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Abstract—Robotic rehabilitation offers an innovative approach
to enhance motor function recovery in patients with upper-limb
impairment. However, the primary challenge lies in the develop-
ment of adaptive and personalized therapies to meet the unique
needs of patients. In response to this challenge, this paper presents
a Rehabilitation Learning from Demonstration (RLfD) frame-
work, which integrates Dynamic Movement Primitives (DMP)
for learning and generalizing movements, and a Model Refer-
ence Adaptive Controller (MRAC) for real-time adaptive control.
This combination enables a two-link manipulator to accurately
replicate and adapt therapist demonstrations specifically designed
for upper-limb rehabilitation. Unlike conventional task-specific
controllers, which are limited by poor adaptability, minimal
feedback, and lack of generalization, our system dynamically
adjusts robotic assistance in real time based on the subject’s
tracking error to optimize therapy outcomes. The objective is
to minimize assistance while maximizing patient participation
in the rehabilitation process. To facilitate this, the framework
employs visual tracking technology to capture therapist demon-
strations accurately. Once captured, the DMP component of the
framework learns from these movements and generalizes them to
new goals, while maintaining the original motion patterns. Our
evaluations with a simulated two-link manipulator demonstrated
the framework’s precise trajectory tracking, robust generalization,
and adaptability to disturbances mimicking patient impairments.
These tests confirmed the system’s ability to follow complex
trajectories and adapt to dynamic patient motor functions. The
promising results from these evaluations highlight our approach’s
potential to significantly enhance adaptability and generalization
in variable patient conditions, marking a substantial improvement
over conventional systems.

Keywords— Dynamic Movement Primitives; Learning by Demon-
stration; Model Adaptive Control; Personalized Therapy

I. INTRODUCTION

Stroke is a global health issue that significantly contributes
to mortality and disability, affecting over 101 million people
in 2019 [1]–[3]. Over two-thirds of individuals recovering
from a stroke endure upper limb motor impairment, with 50%
experiencing substantial functional loss six months post-stroke

[4]–[7]. Early rehabilitation within the first three months is
crucial for motor recovery, making it a key research focus [8]–
[14].

Robotic technologies, such as exoskeletons and end-effector
robots, significantly enhance outcomes by providing precise and
intensive support for repetitive exercises, a benefit confirmed by
systematic reviews [15]–[22]. These technologies have emerged
to enhance upper limb functionality by offering active, passive,
and haptic assistance [23]–[30]. Active assistance helps patients
engage in exercises, whereas passive assistance requires no
effort from the patient as the robot executes movements. Haptic
devices, particularly when combined with virtual reality (VR),
enrich rehabilitation by providing sensory feedback [31]–[34].

Problem Statement: Despite these advancements, robotic re-
habilitation faces challenges in personalizing treatments accord-
ing to individual patient needs, which is essential for optimizing
recovery and ensuring generalization across diverse patient pop-
ulations [15], [35]–[43]. The limited availability of therapists
and insufficient patient feedback hinders the scalability and
effectiveness of these systems. Therefore, the development of
rehabilitation robots that integrate patient-specific needs with
advanced robotic capabilities is essential for delivering effective
and scalable interventions [44]–[51].

To address variability in patient conditions, rehabilitation
exercises are often modelled using probabilistic methods, such
as Gaussian Mixture Models (GMM) and Gaussian Mixture Re-
gression (GMR), to integrate and analyze behaviors observed in
patients [52]–[56]. For instance, GMM has been used to model
therapist demonstrations, helping robots provide impedance-
based assistance [52], whereas other models, such as a dynamic
bicycle cranking system, adjust assistance according to therapist
performance [57]. However, these methods face challenges
when adapting to variations in patient conditions and external
factors. Recent advancements have integrated machine-learning
technologies. For example, an Intelligent Assistant for Robotic
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Therapy (iART) was developed to replicate therapist behaviors
in tasks involving 3D trajectory tracking using Long Short-
Term Memory (LSTM) networks [58]. Similarly, a combination
of a feedforward neural network and VR-based haptics has
been used to model and regenerate therapeutic exercises demon-
strated by therapists via teleoperation [59]. However, adapting
these systems to accommodate diverse patient conditions con-
tinues to present a challenge.

