world 

situations when circumstances change often due to this 

rigidity. Robots used for pick-and-place activities, for 

instance, can have trouble adjusting to changes in item size, 

shape, or orientation; user intervention or significant 

retraining may be necessary to handle these variations [43]. 

Also, robotic components must deal with a large number of 

degrees of freedom (DOF), such that one task can 

accomplished in many ways. As a result, trajectory planning 

and control will be highly complex especially if several 

joints are implemented in robot arm. To achieve robust 

control over uncertainty-stressed conditions of mechanical 

wear, sensor noise, and unexpected environmental situations 

for example, we need more than dealing with standard 

approaches. Such drawbacks emphases the necessities of 

more versatile and scalable control systems, which are able 

to cope with continual ambiguities, learn through past 

mistakes for gradual performance improvement [44]–[48]. 

Robotic arms are used in many industries like healthcare 

and Industrial Automation. For exact-actions, such as 

drawing, installing things together or manipulating objects 

— these arms have to be controlled meticulously [49]. Over 

the past few years AI has been widely applied for better 

understanding to the control and autonomy of robotic 

systems. While traditional control methods like 

Proportional-Integral-Derivative (PID) controllers [50], 

[51], inverse kinematics, and model-based approaches can 

work well in static conditions losing performance when 

dynamics of environment change or physical systems are 

become multi-degrees-of-freedom such as robotic arm 

control. Since they require a detailed representation (model) 

of the robot and its environment they are called as model-

based control systems. These methods are generally used in 

environments and the models of the systems that the 

solution needs to adhere to are well defined. Thus, they do 

not possess the capability to manage contingencies and 

variations that are typical for real-life situations. Inability of 

traditional control methods to address dynamism and 

uncertainty of environments is a crucial hole in robot control 

systems [52]-[54]. 

In spite of this, model-based approaches cannot work 

well where the environment is very volatile or there is 

insufficient time to develop such a precise model [55][56]. 

This is where the model-free control comes in, where the 

controller does not require the plant model to operate. This 

is the type of control where no specific model of the 

controlled system and or its environment may be initially 

presupposed. Unlike model-based control techniques which 

involve the use of a perfect mathematical model, model-free 

techniques modify behavioral parameters using real time 

interaction with the environment, normally through a trial 

and error basis. These systems can change and improve 

because of feedback making them more versatile to address 

complicated and unpredictable matters. This is where the 

modern AI techniques, more specifically, Deep 

Reinforcement Learning (DRL), come to play [57]-[60]. 

An prominent example of Model-Free control is 

discovered in the Reinforcement Learning techniques which 

incorporates deep learning such as the Deep Q Learning  in 

which the robot agent is awarded a Neural Network to make 

a guess of the best actions in a given environment without 

having to have a model of the whole working [61][62]. 

Based on these challenges, Deep Q-Networks (DQNs), 

which belong to the class of DRL, seem to provide a good 

solution. Conventional approaches lack the ability to learn 

and refine its policy for the manipulation of robotics 

systems in a dynamic manner through experimentation. As 

with using the concept of exploration in neural networks, 

DQNs can pass raw sensor inputs directly into control 

actions, allowing robots to make decisions of their 

functionality in real-time with a profound understanding of 

their working environments. This adaptive approach not 

only improves the robot’s basic and complex task 

performance capacity but also improves scalability in 

challenging situations where set models fail [63]. 

A robotic arm controlled by DQN is the main shown in 

Fig. 1, which illustrates the convergence of sophisticated AI 

methods with autonomous robotic systems. The robotic arm 

represents the integration of DQN, an RL algorithm that 

uses interactions with the environment to learn optimum 

strategies and make goal-oriented motions. 

 

Fig. 1. Robotic arm with DQN integration for goal-oriented tasks 

This approach is in opposition to traditional control 

strategies that use predefined models and can therefore 

perform poorly in adapting to change. It also presents the act 

of performance in controlled environment to illustrate the 

future application on industrial automation and service 

robotics where the precision accuracy and adaptive control 

is highly desirable. But this Figure also indicates RL’s 
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potential for increasing the intelligence and decision making 

capability of autonomous systems to form a part of 

advancing robotics in the small real world environments 

[64][65]. 

Thus, it is a goal of this research to show that by 

supplementing the conventional methods of control with 

DQNs, the overall efficiency and effectiveness of goal-

oriented tasks would enhance especially in the controller for 

a robotic arm. As this work further elucidates using a 

profound analysis of how the application of AI optimizes 

the intelligence of robotic systems, this work suggests 

another widening contribution to learning-based approaches 

and practical robotic applications [66]. 

To this end, the research proposes DQNs as an 

innovative solution to the control of the robotic arm. DQNs 

use reinforcement learning allowing robots to learn control 

policies from the high-dimensional state spaces like raw 

sensory data. DQNs have memory advantages over other 

methods because they do not require specific models in 

order to transform or learn new needs, which are ideal for 

complicated goal-oriented tasks [67][68]. 

The research contribution is in two folds. First, it aims to 

show that DQNs can be used to control the 2D robotic arm 

on specific goal-oriented tasks that involve the optimization 

of the position where the arm needs to be. This goes a long 

way in addressing one of the major areas that the traditional 

control methods have not captured especially in ability to 

address flexibility and real world performance based on AI 

solutions for asserting intelligent robots, thus opening up a 

new frontier for better and advanced adoption of robots in 

real life applications. 

Second, the research makes a contribution through 

designing and deploying an automated robotic system with 

AI and robots the DQN algorithms for moving a two-arm 

robot towards a fixed point or what they call the ‘red point’. 

This is achieved by integrating robotics automation with an 

intelligent system known as the DQN to increase the 

efficiency and precision of a 2D robotic arm. The system 

demonstrates an application of how AI can improve the 

precision and speed of robotic arms for real-world 

applications, arguing for smarter, more learning-based 

robots. Such contributions will help open the next frontiers 

in the development of robotic control systems in areas 

where flexibility and precision are critical. 

