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Abstract—Generative Adversarial Networks (GANs) are a 

major advancement in generative modeling, surpassing 

traditional machine learning models in tasks such as image 

generation, super-resolution, and image-to-text translation. A 

GAN consists of two neural networks: a Generator (G), which 

creates data from noise or a latent vector, and a Discriminator 

(D), which determines whether the data is real or generated. 

These networks train competitively, improving each other 

iteratively to produce increasingly realistic outputs. However, 

GANs face challenges like mode collapse, unstable training, and 

convergence issues, leading to the adoption of strategies such as 

instance normalization and enhanced loss functions. Future 

research can focus on improving stability, developing novel loss 

functions, and applying GANs in unsupervised learning. 

Performance metrics like Inception Score, Fréchet Inception 

Distance (FID), and Structural Similarity Index (SSIM) are 

essential for evaluating and comparing GAN architectures. 

Additionally, ethical concerns, including the misuse of GANs for 

deepfakes and synthetic data, underscore the importance of 

transparency, accountability, and ethical standards in research 

and deployment. This review provides an accessible 

introduction to GANs for novice researchers, along with a 

detailed analysis of their limitations, applications, and future 

prospects, offering valuable insights and direction for advancing 

this field. 

Keywords—Artificial Intelligence (AI); Computer Vision 

(CV); Deep Learning; Generative Adversarial Networks (GAN); 

Image Synthesis. 

I. INTRODUCTION  

Generative Adversarial Networks (GANs) have 

transformed the domain of Artificial Intelligence by 

facilitating the creation of remarkably realistic data, 

including images, text, and speech. These advancements are 

based on machine learning and deep learning technologies, 

enabling computers to emulate human cognitive processes 

and decision-making. Advances in machine learning (ML) 

have led to the development of strong generative models that 

can produce realistic data. Among these, GANs have drawn 

a lot of interest due to their capacity to use competitive 

learning between two neural networks to produce high-

quality, lifelike data. Many algorithms have been built 

throughout the years for developing systems that can mimic 

the human brains. Also, these algorithms have been 

implemented using a number of programming languages. 

Convolutional Neural Networks (CNNs), in particular, are 

Deep Learning models that use numerous layers to learn how 

to extract features directly from raw input. Throughout the 

training process, these models automatically recognize 

hierarchical characteristics, ranging from low-level patterns 

(like edges) to high-level structures (like objects or faces). 

Use of high-level features to handle unstructured data [1] is 

perhaps Deep Learning’s greatest asset. Since Deep Learning 

uses generative modelling to develop unstructured data, like 

new images or texts, it has a huge impact in the field of 

generative networks.  

The domain of generative modelling has undergone 

substantial transformations, with preliminary models serving 

as a basis for the advancement of sophisticated 

methodologies such as Generative Adversarial Networks. 

Generative models like Boltzmann Machines, Gaussian 

Mixture Models, and Hidden Markov Models were 

commonly utilized to generate structured data before the 

advent of GANs [2]. However, these conventional models 

were not capable of producing high-dimensional, high-

quality outputs, and they significantly depended on 

assumptions about the underlying data distributions. The first 

introduction to GAN was first proposed by the researcher Ian 

Goodfellow of Google Brain in 2014 [2]. Numerous 

algorithms have been proposed as a result of advancements 

in generative AI.  A generative based modelling particularly 

in the image domain has made a significant progress since the 

mid-2018. Examples of language modelling like Google’s 

“BERT (Bidirectional Encoder Representations from 

Transformers)”, “GPT-3 (Generative Pretrained 

Transformer-3)” [3], synthesis of speech using Parallel 

WaveGAN, and musing composition [4]-[7] using MuseNet 

have dominated in their respective fields. These 

advancements are not limited to image generation but also 

extend to language modelling, speech synthesis, and even 

music composition. However, the image generation domain 

has a significant contribution from various GAN models like 

StyleGAN, BigGAN, (all explained further). NVIDIA’s 

StyleGAN is able to generate images [8] of human faces that 

look very realistic [9]. A GAN consists of two neural 
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networks a Generator (G) and a Discriminator (D). The 

random noise during the commencement of the training is 

converted to a real sample by the Generator [10], while the 

Discriminator decides if the sample is real or artificially 

produced by the Generator [11]. The important components 

of a GAN are shown in the Fig. 1. 

 

Fig. 1. Components of GAN’s training algorithm [2] 

Since Generative Adversarial Networks are trained on 

losses, taking losses into account is another crucial 

component of GAN training. Initially, a random selection is 

made from the training set to choose an actual sample. Before 

the Discriminator is trained, the generator output is collected 

into a training set. Discriminator's objectives for real images 

are "1," whereas the targets for generated images are "0." 

Real images offer values close to "1," whereas the fake offers 

“0”.  