Building on these advances, Dynamic Movement Primitives
(DMP) have proven to be highly effective for modelling
complex movements [60]–[65]. By modifying the start and
goal parameters, DMPs enable robots to adapt seamlessly
to new goals, thereby demonstrating strong adaptability and
generalization. This is particularly evident in their successful
application in tasks such as pick-and-place and water-serving
with a Sarcos robot arm [66] and is further demonstrated by a
rehabilitation robot that uses a DMP-based motion planner to
replicate healthy movement styles with high accuracy in target
positioning [67]. Another extension of the DMP application
to the Kuka LWR4+ robotic arm showed accurate motion
style generalization across tasks, such as pouring and eating,
significantly improving trajectory accuracy and DMP database
utilization compared with previous methods [68], [69]. How-
ever, this system exhibited limitations in executing integrated
movements, which were addressed by integrating DMPs with
hierarchical deep reinforcement learning, thereby enhancing
task efficiency through sequential movement execution on a 6
DOF robot arm [70].

A novel approach further enhances this domain by learning
directly from therapist demonstrations in which therapist’s
movements are observed and replicated by a robot for patient
rehabilitation [71]–[74]. This method simplifies the process and
does not require deep robotic knowledge from therapists. The
integration of DMPs with Learning from Demonstrations (LfD)
has proven effective in accurately capturing complex human
movements [75]–[80].

In this paper, we propose a Rehabilitation Learning from
Demonstration (RLfD) framework that leverages DMP for
modeling exercises and MRAC for dynamic assistance ad-
justment based on real-time patient performance. This in-
novative approach supports a personalized "assist-as-needed"
strategy, addressing the key limitations of conventional methods
that require multiple demonstrations, retraining for trajectory
changes, and manual controller gain adjustments for each
patient. In contrast, our RLfD framework adapts and gener-
alizes across various trajectories and patient needs, without
retraining. This system is designed to enable therapists, even
those without technical expertise to effectively train robots for
personalized rehabilitation. By merging therapists’ expertise
with robotic precision, the RLfD framework can replicate and
adapt exercises in real-time based on patient feedback. We
hypothesize that this approach will improve motor function

therapy, make advanced robotic therapy more accessible, and
potentially redefine standards for integrating technology into
patient care, leading to improved outcomes compared with
traditional methods. The structure of this paper is outlined
as follows. Section II details the RLfD framework, including
methodologies for demonstration collection and generation of
personalized exercises. Section III demonstrates the application
of our framework to a simulated robotic manipulator, in which
we evaluate the performance and adaptability of the system.
Finally, Section IV concludes the study by summarizing the
key findings and outlining future research directions.

II. REHABILITATION LEARNING FROM DEMONSTRATION

A. System Architecture

The architecture of the proposed Rehabilitation Learning
from Demonstration (RLfD) is illustrated in Fig. 1 and com-
prises of the following components: i) A method for therapist
demonstration collection, ii) A Dynamic Movement Primitives
(DMP) based system that learns movement primitives from
these demonstrations, iii) A module for generating personalized
exercises, and iv) An implementation of an adaptation mecha-
nism in feedback control to ensure precise exercise execution.
A detailed explanation of each component will be provided
in subsequent sections, outlining how the system integrates
therapist input into functional exercise routines for patients.