This paper's structure is set up as follows: Section 2 

focuses on related previous research works on the topic. 

Section 3 is as follows the approach that is offered and 

recommended. Section 4 presents the experimental results in 

detail and the suggestion for the future studies and the 

conclusion demonstrated in Section 5. 

II. LITERATURE REVIEW 

The Deep DQN can operate in large dimensional state 

spaces, such those seen in video games, since a deeper 

convolutional neural network approximates the Q value 

function. This approach handled a problem that traditional 

Q-learning was unable to address, namely the issue of 

enormous state spaces. DQN discovered that two of these 

key insights are target networks and experience replay. 

Previous experiences need to be stored and recalled in a 

random manner to reduce correlation between consecutive 

events, which would otherwise lead to oscillations during 

training. Changing Q-values can be devastating during 

training. 

Wu et al. [69] achieved precise position control of a 

robotic soft arm by combining the RL control technique 

with the data-driven modeling approach. A deep Q learning-

based control method was used to achieve this. A control 

strategy learning approach is proposed to tackle the 

problems of unstable effects and sluggish convergence in 

the simulation and migration process of applying deep RL to 

real robot control tasks. This approach, which is based on 

experimental data, entails creating a simulation environment 

in which the control technique is trained before being 

implemented in the actual world. Test results have 

unequivocally shown that the technique is able to 

successfully manage the soft robot arm, and that it is more 

resilient than the traditional method.  

For its application, Hwangbo et al. [70] has expanded 

the usage of DQNs for robotic arm control to emulate actual 

physics. This was done by teaching a 2D robotic arm to put 

its tip at a desired location subject to constraints arising 

from environment such as friction and interferences. This 

study showed that DQNs if trained alongside with domain 

randomization methodologies created robots that could 

perform well in different terrains. To achieve this kind of 

control, the locomotion mechanics of robots are built with 

the flexibility to adapt to the environment real time, 

maintaining the efficiency of the robotic arm accurate in the 

real world for use in amputees. Such developments see the 

importance and reliability of DQNs in task-oriented robotic 

functions. 

Liang et al. [71] proposed a way to learn without outside 

supervision and presented a challenging object-handling 

task. The assignment's goal is to obtain an object by 

exploiting environmental fixtures like walls, furniture, or 

heavy objects instead than relying just on a single parallel 

gripper. Other than a cursory examination of a target object, 

no prior information is needed for this Slide-to-Wall 

gripping challenge. As such, the robot needs to learn an 

effective strategy through scene observation, which includes 

the target object, surrounding objects, and any other 

disrupting objects. They suggest using a target-oriented 

deep Q-network (TO-DQN) to learn ergodic visual 

affordance maps that provide action guidance for a robot. 

The problem is framed as visual affordance acquisition. The 

TO-DQN algorithm is trained offline on a simulated robot 

manipulator and then deployed online on the real end-

effector, as active training requires that the robot should 

explore while colliding with the fixtures. Empirical 

evidence is presented to show that TO-DQN can solve the 

problem successfully in both simulation and real-world 

scenarios under different environmental conditions. 

Additionally, in terms of training resilience and efficiency, 

TO-DQN performs better than both a modified version of 

DQN and a standard DQN. The evaluation findings from 

both simulated and real-world experiments show that the 

performance attained by the policy trained by TODQN is 

similar to that of human beings. 
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To this end, Zhu et al. [72] have introduced DRL 

methods, as well as DRL-based navigation frameworks in 

this paper. Navigation is a more basic issue of these robots, 

and thus DRL has become a hot topic in the field due to its 

excellent representation and experience learning 

capabilities. Currently, the use of DRL has been 

increasingly seen in the control of mobile robot navigation 

systems. Then systematically compare and analyze the 

relationship and differences between four typical application 

scenarios: Local OAA, Indoor-IN, multi-MRN, and Social 

N. Then, bring out the general analysis of DRL-based 

navigation. Last, discuss the challenges and some possible 

solutions regarding DRL-based navigation. 

Indeed, this paper explores the automatic exploration 

idea under the unknown environment as pointed out by Li et 

al [73] which raise the key point of applying the robotic 

system to some social tasks. By stacking decision rules it is 

impossible to cover various environments and sensor 

properties to solve this problem. These situations require 

learning based control methods because of this. However, 

these methods are marred by low learning efficiency and 

poor transfer of learnt skills from simulation to the real 

world. An exploration framework for this paper is general 

and proposed by analyzing decision making, planning, and 

mapping parts of the exploration process to make the 

structure of the robotic system more modular. On the bases 

of this framework a decision algorithm that applies deep 

reinforcement learning is put forward which employs a deep 

neural network for learning the exploration strategy from the 

partial map. The above-mentioned results demonstrate that 

this proposed algorithm has higher learning rate and 

unknown environment adaptability. Furthermore, 

experiments were carried out on the physical robot and the 

results indicated that the learnt policy is transferable on to 

the real robot. 

W. Zhao etl. [74] This kind of deep reinforcement 

learning has recently proven highly effective in several 

domains of robotics at large. Due to impracticality of 

acquiring actual data, i.e., high variance and costly, 

simulation environments are used to train the various agents. 

This is not only helpful in giving a potentially endless data 

base, but also eliminates risk issues regarding true robots. 

However, the simulation to real-world transition detriments 

the performance of the policies when the models are 

implemented in real robots. This research hence points to 

multiple current efforts devoted to reducing the size of the 

sim-to-real gap and achieve better policy transfer. Multiple 

methods have been proposed in the context of recent years 

with specific applicability across various domains, but, to 

the authors’ knowledge, no review proposed in the 

contemporary literature provides a holistic analysis that 

places all the proposed methods into context. In this survey 

paper, we cover the fundamental background behind sim-to-

real transfer in deep reinforcement learning and overview 

the main methods being utilized at the moment: It is 

categorized by the methods such as domain randomization, 

domain adaptation, imitation learning, meta-learning and 

knowledge distillation. Here we group some of the most 

related latest publications and describe the principal 

domains of artificial intelligence usage. Finally, it was 

described the main advantages and disadvantages observed 

in the various approaches and highlight the most significant 

prospects. 