Training GANs encompasses several fundamental 

concepts that enhance their performance and stability. Binary 

cross-entropy, a prevalent loss function, quantifies the 

divergence between expected and actual outputs, directing 

networks towards optimal performance. The sigmoid 

activation function assists the Discriminator by converting 

outputs into probabilities ranging from 0 to 1, enabling it to 

differentiate between genuine data and produced samples. To 

tackle prevalent issues, like as mode collapse and unstable 

convergence, sophisticated methods like instance 

normalization and minibatch discrimination are utilized. 

Instance normalization standardizes inputs across batches to 

facilitate the learning process, whereas minibatch 

discrimination promotes variation by ensuring the Generator 

yields various outputs throughout the rounds by considering 

only samples with a stipulated batch size. These strategies 

jointly augment the resilience and dependability of GAN 

training, facilitating the production of realistic and high-

quality outputs. 

The binary cross entropy between the output of the 

Discriminator and the goal "1" is the loss function. The target 

is a binary value, and the sigmoid activation function is 

applied to a single output unit [12]. The Discriminator's 

weight should be frozen during GAN training so that only the 

Generator's weight is modified. If not, it is changed to accept 

the image that was generated as real. It is highly 

recommended to use random noise when making the 

graphics. The letter 𝑧 stands for random noise. The noise-

generated images are in the 𝐺(𝑧). The most prevalent input is 

gaussian noise with a normal distribution. In order to train the 

GAN, both networks must be incrementally updated and 

tweaked recursively. The 𝐷(𝑋) for any input image 𝑋 denotes 

a “unit probability for authenticity” and a “zero probability” 

for falsification. Fitting the real data distributions of 𝑝𝑑𝑎𝑡𝑎(𝑥) 

and 𝑝𝐺(𝑥) is the aim of generative modelling. Therefore, it's 

crucial to reduce differences between two distributions while 

training generative models. 

A. Contribution and the Criteria of the Paper 

 The following are the paper's contributions:  

• Examination of how various GAN architectures and their 

objective functions (like cross-entropy and Wasserstein 

loss) impact training stability, performance, and the 

quality of generated data. 

• Challenges in GAN training with plausible counter 

measures (in section V). 

• Providing a variety of GAN application instances to 

develop services, for better performances. 

The articles which are referred for writing this paper are 

as per the following criteria: 

• As per the chronology of appearance of a specific topic. 

• Paper having good relevance and impact factor. 

II. PERSPECTIVE STUDY OF GENERATIVE 

ADVERSARIAL NETWORKS (GAN) 

A GAN architecture competes two neural layers to create 

new data that closely resembles real data and is likely to be 

used as inputs. GANs excel at image processing, making 

them ideal for the field. GAN's training process should be 

closely monitored as Generator losses are used as a 

substantial feedback in generating the images of the next 

iteration. Among GAN's many challenges, its objective 

function is crucial. Using an unstable function may cause the 

GAN to lose control during training. Loss fluctuation is quite 

slow and even prevent the convergence of GAN [13]. This 

section covers GAN architecture principles, goal functions, 

latent space, and issues. GAN relies on the two-player least-

max null-sum game for better optimization and training 

results.  

A. WGAN (Wasserstein Generative Adversarial Networks) 

The learning technique used by the Wasserstein GAN 

(WGAN) is unsupervised with a GAN Discriminator 

architecture. Wasserstein Loss, which correlates the sample 

quality to Generator convergence, was introduced by WGAN 

[14]. Earth Mover distance is the technique used for gradient 

update which provides meaningful gradients, improve 

training stability, reduce mode collapse, and better align 

generated and real data distributions. The WGAN loss is 

crucial because it links the Generator's convergence to the 

sample’s quality. The output prediction 𝑝𝑖  need not be 

restricted from 0 to 1, but could occupy a wide range from -

∞ to ∞, and for binary cross-entropy loss used are 𝑦𝑖  = 1, 𝑦𝑖  

= -1 instead of 𝑦𝑖  = 1, 𝑦𝑖  = 0, as sigmoid activation was not 

used here [13]. WGAN’s Discriminator was very critical in 

nature and the Wasserstein loss function of this GAN can be 

written as per (1). 

−
1

𝑛
∑ ( 𝑦𝑖  𝑝𝑖)𝑛

𝑖=1   (1) 

Also, 𝑝𝑖 = 𝐷(𝐺(𝑧𝑖)) for the synthesised image and the 

respective target 𝑦𝑖=-1 is then compared for the calculation 

of the loss. The loss can be minimised using (2). 
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𝑚𝑖𝑛𝐷 − (𝐸𝑥~𝑝𝑥
[𝐷(𝑥)] − 𝐸𝑧~𝑝𝑧

[𝐷(𝐺(𝑧))]) (2) 

The differentiator will try to maximize the loss by making 

the real image score better. Comparing the prediction is a 

major and significant part of the Generator training by 

lowering the loss function for better results. By making sure 

that the Generator is updated properly and properly training 

the Discriminator, we can make the Wasserstein loss function 

converge better. In contrast to the original GAN, it is crucial 

to look out for a too strong Discriminator in this case. 