Learning
primitives

Collection of therapist demonstrations

Generation of
exercises

DMP Trajectory following
Fig. 1. Block diagram of the proposed RLfD framework, integrating DMP with an
adaptive feedback mechanism, enabling a two-link manipulator to replicate and adapt
therapist demonstrations for upper limb rehabilitation

B. Collection of Therapist Demonstrations

The process of capturing therapist demonstrations utilized
visual tracking to record the therapist’s motion in Cartesian
coordinates. A visual marker attached to the therapist’s wrist
was tracked using an RGB camera. The captured pixel co-
ordinates, p ∈ R2, are transformed into operational space
coordinates, y ∈ R2, mapping the camera’s observational range,
[Cmin, Cmax], with the robot’s operational area, [Rmin, Rmax]:

y =

(
(p− Cmin)× (Rmax −Rmin)

(Cmax − Cmin)

)
+Rmin (1)

This setup simplifies data collection by converting move-
ments into two-dimensional Cartesian coordinates. Variations in
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marker placement, which can affect the accuracy of the tracked
coordinates, are smoothed by the DMP system, which will be
discussed in the coming sections. The Finite Difference Method
is used to calculate velocity v(t) and acceleration a(t), which
are necessary inputs for the DMP algorithm:

v(t) =
y(t+ 1)− y(t)

∆t
(2)

a(t) =
v(t+ 1)− v(t)

∆t
(3)

Following this, the data were normalized for further processing,
facilitating the integration of demonstrations into rehabilitation
modeling

C. Modeling Rehabilitation Exercises Using Dynamic Move-
ment Primitives

Dynamic Movement Primitives (DMP) are used to repre-
sent complex motions via differential equations. Each degree
of freedom (DOF) in the system is modeled using second-
order differential equations, analogous to the spring-damper
mechanism, enhanced by a nonlinear forcing term f , which
provides the system’s unique movement patterns [81]–[85]. The
equations governing the system are as follows:

τ ÿ = α (β (g − y)− ẏ) + f (4)

Where y and ẏ = v(t) represent the position and velocity,
respectively, g is the goal position and f is the learned
nonlinear forcing term. Parameters τ , α, and β are positive
constants that adjust the temporal and spatial characteristics of
the motion, affecting the sensitivity of the DMP. τ controls
the execution speed, with smaller values increasing sensitivity
to rapid adjustments. α influences stability and rigidity, where
higher values reduce sensitivity to perturbations. β determines
the strength of attraction to the goal, with larger values reducing
sensitivity to oscillations. The forcing term f , which is essential
for capturing unique movement patterns, is modeled as:

f (x, g) =

∑n
i=1 ψiωi∑n
i=1 ψi

x(g − y0) (5)

Here, ωi denotes the weights learned from the demonstrations
through locally weighted regression, ψi are the Gaussian basis
functions, and y0 is the initial position. The canonical system
controls the temporal dynamics through a phase variable x,
which decreases from 1 to 0, thereby ensuring convergence to
the goal [86]:

ẋ = −αx x (6)

In addition, the Gaussian basis functions are represented as:

ψi = exp (−hi (x− ci)
2
) (7)

In this equation, hi and ci are the width and center of
the Gaussians, respectively, which modulate the timing and
intensity of each basis function. This allows the DMP to
replicate and fine-tune generic motions. The algorithm detailed
in Table I and the process illustrated in Fig. 2 demonstrate how
the DMP effectively learns and accurately replicates therapist
demonstrations.

TABLE I. ALGORITHM FOR DMP ADAPTATION PROCESS

Step Description

1 Initialize by leveraging the demonstrated trajectories
y = [yx, yy ] to compute the forcing terms f =
[f1, f2] as defined in Eq. (4).

2 Integrate the canonical system, detailed in Eq. (6), using
a fixed αx to compute the phase variable x.

3 Employ locally weighted regression to adjust the
weights ωi for each basis function in f , aiming to
minimize the difference between the calculated forces
derived from the demonstrated trajectories and the
forces from Eq. (5).