Gupta et al. [75] investigated how robotic technology 

and AI are altering plant phenol typing, in order to address 

the impact of climate change on global food security. The 

article investigates recent advances and future possibilities, 

with a special focus on how robotics could help achieve 

high-quality data in plant science. The survey assessed a 

variety of robotic platforms and systems, including aerial 

drones, ground-based robots, wheelchairs and self-driving 

cars with a plethora of non-invasive sensors for phenotypic 

evaluations. It then investigated how massive data were 

being processed by the AI-driven algorithms, so as to 

deliver key understandings about plant traits and 

environment-responses. 

A technique for controlling the motions of an industrial 

robotic arm using RL was presented by Jafari-Tabrizi et al. 

[76]. During an automated quality inspection, they improved 

the process of telling the robotic arm to perform a thorough 

inspection of the surface of free-formed components. Right 

now, manual training by experienced specialists is the most 

common way to teach a robotic arm to follow an intricate 

course. As such, it takes a human professional a 

considerable lot of time and effort. Moreover, in the event 

that a new component with a modified design needs to be 

inspected, the human specialist has to create an inspection 

path for this component, which causes a major disruption to 

the automated inspection procedure as a whole. They also 

experimented with a domain transfer scenario, where using 

RL techniques to change the tool center point (TCP) of the 

robot between different components would speed up 

learning by exploiting knowledge already available in 

relation to component geometry. The robot has already been 

setup in a simulation where we can command the TCP (Tool 

Center Point) position and orientation. On the robot's panel, 

a randomly generated 2D trajectory is shown throughout the 

simulation episodes. By observing the points on this route, 

the robot—which was taught using the Deep Deterministic 

Policy Gradient algorithm—follows it. The robot's goal is to 

complete the trajectory in the least amount of time and with 

the least amount of deviance from the original plan. They 

gave an explanation of the initial results from the simulation 

environment and outlined the next steps that needed to be 

followed. 

This proposed method represents a new approach and 

fills in one of the key gaps in the state-of-the-art by 

presenting a model-free adaptive control DQN based 

technique for robotic arms that even outperforms traditional 

and previous AI-based methods. Our method shows large 

benefits to adaptability, accuracy and efficiency for goal-

oriented 2D robotic arm control than the previous literature. 

While prior work leveraged RL for accurate control, they 

either used soft robots or simulation domain randomization 

to obtain environmental generalization, but were not trained 

efficiently or did not transfer well from simulation to real 

environments. On the other hand, by optimizing interaction 

with environment during achieving control actions directly 

from the states for each cycle, this method using DQN has 

increased performance features of fast learning and high-
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accuracy processing in real-time adaptation. In comparison 

to previous DQN methods (original and those modified for 

dynamic conditions) the method in the experimental results 

presented displays superiority, reflecting its robustness and 

practicability for real-world applications. 

III. METHODOLOGY 

A. Overview 

This section describes the approach utilized in this study 

to guide a two-link robotic arm and bring it towards a target 

or red point as in your task. The method proposed employs 

an advanced AI methodology called DQN which is used to 

create an agent that learns and acts the optimal control 

strategies for reaching task of robotic arm. The method 

provides a specific formulation that comprises various 

components: problem definition, DQN architecture, state 

representation and action selection, reward function and 

training process. The task is to ensure the precise 

positioning of the robotic arm in a defined workspace. It has 

joint angles and velocities that define the state of the arm 

and moving these joints around, makes up its action space. 

The problem is how to find the optimal movement sequence 

so that you can reach out by the closest path with your hand. 

Similarly, due to extensive field experiments and deep 

reinforcement learning studies, it can be argued that DQNs 

which are learned from real-time interactions between a 

controller and the system tend to outperform traditional 

control approaches in many aspects such as flexibility, 

learning efficiency, and task performance in complex 

environments. This is very important to deal with 

uncertainties encountered in practice [77][78]. 

For this type of robotic control task, DQNs have several 

advantages. Firstly, DQNs enable our robot arm to learn in a 

model-free way: instead of learning a predefined model we 

train it directly in experiential data and thus adapt much 

better to changing scenarios. This flexibility is needed to 

accommodate real life uncertainties and variations. Second, 

DQNs are well suited for learning optimal function-value 

functions from scratch by trial-and-error interactions with 

the environment and hence they exhibit better learning over 

time. Furthermore, the agent can handle high-dimensional 

sensory inputs, such as joint angles and velocities due to the 

architecture of DQNs which helps it make more intelligent 

decisions [79]. 

B. Deep Q Network Algorithm 

In recent years, significant improvements have been 

made in AI, and new approaches have appeared for 

addressing the issues of robotics control with the help of 

DRL. One of the most effective forms stands for DQNs 

what is the combination of the traditional Q-Learning with 

Deep Neural Networks that allow robots learning different 

tasks through interacting with their environment. 

Consequently, DQNs should be able to learn and respond to 

system change pertaining to flexibility and adaptability in 

robotic control applications [80]–[83]. 

DQN stands for Deep Q Learning which is a type of 

reinforcement learning that incorporate both Q-learning, 

which is a model free type of reinforcement learning and 

deep learning. To estimate the Q-value function, commonly 

referred to as the predicted future reward of acting in the 

current state, deep neural networks are applied. The DQN 

allows an agent to learn the best policy through trial in the 

environment making it ideal for complex control tasks like 

the operation of robotic arms [84][85]. 

The Q-value update rule in a DQN is derived from the 

Bellman equation is given as follows (1): 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎) (1) 

where, 𝑄(𝑠, 𝑎) is the current Q-value for state 𝑠 and action 

𝑎. 𝛼 is the learning rate, determining how much new 

information overrides old information. 𝑟 is the reward 

received after taking action 𝑎 in state 𝑠. 𝛾 is the discount 

factor for future rewards, balancing immediate and long-

term rewards. 𝑠′ is the next state resulting from action 𝑎. 

