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Email: 1 b.mahmoud@univ-boumerdes.dz, 2 r.boushaki@univ-boumerdes.dz,
3 f.lachekhab@univ-boumerdes.dz

*Corresponding Author

Abstract—Path planning is a crucial step in robotic navigation
to satisfy: tasks safety, efficiency requirements and adapt to the
complexity of environments. Path planning problem is particularly
critical for Unmanned Aerial Vehicles (UAV), being increasingly
involved within important tasks in diverse military and civil
fields such as: inspection, search and rescue and communication,
taking advantage of their high flexibility, maneuverability and
cost-effective solutions. This continuous growth made the solution
of UAV path planning problem an interesting research topic
in recent years. In this scope, machine learning algorithms
were a promising tool due to their continuous data-driven self-
improvement to adapt with the high dynamicity of environments
where conventional programming fails. This paper provides a
review on recent developments in machine learning-based UAV
path planning issued from credible databases like: IEEE, Elsevier,
Springer Links and MDPI. The main contribution of this paper
is to delve through these recent works providing a taxonomy of
algorithms into the fundamental paradigms: supervised, unsuper-
vised and reinforcement, evaluating their efficiency and limitations
under distinct scenarios. Despite the relative generalization of
deep reinforcement learning to different environments, this study
highlighted some active challenges about computational cost and
real-time applications that remain open.
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I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) or the so called drone offers
a cost effective data exchange solution [1] resulting a fast grow
in its use in various civil applications [2] after being restricted
to the military domain where it made its first appearance[3].
Many of nowadays applications rely on drones: agriculture,
meteorology, coastal surveillance, disaster management... with
a promising growth in markets like: delivery, internet and
telecommunication...[4]. In agriculture, UAVs enhanced preci-
sion and process monitoring of many activities like irrigation
and optimized operational costs [5]. UAVs enhanced also safety
of inspection missions in infrastructures especially thanks to
their high accessibility to hard locations, limiting the risks on
human inspectors and replacing traditional expensive equip-

ments [6]. In disasters, drones offer a rapid assessment which
accelerates emergency plans and search and rescue missions by
the use of heat cameras [7]. These are only a sample example
of tasks, many other applications solicited UAVs of their proven
efficiency especially in critical tasks [2].

In parallel with this significant growth in UAV applications,
the challenge to ensure a safe and efficient navigation in its
environment rises, and hence the so called path planning prob-
lem. Also known as mission planning in military applications
[8], this problem consists of guiding a UAV from a start to an
end point in a given environment through a collision free path
[9]. Obstacles can be basically static with a prior knowledge
on the environment, however in real world path planning faces
the dynamics of both unknown environment and the navigating
robotic system as well [9]. Since the UAV is solicited for
critical tasks in difficult terrain, path planning problem deals
with several challenges. In delivery tasks for example, UAV
is said to traverse a highly dynamic and safety demanding
environment, so real-time re-planning ability is a must, with
the consideration of completion time that impacts directly the
productivity [10]. UAV is also physically limited by energy
consumption and CPU-cost. Resource management is then an
important constraint for path planning [11].

The importance of path planning problem triggered an
evolution of solution algorithms from simple deterministic to
complex adaptive [12]. The growing complexity of environment
amplified the need to autonomous real-time solutions and
learning based approaches[12]. Traditional methods commonly
fail to complete the tasks in the dynamically-changing scenarios
[13] . Machine learning algorithms represents a promising tool
for the purpose of finding an optimal path for a UAV. In contrast
to classical programming which relies on programmer abilities
to predict all cases [14], machine learning uses data subsets to
train computer which learns itself and adapts itself to newer
datasets [15]. The fusion of machine learning and UAV has
brought many advantages: it enhanced decision making pro-
cess following a data-driven autonomous approach, improved
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adaptability to dynamic environments and ensured a continuous
performance improvement through learning [16].

UAV path planning solutions had been the subject of interest
for many reviewers who differ in their specific focus. Most
authors like: Ajith and Jolly [17], Hooshyar and Huang [18] and
Yahia and Mohammed [19] focus on metaheuristic techniques
as being more popular in UAV subjects. The authors analyzed
many optimization techniques to path planning constraints but
excluded machine learning alternatives. Coming to Ait Saadi
et al. [20] who classified previous planning algorithms into:
classical, heuristic, metaheuristic, machine learning and hybrid.
Advantages and disadvantages of each class were summarized
regarding the results of reviewed articles. The authors succeed
to draw some common features and weaknesses of each class
of algorithm where machine learning algorithms were proven
to be highly adaptive to abrupt changes but costly and data-
hungry. The article lacks to delve into subcategories of each
class and does not explore sufficiently the differences within
machine learning paradigms. Similarly, Puente-Castro et al.
[8] reviewed UAV swarm planning approaches using neural
networks, reinforcement learning and metaheuristic algorithms.
The authors widely covered various classes of algorithms but
did not include all machine learning paradigms, especially
unsupervised learning which is useful in multiple UAV systems
enhancement. The rising interest in learning-based algorithms
was represented by Zhang et al. [21] who explored deep
reinforcement learning methods and delved into performance
improvements to be applied to the network and exploration-
exploitation balance. On the other hand, supervised and unsu-
pervised methods were missing in this proposal.

In comparison with the previously stated existing review
papers, the main contributions of this proposal are:

• Review recent UAV path planning works that resorted to
machine learning algorithms within paradigm taxonomy:
supervised, unsupervised and reinforcement.

• Evaluate their performance and deduce the suitable sce-
narios and constraints of each paradigm in path planning.

• Discuss advantages and drawbacks of each technique.
• Analyze improvement tools and their efficiency.
• State the limitations and highlight future directions.
The organization of this paper is outlined as follows: Section

II explains the methodology of the paper and proposal’s selec-
tion criteria, brief definitions of common concepts are stated in
SectionIII then the literature review is conducted along Section
IV. Section V comments the findings of its previous section.
Finally, Section VI closes the review with conclusions and
future orientations.

II. PAPER METHODOLOGY

This paper consists in a review of existing UAV path planning
approaches that relied on machine learning algorithm. This
work is conducted as shown in Fig. 1. After defining the

motivations behind this work and its objectives, an overview
of common concepts is stated prior to the survey, in order to
familiarize with its topic. Based on common results gathered
from selected papers, an analysis is conducted to discuss main
findings and highlighting bibliometric indexes. Finally, the
paper is concluded by summarizing findings and limitations,
and proposing future insights.

Fig. 1. Process workflow of the paper

The search for recent proposals in machine learning based
UAV path planning was done through Google Scholar engine.
Several search trials were done using different string entries but
all convey to the following research equation:

”ML approach name” AND ”UAV” AND (”path planning”
OR ”navigation”)

The selection process of papers is demonstrated through the
flowchart shown in Fig. 2. The selected papers are said to
obey some studied criteria. The proposal should satisfy the
research equation and it should be dated posterior to 2018.
Nevertheless, few contributions prior to 2018, or with mobile
robot as agent are accepted in case the used algorithm is not
already sufficiently covered by papers satisfying the criteria.
The selected proposals must respond clearly to key research
questions: which algorithm ? which agent ? which environment
(scenario) ? what are the comparative results ?. These questions
are helpful to build an appropriate evaluation.

Fig. 2. Papers selection process
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III. FUNDAMENTS

A. Unmanned Aerial Vehicles (UAV)

Generally called drones, unmanned aerial vehicles (UAV)
are pilotless aircrafts [22] that flies autonomously or can be
controlled remotely, all relying on computer and electronic
subsystems [8]. Drones, which were limited to military tasks,
are currently receiving an increasing demand from various
commercial and industrial fields registering important market
value in[23][24]: agriculture, delivery, infrastructure, media and
others.