Canonical
System

Transformation
system 1

Transformation
system 2

Learned
weights (    )

Start and goal
positions (        )

Fig. 2. Schematic of a 2-Dimensional DMP structured into canonical and transformation
systems, detailing the process from capturing start (y0) and goal (g) positions to
computing the learned weights (ω)

D. Personalized Rehabilitation Exercise Generation

DMPs are pivotal in robotic rehabilitation, as they adapt to
the changing needs of patients by learning movement patterns
from therapist demonstrations. This flexibility allows robots
to customize rehabilitation exercises to match the progress of
individual patient recovery. For example, as a patient improves,
DMPs adjust their exercise difficulty and focus by adjusting
their movement trajectories.

These adjustments are achieved by altering key parameters,
such as the initial position (y0), goal position (g), and temporal
scaling (τ ) (refer to Eq. (4)) based on predefined criteria
such as recovery progress. These criteria determine when and
how parameters are adjusted, facilitating the generation of new
movement sequences in terms of position (y), velocity (ẏ), and
acceleration (ÿ) without necessitating model retraining

The effectiveness of motion replication within the RLfD
framework was evaluated using Mean Absolute Error (MAE),
computed as:

MAE =
1

N

N∑
t=0

∣∣yd
j (t)− yr

j (t)
∣∣ (8)
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This equation measures the deviation between the demon-
strated trajectories (yd

j (t)) and the replayed trajectories (yr
j (t))

over all time instants (N ), providing a precise assessment of
the trajectory accuracy along each Cartesian axis for j = 1, 2.

E. Parameter Optimization Using Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an algorithm moti-
vated by the collective behavior of animals such as birds or
fish. Implemented in a multidimensional space, each "particle"
represents a potential solution, moving iteratively to explore the
search space and improve its position [87]–[91]. The swarm
consists of m particles, each with position xt and velocity
vt. Each particle tracks its optimal position known as pbestt
(personal best) and the best position found by any particle in the
swarm, gbestt (global best). The particle’s velocity and position
are updated as follows:

xt+1 = xt + vt+1 (9)

vt+1 = ωvt + c1r1(pbestt − xt) + c2r2(gbestt − xt) (10)

Here, ω balances the exploration and exploitation aspects of
the search, whereas c1 and c2 are coefficients that guide the
particle towards its personal best and global best, respectively.
Random variables r1 and r2 introduce stochasticity into the
updates. Fig. 3 illustrates the process flowchart for the Particle
Swarm Optimization (PSO) algorithm.

Start

Set up initial particle states

Determine new fitness for each particle

Update individual and overall best solutions

Adjust particle’s velocity and location

Reached the limit of
iterations?

Finish

YES

NO

Fig. 3. PSO Algorithm Process Flowchart

PSO is applied to optimize the α and β parameters in the
DMP, with the aim of minimizing the trajectory errors defined

by the sum of the mean absolute errors in Cartesian coordinates,
as follows:

fval =

n∑
i=1

|xri − xdi |+ |yri − ydi | (11)

Where xri and yri represent the coordinates of the reproduced
motion at the i-th iteration, and xdi and ydi are the coordinates
of the demonstrated motion at the same iteration. The fitness
value fval quantifies the cumulative absolute errors between the
demonstrated and reproduced motions over the total number of
points n in the trajectory. The optimization process using PSO
continues until a convergence criterion is met or a predeter-
mined number of iterations are reached.

The decision to use PSO over other optimization techniques,
such as Gradient Descent or Genetic Algorithms, is based on its
simple implementation and efficiency. Although many methods
can minimize errors and optimize parameters, PSO is simple
and has the ability to escape local minima, making it well-suited
for our application.

F. Model Reference Adaptive Control (MRAC)

The MRAC allows a two-degree-of-freedom robot to pre-
cisely track rehabilitation exercises by moving the patient’s
hand attached to the robot’s end effector. This is achieved by
employing inverse kinematics to convert these trajectories from
task space into joint space using a Jacobian-based controller
to calculate essential joint configurations (q), ensuring that
the robot adheres closely to defined exercise trajectories. It
incorporates an adaptive control mechanism that dynamically
adjusts the level of assistance provided to the patients based on
their performance. This mechanism is depicted in Fig. 4, which
highlights how the controller gains (K, K̃) are dynamically
tuned to optimize the system response.