𝑄′(𝑠′, 𝑎′) is the Q-value estimated by the target network for 

the next state. 

The DQN algorithm is a significant reinforcement 

learning, especially in tasks, such as robotic arm 

manipulation, where precision control and decision-making 

are required. With its architecture and capabilities it is good 

to learn optimal policies in environments where efficiency 

counts, which makes it a very sensible approach for goal-

oriented tasks. 

The DQN architecture is shown in Fig. 2. A diagram of 

the DQN layers, from input (state representation), through 

convolutional layers (if applicable), to fully connected 

layers and output Q-values. 

 

Fig. 2. DQN architecture diagram 

Based on Fig. 2, the output layer shows Q-values for 

every action that is feasible, while the input layer reflects 

the state (e.g., joint angles, velocities), convolutional layers 

for feature extraction (if applicable), and fully connected 

layers to approximate Q-values [86]. 

The DQN architecture consists of a deep neural network 

(DNN) to approximate the Q-value function that gives us 

the expected future rewards for some state-action pair. 

Using convolutional layers is especially beneficial when the 

state inputs are high-dimensional, such as images or 

otherwise complex sensory data. Convolutional layers excel 

in feature extraction, enabling networks to identify spatial 

hierarchies and patterns of relevance in input data. This 

capability is important in robotic control tasks, where the 

agent must learn important features of the environment in 

order to make appropriate decisions. Convolutional layers 

and completely linked layers together help approximate the 

Q-values more precisely, which in turn improves 
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performance overall and facilitates more efficient action 

selection [87]–[91]. 

The DQN agent works directly on the image-frames 

from the video stream and does not require the state to be 

manually abstracted into features derived from the images. 

Such feature generation is automatically done within the 

agent’s Convolutional Neural Network (CNN), which acts 

as an approximation-function to predict the probability of 

different possible actions [92][93]. 

Fig. 3 illustrates the design of a DQN for managing a 2D 

robotic arm, with an emphasis on the flow and connections 

between components. 

 

Fig. 3. The architecture of a DQN for controlling a 2D robotic arm 

It shows the main components, such as the input layer, 

hidden layers, output layer, experience replay buffer, target 

network, and data flow between them [94]. 

The Fig. 4 shows the architecture of a Deep Q-Network 

(DQN) for controlling a 2D robotic arm, often used to make 

decisions in reinforcement learning tasks. 

 

Fig. 4. The architecture of a DQN for controlling a 2D robotic arm 

The input layer correctly is just a representation of the 

current state of whatever system you are trying to learn 

about (in a RL environment). Each node (also known as a 

neuron) relates to a different characteristic, or an attribute of 

the state. What these inputs would have meant without 

considering the robotic arm for an example, are joint angles 

i.e. velocities, or positions of the links in the arm. 

Hidden layers are used to capture meaningful patterns 

and correlations in the input data. They parse the state 

information and convert it into a higher level of 

abstractions. There are multiple layers to a neural network, 

and with more layers and neurons in the network you have a 

more complex model. Hidden layers in deep learning help 

by learning the complex, sometimes nonlinear relationships 

between the state and the actions. 

The output layer is Q values to all four action (𝑄(𝑠, 𝑎1), 

𝑄(𝑠, 𝑎2), 𝑄(𝑠, 𝑎3), 𝑄(𝑠, 𝑎4)) These are the expected future 

rewards for taking each corresponding action 𝑎1, 𝑎2, 𝑎3, 𝑎4 

given the state s in that state. The DQN approximates these 

Q-values and this helps in selecting optimal action. 

The Fig. 4 shows the fully connected neural network 

used in Deep Q-Learning for multiple actions are predicted 

based on the current state. The Q-value of each action 

represents the neural network's estimate of the amount of 

reward you are going to get if take that action. DQN updates 

its parameters (weights and biases) to improve these 

estimations with time by minimizing the difference between 

expected Q-values and target Q-values extracted from real 

rewards gathered during interactions with an environment. 

The DQN algorithm is shown by the flowchart in Fig. 5. 

A DQN-based strategy requires many crucial processes, 

which are outlined in the diagram. These include initializing 

networks, choosing actions based on a ε-greedy policy, 

updating the Q-network, and regularly updating the target 

network. 

 

Fig. 5. DQN algorithm 

In order to show how the DQN algorithm learns and 

adapts to direct the 2D robotic arm toward goal-oriented 

activities, this graphic may effectively depict the process 

flow [95]. 
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Reinforcement Learning (RL) is a process of learning 

optimal behaviors through interactions with the 

environment. In it, the agent learns to make choices that will 

lead to the largest long-term payoff. Just as an athlete 

improves by doing his or her sport over and over again until 

the feedback makes it more robust, an RL agent interacts 

with its environment in a loop fashion, changing its plans 

based on what worked last time. The agent will have to 

assess potential alternatives on its own, unless directed 

otherwise, in order to determine which one works best. This 

deductive process is similar to the unique way a puzzle 

solver would use different pieces in order to fit them 

together correctly [96]. The future potential rewards in RL 

are as important as the immediate gains, and they direct the 

learning process of the agent. The unique power of RL is 

that it should be able to find the best path to success inside 

dynamic complex environments without supervision. RL is 

a particularly potent algorithm because it can autonomously 

determine the actions required for success in an unfamiliar 

environment [97][98]. 

To complete an objective in the RL problem, an agent 

needs to investigate a foreign environment. The 

fundamental principle of reinforcement learning is that all 

goals may be characterized by maximizing expected 

cumulative reward. The agent needs to learn how to sense 

and modify the state of the environment in order to reap the 

highest possible reward. A paradigm for the formal 

framework utilized in RL is the problem of Markov 

Decision Process (MDP) optimum control [99]. 

Fig. 6 shows the basic diagram of the RL process. It 

illustrates the interaction loop between the key components: 

agent, environment, policy, and reward signal. 