UAVs can be classified regarding different parameters. The
wing configuration design is a fundamental attribute which
decides the way of taking-off and landing. Two types are
distinguished, Vertical Take-Off & Landing (VTOL) and hor-
izontal take off landing (HTOL)[25]. Wing configuration has
an important impact on path planning, rotary-wing drones are
highly maneuverable and suitable for quick changes, whereas
fixed-wing UAVs are more sensitive to sharp turns. Hassanalian
and Abdelkefi. [26] proposed also a classification based on size
and weight of a UAV. The authors presented a spectrum spread
of UAVs from weight a 15,000 Kg and a wing span of 61 m to
the tiny category called Smart Dust (SD) whose weight is less
than 0.5 g and its wing span does not exceed 2.5 mm. Watts
et al. [27] proceeded into a classification with respect to their
attitude and flight endurance where the authors distinguished:
Low-Altitude-Short-Endurance (LASE) where an attitude of
1,500m is not exceeded, LALE Low-Altitude-Long-Endurance
(LALE) with extended flight period, Medium-Altitude-Long-
Endurance (MALE) which they can fly at an attitude of 9,000m
for many hours and High-Altitude- Long-Endurance (HALE)
with an attitude range of 20,000m and an endurance up to 30
hours. These classifications are helpful in the choice of the
appropriate UAV regarding task constraints: LALE UAVs have
sufficient capacities for delivery tasks, where military missions
may require HALE drones.

B. Path Planning

Path planning problem can be defined briefly and thoroughly
as the process of seeking for an optimal obstacle-free path
for a mobile robotic system from a starting point (initial
state) to a target point (goal state) in a given environment,
using accumulated sensor data and initial information [28, 29].
Puente-Castro et al.[8] devised the process of path planning into
two elementary steps: environment modeling and path search.

Environment modeling is a fundamental step in many path
planning approaches and there are different ways to model
an environment [30]. Han et al.[31] gave a classification of
environment modeling methods into geometric, graph and grid
based methods. The geometric approach represents obstacles by
geometric figures and their interconnections [32]. Graph theory
is the basis of graph methods where airspace is abstracted

into a graph, Zhang et al.[33] used a Voronoı̈ graph repre-
sentation. The grid based representation divides in an efficient
manner a 3D or 2D space into uniformly sized cells [34, 35].
Nowadays many researches bypassed the environment modeling
step by using popular high-fidelity simulation platforms like
ROS-Gazebo [36] and Microsoft Airsim [37] which are open
source and under continuous development to mimic real-world
dynamics. These tools handles training and the development of
path planning learning models through real-time simulation in
a cost-effective manner.

Path search and optimization techniques were investigated
and classified by Reda et al. in [38]. The first category included
classical approaches such as graph based, sampling based, artifi-
cial potential field and curve fitting techniques. These traditional
methods had shown some limitations. Graph based methods
give jerky paths in large-scale environments, sampling based
approaches are faster but fail into the same limitation. Gradient
based methods are time-efficient collision free planners but
commonly fail in local minimum. Curve fitting techniques are
high computation cost methods. The second category defined
by Reda et al. [38] was metaheuristic class of algorithms that
are the most popular path optimization techniques due to its
applicability to several scenarios. Nevertheless, this class does
not guarantee the convergence to optimal solutions. The third
category was machine learning algorithms, the topic of interest
in this paper. Learning-based algorithms offer a high level of
autonomy and enhance optimization by reducing navigation
sensors number and hence battery cost [8]. Machine learning
algorithms are high speed solutions in familiar scenarios, main
common challenge of this class is to faster training time in
unknown scenarios [38].

Regarding available information about the environment, path
planning problem is divided into two classes [28, 39]. Global
path planning also known as offline [30] where the environment
is static and all information about it known before the first
move. Local path planning, called also on-line [40] has a
dynamic environment and its information is partially or com-
pletely unknown [41].

Ait Saadi et al. [20] summarized some objectives and con-
straints of path planning task. The objectives can be: path
smoothness, time-efficiency, cost (CPU, battery) optimization
and collision avoidance. The constraints on the other hand
can be seen as limitations in attitude, velocity, battery and
computational performance, also environment obstacles and
threats. These constraints significantly impact algorithm perfor-
mance, the simplest illustration is the consideration of obstacle-
avoidance in a dense complex environment will induce a
relative increase in computation cost [42] [43].

C. Machine Learning

Machine learning (ML) is considered as a field of computer
science having the aim to automate the solutions to problems
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which are hard to solve using classical programming [44].
In other words, a process that enables computers to learn
and improve on their own [45]. Machine learning algorithms
are classically divided into three main paradigms (Fig. 3):
supervised learning, unsupervised learning and reinforcement
learning [46].

Fig. 3. Machine learning paradigms

Supervised learning consists of labeled data training in order
to end up with a mapping (model) between input (data) and
output (labels), this model will be used in the prediction of
output of unknown data set [47]. Supervised learning method
is itself divided into two sub-categories: regression where the
output is continuous, and classification where the output is
discrete [48].

Contrary to the first paradigm, unsupervised learning deals
with unlabeled input data where there is no explicit output
associated. The aim of unsupervised learning is to group and
represent a given input pattern in a convenient way that matches
the overall structure of patterns [49]. Clustering algorithms
are the famous class of this paradig where items are grouped
through clusters based on defined similarities [50].

Reinforcement, the third paradigm, also does not require
labeled data, but uses the interaction of the agent in an environ-
ment, and learns from this experience. This can be represented
by Markov Decision Process (MDP): an environment reflected
by an actual state, the agent performs a given action changing
that state and getting a resulting reward [51].

IV. LITERATURE REVIEW OF RECENT ML BASED PATH
PLANNING ALGORITHMS

A. Supervised Learning

Regression analysis consists of fitting a right model (map-
ping) matching one dependent variable (target) to one or more
independent variables (predictors), and based on the obtained
model the machine makes a prediction for future output [52].
Meng et al. [53] relied on a linear regression (LR) model

to design a GPS anti-spoofing system for a UAV. The linear
regression model was used to predict the 2D trajectory of
UAV whose coordinates are then compared to the GPS actual
positioning. A threshold difference was fixed to decide whether
the UAV was cheated and corrective destinations were required.
The linear regression in this point to point traveling problem has
shown by far a higher accuracy than Long Short Term Memory
Recurrent Neural Network (LSTM-RNN).

Kumar et al.[54] used a multiple linear regression (MLR) to
plan a Nao humanoid robot facing static and dynamic obstacles.
First in a static environment, regression algorithm was trained
by distances to three obstacles: in front, at the right side and
at the left side of the robot, to give the turning angle as
an output. The author added two Naos humanoid robots as
dynamic obstacles and enhanced the regression analysis with a
six (6) positions Petri-net priority controller within each robot
where the shorter the distance to the target, the higher the
priority. The proposed method was tested in both simulation
and experimental platforms considering two cases: a unique
Nao robot with static obstacles , and three Naos simultaneously.
Simulation results has shown about a 6% shorter path than
Co-Evolutionary improved Genetic Algorithm (CEGA) and an
improved Genetic Algorithm (IGA) developed by Qu et al. [55].

A polynomial regression (PR) path planning for UAV was
proposed by Koo et al. [56] in a wireless sensor network
(WSN). The challenge was to allow the UAV to cover all
sensor nodes; hence, a modified Mean Squared Error (MSE)
function taking into account transmission range was proposed in
a double loop path planning process. The inner loop generates
the path considering the distance to sensor’s nodes, the outer
loop refines the path considering the transmission range of
the sensors. The simulation resulted a 10% shorter path than
Genetic Algorithm (GA) and enabled the UAV ensure all data
transfer.

Boulares and Barnawi [57] proposed a novel floating target
search algorithm for a UAV in ocean environment using Lasso
regularized polynomial regression (L-PR). The authors applied
first a recursive clustering process to define strategic zones
based on drifting history. The weight centers of the clusters
are smart searching areas for the UAV. Then, a particle tra-
jectory simulation was applied taking into account wind and
ocean currents forces parameters. Finally enhanced polynomial
regression approximation is applied to acquire a set of predicted
paths around each weight center. Through simulation, the
authors proposed three regularization techniques for polynomial
regression model to overcome ordinary least squares (OLS)
estimation limitations. The three were: Lasso regularization (L-
PR), Ridge regularization (R-PR) and Elastic net regularization
(EN-PR). The results were evaluated regarding R2 metric. Ridge
regularization with a polynomial degree of 26 registered the best
score among the three approaches.