Jacobian-based 
Controller

Adaptation 
Mechanism

Desired trajectory

𝒙𝒅

𝑲

ሶ𝒒 𝒒
𝒙

෩𝑲

𝒆

𝒆

Robot

Disturbance

++

+-

-+

Fig. 4. This block diagram illustrates the control loop involving a Jacobian controller
and an adaptation mechanism. It outlines how the system adjusts gains to maintain the
desired trajectory (xd) amidst disturbances

1) Jacobian-based Controller: This control approach de-
pends on several key components: the velocities of the end-
effector (ẋr), which describe how quickly the end-effector’s
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position changes; the velocities of the joints (q̇), indicating
the rate of change in the robot’s joint angles; Central to this
relationship is the Jacobian matrix J(q), which is determined
by the partial derivative of the end-effector’s position with
respect to joint angles: ∂x/∂q [92]–[94]. The Jacobian matrix
maps the joint velocities into the velocities of the end-effector,
as shown in the equation below:

ẋr = J(q)q̇ (12)

The joint velocities are computed by inverting the Jacobian:

q̇ = J−1(q)ẋr (13)

Joint states q are updated by integrating these velocities for
accurate tracking of the desired trajectory (ẋd), with error com-
pensation (e = xd−xr). In the case of our robot, the inversion
of the square Jacobian matrix is simplified, ensuring precise
trajectory tracking and preventing numerical drift. Modified
joint velocities are defined as:

q̇ = J−1
A (q) (ẋd +Ke) (14)

Where K ∈ R2×2, a positive definite matrix, enhances sys-
tem convergence and stability. Alternatively, using the transpose
of the Jacobian matrix:

q̇ = JT
A (q)Ke (15)

Minimizes tracking errors and improves responsiveness to
dynamic changes, thereby refining the system’s performance
[95].

2) Adaptive Assistance Mechanism: To enhance patient
engagement, the controller gains K are dynamically adjusted
based on real-time performance. The adaptive mechanism
employs a strategy that includes error thresholds and a delay-
based stabilization feature to moderate gain adjustments. The
adaptation algorithm outlined below operates independently
for each component (x and y) of the end-effector’s error e.

The specific adaptations are given by:

K̃i =

Ki · (1 + |ei| · r) if |ei| > thresholdi

Ki if |ei| < thresholdi and
delay counter > delay threshold

for i ∈ {x, y}, where Ki is the gain for direction i, ei
is the error in direction i, and r is the adaptation rate. This
structured approach ensures that assistance levels are both
responsive and moderated, thus optimizing the support pro-
vided based on the patient’s immediate needs and performance.
Specifically, this adaptation mechanism responds to different
disturbances by increasing the gains when errors exceed a
defined threshold, enhancing the robotic intervention to counter
significant deviations and aiding in rapid correction. For smaller

errors or when errors are within normal bounds, a delay-based
stabilization feature moderates the gain adjustments, preventing
over correction and ensuring stability.

Algorithm 1: Adaptation Algorithm for Robotic Assis-
tance
Result: Adjust robotic gains based on error

1 initialization;
2 while System Running do
3 measure error |ei|;
4 if |ei| > threshold then
5 adjust gains K̃i = Ki · (1 + |ei| · r);
6 else
7 check delay counter;
8 if delay counter > delay threshold then
9 reset gains K̃i = Ki;

10 end
11 end
12 end

III. SIMULATION RESULTS AND DISCUSSION

The RLfD framework, utilizing the parameters outlined in Ta-
ble II, has been implemented to facilitate the effective learning
and adaptation of therapeutic movements by a two-link robot
for upper limb rehabilitation, as validated through both real and
simulated environments.