 

Fig. 6. RL components 

● Agent: The decision-maker in the RL system by 

choosing actions according to a policy. 

● Environment: The system that is outside the agent that 

the agent communicates with. It answers to the action of 

the agent and offers new perceptions and rewards. 

● Observation: Subsequently, the agent understands the 

current state of the environment through observation. 

● Action: From the current observation, the agent 

incorporates its policy to take certain action. 

● Reward: Subsequently, the agent gets a reward, which is 

a feedback which tells the agent how good or bad the 

action taken for achieving the goal was. 

● Policy: This is the actual reason for the agent to pop out 

a decision on what to do depending on the observations 

made. 

The continuous feedback loop is depicted in the 

diagram, in which the agent operates in accordance with the 

policy it adheres to, observes the environment, and takes 

actions and receives rewards. Through this cycle, the agent 

can gradually learn from its actions and enhance its 

performance to optimize the total reward. 

The diagram shows the continuous feedback loop where 

by the agent behaves according to a policy, observes the 

environment, takes actions and receives rewards. The agent 

can begin to learn through its actions to improve 

optimization of the total reward over time through this 

cycle. 

The value function accurately captures the "goodness" of 

a state and is a highly helpful tool for modeling the standard 

representation of the reward signal. On the other hand, the 

reward signal just shows the amount of reward that is likely 

to be obtained when an entity is in that condition, but the 

value function shows the entire amount of predicted benefit 

once an entity is in that state and beyond.  The goal of an 

RL algorithm is to choose the best plan of action that 

maximizes the average value that may be obtained from 

each system state [100]. 

The DQN is one efficient method in the field of RL. It 

integrates the ideas of deep neural networks with Q-learning 

to allow agents to learn optimal rules in complicated 

scenarios. Fig. 7 shows the architecture of DQN. 

 

Fig. 7. Simple schematic of DQN architecture 

DQNs relate environmental conditions to the expected 

return, or the total of potential rewards, for each action that 

may be taken. They do this by approximating the action-

value function using a neural network. Finding the best 

course of action to maximize the expected return for every 

state is the aim of the DQN [101]. 

The action observation and rewards help the agent to 

interact with the environment and train the DQN. Such 

experiences are then stored at a memory buffer of the agent 

and are then used to update DQN at frequent intervals. This 

is the way that experience replay is used to update the DQN. 

It entails randomly picking a batch of events randomly from 

the memory buffer. This procedure can put the learning 
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process on a stable footing and would allow the agent to 

learn from a wider variety of events. 

Especially ideal for the DQN, the algorithm used differs 

from the original Q-learning for the purposes of off-policy, 

adapting the action-value function in regard to discrepancies 

between the target and expected values. The target value is 

calculated using the Bellman equation which states the 

expected value of taking a particular action is the reward 

obtained for that action plus the greatest expected value for 

the next state. One of the key components of deep Q-

learning networks and other neural network techniques that 

use reinforcement learning is experience replay. It involves 

using a memory buffer to store a set of experiences (state-

action-reward-next state) and then using those experiences 

to train the DQN. The main concept of experience replay is 

that allows the agent to update the data from a set of 

encounters rather than focusing in new ones. It is assumed 

that this can enhance the maintenance and control of the 

learning process, and can improve the overall performance 

of the DQN. 

The following is a summary of the working process: 

● State Representation: Give sufficient discretized 

quantitative description of the current state of the 

environment, for instance, raw pixel values or the 

original feature values. 

● Architecture of Neural Networks: An extended neural 

network that maps states to action-values of all possible 

actions must be used. A very famous type of deep neural 

networks is the CNN. 

● Experience Replay: What needs to be saved in the replay 

memory buffer are state and action, reward and next 

state and some other attributes going by the name of 

experiences. 

● Q-Learning Update: Individual batches of experiences 

are then sampled from the given replay buffer on the 

play memory and the weights are tuned on the given 

neural network. This is done to update by minimizing 

the difference between the objective and predicted action 

values using the Bellman equation's loss function. 

● Exploration and Exploitation: Ideally, determine pure 

exploitation in a random manner as a means to explore 

potential opportunities, or pure exploitation in a greedy 

manner to follow the existing plan. 

● Target Network: Beneath the main operation of the 

network with the specified design, the target network is 

employed for stabilization of the learning process, with a 

different configuration. The weights of the primary 

network will be copied periodically to the target network 

to replicate their weights. 

● In Step 7, Steps 1 through 6 are reiterated. Engage with 

an environment, gather evidence from the field of 

operation, modify the network and continue the process 

of choosing another policy until the ideal policy is 

reached. 

C. Robot Arm Environment 

For this paper, we employed an advanced AI approach, 

the DQNs to create an agent that solves the 2D robot arm 

Reacher problem well. Our starting point for experiments 

are the gym_robot_arm environment which is based on the 

Gym library, an open source Python framework for 

developing and comparing reinforcement learning 

algorithms. This library is an API that affords requestors 

consistent interfaces they can use for interaction with 

different environments when employing the learning 

algorithms. The setup of the robot arm environment is quite 

important; the state space, action space, and reward 

configuration defines what the DQN agent will be expected 

to play with. For example, the range, the length of the arm 

segments, the target positions, and the physics of movement 

can influence learning to a great extent. A well-defined 

configuration flexible configuration of the agent permits it 

to search the action space while the too strict parameters 

may give the ideas of the best strategies. As such, not only 

does the environment design impact the efficiency of 

training but also introduces variance in the DQN agent for 

the target goal due to the dynamics and complexities within 

environment. 

This environment contains two main components: 

● Robot Arm: Environment involves a robotic arm with 

two links of which each is 100 pixels in length. The 

main manipulator in the environment is the robot arm 

which is responsible for getting to the intended location. 

● Red Point: At random throughout each episode, the 

target point referred to as the red point is created. This 

red point is also highlighted and the robotic arm should 

move in order to align with this position. 