A Gaussian process regression (GPR) was suggested by Yel
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and Bezzo in [58] to plan a safe path for a quadrotor UAV
under payload change disturbance. The solution consisted of an
offline stage where the GP was trained to estimate the payload
and the trajectory deviation, and an online stage to adapt the GP
model with real time data and determine the adequate speed.
The approach was validated in simulation and experiments in
static environments with window obstacles.

Support vector machine (SVM) is a powerful solution in
binary classification problems. SVM maps training data vector
to a space of higher dimension, separating the two clusters by
a linear or non-linear kernel function [59]. Al-Naeem et al.
[60] proposed an energy efficient path planning algorithm for a
UAV in a large agricultural field based on SVM. The UAV
system was deployed to collect data from Iot (internet of
things) devices. SVM was used to classify agricultural sub-
regions into sensitive and insensitive ones based on a set of
collected and stored attributes. The sensitive sub-regions, where
most anomalies were detected recently, had then more frequent
UAV visits. The simulation resulted a better performance of
this solution than A* Genetic Algorithm regarding successful
detection rates, time delay and energy consumption.

Chen et al. [61] applied a Gaussian kernel SVM to plan a
smooth path for a UAV in surface of minimum risk (SOMR).
An offline 3D SOMR data were obtained apriori defining
flyable and no-fly zones, start and goal points. The SOMR was
squeezed into a simplified 2D safe-map. Then, online SVM was
applied to divide obstacle points into two (2) classes. Virtual
obstacle were distributed around starting and arrival points to
maintain them within the optimal path. Finally, the 3D opti-
mal path in the SOMR was implemented by correspondence.
Simulation results has shown the feasibility of the approach.

On the other hand, a multi-class SVM (MSVM) algorithm
was proposed by Morales et al. [62] as a solution for mobile
robot path planning problem in a dynamic environment. In this
proposition, SVMs took points of an aerial image map where all
obstacles were represented as input, and the one-versus all using
a winner-takes-all multi-class strategy was adopted to extract a
safe path for each obstacle. The significant change in dynamic
patterns only affects the pattern itself and not the whole map.
The chosen optimal path at the end of the process joins feasible
paths intersections. This solution was tested in both simulation
and experiment using 4 different maps (environments). The
MSVM algorithm has shown a higher performance than single
class SVM, Voronoı̈ diagram and A* algorithms in terms of
path length, smoothness and distance to obstacles, with a full
success rate.

Asti et al. [63] used K-Nearest-Neighborhood (KNN) classi-
fier in the design of a solution to UAV path planning problem
with static obstacles avoidance. The key contribution of KNN
was to select the direction of obstacle avoidance between three
choices: up, right and left. The selection was based on the
magnitude of the deviation vector and energy consumption

during deviation process. The approach was trained and tested
in three static environment with 1, 2 and 3 obstacles respectively
resulting 96.6% accuracy, 0.0068 s time cost and 0.64 m/s
minimum velocity.

Pandey et al. [64] had a wheeled robot path planning problem
in a static environment, to which he proposed an FNN based
solution, tuned by particle swarm optimization (PSO) algorithm
in order to minimize the error. FNN receives distance to obsta-
cles as input and outputs the steering angle. Simulation results
qualified this approach to be more cost effective regarding
computation time and path length compared to an FNN without
tuning and fuzzy-PSO methods.

Sanna et al. [65] proposed an FNN solution to coverage
path planning (CPP) by multiple UAVs. The authors proceeded
first to divide the coverage grid area using k-means clustering
into sub-areas where a single UAV is assigned at each sub-
area centroid. UAV had an 9X9 cells field of view inside a
19x19 local field and it is said to visit a non-obstacle cell only
once. For this purpose, ANN was trained with 54˙531 labeled
data with an accuracy of 92%. After the coverage of the local
view Explorative A* and A* to visit the nearest unexplored cell
considering other agents avoidance. Simulation of the proposed
A*-ANN was conducted through four scenarios one geometric
map and three real occupancy grids and the number of UAV
varied from 3 to 6. The results has shown that increasing the
number UAVs reduced the number of moves.

Choi et al. [66] has proposed a solution for an indoor UAV
path planning with climbing stairs option relying on a CNN.
The CNN was used precisely as an image processing system
to identify stairs and a Light Detection and Ranging (Lidar)
sensor was the solution for distance measurement. The results
was a collision-free stair climbing with 92.06% accuracy in
stair recognition.

In the proposal of Liu et al. [67], the authors designed a UAV
residual path planner (Res-planner) based on residual CNN (R-
CNN). The methodology started by sampling offline scenarios
to get state-behavior couple at each time t. These couples
were fed as training datasets into the R-CNN network and
then predicted behavior was constructed. In the testing phase
the R-CNN received sampled state containing information
about distance and obstacles and outputs the heading direction
(behavior). In 200 static scenarios, R-CNN obtained 88.2%
feasible path and 72% optimal. In local planning scenarios. R-
CNN outperformed A* in terms of time cost and path length.
The authors proved also through experiments that increasing
the training datasets number (the number of samples) and
the number of the network layers increases the accuracy and
performance of R-CNN approach.

Dai et al. [68] proposed a CNN-based path planning for a
quadrotor UAV to avoid obstacles in an unknown environment.
The proposed CNN model received a monocular forward-facing
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camera image. Based on a confusion matrix, the network
predicted the collision probability and the needed steering
angle. The two prediction were inputs to the control mechanism
acting on the yaw angle and forward speed. The response speed
in state transitions were enhanced by the mean of a first order
butterworth filter. The model was trained using large existing
and experiment datasets of frames. The approach was tested
through 5 different indoor/outdoor real scenarios varying in
complexity and lighting conditions. The model offered a low
sensor requirement obstacle avoidance technique, performing
better with gray-scale images than RGB images regarding flight
distance.

Sartori et al. [69] used CNN for the estimation and refinement
of an indoor global path planning for a mobile robot. The CNN
received a top image of the 2D map defining the start and target
points and obstacle distributions to provide the path way-points’
coordinates as output. This described approach resulted a cost
effective safe path planning solution in three realistic indoor
environments with a significantly high success rate.

Nair and Supriya [70] proposed an RNN solution for a mobile
robot path planning in a dynamic environment. Precisely, a
Long Short Term Memory (RNN-LSTM) network was designed
and trained in 12 different environment. Despite of some failed
outputs, simulation results has shown a higher efficiency in
obstacle avoidance of this approach compared to A* algorithm.

B. Unsupervised Learning

Based on similarities, K-means clustering algorithm divides
a dataset into K groups (clusters) each cluster have a centroid
which will be updated when we introduce a new item; the new
item is assigned to the cluster having the closest centroid [50].
Yue and Zhang [71] proposed a k-means clustering algorithm
supporting a simulated annealing (SA) algorithm to plan the
path of multiple UAVs in a cruise coverage mission. After
defining the valid flyable cruise area that meets the UAVs
constraints, K-means algorithm was established to cluster target
points then the total cruise area was divided according to
the number of UAVs. The simulation resulted a successful
coverage of more than 92% of the area with 30 UAVs, and
the authors concluded that this combination of SA-K-means
algorithm performs better than genetic algorithm (GA) and
Hop-field Neural Network (HF-NN) regarding convergence to
global optimal solution.

In [72], Li et al. also used k-means clustering to support
an improved ant colony algorithm as a solution to UAV path
planning for navigation mark inspection mission. The idea was
to divide inspection area to reduce traveling time; thus, K-means
algorithm was used to group mark inspections into distinct
clusters where UAV will inspect a single cluster per flight. Both
experiment and simulation has proven the efficiency of K-means

algorithm which reduces flight range by 20% compared to ant
colony algorithm alone, after dividing the inspection marks into
three (3) clusters.

An improved K-means (I-K-means) algorithm with three-
stage clustering was proposed in [73] as a support to Way-
point Refinement Iteration (WRI) path planning algorithm for
multiple UAVs in a WSN. The idea was to cluster first the
sensors, then select a cluster head (CH) sensors. These CHs
sensors collects all data from sensors belonging their clusters.
Finally those CH sensors are themselves clustered by the
number of UAVs and thus, the mission is assigned. The sim-
ulation considered 500 sensors and 4 UAVs in two scenarios:
a balanced and an unbalanced sensor distribution. The results
shown the relatively higher efficiency of k-means clustering
compared to Salp-Swam optimization (SSO) proposed in [74]
with 26 %, and 7% shorter average distance from the cluster
center in scenario 1 and scenario 2 respectively. Furthermore a
23% more efficient path was registered by the combination of
WRI and K-means (WRI-I-K-means).