TABLE II. PARAMETERS FOR THE RLFD FRAMEWORK

Parameters Description Value
n Number of basis functions 60
α DMP gain term 9.8
β DMP gain term 37.5
αx Canonical decay rate 0.8
τ Temporal Scaling Factor 1
r Adaptation Rate 50
K Controller gain (K) [1 1]
li Link lengths [50, 50] cm

Initially, we employed visual tracking with an RGB camera
to capture rehabilitation motions, as outlined in the RLfD
framework. We recorded two demonstrations (refer to Fig. 5),
where human subjects moved their labelled wrists within the
camera’s range to generate therapeutic motions. These motions
were then converted from pixel to Cartesian coordinates via
equation 1, and parameters specified in Table II. We focused
on appropriate movements for a two-link manipulator, such as
the exercises depicted in Fig. 5. These exercises requires tracing
a distinct pattern on a horizontal plane through the navigation
of alternating and intersecting curves to enhance motor control
and coordination.

Once the desired motion is captured in Cartesian coordinates,
it serves as the foundational data that is then input into the
DMP to compute the target forcing term f . This process was
specifically aimed at learning, replicating, and generalizing the
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recorded motion. To refine this learning process, the DMP
system employs locally weighted regression and evenly dis-
tributed basis functions (see Fig. 6) to effectively determine the
necessary weights for each degree of freedom (DOF), which are
essential for accurate replication. Furthermore, Particle Swarm
Optimization (PSO) was utilized to fine-tune the parameters α
and β of the DMP system.

0.1 0.2 0.3 0.4 0.5
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0.05

0.1

0.15

0.2
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0.3

y
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(a)

0.2 0.4 0.6

x(m)

0.1

0.2

0.3

0.4
y
(m

)

(b)
Fig. 5. Demonstrations collected during training: showcasing two distinct exercises
performed by the therapist
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Fig. 6. Gaussian Basis Functions Displayed Over Time - This graph shows sixty equally
spaced Gaussian distributions, each representing a unique basis function, highlighting
the variation in amplitude and spacing throughout the observed period

The PSO algorithm, configured with a swarm size of 10
particles and limited to 30 iterations, converged with an average
computation time of 33.5 seconds and an objective function
value of 0.0024. The search space was defined within bounds
for α and β set between [0, 0] and [50, 50], respectively,
allowing for a broad but constrained exploration of parameter
values. Parameters α and β are non-negative because they
represent coefficients that scale damping and stiffness forces
in the DMP equations. Setting a lower bound of zero ensures
that the system can start without any inherent motion or
force. On the other hand, an upper limit of 50 represents a
practical threshold beyond which the system becomes unstable.
This setup was chosen to balance exploration and exploitation
efficiently within the defined parameter space.

The optimal parameters achieved through the PSO are
α = 9.8 and β = 37.5. This optimization improves the
model’s adjustment to the movement’s dynamic properties,

thereby enhancing the precision of trajectory reproduction. The
progression of the PSO optimization is depicted in Fig. 7, which
shows the Trajectory Error Function. This function represents
the best value achieved, indicating the lowest trajectory error
among all particles, and its decrease over time illustrates the
effective tuning of the parameters.

5 10 15 20 25 30

Iteration

2.47

2.48

2.49

2.5

F
v
a

l

10
-3

Fig. 7. Performance optimization over iterations.

Fig 8 demonstrates how the DMP system accurately repli-
cated this trajectory with negligible deviation, yielding a total
positional error of approximately 0.25 cm across both the
x and y directions, as shown in Fig. 9. The integration of
PSO in tuning the DMP parameters clearly contributed to the
high precision of trajectory reproduction observed during these
experiments.

0 0.1 0.2 0.3 0.4

x-axis

-0.15

-0.1

-0.05

0

0.05

y
-a

x
is

Original trajectory

Adapted trajectory

Fig. 8. This graph shows the demonstrated trajectory and the reproduced trajectory
generated through the DMP.