Training the Discriminators and Generators can be balanced 

using Wasserstein loss. Every time the Generator is updated, 

the Discriminator is typically updated five times. The 

reduction of reviewers' weights by WGAN has significantly 

slowed learning [15]. If the gradient is off, the weight update 

process becomes challenging. As a result, ‘WGAN-GP 

(Gradient Penalty)’ was developed [16].                                                                                                               

B. WGAN-GP (Wasserstein GAN-Gradient Penalty) 

The WGANGP uses unsupervised learning for Lipschitz 

constraint architecture. Instead of clipping weights, 

WGANGP uses input critic function [16]. Same critic 

function updates gradients. The WGANGP improved greatly 

over the WGAN. GAN training is reliable with WGAN-GP 

fixing mode collapse and unstable training. WGAN-GP's 

critic loss function penalizes gradients [17]. Criticism 

shouldn't batch normalize the process and maintain its 

weight. Loss like gradient penalty is negligible because 

“batch normalization” corelates images [18] also the weights 

enforce the Lipchitz constraint on this model, minimizing the 

gradient penalty term. Only part of the gradient is calculated 

by WGAN-GP. Gradients disappear or explode without 

careful clipping threshold adjustment due to cost function-

weight restriction interactions, making WGAN optimization 

difficult. It is challenging to identify the gradient everywhere 

during the training phase. The gradient is only partially 

computed by WGAN-GP. We discover that interactions 

between the weight restriction and the cost function make the 

WGAN optimization process difficult because they might 

cause gradients to explode or disappear if the clipping 

threshold is not adjusted carefully. It was demonstrated that 

weight clipping in WGAN had problems, so a penalty for 

criteria loss was included as a substitute that did not have the 

same problems. With this strategy, stability was established 

across a range of designs and a good modelling performance 

was demonstrated. With a more dependable training 

approach for GANs, the work was anticipated to pave the 

door for enhanced modelling skills on large-scale image and 

language data.  

C. SAGAN (Self-Attention GANs)  

For sequence models like transformers, attention is an 

algorithm that is employed. In the SAGAN model, the 

attention method is applied to GAN [19]. The Fig. 2 shows 

architecture of the self-attention algorithm. Here the feature 

mapped image is further convoluted using a 1×1 kernel to 

further produce an attention map. The self-attestation is 

possible to be achieved in the last stage wherein the same 

kernel is used again. 

GAN convolution feature maps without attention can only 

process local data. Accurate location data replaces high-level 

features in this approach. Hence the model cannot learn the 

relationship between distant pixels. SAGAN focus slightly 

resembles human perception as shown in Fig. 3. 

 

 

 

 

Fig. 2. Algorithm of Self-attention, SAGAN (‘Self-Attention Generative Adversarial Networks’) [19] 

 

Fig. 3. Image generated by SAGAN and its attention map [19]
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D. DCGAN (Deep Convolutional GANs)   

DCGAN also uses a fully unsupervised learning method 

which in fact hasn’t been receiving much attention in the 

current days having an architecture with constraints that learn 

the representation hierarchy from the section of object to the 

scenes in both Generator and the Discriminator [20]. Both 

neural networks update their gradients using stochastic 

gradient descent (SGD) and Adam optimizers. Convolutional 

layers comprise the whole DCGAN's interior [21]. DCGAN 

uses the same fundamental algorithm as the conventional 

GAN. The convolutional layer maps and transforms the noise 

from a Generator which produces 100-dimensional noise. 

The construction of DCGAN’s Generator is shown in Fig. 4. 

By using CNN as the two adversarial networks of GAN, 

DCGAN improves performance for the first time. For the 

VAE (Variational Autoencoder), the Generator performs the 

same function as the decoder [21]. The Generator's input is a 

vector drawn from the multivariate standard normal 

distribution. The Generator freezes and refines the 

Discriminator for thousands of epochs. The output image's 

dimensions correspond to those of the source image. For 

DCGAN, the optimal results are obtained using the Adam 

(Adaptive Moment Estimation) optimizer with a learning rate 

of "0.002" [22].  A wide range of representations are learnt 

by DCGAN, from objects to scenes. Furthermore, the 

acquired properties can be utilized as a universal image 

representation for many applications. Raymond applied 

DCGAN [23] to fill in sections of the image that were missing 

or empty. For the first time, DCGAN uses Convolutional 

Neural Network (CNN) as a Generator and Discriminator of 

GAN, improving performance. Presently, each GAN 

structure has a convolutional layer. Therefore, GAN already 

implies what "DC" means. 