Similarly, Li et al. [75] resorted to K-means clustering in
their proposal for multiple UAVs path planning in a WSN. The
authors proceeded into clustering sensor nodes into k clusters,
where k is the number of deployed UAVs. An improved MIN-
MAX Ant System (improved MMAS) algorithm was used to
optimize the path and solve local optima problem. The approach
was simulated in a scenario with 40 sensor nodes and 3 UAVs.
The proposed K-means-Imroved MMAS algorithm resulted a
shorter path compared to original MMAS and the local optima
is avoided after 80 iterations.

Ma et al. [76] introduced k-means clustering as an enhance-
ment to GA in the solution of multi-UAVs task assignment and
path planning. The problem was defined as M-TSP problem
where multiple UAVs are said to visit each way points and
return to starting points in a closed paths. The proposed co-
ordinated optimization algorithm combining GA and K-means
takes into consideration the maximum flying distance in the
selection of the clusters number. In simulation the number
of tasks to be assigned was 100 and the flyable distance
was set to 50Km, 40Km, 30 Km and 20Km. The number of
UAVs (clusters) was found to vary inversely to maximum flight
distance. Despite additional time cost, the proposed approach
outperformed earlier GA with respect to path length in all
scenarios.

Suseno and Wardana [77] suggested a two stage progressed
K-means (P-K-means) clustering to a UAV path planning
problem in a maritime surveillance mission. The progressed
clustering method does not define a fixed number of clusters
as input, but rather it defines a maximum radius. The first
clustering stage was to divide the mission into operation areas
based on the ships distribution. The second stage clustering
was a smaller scale clustering aiming to select mini-clusters
at each operation area to group adjacent ships together through
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TABLE I. SUPERVISED LEARNING PROPOSALS FOR UAV PATH PLANNING

Algorithm Author(s) Agent Environment Main Result Year
LR Meng et al.[53] UAV 2D, dynamic higher prediction accuracy than RNN-LSTM 2021

MLR Kumar et al.[54] mobiile robot 2D, static & dynamic shorter path compared to CEGA and IGA 2018
PR Koo et al. [56] UAV 2D static shorter path compared to GA 2020

L-PR Boulares and Barnawi [57] UAV 2D dynamic the best 26 degree polynomial R2 accuracy score com-
pared to R-PR and EN-PR

2021

GPR Yel and Bezzo [58] UAV 3D static successful obstacle avoidance 2020
SVM Al-Naeem et al. [60] UAV 2D optimal time and energy efficient completion 2023

G-SVM Chen et al. [61] UAV 3D static smooth obstacle-free path 2014
MSVM Morales et al. [62] UAV 2D, static & dynamic better performance than Voronoı̈ and A* in terms of path

length and smoothness and distance to obstacles
2016

KNN Asti et al. [63] UAV 3D, static 96% accurate obstacle avoidance 2020
FNN-PSO Pandey et al. [64] mobile robot 2D, static better performance in terms of path length and compu-

tation cost with respect FNN alone and fuzzy-PSO
2020

FNN-A* Sanna et al. [65] multiple UAVs 2D, static 92% training accuracy and better path efficiency with
increasing UAVs number

2021

CNN Choi et al. [66] UAV 3D, static 92% accuracy and collision-free mission 2021
R-CNN Liu et al. [67] UAV 2D static & dynamic equal optimal path with A* in static scenarios and a better

computational cost in dynamic scenarios
2022

CNN Dai et al. [68] UAV 3D, static low sensor requirement and better performance in terms
of distance with gray scale images compared to RGB

2023

CNN-Theta* Sartori et al. [69] mobile robot 2D static high success rate and low computation cost 2021
RNN-LSTM Nair and Supriya [70] Mobile robot 2D, dynamic shorter path compared to A* 2020

the definition of weighted vulnerable points (VP) for each mini-
cluster. Nearest neighborhood algorithm was designed to seek
an optimal path joining the VPs. Simulation results in 50 Km,
100 Km and 150 Km operation area radii has shown that the
number of operation areas decreases with the increase of their
radii. In some scenarios the path was not optimal, but in terms
of computation cost, this proposal was efficient compared to
ant colony (ACO) and Held & Karp algorithms.

Chen et al. [78] proposed a density based spatial-temporal
clustering algorithm (STCA) of regions in a coverage path
planning problem using heterogeneous UAVs. The clusters
centers were identified regarding higher density and farther
distance to other high densities. The task assignment is done
regarding the flight time and speed. The battery level is also
taken into account in the decision of adding queued region to
a current task charged UAV through two different strategies:
nearest to end (head or tail regions) of an allocated cluster
(STCA-NE), and nearest to any region in an allocated a cluster.
Genetic algorithm GA is added to optimize the order of regions.
Simulation results has shown that STCA-NE-GA (nearest to
end with genetic algorithm) method had a better performance
regarding completion time with 3% less than STCA-NA-GA
(nearest any with genetic algorithm).

Similarly, multi-region coverage path planning problem of
heterogeneous UAVs was tackled by Xiao et al. in [79] by
the mean of clustering. In this proposal, UAVs were said to
cover rectangular regions. The authors proposed a coverage-
based scanning clustering algorithm (CSCA) that takes as initial
cluster centers the UAVs bases. The algorithm keeps updating
the centers according to spatio-temporal similarities between
clusters centers and region centers, and remaining flight en-
durance of UAVs. Nearest to end (NE) policy was adopted as

regional sorting strategy, and bilateral shortest-selection strategy
(BSSS) was used to seek the shortest scanning path of each
region. The approach was simulated in a squared 50Km mission
area, 8 UAVs and 5 to 40 regions with an increment of 5. CSCA
outperformed STCA with up 21% less task completion time.
NE strategy sorting resulted much lower time cost than genetic
algorithm GA. BSSS scanning path planning resulted a shorter
path than long edge scanning strategy (LESS).

Dai et al. [80] suggested a game based cluster head selection
algorithm (CHSA) in order to reduce energy loss for multiple
UAVs in delivery task assignment. In this proposal, after an area
division process, representative nodes were selected and then
cluster was chosen based on mixed game model that prioritizing
nodes with the highest energy-distance to representative node
ratio. 100 nodes were deployed in 100x100 m simulation
environment. Results has shown that CHSA outperformed k-
means and ACO in terms of nodes survival rate and energy
consumption.

Faigl et al. [81] proposed a surveillance planning of multiple
UAVs with the help of a self organizing map (SOM). The
problem was defined as a Dubin traveling salesman problem
with neighborhoods (DTSPN) where the vehicle is requested
to visit a set of way points and return to to its initial location
in a closed contour. The SOM is a single layer of weighted
neural network. Its process started with neuron process starts
by competitive search of the winner neuron closest to the
target then its neighborhood neurons weights were adapted by
getting closer to the winner neuron based on a neighborhood
function. In a simple environment (22 targets), the performance
of SOM based DTSPN was compared to variable neighborhood
search (VNS) algorithm in scenarios of single and multiple
(up to 3) UAVs. SOM had the best performance regarding
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CPU cost. In more complex environments (up to 100 targets),
the results has shown that SOM based Bézier outperformed
earlier methods with respect to traveling time while SOM based
DTSPN remains with the best CPU cost.

Principle component analysis (PCA) is an unsupervised ML
tool aiming to decrease the size of a dataset conserving suf-
ficient information. Kishimoto et al. [82] applied PCA to a
mobile robot equipped with a gamma-ray detector in order to
minimize the navigation distance to radiation sources. First,
Compton camera measured the radiation. Then, the radiation
distribution was reconstructed using back-projection onto 2D
space. PCA was used to generate an inspection path surrounding
the source of radiation whose amount was compared to a
threshold to choose whether the next step follows the first
principal component vector or the second. Experiments were
conducted using a single and multiple radiation sources and
localization error were 0.35m and 0.28m respectively in sim-
ulation. This method has shown a higher performance than
information-driven solution in [83] with less localization errors
and measurement points. The main results issued from the
reviewed unsupervised learning algorithms are summarized in
Table II.