The Mean Absolute Error (MAE) serves as the key metric
for evaluating the accuracy of the system’s ability to replicate
the therapist’s original motion. The MAE values measure the
average deviation between the reproduced trajectory and the
therapist’s demonstrated motion across the x- and y-axes in
the Cartesian coordinates. Specifically, the MAE values for the
x- and y-positions were 0.09 cm and 0.16 cm, respectively.
These lower MAE values indicated a higher degree of accuracy,
signifying that the system accurately mimicked the therapist’s
movement style. This effectiveness in accurately reproducing
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therapeutic exercises demonstrates the potential of this system
for precise motion reproduction.
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Fig. 9. Variations in x and y positional errors over time during trajectory reproduction

The adaptability of the DMP to new goals was evaluated by
modifying the goal point of the demonstrated trajectory while
retaining the original starting conditions and the previously
learned weights, as shown in Fig. 10. The DMP effectively
adjusted the motion to meet the new goal without altering
the inherent pattern of the original trajectory. This capability
is particularly advantageous for repetitive therapeutic exercises
which require modifications to cater for different recovery
stages or patient needs with varying goals, as it removes the
need to repeatedly retrain the robot for each specific target.
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y
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x
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Fig. 10. Demonstrated Trajectory Adaptations. Figure (a) Original trajectory and
adaptation to various goals Figure (b) Original and adapted trajectories, each with
different starting points and goals

In comparing the adaptability and reproduction capabilities
of the DMP with other models, such as those used in Martinez
et al. [96], Najafi et al. [97], and Lauretti et al. [68], DMPs show
several advantages. DMPs demonstrated superior reproduction
abilities, achieving minimal deviation (MAE: 0.09 cm, 0.16
cm) compared to the errors observed in Martinez et al.’s
GMM/GMR-based framework (2.9926 cm) and Lauretti et al.’s
NDE range (2.4 cm to 3.4 cm). Lastly, DMPs excelled in
generalizability, easily adapting to new goals by adjusting
parameters, unlike models requiring task-specific tuning, as in
Najafi et al. (2017) and Pareek et al. [58].

A. Robot Design and Simulation

This study’s simulation process involves designing a two-link
manipulator in SolidWorks and subsequently importing it into
MATLAB’s Simscape for kinematic simulations. The simula-
tion was configured with a fixed sampling time of 0.1 seconds,
running for a total duration of 39.91 seconds. Performance
of the RLfD framework in tracking the recorded trajectory
was assessed by configuring the robot to follow trajectories
formulated by the DMP, which were then incorporated into the
MRAC. This conversion of task-space trajectories into joint-
space commands enabled precise robotic execution of the move-
ments, illustrating a smooth transition of task-space modeling
into practical robotic actions. It was initially assumed that the
patient would need assistance to complete the movement tasks.

Fig. 11 illustrates how the robot tracked the demonstrated
trajectory, showing the precision with which it closely adhered
to the desired path. This level of tracking highlights the
effectiveness of the dynamically adjusted controller gains K,
which are modulated in real time based on the performance
metrics. Specifically, the adaptation mechanism employs error
thresholds and a delay-based stabilization feature to moderate
gain adjustments.

During the simulation, when the error e in any direction
exceeded predefined thresholds (1.5cm for both directions),
robotic assistance was triggered, and the corresponding gains
were proportionally adjusted according to the error magnitude
at a predefined rate r. This intensified the support in response
to greater deviations, ensuring that the robot maintained close
conformity to the desired trajectory. Conversely, if the error
falls below these thresholds, assistance is deactivated, allowing
the patient to deviate within these predefined limits, thereby
promoting a more interactive rehabilitation process. Moreover,
a delay-counter mechanism ensures that overcompensation is
avoided by resetting the gains to their baseline when the perfor-
mance stabilizes. The simulation results validated the MRAC’s
ability both to provide tailored robotic assistance based on real-
time error evaluation and to facilitate precise control over the
robot’s movements, allowing for complex rehabilitation tasks
within a 2D environment.
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(b)
Fig. 11. Comparative Analysis of Trajectory Tracking: (a) illustrates the robot’s performance over time, tracking both the desired and actual trajectories along the x and y axes. (b)
Depicts the robot’s path in a 2D plane, contrasting the desired trajectory with the actual movement, and highlighting the precision within the allowable error threshold

B. Assessing Robustness Against Impairments

The resilience and trajectory accuracy of the MRAC were
rigorously tested by introducing impulse disturbances to the
position of the end effector during motion, as illustrated shown
in Fig. 12. These disturbances are designed to simulate motor
impairments commonly encountered by patients during therapy,
providing a test of the system beyond standard conditions.