E. BEGAN (Boundary Equilibrium GANs)   

BEGAN uses both supervised and unsupervised learning 

technique with a multilayer DNN (“Deep Neural Network”) 

architecture. It learns characteristics for appropriate semantic 

tasks and adopt then in a testing situation. It also gained 

interest due to the fact that its Discriminator was a 

Convolutional Autoencoder (CAE) and it possessed 

convergence judgement qualities that DCGAN lacked [24]-

[25]. Fig. 5 shows the network architecture for the Generator 

termed here as Decoder and the Discriminator termed as 

Encoder. 

Image’s latent space is learnt while keeping and 

modifying the balance between the two neural networks by 

BEGAN. The space-constrained BEGAN-CS (“BEGAN 

with Constrained Space”) was introduced, however it failed 

to address the mode collapse [26]. To address the issue like 

mode collapse [26], modified the encoder and decoder as well 

as the BEGAN-CS Discriminator's structure from AE to VAE 

[27]. LReLU (Leaky Rectified Linear Unit) replaced ELU 

(Exponential Linear Unit) as the activation function [28]-

[29]. 

 

 

Fig. 4. Structure of the Generator in DCGAN (Deep Convolutional GANs) [21]  

 

Fig. 5. Network architecture for the a) Generator and b) Discriminator [24]
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F. PGGAN (Progressive Growing of Generative 

Adversarial Networks) 

Progressive Growing of GANs was able to present a novel 

method for training Generative Adversarial Networks [8]. 

The plan was to progressively expand the Generator and 

Discriminator's sizes. As the training progressed, further 

layers simulating even finer details were added, starting at a 

low resolution. This, not only greatly stabilizes the training 

process but also speeds it up, allowing us to produce pictorial 

data of never-before-seen quality, like CELEBA images at 

10242. Additionally, it was suggested that an easy way to 

increase the variety of generated images be used. In the 

unsupervised CIFAR10 competition, a record inception score 

of 8.80 was set. In addition, several implementation details 

were suggested that are essential to avoid unhealthful 

competition between the Discriminator and Generator. 

PGGAN trains Generators and Discriminators using low-

resolution 4×4 pixel pictures. The process of PGGAN 

training is shown in Fig. 6. 

 

Fig. 6. Network architecture for the Generator and Discriminator [24] 

High output resolutions can be handled reliably and 

efficiently thanks to the implementation. A selection of the 

1024×1024 images produced by the previously stated 

network are shown in Fig. 7. 

 

Fig. 7. 1024×1024 images generated using the CELEBA-HQ dataset [24] 

G. CGAN (Conditional GAN)  

The adversarial training approach offers significant 

flexibility in the composition of this hidden representation as 

the Generator mixes the prior input noise 𝑝𝑧(𝑧), and input 𝑦 

into a single hidden representation. Here 𝑥 and 𝑦 are inputs 

into the Discriminator, and here, a multilayer perceptron 

(MLP) [30] acts as the discriminative function. The objective 

function of 2-player minimax game (as mentioned before as 

well) is represented in (3). The simplified structure of the 

CGAN is depicted in Fig. 8. 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷(𝑥|𝑦)] +

     𝐸𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝐺((𝑧|𝑦)))]  
(3) 

● 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) represents the expected value of a function 

over the real data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥). 
● 𝐸 represents the expectation operator, that calculates the 

average or expected value. 

● 𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) represents the variable 𝑥 is sampled from the 

real data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥), i.e., the probability 

distribution of the actual data that the GAN is trying to 

model. 

● 𝑝𝑑𝑎𝑡𝑎(𝑥) represents the probability distribution of the real 

data. 

 

Fig. 8. Conditional adversarial network [10] 

H. AAE (Adversarial Autoencoder) 

An adversarial autoencoder (AAE) has been used in this 

instance to create supervised, semi-supervised, and 

unsupervised learning strategies. To update the gradients, 

SGD with reconstruction and regularization phases has also 

been utilized. The adversarial autoencoder is a probabilistic 

autoencoder that uses the recently proposed Generative 

Adversarial Networks (GAN) to do variational inference by 

comparing the aggregated posterior of the autoencoder's 

hidden code vector to any arbitrary prior distribution. Since 

the aggregated posterior and the prior are matched, 

generating from any part of the prior space yields relevant 

samples. Thus, a deep generative model mapping the 

enforced prior data distribution is created by the adversarial 

autoencoder's decoder [31].  

Applications for the adversarial autoencoder include 

dimensionality reduction, data visualization, semi-supervised 

classification, unsupervised clustering, separating the style 

and content of images. 