C. Reinforcement Learning

Q-learning is one of the most applied RL algorithms and
is behind the foundation of many other algorithms [85]. This
algorithm is used to solve problems in environments with
limited states and discrete actions [51]. Gao et al. [86] in-
troduced a risk free Q-learning (RFQL) algorithm to prevent
UAV from blind navigation and ensure safe path in large
scale space. The authors proposed two improvements. First, the
distance to the target was taken into consideration to guide the
training. Furthermore, states close to obstacles were identified
through training experience as risk zones. Simulation in a 2D
environment has shown that RFQL generated a safer path than
standard Q-learning and converges 600 steps faster reducing
iteration cost.

In [87] Q-learning was employed by Xie et al. to optimize
the distance and energy of a navigating fixed wing UAV. The
environment consisted of a battlefield area where the UAV loads
data its sources and offloads it at the command post, avoiding
fire threats. The approach considered the optimization of: flight
distance, flight energy, communication energy while hovering
and processing energy. Simulation was conducted in a 2000m×
2000m decomposed into 10 × 10 grids.This Q-learning based
approach resulted a smoother and 26% shorter path than ant
colony algorithm (ACO).

An improved Q-learning algorithm was proposed in [88]
by Yan and Xiang to plan an optimal path of a UAV in a
reconnaissance mission. The authors used ϵ-greedy strategy
alongside with Boltzmann strategy in order to avoid state re-
dundancy. Furthermore, the distance to the target was taken into

account in the Q function initialization through an exponential
decaying function of the coordinates. The simulation considered
a 2D airspace established in STAGE software were the UAV
is trained 25000 episodes. The results has shown that the
proposed improved Q-learning converged 2300 episodes faster
than classical Q-learning and remained stable. Also, the path
obtained through the improved Q-learning was four (4) steps
shorter.

SARSA stands for State–Action–Reward–State–Action is
also like Q-learning used to solve problems in environments
with limited states and discrete actions, but it updates after
performing the next action without taking a greedy action like
in Q-learning algorithm [51]. Boming et al. [89] proposed an
enhancement to SARSA algorithm for a UAV path planning
problem. The approach was based on an ϵ-greedy strategy
guided by the geometric distance to the target. In a static 2D
environment, simulation results has shown a faster convergence
of the proposed improved SARSA than ordinary SARSA and
Q learning algorithms. In addition, this improved SARSA
algorithm resulted an 18 steps shorter path than Q learning
and a 2 steps shorter path than ordinary SARSA.

Huo et al. [90] proposed a Dyna-Q method to plan the
path of multiple quadrotor UAV. The learning approach of this
technique combine model-based and model free methods, where
the agent interacts directly with its environment obtaining a
real experience, and the environment model gives an estimated
experience in order to rationalize exploration. The approach
was tested in 2D 20X20 grid environment through static then
dynamic scenarios. The results has shown that UAV reached
the target fast after 150 training episodes in the static scenario,
and after 1500 training episodes in the dynamic scenario.

Cui and Wang [91] introduced a 2 layer Q (2L-Q) learning
algorithm to tackle a UAV global and local path planning
problem. The idea was to assign global and local path planning
processes to two separated Q learning layers. The global layer
was to be activated when no obstacle motion is detected,
following ϵ-greedy and Boltzman strategies. The local layer
considered the distance and the angle between obstacle and
target in the reward. The action with best Q value among the
two layers at the current state was to be executed. The approach
was trained in 2D static and dynamic environment achieving
89.4% success rate after 800 episodes. The test were conducted
in 5 2D simulation scenarios varying from simple static to
complex dynamic. The higher the complexity the longer the
optimal path got.

It is hard and computationally expensive to deal with a large
state space using basic Q-learning and SARSA. A DNN is
employed as an approximation function for Q function and
relies on an experience replay process to stabilize this approx-
imation. The whole architecture is known as Deep Q Network
DQN [92]. In [93], Anas et al. compared DQN algorithm to
basic Q-learning and SARSA as a solution to a mobile robot
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TABLE II. UNSUPERVISED LEARNING PROPOSALS FOR UAV PATH PLANNING

Algorithm Author(s) Agent Environment Main Result Year
SA-K-means Yue and Zhang [71] multiple UAVs 2D, dynamic better convergence to global optima than GA with 92%

successful coverage
2018

ACO-K-means Li et al. [72] UAV 2D, dynamic 20% less flight range tan ACO alone 2023
WRI-I-K-means Kim and Park [84] multiple UAV 2D, dynamic shorter distance to the clusters centers than SSO 2023
MMAS-K-means Li et al. [75] multiple UAV 2D, dynamic better performance than MMAS alone regarding path length

and local optima avoidance
2018

GA-K-means Ma et al. [76] multiple UAV 2D, dynamic better performance than GA alone regarding path length at
the expense of additional CPU cost

2019

P-K-means Suseno and Wardana [76] multiple UAVs 2D, dynamic less CPU cost compared to ACO and Held & Karp algorithms 2021
STCA-NE-GA Chen et al. [76] multiple UAV 2D, dynamic 3% better completion time than STCA-NA-GA 2021

CSCA-NE-BSSS Xiao et al. [79] multiple UAVs 2D, dynamic NE strategy generated CSCA and NE got better completion
time performance than STCA and GA respectively, BSSS
resulted a shorter path than LESS

2023

CHSA Dai et al. [80] multiple UAVs 2D, dynamic CHSA had the best performance regarding energy cost com-
pared to K-means and ACO

2022

SOM-DTSPN Faigl et al. [81] multiple UAVs 2D, dynamic better performance with respect to travelling time than VNS
and less CPU cost than SOM-Bezier

2019

PCA Kishimoto et al. [82] mobile robot 2D dynamic higher performance and accuracy than data-driven solution
[83]

2021

path planning in a static environment. DQN was the unique
algorithm to approach 100% success rate in both simulation
and real implementation.

Luo et al. [94] proceeded to Deep SARSA to solve a multiple
UAV path planning in a dynamic environment. Similar to DQN,
this approach consists of using a DNN to predict the action
rather than Q table in simple SARSA, when it comes to large
state space. The authors used a simplified 2D environment to
train the UAVs where the success rate increases after the 800
first episodes following the ϵ-greedy strategy. The algorithm
was tested in a virtual 3D environment deisgned in Ros-Gazebo
platform, where a scenario of two UAVs, one static obstacles
and two dynamic obstacles (2 other UAvs) was considered. The
approach resulted a collision free-path.

Wang et al. [95] proposed a deep double Q network (DDQN)
algorithm to plan the path of a UAV in a rescue mission in
mountain environment. DDQN uses two Q networks one for
action selection and the other for action evaluation to overcome
overestimation of DQN. The authors generated a grid based
3D mountain environment using peaks function modeling. The
simulation considered two scenarios: static target and dynamic
target. Considering static target DDQN had a 200 episodes
faster convergence than DQN, thus DDQN completed the task
quicker. In the dynamic target case, DDQN was the only
algorithm to converge within the 1000 training episodes.

Yan et al. [96] introduced Dueling DQN (D3QN) for a UAV
path planning in dynamic environments considering potential
enemy threats. D3QN architecture is constituted by splitting
the Q networks into two streams: one to evaluate the state
value and the other for advantage estimation. The algorithm
was trained in a simulated 2D static then dynamic environments
designed in STAGE platform, ϵ-greedy strategy was set with
further heuristic guidance for action selection. D3QN has shown
a better learning stability and performance in the static scenario

compared to DQN and DDQN, and a higher success rate in
the dynamic scenario. The test scenario contained one static
threat and two dynamic ones. UAV reached the target safely
through D3QN planner with a success rate of 67.33% although
the scenario was not seen during training.