The training process is specifically designed to enable 

the DQN agent to acquire adequate control techniques of the 

multifaceted robotic arm in a given episode. In the Python 

code, each training scenario is defined to run 20 episodes 

which are enough to explore and learn from. The primary 

objective is to assess the robot arm’s feasibility for learning 

and implementing the control strategies necessitated for the 

precise attainment of the red point across multiple episodes. 

Some of these hyperparameters comprise include a learning 

rate of 0.001 and a discount factor (𝛾) of 0.99. 

This value was chosen through preliminary experiments 

that compared the rate of convergence and stability level at 

which it would stabilize. The learning rate set to be 0.001 is 

good for the agent to update the Q-values while learning 

good policies for actions without causing big fluctuations 

around the network. 

The discount factor is set to 0.99 to prioritize immediate 

rewards while also considering future rewards. This is 

particularly important in tasks requiring long-term planning, 

such as reaching the randomly generated red point. By using 

a high discount factor, the agent is encouraged to explore 

actions that may have delayed rewards, thereby enhancing 

its ability to attain the target effectively. 

The discount factor is set to 0.99 to prioritize immediate 

rewards while also considering future rewards. This is 
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especially significant for functions that involve certain time 

limits, especially when reaching at the randomly appearing 

red point. With the help of high discount factor, the agent is 

encouraged to explore actions that may have delayed 

rewards, thereby enhancing its ability to attain the target 

effectively. 

Fig. 8 shows environment components that the aim to 

reaches red point generated randomly every episode. 

 

Fig. 8. Environment components 

Altogether, all these components help in overcoming the 

issues related to high dimensionality and dynamism of the 

scenario of controlling the robotic arm. By incorporating 

strategies, such as the target network and experience replay, 

DQN can make training stable, thus training the agent to 

learn the optimal policies in the process of reaching the 

randomly appearing red point targets in each episode. 

The following points explain the instructions for the 

implement the Python code to accomplish the reaching goal 

to the red point. 

1) Create the environment 

2) Run episodes with certain number. In this experiment, 

we determine the number of epochs is 20. 

3) Reset the environment for each episode 

4) Run for a maximum of 100 time-steps 

5) Render the environment 

6) Print the observation 

7) Sample an action from the action space 

8) Take a step in the environment 

9) Check if the episode is done 

10) Print the number of time-steps taken 

11) Close the environment. 

There are two variants of the robot arm environment, 

namely robot-arm-v0 and robot-arm-v1, In designing this 

architecture, two main goals were achieved as stated below 

The first one is to create the architecture of the robot arm 

apparatus that will challenge the understanding of the DQN 

agent while the second one is to develop an environment for 

DQN that is different from the basic five environments 

listed above. The comparison of observation spaces, action 

spaces, reward functions and terminal condition in Gym 2D 

Robot Arm Environment of both versions are explained in 

the Table I. 

TABLE I.  THE COMPARISON OF OBSERVATION SPACES, ACTION SPACES, 

REWARD FUNCTIONS AND TERMINAL CONDITION IN GYM 2D ROBOT ARM 

ENVIRONMENT OF BOTH VERSIONS 

Criteria Robot-arm-v0 Robot-arm-v1 

Observation 

Spaces 

(Continuous) 

- Target position in x 

direction (in pixels) 
- Target position in y 

direction (in pixels) 

- Current joint 1 
position (in radians) 

- Current joint 2 

position (in radians) 

- Target position in x 

direction (in pixels) 
- Target position in y 

direction (in pixels) 

- Current joint 1 
position (in radians) 

- Current joint 2 

position (in radians) 

Action Spaces 

(Discrete) 

0: Hold current joints 

angle value 

1: Increment joint 1 
2: Decrement joint 1 

3: Increment joint 2 

4: Decrement joint 2 
5: Increment joint 1 and 

joint 2 

6: Decrement joint 1 and 
joint 2 

 

By default, increment or 
decrement rate for both 

of joints are 0.01 radians 

0: Joints 1 value (in 

range -1 to 1) 

1: Joints 2 value (in 

range -1 to 1) 
 

 

 
 

 

 
Value will be scaled into 

minimum and 

maximum of joint angle 

Reward 

Function 

Robot will get penalty -1 
if current distance 

between tip and target 

position is greater equal 
than previous distance 

Robert will get reward 1 

if current distance 
between tip and target 

position is > -epsilon and 

< epsilon, where epsilon 
= 10 pixels 

reward = -
distance_error/100 

Terminal 

Condition 

Current reward is     -10 
or +10 

If target position is > -

epsilon and < epsilon, 

where epsilon = 5 pixels 

 

The reward function is a part of RL that defines how the 

learning process happens and how the robotic arm behaves 

in environments, originally robot-arm-v0 and the modified 

version robot-arm-v1. It provides the feedback necessary for 

the DQN agent to evaluate the effectiveness of its actions 

and adjust its strategy accordingly. 

The structure of the reward function in the case of the 

Robot-arm-v0 environment is based on relative distance 

measurements. If the current distance between the tip of the 

arm and the provided target position is greater than or equal 

to previous distance, the robot receives a penalty which is    

-1. On the other hand, the agent gains +1 if the distance is 

within the constant epsilon (10 pixels). This assignment 

reward strategy affords trial-and-error process; hence the 

agent will employ action to work towards minimizing the 

distance to the target. However, this kind of reward function 

does not allow fine grained control as the penalties and 

rewards are binary, which causes oscillations in the control 

by the agent and the agent continuously oscillates between 

exploration and exploitation. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1882 

 

Murad Bashabsheh, Autonomous Robotic Systems with Artificial Intelligence Technology Using a Deep Q Network-Based 

Approach for Goal-Oriented 2D Arm Control 

For the reward function of Robot-arm-v1, the reward 

function of this version becomes more of a continuous 

structure, offering a reward corresponding to the negative 

distance error normalized by the factor of 100. This means 

that the agent gains a reward depending its distance to the 

goal, with higher values of negative distance error implying 

higher penalty. This makes the process recurrent and gives a 

better understanding of the action execution and the result in 

relation to the goal. For this reason, the agent is encouraged 

to reduce distances to the target more accurately, thereby 

resulting in smoother control strategies. This refinement in 

the reward function hugely helps in promoting the learning 

process of the agent and even results in improving the 

policies for the environment. 