I. BigGAN 

Problems like producing high-resolution, diverse samples 

from challenging datasets like ImageNet by training GAN 

networks at their greatest size and investigating the 

instabilities unique to it can be handled. By adding orthogonal 

regularization to the Generator, we find that it may be made 

vulnerable to a simple "truncation trick," allowing for precise 

control over the trade-off between sample fidelity and variety 

by reducing the input variation. BigGAN was developed by 

DeepMind extension of SAGAN, currently produces the top 

results [32] in imagine generation. Eight times bigger than 

SAGAN, its deployment size is 2048. Each layer's channel 

size was likewise increased by 50% [10]. The results are best 

depicted in Fig. 9 where the learning rate of 0.0002 and a 

batch size of 128 the images using batch normalization were 

obtained. 
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Fig. 9. Resulted images of BigGAN’s truncation technique [10] 

J. StyleGAN 

The G and D training which is capable of creating very 

large, high-quality images by gradually extending them from 

small to big images during training, is the forerunner of the 

StyleGAN as shown in Fig. 10. Instead of using a point from 

the latent space as input, the StyleGAN Generator now uses 

noise layers and a separate mapping network as sources of 

randomness to create an artificial image.  

 

Fig. 10. StyleGAN generator structure [11] 

StyleGAN in [12] proposed a technique called AdaIN -a 

style transfer method to address the issue of latent space 

entanglement. Feature map 𝑥𝑖’s mean µ and variance 𝛿 can 

be modified as AdaIN employs reference style bias 𝑦𝑏,𝑖  and 

scale 𝑦𝑠,𝑖. 𝑦𝑏,𝑖 produced by the layers of the synthesis network 

shown as (4).  

StyleGAN in [12] proposed a technique called AdaIN to 

address the issue of latent space entanglement. Feature map 

𝑥𝑖’s mean µ and variance 𝛿 can be modified as AdaIN 

employs reference style bias 𝑦𝑏,𝑖  and scale 𝑦𝑠,𝑖. 𝑦𝑏,𝑖 produced 

by the layers of the synthesis network shown as (4). 

𝐴𝑑𝑎𝐼𝑁(𝑥𝑖, 𝑦) = 𝑦𝑠,𝑖

𝑥𝑖−µ(𝑥𝑖)

𝛿(𝑥𝑖)
+ 𝑦𝑏,𝑖 (4) 

The AdaIN layer stops the transmission of style 

information between these layers. Fig. 11 shows the output 

images of StyleGAN. With a learning rate of 0.0001 and a 

batch size of 64 the images using batch normalization were 

obtained. 

 

Fig. 11. High-quality images generated faces using the StyleGAN [12]                                                    

III. MATH BEHIND THE GAN 

A. Mathematical Notations 

The generative model may generate images from scratch 

by comprehending and gaining knowledge about the training 

data's statistical distribution. In both cases, the network 

weight is learnt via backpropagation [13]. The key source of 

reference for the GAN literature on multidimensional vectors 

in [33], which highlights vectors in the probability space. 

Here, ‘𝑧’ is a common representation for latent vectors. In the 

field of signal processing, vectors are represented using 

lowercase symbols to highlight their multidimensionality. 

Here the 𝑃𝑑𝑎𝑡𝑎(𝑥) is the probability density function for a 

random vector of real data 𝑥 of 𝑅|𝑥|. Input noise distribution 

being 𝑃𝑧(𝑧) and the probability density is a mathematical 

expression for the likelihood that a continuous random 

variable will fall within a specified interval. The distribution 

of vectors generated in 𝐺 is termed as 𝑃𝑔(𝑥). The weights 

which are learned from the Generator 𝐺 is 𝜃𝑔 and from that 

of the Discriminator 𝐷 is 𝜃𝑑. To maximize this 𝐷(𝐺(𝑧)) 

function is the Generator's goal. Stated differently, its goal is 

to have the Discriminator produce more false instances. 

Among these roles following below: 

● 𝐷(𝑥) is the Discriminator's output for a true case. 

● Given the noise 𝑧, the Generator's output is 𝐺(𝑧). 

● For an artificial instance, the Discriminator produces 

𝐷(𝐺(𝑧)). 

● The output of Discriminator 𝐷, need not be in the range 

of 1 to 0. 
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B. Discriminator Loss 

The Discriminators job is to correctly specify the sample 

as either fake or real. Hence the loss function can be given by 

(5). 

𝐿(𝐷) = 𝑚𝑎𝑥 [𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) (5) 

C. Generator Loss 

The Discriminator and Generator in the network are 

competing with each other. As a result, it will attempt to 

minimize its loss function as mentioned in (6). 

𝐿(𝐺) = 𝑚𝑖𝑛 [𝑙𝑜𝑔( 𝐷(𝑥)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) (6) 

D. Combined Loss Function 

Hence the combined loss function can be given by (7). 

𝐿 = 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷[𝑙𝑜𝑔( 𝐷(𝑥)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) (7) 

This loss function is only applicable to a single data point, 

so in order to examine the full dataset, we must take the 

aforementioned equation's expectation as in (8). 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐺, 𝐷)
= 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷(𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(x)]

+                                        𝐸𝑧~𝑝𝑧(𝑧) [log (1

− 𝐷(𝐺(z)))]) 

(8) 

IV. LIMITATIONS OF GANS 

The loss function derived has some limitations which are 

described in this section. 