Chao et al. [97] proposed an Event-Based DQN (E-DQN)
to UAV under unknown environment. The approach relied on
event camera pictures whose features were extracted through
spatiotemporal decoupling and reconstructed at the output of an
auto-encoder. The reconstructed image were fed to train a DQN
with an experience replay. The ϵ-greedy strategy were chosen to
manage exploration and exploitation trade-off. This proposed E-
DQN method was tested in Airsim simulation environment with
unknown obstacles within 40 000 episodes. The method was
compared to ordinary DQN spiking neural network approaches
under the same environmental parameters. E-DQN realised the
best performance with 73% and 74% less running time than
SNN and DQN respectively.

In their prosposal, Wang et al. [98] suggested a novel UAV
path planning technique based a layered priority experience
replay DDQN algorithm (Layered PER-DDQN) in a complex
battle field environment, where a priority label defines data to
be extracted from the experience pool. The authors split the
problem into two sub-problems layers. The first sub-problem
was threat avoidance where the environment were modeled as
a 2D graph. The second sub-problem was a collision avoidance
where the environment were modeled as a 3D digital elevation
map. A weighted action summation vector was used to sum
the collision avoidance action vector and the threat avoidance
action vector. The proposed Layered PER-DDQN approach
was trained through 3000 episodes alongside with conventional
DDQN proving a relatively quicker convergence and a higher
average reward. In 250Km x 250Km x 2Km test environment,
the proposed approach outperformed DDQN and A* in terms
of path length and planning time.
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Xie et al. in [99] introduced several improvements on DQN
algorithm seeking for a better path planning solution for UAV in
a large scale dynamic environment. A recurrent layer was added
to the DQN network (DRQN) inorder to overcome blindness
in early stage training. Furthermore, to speed up the algorithm,
two approaches has been explored. An action selection strategy
combining Q values and the reward (RQ) to attenuate mean-
ingless exploration. An adaptive sampling (ADSA) process
to distinguish important samples and normal ones based on
rewards to rationalize UAV-environment interactions. Simula-
tion was conducted in three different environments: static, dy-
namic and indoor. Five algorithms constructed from the prvious
approaches has been compared: DRQ, ordinary DQN, RQ-
DRQN, ADSA-DRQN and RQ-ADSA-DRQN. As a summary
of the results, RQ-ADSA-DRQN had a relatively better global
performance in the three scenarios regarding convergence speed
and success rate indicators.

WANG et al. [100] suggested improvements to DQN algo-
rithm in their proposal for a UAV autonomous navigation and
collision avoidance problem in unknown environment relying
on on board camera only. The authors first replaced original
CNN network with faster R-CNN for image processing and
obstacles identification. The second improvement was in the re-
play memory where the authors proposed a data deposit mech-
anism (DDM) that defines and sums three weighted classes of
experiences: results experiences (RE) causing the end of an
episode, danger experience (DE) related to obstacles detection
in contrast to safety experience (SE) where UAV is away from
obstacles. The obtained method was then a Faster-R-CNN-Data
Deposit Mechanism-DQN (FR-DDM-DQN). Training of the
FR-DDM-DQN algorithm was done through two parts where
R-CNN and DDM-DQN algorithms were trained separately.
FRDDM-DQN was tested in Unity3D simulation environment
in three scenarios: static obstacles, dynamic obstacles and
mixed environment. The FRDDM-DQN approach had a higher
success rate in all scenarios outperforming methods without
data deposit mechanism (DDM) such as FR-DDQN and FR-
D3QN. It was noticeable also that faster R-CNN performed
better than You Look Only Once (YOLO) algorithm since FR-
DDM-DQN had a better success rate than YOLO-DDM-DQN
in all scenarios.

Boulares et al. [101] developed a path planning algorithm
for multiple UAV searching for floating targets in ocean en-
vironment. The idea started by applying a grid decomposition
algorithm to the sea area and setting nodes and UAV was said
to navigate between them. The nodes were set at the center
of each grid, except centers outside the sea area whose nodes
were kept nearest to borders inside that cell to prevent flight
outside sea area. The sea area was then divided into sub-areas
where a single UAV was assigned per sub-area. A simulation
of target trajectory was settled based on Ekman Globcurrent
data-set that takes into account wind and ocean current forces.

Finally, a DQN algorithm was developed to for each UAV agent
to simulated target search inside a sub-area. In simulation, a
surface of 453 422 Km2 was divided into seven 7 sub-areas
where each agent is trained in 2000 episodes. The results has
shown a high success rate between 96% and 100%. The search
time and traveled distance were inversely proportional to the
surface of the area.

Actor critic algorithms has an architecture constituted of two
networks: an actor who selects the highest value action, a critic
that evaluates that action [51] based on Temporal Difference
(TD) [102, 103]. Han et al. [104] proposed an Experience-
Shared Advantaged Actor Critic (ES-A2C) as a solution to
multi-UAV path planning problem. It consisted of sharing prior
exploration knowledge about the environment between UAV
agents. This approach was tested in 3D dynamic simulated
environment using: a single UAV, two UAVs and three UAVs.
The results has shown that ES-A2C performs better that basic
Actor Critic (AC) and Advantage Actor Critic (A2C) regarding
average reward and convergence speed, especially in multiple-
UAVs cases where it registered clearer dominance.

Jiménez et al. [105] conducted a comparative study be-
tween three algorithms: DQN, SARSA and A2C for UAV
path planning. A virtual 3D neighborhood environment was
designed in Microsoft Airsim with realistic obstacles where
the UAV was said to navigate from a point A to a point B.
The algorithm were then tested in 4000 episodes. The result
shows that DQN algorithm was the only one among the three
algorithms tor reach the target. A2C fell quickly into a local
maximum and remained stuck there. The authors concluded
that A2C algorithm has a faster convergence with a high data
efficiency but requires a fine tuning to outperform DQN in
complex environments especially.

Zhao et al. [106] introduced soft actor critic (SAC) algorithm
with hindsight experience replay (HER) in a mobile robot
path planning. The idea was to solve the problem of wasted
experience in failed tasks by updating the target point for each
sequence. This approach was tested in simulation through a
20x20 static environments. HER-SAC yields to a shorter path
and a faster convergence to SAC and DDPG.

Zhou et al. [107] suggested several improvements to SAC
algorithm in their solution to a UAV 3D online path planning
problem. First, a self attention mechanism was inserted in to the
actor network to face the large input data analysis processing
and analysis. Furthermore, artificial gravitational and repulsive
potential fields were injected into the reward mechanism so
that to guide the UAV to the target and prevent collisions and
hence accelerate convergence. The approach was trained and
tested in a 3D 600x600x250 grid environment through static
then dynamic scenarios. Simulation results in the static scenario
has shown a better performance of the proposed enhanced SAC
compared to ordinary SAC with 12.5% less planning time, 7.7%
less steps to convergence and an overall improvement of 25.5%.
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A strong generalization has been proven by the improved SAC
in dynamic obstacles scenario with a maintained 100% average
success rate.

Tian et al. [108] proposed a three step experience buffer deep
deterministic policy gradient (TSEB-DDPG) to perform a fast
path planning of a UAV in a 3D dynamic urban environment.
First, the authors split the 3D environment into multi-layer
2D planes. Then, the agent was trained by Hybrid Learn-
ing Particle Swarm Optimization (HL-PSO) and the results
were used as a prior knowledge for TSEB-DDPG. Finally, a
three step sampling mechanism was adapted to basic DDPG
algorithm experience buffer according to the learning stage:
excellent transition buffer, collision transition buffer and fast
transition buffer. Simulation results has proven that TSEB-
DDPG outperforms classical DDPG and HL-PSO algorithms
regarding planning time, path length and success rate.

HU et al. [109] also proposed an improved DDPG algorithm
to plan UAV motion in complex unknown environment. The
improvement introduced by the authors was the definition of
Relevant Experience Learning (REL) in the experience pool.
REL process started by experience pool splitting (EPS) to ex-
tract relevant experience according to danger degree measured
by the distance to obstacles. Then Temporal Difference (TD-
error) based priority experience replay (PER) was used to break
correlation between adjacent similar experiences. And finally
action selection was adjusted after experience learning so that
REL experience is fully exploited. REP-DDPG approach was
trained in 120 x 90 x 10 Km3 static simulation environment
through 5000 episodes alongside with Reward Classification
(RC-DDPG), PER-DDPG, EPS-DDPG and classical DDPG
algorithms. REL-DDPG had the fastest convergence in less than
3000 episodes and registered the highest average success rate
of 88.92%. The approach was tested in three complex static
scenarios and one complex dynamic scenario. UAV trained by
REL-DDPG was the only one to reach the target in complex
dynamic scenario.