Before the disturbances were added, as shown in Fig. 11, the
MRAC demonstrated high fidelity in tracking the demonstrated
path and dynamically adjusting gains based on real-time error
evaluation. This initial performance sets a high benchmark for
the system resilience.

Upon the addition of disturbances, Fig. 13 captures the
adaptable gain’s response to the patient’s trajectory deviations in
both directions. Despite these disturbances, the MRAC demon-
strated remarkable adaptability, swiftly adjusting the controller
parameters when the error was above the allowable threshold
to correct deviations and was closely aligned with the desired
trajectory. The comprehensive results from these tests, detailing
the most effective settings for the gain values and adaptation
rate parameters, are listed in Table II. In summary, our work’s
key contributions lie in integrating DMP and MRAC within the
RLfD framework, enhancing personalization and adaptability
in therapeutic exercises. Simulated tests with a two-link robot
demonstrated adaptability to impulse disturbances mimicking
motor impairments and precise control. These results show
significant improvements over conventional rehabilitation meth-
ods, setting a foundation for future research with physical
robots.

IV. CONCLUSION AND FUTURE WORKS

This paper introduces an innovative approach to robotic-
assisted therapy for the upper limb, leveraging Rehabilitation
Learning from Demonstration (RLfD) framework to model
therapeutic exercises based on therapist demonstrations. By
integrating Dynamic Movement Primitives (DMP) to model

(a)

(b)
Fig. 12. Trajectory Tracking with Added Disturbance: (a) time-based analysis of the
x and y axes, highlighting deviations and the system’s compensatory adjustments
in response to disturbances. (b) Illustration of the robot’s path in a 2D plane,
demonstrating the impact of disturbances on tracking accuracy

intricate motor functions and employing the Model Reference
Adaptive Controller (MRAC) to facilitate adaptive learning
capabilities, the framework significantly enhances both the
personalization and adaptability of therapeutic exercises.
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The DMP system demonstrated remarkable precision in
reproducing recorded trajectories, with Mean Absolute Error
(MAE) values of 0.09 cm and 0.16 cm across the x- and y-
axes, respectively. Additionally, the system showed exceptional
resilience and adaptability, effectively handling disturbances by
swiftly adjusting the controller parameters to correct devia-
tions and maintain the desired trajectory. This adaptability was
particularly notable during real-time adjustments, which were
based on predefined error thresholds, ensuring that assistance
was provided dynamically to promote patient engagement and
autonomy in therapy.
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Fig. 13. The plots display the controller gain and error trajectories for both x and y
directions, with the predefined error zone indicated by the dashed line. They highlighted
the dynamic adjustments of gains in response to fluctuating errors across different axes,
showcasing the controller’s adaptability.

The capabilities of this system were rigorously tested in a
2D simulation environment, where a two-link robot demon-
strated its ability to perform essential upper limb rehabilitation
movements. To accurately simulate the variability in patient
performance, impulse disturbances mimicking motor impair-
ments were introduced at the position of the end-effector. This
rigorous testing, which incorporated error thresholds and delay-
based stabilization features into the MRAC, confirmed the
robustness and adaptability of the system.

These tests confirmed the system’s potential for real-time,
personalized rehabilitation. However, while simulation results
are promising, practical implementation of this technology
requires further validation. Future research should prioritize em-
pirical testing with physical robots to assess effectiveness and
safety in real-world scenarios. Advancing to 3D simulations and
testing environments is crucial to enhance applicability, ensure
robustness, and prepare for complex rehabilitation scenarios.
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