A. Vanishing Gradient 

Vanishing gradients are a substantial obstacle in GAN 

training, especially when the Discriminator becomes 

excessively powerful, resulting in inadequate feedback for 

the Generator to enhance its performance. This problem 

occurs during backpropagation, in which the gradient-

employed to update the network's weights-propagates from 

the output layer to the starting layers. As it propagates, the 

gradient may attenuate, resulting in the previous layers either 

ceasing to learn or updating at an exceedingly sluggish rate, 

a phenomenon referred to as the vanishing gradient problem. 

Activation functions such as ReLU (Rectified Linear 

Unit) and Leaky ReLU address this problem by averting 

saturation, a phenomenon that arises when activation values 

diminish excessively, as seen with Sigmoid or Tanh 

functions. In contrast to Sigmoid, which compresses outputs 

within the range of 0 to 1 and results in nearly negligible 

gradients for extreme positive or negative inputs, ReLU 

produces zero for negative inputs and the corresponding input 

value for positive inputs. This simplicity guarantees that 

gradients do not attenuate across layers. Leaky ReLU 

enhances this by permitting a little, non-zero gradient for 

negative inputs, so preserving the gradient flow across the 

network and enabling deeper layers to learn effectively. 

These non-saturating functions are essential for stabilizing 

GAN training, particularly in deep architectures. 

 

Attempts to remedy vanishing gradient are: 

● We may use activation functions like ReLU or 

LeakyReLU, instead of Sigmoid or tanh which cause the 

gradient to diminish exponentially. 

● Even after training the Discriminator to its maximum 

efficiency, the Wasserstein loss is intended to prevent 

vanishing gradients was suggested in the original GAN 

study. 

B. Mode Collapse 

As G's primary goal was to deceive D into producing 

monotonous output, the Generator may accidentally lock 

itself into a mode during training that only ever generates the 

same output. This is known as mode collapse. Mode collapse 

first occurs when if lesser number of samples are found by 

the Generator. No additional sample can be created other than 

this small sample. A single sample or a mode that deceives 

the Discriminator is frequently identified by Generators. 

Then, they can connect this sample to any latent space 

location. Due to this loss function gradient decreases to a 

value that is nearly equal to zero [33]-[35]. They also applied 

minimax to the total loss values in multiple steps to update 

the model. By anticipating the Discriminator's update, 

Generator is able to produce superior images. 

Attempts to remedy for Mode Collapse are: 

● Use Wasserstein loss function, for Discriminator training 

to its best performance. 

● GAN training with a variety of data samples. 

C. Failure to Converge 

GAN convergence problems are common. By presuming 

that two neural networks are competing against one another 

with the hope that both networks would eventually attain 

equilibrium, adversarial training settings may appear to be 

unstable.  

Attempts to remedy for Failure to Converge are: 

● This can be achieved by either using a small number of 

features to discriminate between the training data and the 

Generator's output, or by adding noise to the 

Discriminator's inputs (both the real and synthetic data) to 

prevent it from becoming overconfident in its 

classification. 

● Punishing Discriminator weights, by regularizing the 

training of Generative Adversarial Networks. 

V. APPLICATIONS OF GANS 

GAN produces realistic samples, making it a useful 

generative model [10][12][24]. Additional statistical 

judgements or knowledge of real-world data distribution are 

unnecessary [36][37]. We are reviewing a few published and 

improved computer vision applications from the available 

recent research [38]-[40].  

A. Better Image Generation Quality and Super Resolution 

of Images: 

SAGAN was developed [41] to describe long-range 

dependency through attention for image production concerns. 

SAGAN outperformed the highest inception score from 36.8 
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to 52.52 and minimized Fréchet Inception difference from 

27.62 to 18.65 on the difficult ImageNet dataset. Research 

works [42]-[43], say GANs use intermediate representations, 

not lower-resolution images [44]. Also, the trained model 

leverages real image data during sampling to build a high-

quality image from a low-resolution image. The research in 

[45] suggests integrating structural network design, 

antagonistic loss, and perceptual loss to build an improved 

model. Other researches also mainly focus on building a 

better and efficient model to generate better quality images 

and videos that look realistic and can be used for futuristic 

applications in spite of an unbalanced dataset [46]-[49]. 

GANs also have been used in image domain conversion like 

from sketch to realistic photos or conversion of maps to 

satellite images as a practical application.   

B. Video Generation and Prediction 

For moving objects and scenic dynamics, computer vision 

is an issue. The scenes transform model incorporates video 

generation (e.g., future prediction) and recognition (e.g., 

action classification). The article [50] trained the CNN with 

an input sequence to construct realistic frameworks [51].  