Luo et al. [111] introduced an improved Twin Delay Tempo-
ral Difference Algorithm (I-TD3) to solve a UAV path planning
problem. The improvement consisted of a prioritized sampling

in the experience pool to identify important samples, and an
average temporal difference (TD3) was adapted to overcome
overestimation and avoid underestimation of Q values. This
solution was tested in 4 different static 3D environments and
4 different dynamic 3D environments. The results after a
2000 episodes training has shown a higher performance of I-
TD3 algorithm compared to SAC, DDPG and ordinary TD3
algorithm regarding registering the highest success and the
lowest collision rate in all environments. The I-TD3 algorithm
was also the best to resist to the increase of environment’s
complexity.

Fan et al. [112] suggested an algorithm based on interfered
fluid dynamical system (IFDS) tuned by TD3 as a solution to
an online UAV path planning problem. The authors established
first the mathematical modeling of the UAV and the threat zones
modeled as cylinders under dynamic constraints limiting flight
angle and velocity. IFDS was designed as the basic method
while TD3 generates the parameters of IFDS. Simulation results
has shown that IFDS-TD3 avoided threat successfully in real
time through a smooth path contrary to IFDS which fell
into local optima. The main results issued from the reviewed
reinforcement learning algorithms are summarized in Table III

A. Bibliometric Analysis

This review work focused on the recent contributions of
machine learning in the solution of path planning problem for
UAV. It covered 50 journal and conference articles. After the
technical relevance of the paper, the source of the article was
a crucial criterion in the selection. The reviewed works were
issued from credible databases such as: IEEE, Elsevier, Springer
Links and MDPI. The distribution of the reviewed journal
papers and conference communications among databases is
illustrated in Fig. 4.

Fig. 4. Databases contribution in the review
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Wang et al. [110] introduced a cumulative reward and
an environment segmentation as improvements to DQN and
DDPG algorithms to solve a UAV path planning problem. The
proposed cumulative reward (CR) is computed inversely to
the distance to the target and the obstacles’ density in the
neighborhood of the location. The region segmentation was
based on a clustering process that divided the navigation area
into partitions with eight borders where their connectivity was
decisive in the reward function in order to avoid redundancy
and local optima traps. Simulation results in 2D environment
has shown that cumulative reward improved convergence speed
of DQN by 30.8% and region segmentation enabled 99% local
optima avoidance for DQN and 92% for DDPG.

V. ANALYSIS AND DISCUSSION
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TABLE III. REINFORCEMENT LEARNING PROPOSALS FOR UAV PATH PLANNING

Algorithm Author Agent Environment Main Result Year
RFQ Gao et al. [86] UAV 2D, static faster convergence and a safer distance from obsta-

cles than ordinary Q
2021

Q Xie et al. [87] UAV 2D, static 26% shorter path than ACO 2023
I-Q Yan and Xiang[88] UAV 2D, static faster and more stable convergence than ordinary

Q with relatively shorter path
2018

G-SARSA Boming et al. [89] UAV 2D, static faster convergence with shorter path than Q and
SARSA

2022

Dyna-Q Huo et al. [90] UAV 2D, static & dynamic faster convergence 2022
2L-Q Cui and Wang [91] UAV 2D, static & dynamic high success rate 2022
DQN Anas et al.[93] mobile robot 2D, static higher success rate than Q and SARSA 2022

DDQN Wang et al.[95] UAV 2D, static faster convergence than DQN 2022
D3QN Yan et al.[96] UAV 2D static & dynamic higher success rate and better learning stability than

DQN and DDQN
2022

E-DQN Chao et al.[97] UAV 3D, dynamic less running time than SNN and DQN 2024
L-PER-DDQN Wang et al.[98] UAV 3D, static shorter path lenght and completion time than

DDQN and A*
2022

RQ-ASDA-DRQN Xie et al.[99] UAV 3D, static & dynamic faster convergence and higher success rate than
DQN, RQ-DQN, ADSA-DRQN and DRQ

2021

FR-DDM-DQN WANG et al. [100] UAV 3D, static & dynamic higher success rate than FR-DDQN, FR-D3QN and
YOLO-FDDM-DQN

2021

DQN Boulares et al. [101] miltiple UAV 2D, dynamic high success rate 2021
ES-A2C Han et al.[104] UAVmultiple UAVs 3D dynamic faster convergence and higher success rate com-

pared to AC and A2C
2019

DQN Jiménez et al.[105] UAV 3D static higher success rate than A2C which needs a fine
tuning

2023

HER-SAC Zhao et al.[106] UAV 2D static shorter path and faster convergence compared to
DDPG and SAC

2023

I-SAC Zhou et al.[107] UAV 3D, static & dynamic less completion time and faster convergence than
original SAC

2023

TSEB-DDPG Tian et al. [108] multiple UAVs 3D, dynamic better performance than original DDPG regarding
planning time, path length and success rate

2023

REL-DDPG HU et al. [109] UAV 3D, static and dynamic faster convergence and higher success rate than
PER-DDPG and DDPG

2023

CR-RS-DQN HU et al. [109] UAV 2D, static faster convergence than DQN 2023
I-TD3 Luo et al. [111] UAV 3D dynamic high resistance to complexity increase and higher

success rate than SAC and DDPG
2024

IFDS-TD3 Fan et al. [112] UAV 3D dynamic better convergence and success rate in real time
planning compared to IFDS alone

2020

The recency of the proposal was also an important criterion
where the included papers were mostly dated from 2018. Fig.
5 illustrates the number of publications per year for each
paradigm. Compared to other ML paradigms, there is an observ-
able rising interest in reinforcement learning from researchers
community for the design of path planning solutions.

Fig. 5. Selected articles’ years

B. Findings in Supervised Learning

Supervised learning was mainly present in this research
through regression, SVM classifier and neural networks (Table
I). Regression usefulness was mainly in path prediction and
following relying on historical data and mean square error
(MSE). Nevertheless, this classical approach struggles in high
complexity environments with nonlinear variable interaction.
Additionally, regression is a purely data-driven method whose
outcome is strongly related to the quality of training. Hence,
the model requires retraining to respond to dynamic changes
leading to high computational cost with risks of overfitting.

SVM binary classifier gave excellent results in generating
collision-free path. However, the high time-cost limits the
scalability of this technique, which struggles in dynamic en-
vironments requiring continuously growing datasets.

Compared to previous techniques, neural networks and deep
neural networks as particular supervised classification tools
handles efficiently complex environments and large datasets
with robustness against noise. DNN are used intensively in
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vision based navigation independently or within reinforcement
techniques. Despite its relative high scalability and fast process-
ing, DNN are hardware demanding to fit real-time requirements
and large amount of training datasets.

The advantages and drawbacks of main SL techniques are
summarized in Table IV.

TABLE IV. SL IN PATH PLANNING: ADVANTAGES AND DISADVANTAGES

SL Algorithm Advantages Drawbacks
Regression Easy interpretation Risk of overfitting

Not suitable for com-
plex environments

SVM Efficient for safe nav-
igation

High training cost
Not suitable for high
data sets

DNN Efficient in complex
environments

Data hungry and hard-
ware demanding

C. Findings in Unsupervised Learning

Unsupervised learning algorithms contributed in path plan-
ning solutions by structuring the environment. Clustering al-
gorithms strength was particularly noticed in multi-UAV and
multi-target tasks (Table II). Clustering techniques like K-means
were efficient in reducing flight time and hence saving resources
by an optimized UAV task allocation. Despite their scalability
to adapt clusters according to newer datasets, these algorithms
struggles in dynamic cluster requirements where a frequent re-
clustering leads to high computation cost and time lag in real-
time applications.

The advantages and drawbacks of unsupervised clustering are
summarized in Table V.