The existence of such versions is explained by the fact 

that further improvements to the learning process and agents 

are needed. For example, the move from a discrete action 

space as seen in robot-arm-v0 where actions are defined as 

increments or decrements to joint angles to a continuous 

action space in robot-arm-v1 enables better control stance of 

the robotic arm and for more nuanced control over the 

robot's movements. This change can also have a drastic 

effect on the ability of the agent to learn the better policies 

because actions that are continuous can allow better 

adjustments that are best for the convergence during 

training. 

Although we pointed out the usage of the ε-greedy 

policy as one of the basic approaches that help combine 

exploration and exploitation, it is necessary to discuss its 

application in more detail. During training, we initialized ε 

to a higher value (for instance 1.0) to encourage the agent to 

explore the environment early in learning. This let the agent 

learn many actions and states. As training progressed, we 

implemented a decaying epsilon strategy, where ε was 

gradually reduced (e.g., from 1.0 to 0.1) over a 

predetermined number of episodes. This approach ensured 

that the agent transitioned from exploratory behavior to a 

more exploitative approach as it became more confident in 

its learned policies. 

Taken together, these modifications indicate a principled 

approach to environment design and are in place to tackle 

difficulties agents may experience during robotic control 

tasks. There is, however, a need to carefully choose the 

environment version as this determines the learning 

characteristics of the agent to the extent of efficiency in the 

tasks at hand. 

IV. EXPERIMENTAL RESULTS 

In the following section, we present the results achieved 

for the reaching task using the gym_robot_arm environment 

in the version 0. The progression of the robotic arm's 

movement from the initial position to the final target 

position is illustrated in Fig. 9 and its corresponding 

subfigures (a) to (i). The figure captures key stages of the 

arm's approach to the target, represented by the red point, 

and demonstrates the incremental steps of the DQN-based 

agent in solving the reaching task. 

 

Fig. 9. Experimental results steps 

The procedure starts in subfigure (a) where the 

environment sets the initial pose of the two-link robotic arm 

to a random position and the target red point is located 

anywhere in the workspace. In the course of the episode, 

subfigure (b) shows the starting position of the robotic arm 

towards the red point: two links rotate and stretch to 

minimize the distance. The representation in subfigure (c) of 

the ‘robotic arm’ and the ‘red point’ closer together suggests 

that early-stage navigation was successful. 

In the next step, the red point shifts slightly to the left, 

this requires the movement of the robotic arm, shown with 

the help of subfigure (d). As shown in subfigure (e) the arm 

responds appropriately with both links adjusting to maintain 

their approach. In subfigure (f), the distance between the 

end effector of the arm and the red target is at the shortest 

possible to complete the presented task effectively. 

Finally, in subfigures (g)-(i), the movements of the upper 

end of the robotic arm are shown with the end effector 

placed on the target red point. Such a progression 

demonstrates that the DQN agent is capable of learning how 

to modify the control of the arm in performing the reaching 

task. Every subfigure is important for visual representation 

of how the arm is getting better and getting control over its 

position during trials and errors to reach the target point. 

In this experiment, the ability of the DQN to solve goal 

defined problems in continuous environments has been well 

shown because of the successful movement of arm and its 

ability to make correct alignment changes of the red target 

point. 
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Fig. 10 shows direct observation of the performance of 

the DQN in the control of the robotic arm environment. The 

figure shown is a frame of the robot arm planning and 

executing the operations in that environment and a red point 

is the target that needs to be achieved by the robot arm. In 

the two-link arm design depicted here by clear connections 

between the joints and links, it is seen adjusting to fit the 

target. 

The addition of a Graphics Interchange Format (GIF) 

image to extends this understanding as the viewers are able 

to observe the arm continuously interacting with its 

environment. Such dynamic presentation makes the learning 

easier to understand and maneuver which in return helps 

explain the efficiency and behavior of the DQN model in 

real life. Therefore, the Figure helps to overcome the gap 

between the performance of the theoretical model and its 

application, which demonstrates the output of the DQN 

interactively. 

 

Fig. 10. DQN Output – GIF format 

Using a two-armed robot, the agent traverses a two-

dimensional space and these subsequent pictures represent 

his actions as well as his thoughts. It is clear from the way 

the model reaches a certain point that it is capable of 

moving the locations and angles of the robot's arms. Each 

shot measures how the agent engages with its environment, 

providing an account of the trajectory and methods to 

achieve the goal. When the output from the model is 

represented in a GIF format, one can easily observe the 

progression of the model because the time factor is 

incorporated, this helps the audience appreciate the abilities 

of the model especially the performance of the model in 

challenging situations. This above visual proves to be 

beneficial to any experimental work, analytical study and in 

the proof of claims about the results of the DQN model as it 

provides a clear example of the working of the model in real 

circumstances. 

During training, DQN agent’s performance is appraised 

by using its reward function measured over a total of 2000 

episodes. In the Fig. 11 the overall and average reward 

variations across training episodes are presented. 

Looking at this progression, in the initial phase (episodes 

0 to 500), the average reward positively increases, which 

shows that the agent’s performance in the reaching task 

improves steadily over time. This gradual increase in 

average reward indicates that the DQN has been 

successfully trained to shorten the distance from the end 

effector of the robot arm to the red circular target by 

refining its motions. 

 

Fig. 11. DQN Performances in training phase 

Beginning from the 500 episode, the so-called phase of 

reward stabilization is observed and the increase of the 

reward also becomes stable, with total and average reward 

parameters hovering on a certain level. This phase of 

stabilization means that the agent has performed sufficiently 

well in learning the dynamics of the environment it is placed 

into, and only minor or no changes in performance can be 

observed with further learning. The observed oscillations in 

the value of reward indicate that there are times the agent 

does explore, which is a normal behavior in training when 

the agent is checking available actions for the best policy. 