C. Image to Image & Text to Image Transformation 

For image-image creation, conditional opponent 

networks are ideal using the Pix2pix model [52]. CycleGAN, 

which utilizes paired images from two domains (e.g., sketch-

to-photo or painting-to-photo conversion), enhances the 

transformation process by maintaining the integrity of the 

original image. It achieves this through a forward and reverse 

transformation cycle, ensuring that the original image can be 

accurately reconstructed, even though some challenges with 

cycle consistency remain [53]. This speeds data processing 

and expands the method's uses. Springer uses an unmatched 

record of painters and natural image graphs to create images 

like Picasso or Monet [54]. However, there are research 

works that suggest improving the scores by increasing the 

unbalanced dataset using evasion techniques [55]-[57] as 

well. 

D. Identifying Objects 

The process of identifying actual objects in pictures or 

videos, such as faces, bikes, and buildings, is called object 

detection. Item identification algorithms often use extracted 

features and learning methodologies to identify individual 

examples of a certain object type. Advanced driver 

assistance, security, and monitoring are used by all Advanced 

Driving Assistance Systems (ADAS). Small sized items are 

typically hard to see due to their great contrast and low 

resolution. A modern Perceptual Generative Adversarial 

Network (Perceptual GAN) has been developed by in an 

effort to close the representational gap between small and 

large objects. 

VI. COMPARISON OF GAN VARIANTS 

The Table I provides a clear comparing of the overview 

of the strengths, weaknesses, and advancements of GAN 

variants. All the selections of hyperparameters in the 

discussed variants are specific to the needs to the model to be 

built and can be customized accordingly. 

 

TABLE I.  THE COMPARATIVE ANALYSIS OF GAN VARIANTS 

GAN 

Variant 
Strengths Weaknesses 

DCGAN 

• Uses convolutional layers 

for better feature learning 

• Improves stability with 

batch normalization 

• Improves over a base line 

GAN 

• Mode collapse still 

occurs 

• Limited to fixed-

size inputs 

WGAN 

• Wasserstein loss ensures 

meaningful gradients 

• Reduces mode collapse 

• More stable convergence 

• Improves over a base line 

GAN 

• Weight clipping 

causes slow 

convergence 

• Requires careful 

tuning of Critic 

updates 

WGAN-GP 

• Gradient penalty replaces 

weight clipping 

• Ensures smooth gradients 

and better convergence 

• Improves over WGAN 

• Training is still 

slower due to Critic 

updates 

Computationally 

expensive 

SAGAN 

• Introduces self-attention to 

capture long-range 

dependencies 

• Improves generation of 

high-resolution images 

• Improves over DCGAN 

• Increased 

computational cost 

• Slower training due 

to attention layers 

StyleGAN 

• Provides fine control over 

style and features 

• Reduces entanglement in 

latent space 

• Improves over SAGAN 

• Computationally 

intensive 

• Can still exhibit 

minor feature 

entanglement 

BigGAN 

• Generates high-quality, 

large-scale images (e.g., 

ImageNet) 

• Supports truncation trick 

for balancing quality and 

diversity 

• Improves over SAGAN 

• Requires massive 

computational 

resources 

• Instability at large 

scale 

VII. QUANTITATIVE PERFORMANCE COMPARISON 

Particularly in the context of image creation, two 

measures that are frequently used to assess the quality of 

generative models are Fréchet Inception Distance (FID) and 

Inception Score (IS). FID score measures the distance 

between feature vectors from real and generated pictures. The 

score compares the two groups' computer vision statistics 

from the Inception-v3 model for image categorization. When 

assessing generative adversarial network images, lower FID 

scores correspond better with higher quality images [58]-

[61]. Based on how effectively generated images are 

classified by a trained Inception model, IS assesses their 

quality. The performance improves as the Inception Score 

(IS) value increases and the FID value decreases. The four 

ImageNet-based models' scores are displayed in Table II. 

BigGAN-deep performed best of the four models with an FID 

of 5.7, while BigGAN performed poorest with 8.7. 

BigGAN-deep scored the highest in IS with 124.5 points, 

while BigGAN performed the poor with 98.8 points, a 

difference in performance of 25.7 points. And the Table III. 