TABLE V. UL IN PATH PLANNING: ADVANTAGES AND DISADVANTAGES

SL Algorithm Advantages Drawbacks
Clustering Efficient in resource

management
Struggles with
dynamic clusters

D. Findings in Reinforcement Learning

Reinforcement learning and deep reinforcement learning
algorithms constitute the quantitatively dominant paradigm in
this review. RL and DRL algorithms were proposed as solu-
tion indifferent scenarios (Table III). QL and SARSA were
sufficient for simple environments where states are countable.
These algorithms ensure fast convergence in such environments.
Nevertheless, when state space get larger, memory requirements
for storing a Q table become hard to satisfy.

Deep reinforcement learning uses deep neural networks ap-
proximations to deal with unlimited states. Deep Q network are
scalable Q learning to deal with high dimensional state space.
Additionally, actor critic algorithms are continuous action plan-
ners useful in smooth control navigation tasks.

Reinforcement learning and deep reinforcement learning al-
gorithms minimizes the dependency to huge labeled datasets

that supervised DNN required, by adopting reward based learn-
ing through the interaction with the environment. However most
RL and DRL algorithms are highly sensitive to hyperparame-
ters, like learning rate and neural networks batch size, which
impact their learning and the balance of exploration (applying
new actions) and exploitation (actions choice based on past
experience).

The advantages and drawbacks of main UL techniques are
summarized in Table VI.

TABLE VI. UL IN PATH PLANNING: ADVANTAGES AND DISADVANTAGES

.

RL Algorithm Advantages Drawbacks
Q Probabilistic output

Fast convergence at
low cost

Limited scalability

DQN Scalable to large state
space

Higher computational
cost

A2C Continuous action
generation

Higher computational
cost

TABLE VII. INTER-PARADIGM COMPARISON

ML Paradigm Advantages Drawbacks
Supervised learning Learning stability

Efficient in static envi-
ronments

Data dependency
Limited adaptability

Unsupervised learning Resource optimization
with multi-UAVs

Not a standalone plan-
ning solution

Reinforcement learn-
ing

Less training time
Adaptability do dy-
namic environments

Sensitivity to hyperpa-
rameters and reward
shaping

To overcome limitations of machine learning approaches,
authors proposed several improvement techniques:

In supervised learning, the combination of deep neural
networks with heuristics and metaheuristic algorithms was
conclusive. Based on its iterative approach, PSO can prevent
DNN from falling into local minima and thus accelerating its
convergence into optimal path. In addition, PSO can be used
in DNN parameter and weights tuning by its capacity to high
dimensional search and maintain multi-objective balance [64].
DNN itself can enhance traditional path search algorithm like
A*, where it provides adaptive heuristics to A* in dynamic
environments [65].

In most proposals, unsupervised learning constitute itself an
enhancement to other planning algorithms. The addition of
clustering algorithms like K-means improved resource manage-
ment efficiency to many metaheuristic algorithms like ACO
[113], GA [76] and SA [71]. The advantage of clustering
was particularly sensed in WSN applications where UAV takes
sensor range as cluster radius to minimize its flight path.
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E. Enhancements and Hybridization

Following the previous analysis, some common features
among machine learning paradigms are extracted and summa-
rized in Table VII.
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Deep reinforcement learning can be seen itself as an im-
provement to DNN where it reduced data dependency and
training cost with an environment interaction. The proposed
enhancements in DRL targeted mainly: convergence speed and
learning stability by the mean of reward shaping. In many
proposals in limited states environments, authors took into con-
sideration the distance to the target in the Q function to assign
higher rewards to closer states and hence accelerate conver-
gence [89][88]. Dueling Double DQN (D3QN) introduced an
evaluation network to reduce overestimation (DDQN [95]) and
hence improve learning stability. In parallel, it evaluates state
and action independently leading to more efficient learning[96].
Priority experience replay (PER) also attempts to accelerate
convergence of DQN by giving priority to experiences with
large TD error in target network update [95]. Hindsight ex-
perience replay was proposed to enhance learning efficiency of
actor critic algorithms [106]. This technique consists of learning
from failed episodes by setting new targets leading to a better
exploration especially in sparse reward environments.

VI. CONCLUSION

UAV path planning has shown an increasing importance in
recent years in parallel with the growing drones applications
across diverse fields and important tasks. The autonomous data-
driven nature of machine learning has made it a qualified
solution for path planning problem. This review explores recent
path planning proposals that used machine learning paradigms.

This review selected papers from credible databases and
adopted paradigm-based taxonomy to classify them into: su-
pervised, unsupervised and reinforcement learning. In light
of proposals’ results, an analysis has been built to highlight
findings.

Supervised learning approaches has shown a good learning
stability but with an extensive data dependency making them
more suitable to static environments rather than dynamic sce-
narios. A hybrid combination with some metaheuristic algo-
rithms like PSO could improve its real-time performance.

Unsupervised clustering algorithms were considered basi-
cally as optimizers rather than main planners. Clustering algo-
rithms were found then as a hybrid combination with planners.
These algorithms were efficient in resources optimization espe-
cially in muti-UAV tasks allocation, while it may struggle with
dynamic clusters.

Reinforcement learning was the approach with a relatively
better generalization to dynamic scenarios. Deep reinforcement
learning approaches especially combines deep neural networks
scalability with a reward based learning to get a better perfor-
mance in real time. Nevertheless, their performance are highly
sensitive to hyperparameters requiring a fine reward shaping to
handle exploration-exploitation trade-off. Techniques like PER
and HER were applied to enhance DQN convergence and SAC
learning efficiency respectively. Improved versions of DQN like

DDQN and D3QN were designed to enhance learning stability
and convergence rate.

Despite the rigorous methodology adopted, there were some
limitations of this paper that should be acknowledged. In
many selected proposals, simulation results were not validated
in real world experiment, this can be justified by regula-
tory restriction in some countries against drones. Although
some authors resorted to high fidelity simulation environments
that closely mimic real-world’s, still an experimental evidence
would strengthen the credibility of findings. Another weakness
that could be mentioned is the absence of unified quantitative
metrics for evaluation due to the adopted taxonomy which
focus more on algorithm paradigm rather than the optimization
criteria. This choice on the other hand conveys more to the
objectives of the review.

In the end of this study, we are aware of some open
challenges in machine learning based path planning whose
solutions are actively under development:

• Reducing computational cost and thus hardware require-
ments for real-time applications.

• Leveraging multi-objective path planning.
In order to contribute to this development, the future of this
research will be directed towards multi-objective path planning
that balances fast real-time response with reducing hardware
requirements.

LIST OF ABBREVIATIONS

2L Two-layer.

ACO Ant colony optimization.
ADSA Adaptive sampling algorithm.

CHSA Cluster head selection algorithm.
CNN Convolutional neural network.
CSCA Coverage-based scanning clustering algorithm.

DDM Data deposit mechaniques.
DDPG Deep deterministic policy gradient.
DDQN Double deep Q network.
DTSPN Dubin travel sale’s person with neighborhood.

E-DQN Event besed path planning.
ES-A2C Experience shared actor critic.

FNN Forward propagation neural network.

G-SARSA Guided state action reward state action.
GA Genetic algorithm.
GPR Gaussian process regression.

HALE High altitude long endurance.
HER Hindsight experience replay.
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HTOL Horizontal take-off and landing.

I Improved.
IFDS Interfered fluid dynamical system.

KNN K neareast neighborhood.

L-PR Lasso regularized polynomial regression.
LASE Low attitude short endurance.
LASE Low attitude long endurance.
LR Linear regression.
LSTM Long short term memory.

MALE Medium altitude long endurance.
MLR Multiple linear regression.
MMAS Minimum Maximum.
MSVM Multiple support vector machine.

PCA Principal component analysis.
PER Priority experience replay.
PR Polynomial regression.
PSO Particle swarm optimization.

REL Relevant experience learning.
RF free.
RNN Recurrent neural network.

SAC Soft Actor Critic.
SAR Search and rescue.
SD Smart dust.
STCA Spatial-temporal clustering algorithm.
SVM Support vector machine.

TD3 Temporal difference.

UAV Unmanned aerial vehicle.

VTOL Vertical take-off and landing.

WRI Way refinement iteration.
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