It may further be noted that the randomness associated 

with the environment and the need to balance exploration 

and exploitation are likely the reasons for the drop in total 

rewards over certain periods. The consistent reward figures 

in the following runs indicate that even with these 

variations, the DQN is able to consistently optimize to a 

desired policy in the later episodes. To provide a 

comprehensive analysis, a comparison between the DQN 

and other reinforcement learning methods or control 

approaches would be ideal. For instance, evaluating 

algorithms such as Proximal Policy Optimization (PPO) or 

Actor-Critic models on the same task could offer insights 

into the relative performance and efficiency of the DQN. 

Including a baseline comparison (e.g. traditional PID control 

or random action selection) would provide context for the 

effectiveness of DQN in this robotic control scenario. 

A more detailed quantitative analysis also would be 

useful in this case; for instance, the average episode 

duration, the average rate of success, the average 

convergence time, etc., would enrich the picture of model's 

performance. For example, the parameter that shows how 

far on average from the target point the model is along the 

time axis would also give additional proof of the model's 
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ability to minimize the error. Such metrics would enable the 

readers to evaluate how well the DQN performed the 

reaching task and its precision. 

Statistical measures, such as the variance of rewards or 

confidence intervals, would offer insight into the 

consistency of the agent's performance. In high variance in 

reward values from DQN, there is a tendency of instability 

that can be attend to by changing learning rate or discount 

factor or any other hyperparameter. 

This work's primary contribution is the use of DQN to 

operate an autonomous robotic arm, which allows for the 

potential for transfer skills and works well for a variety of 

job archetypes. Learning curves and qualitative data both 

shed light on how well the strategy works for teaching 

sophisticated control strategies without requiring the arm's 

behavior to be programmed. Additionally, the technique 

may be repeated thanks to the provided comprehensive 

experimental design. 

In summary, the comparison of DQN performance in the 

reaching task, further assessments of other models, 

provision of intricate performance indices, and elucidation 

of the merits and demerits of the model would provide a 

more comprehensive evaluation of its capabilities. 

V. CONCLUSION AND FUTURE WORK 

One of the key achievements of this work is proving the 

effectiveness of the DQN algorithm in solving the 2D 

robotic arm task, which required the arm to autonomously 

discover a policy for reaching the target point. The model 

was not only able to converge fast, but also had 

improvement over time, which was evident in the trends of 

the rewards. This illustrates that, while other researchers 

have engaged the DQN in similar robotic tasks, herein, its 

application is unique to that task. Thus, we showed that the 

DQN algorithm can be employed to solve the reaching task 

for a robot in a bounded space, through the completion of a 

pre-specified number of episodes and using a reward 

function to assess performance. Our work corroborates the 

use of DQN algorithm as an effective way of reaching in 2D 

robotic arm task, indicating its use in the existing research. 

The effects of these findings go beyond the task at hand, 

indicating that DQN can be used for other more practical 

tasks in the field of robotic, automation and artificial AI. 

This capability of DQN in driving a two-link robot arm to a 

target in a constrained setting can be extended to more 

complex tasks such as assembling components in a factory, 

carrying out surgery in medical robots, or building a drone 

capable of picking up an object. Additionally, the fact that 

DQN can be used in an active learning scenario instead of 

implementing a static controller makes it ideal for 

applications where there is no possibility or sense of using a 

priori controller models. 

This research has large-scale repercussions in how it 

enhances the field of autonomous robotics, which is 

arguably the main reason for carrying out this study. A task-

oriented control implementation strategy that does not need 

any real programming is provided in this work. This could 

for instance allow for greater efficiency and versatility of 

robotic systems in sectors like medical or industrial 

automation and self-driving vehicles. Still, there is more 

science to do especially with the DQN where it is rather 

easy when it comes to such activities in the two-dimensional 

environment and with simple tasks – increasing the scale to 

real-life situations or tasks that are more complicated 

present’s challenges. Issues like overfitting, sample 

inefficiency, or difficulties in handling continuous action 

spaces may arise. To mitigate these challenges, future 

research will explore the integration of hybrid RL 

approaches that combine the strengths of different 

algorithms or leverage transfer learning to enhance 

performance in more complex tasks. 

Notwithstanding the encouraging outcomes, however, 

this particular research has certain limitations which are 

worth highlighting. First, the study was done in a controlled 

setting and using only one algorithm of reinforcement 

learning. While this arrangement worked in showing the 

possibility of DQN, it does not capture the complexities of 

real-world conditions, where other extraneous observations 

such as moving objects and noise and multi-action 

dimensions are very important. Moreover, there is no 

performance analysis of the DQN against other 

reinforcement learning approaches or conventional 

controller techniques. 

Future study will attempt to expand the scope beyond 

simple contexts and encompass more complicated scenarios 

in order to overcome these constraints and build on our 

discoveries. Future research, for example, might investigate 

the use of multi-link robotic arms or more complex 

environments with dynamic targets or outside disruptions 

like barriers or shifting work environments. In order to 

ascertain which RL algorithms work best for different task 

difficulties, we also plan to compare DQN with other 

algorithms such as Proximal Policy Optimization (PPO), 

Soft Actor-Critic (SAC), and Deep Deterministic Policy 

Gradient (DDPG). 

In addition, future research ought to investigate how this 

strategy may be incorporated into more intricate multi-link 

robotic arms or even multi-robot systems where agent 

cooperation and coordination are necessary. Adding 

robustness tests in environments with dynamic targets or 

external perturbations would provide further validation of 

the algorithm’s effectiveness in real-world scenarios. 

In conclusion, although DQN has exhibited impressive 

potential in the controlling of robots autonomously, further 

analytical studies and practical experiments on realistic 

approaches are required to understand its merits and 

demerits. This paper enunciates the groundwork for 

investigating the use of more advanced and pragmatic RL 

algorithms in the future control of robots. 
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