Shows the various GAN performances on Canadian Institute 

for Advanced Research-10 (CIFAR-10) dataset.  
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TABLE II.  THE IS AND FID OF SEVERAL MODELS DEVELOPED USING THE IMAGENET DATABASE 

Dataset Model References IS ↑ FID ↓ 

ImageNet (128x128) 

BigGAN-deep [11] 124.5 5.7 

CR-BigGAN [42] - 6.7 

BigGAN+DiffAugment [58] 100.8 6.8 

BigGAN [11] 98.8 8.7 

TABLE III.  THE MODELS’ FID FOR CIFAR-10 DATASET (PERFORMANCE IMPROVES WHEN THE FID VALUE LOWERS) 

Dataset Model References FID ↓ 

CIFAR-10 

(64x64) 

StyleGAN2+ADA+Tuning [8] 2.92 

CR BigGAN+DiffAugment [61] 4.30 

BigGAN+DiffAugment [58] 4.61 

StyleGAN2+DiffAugment [13] 5.79 

BigGAN+MIX [59] 8.17 

BigGAN+CR+LT [61] 9.80 

WGAN-ALP [17] 12.96 

BigGAN [10] 14.73 

WGAN-GP [18] 29.30 

Numerous Generative Adversarial Network (GAN) 

models have surfaced in recent years, each with unique 

benefits and drawbacks. The development of Wasserstein 

GAN (WGAN) and its enhanced variant WGAN-GP aimed 

to tackle several significant obstacles of conventional GANs, 

specifically the problems related to mode collapse and 

vanishing gradients [62]-[65]. The Wasserstein distance is 

used in WGAN to help give a more stable loss function that 

more closely matches the caliber of the samples that are 

generated. This leads to more seamless training dynamics and 

enhances the model's convergence [66]-[68]. WGANs do 

have certain restrictions, though. The Discriminator and 

Generator must be carefully balanced when training WGAN, 

and although the gradient penalty added in WGAN-GP is 

useful [69], it can slow down training and increase computing 

complexity [70], which further can be adapted for numerous 

applications [71]. 

By adding self-attention mechanisms, Self-Attention 

GAN (SAGAN) expands on the conventional GAN 

framework and enables the model to generate samples by 

focusing on distinct areas of the image [72]. Especially for 

complicated datasets like ImageNet, this attention method 

helps the model catch long-range connections between pixels 

[73], improving generation quality. SAGAN is a well-liked 

option for assignments requiring fine-grained details because 

of its capacity to produce high-quality images. However, 

compared to more straightforward models like Deep 

Convolutional GAN (DCGAN), the additional complexity of 

self-attention layers raises computing demands and may slow 

down training [74]. Despite being fundamental and 

successful, DCGAN has limitations when it comes to 

producing high-resolution images and handling mode 

collapse, which restricts its use in more complex applications 

[75]. Significant advances in GAN technology have been 

made with BigGAN and StyleGAN, especially in the area of 

high-resolution image production [76]. BigGAN has emerged 

as the standard model for high-resolution tasks due to its 

reputation for producing large-scale, high-quality images 

[77]. However, without substantial system capacity, it is 

difficult to implement due to its high computational resource 

requirements and large-scale instability [78]. StyleGAN 

provides unrivalled quality in object and facial synthesis 

thanks to its innovative design, which gives control over 

several components of the picture generating process [79]-

[81]. For tasks demanding high fidelity, its capacity to 

separate features and offer precise control over image 

properties makes it perfect.  Even with its improvements, 

StyleGAN is still computationally costly, and problems like 

feature entanglement are not totally eliminated even though 

they have decreased [82]. Each of these models has trade-offs 

in terms of complexity, resource costs, and application but 

offers distinctive answers to particular issues within GAN 

training. 

VIII.  CONCLUSION 

This review provides a comprehensive analysis of various 

GAN architectures, including DCGAN, WGAN, WGAN-

GP, SAGAN, StyleGAN, focusing on their specific 

contributions, applications, and inherent limitations. Each 

variant introduces unique solutions to challenges, such as 

WGAN’s use of Wasserstein loss to stabilize convergence 

and WGAN-GP’s gradient penalty to mitigate mode collapse. 

SAGAN incorporates self-attention mechanisms to enhance 

high-resolution image generation, while StyleGAN addresses 

latent space disentanglement. Despite these advancements, 

persistent issues like unstable training and mode collapse 

remain significant obstacles, especially for large-scale 

implementations like BigGAN. Solutions such as fine-tuning 

critic updates and the introduction of adaptive optimizers 

have shown promise but are often computationally intensive. 

Additionally, GAN applications extend beyond image 

generation, covering areas like video prediction and text-to-

image transformation, yet their adoption in domains such as 

natural language processing remains limited due to data 

structure differences. The review emphasizes the importance 

of further research in developing more stable training 

methods, improving model interpretability, and expanding 

GAN usage to underexplored fields. Practical implications 

suggest that practitioners must carefully balance 

computational resources with performance needs, 

particularly when deploying GANs in real-world scenarios. 

Furthermore, ethical concerns—such as the misuse of GANs 

for deepfakes creation—highlight the need for responsible 

research practices and regulatory measures. Future research 

should prioritize developing scalable architectures with 
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reduced computational overhead and investigate novel loss 

functions that improve stability across diverse applications. 

This synthesis underscores GANs’ transformative potential 

but also stresses that addressing their current limitations 

through targeted innovations is essential for unlocking new 

opportunities in both academic research and industrial 

applications. 
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