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Abstract—Two-wheeled balancing Mobile Robots (2WBMRs)
are inherently unstable, posing significant challenges in control.
This paper addresses the problem of optimizing control parame-
ters for such systems to improve stability and overall performance.
The proposed solution integrates Hierarchical Sliding Mode Con-
trol (HSMC) with the Firefly Algorithm, which is a stochastic
algorithm inspired by the flashing behavior of fireflies, to optimize
control performance. The research contribution is the development
of an optimized control system where the Firefly Algorithm is
used to fine-tune HSMC parameters, ensuring improved stability
and responsiveness. Additionally, the integration of Sliding Mode
Control (SMC) within the HSMC framework provides precise yaw
angle stabilization, contributing to comprehensive robot control.
In this approach, the Firefly Algorithm is applied to optimize
the HSMC parameters due to its capability to optimize multi-
dimensional variables and its robust optimization abilities, aiming
to enhance the stability of the vehicle in the best possible way.
Simulations were conducted to compare the proposed method
before and after applying the optimization algorithm, evaluating
key performance metrics such as response time and stability. The
results indicate a (10%) improvement in stability, demonstrating
that the Firefly Algorithm significantly enhances control perfor-
mance. These findings suggest that the optimized control system
not only improves the stability of 2WBMRs but also has potential
applications in broader dynamic control systems. In conclusion,
based on the research results, we can conclude that the use of
the HSMC-SMC controller for nonlinear systems like 2WBMRs
is feasible and can be applied to many other nonlinear systems.
Furthermore, the Firefly Algorithm has proven to be a powerful
tool for optimizing parameters in control systems and can be
applied in robotics and automation systems.
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I. INTRODUCTION

In this day and age, the rapid advancements in robotics
science and technology have been transforming industries and
enhancing everyday life, with applications spanning various

fields, including manufacturing, transportation, logistics, health-
care, and scientific research [1]–[8]. Notable examples include
automated assembly lines and surgical-assisting robots. As
such, the potential of robotic systems to revolutionize processes
across sectors is inevitable. Among these innovations, mobile
robots have demonstrated tremendous promise in various fields,
offering flexibility, efficiency, and numerous practical applica-
tions in daily life. In particular, wheeled robots have become an
indispensable part of industrial automation and transportation
due to their inherent mobility. For instance, four-wheeled robots
[9], [10] can operate stably and move rapidly on flat surfaces
and are widely applied in autonomous robotic vehicle (ARV)
systems, yet they struggle in narrow or inclined environments.
Hence, a balancing system becomes crucial in such scenarios.
Two-Wheeled Balancing Mobile Robots (2WBMR) offer an
optimal and promising solution to overcome the limitations
of traditional four-wheeled vehicles. Based on their flexibility,
they have been widely applied in real-world scenarios, such
as personal transportation (e.g., Segway), or as support robots
in rescue operations and research. Additionally, they can be
developed for use in light industrial transportation. With its
structure comprises three main bodies: the right wheel, the left
wheel, and an inverted pendulum. the two wheels, located on
either side of the robot, provide the primary means of movement
and balance, The inverted pendulum, mounted vertically be-
tween the wheels, represents the main challenge in the system’s
control design. This pendulum acts as an inherently unstable
body, requiring constant feedback and corrective forces from
the wheels to maintain an upright position. Due to its two-
wheel design, it allows for more flexible movement and the
ability to maintain an upright posture on inclined surfaces.
This is an intriguingly stable system, capable of perform-
ing three degrees of freedom motion, including tilt, lateral
movement, and forward movement with just two wheels [11]–
[14]. Especially, based on the differential system between its
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two wheels, 2WBMR can maneuver flexibly, rotating in any
direction. This differential system is also implemented in trains
to ensure safety and stability. When the train moves off course,
the right wheel spins faster or slower than the left, causing
the train to veer either to the left or the right. Despite its
many advantages in mobility, 2WBMRs are inherently unstable
systems, highly sensitive to external factors such as sudden
movements, uneven terrain, external disturbances, or obstacles
in their operating environment. Even minor changes in the
load’s weight can lead to system instability. A control system is
required to manage the robot in real-time to maintain balance.
In practical applications, such as industrial environments with
moving obstacles or unpredictable conditions, the demand for
fast response times and high stability becomes even more
critical to ensure the robot’s reliable performance. Therefore,
the control of a two-wheeled balancing robot is a challenging
task due to its inherently unstable nature, requiring precise and
adaptive control strategies to maintain equilibrium [15]–[18].

Over the years, various control methods have been explored
to address the challenges posed by real-world robotic systems.
Classical methods, such as the Proportional-Integral-Derivative
(PID) [19]–[21] controller and Linear Quadratic Regulator
(LQR) [22], [23], have been widely employed due to their
simplicity and effectiveness in linear systems. However, these
methods are limited in handling nonlinear systems, such as the
2WBMR system, especially in complex environments where the
system is subject to significant disturbances or rapid changes.
For instance, PID controllers often struggle with maintaining
stable states and exhibit slow response times in highly dynamic
systems. Meanwhile, the LQR optimizes system performance
by minimizing the cost function, proving effective in achieving
stability and precise dynamic control [24]. Nevertheless, the
LQR controller is constrained by its reliance on the system
model, making it less efficient when dealing with nonlinear
models or external disturbances. The combined with PID con-
trol, LQR offers a straightforward adjustment mechanism but
face limitations in handling nonlinear systems or strong distur-
bances [25]–[28]. Control methods such as Sliding Mode Con-
trol (SMC) have been developed to overcome these limitations
by offering greater robustness and adaptability, making them
suitable for the 2WBMR system. [29], [30] SMC is favored for
its resilience against external disturbances, its ability to handle
nonlinear models, its insensitivity to parameter variations, in-
dependence from peripheral reactions, fast response, and ease
of implementation [31]–[35]. Several SMC methods have been
proposed and implemented, including Adaptive SMC [36]–
[38], Terminal SMC [39], [40], and Hierarchical Sliding Mode
Control [41], [42]. While this control approach provides many
advantages, it has a drawback in the form of inherent chattering.
Similarly, Active Disturbance Rejection Control (ADRC) [43],
[44] utilizing an Extended State Observer (ESO) to estimate
and compensate for disturbances and unmodeled dynamics

such as friction and wear [45]. This method offers a flexible
and robust solution for maintaining stability in uncertain and
noisy conditions. However, it faces challenges in the extremely
complex process of parameter tuning. Each of these control
methods—SMC, ADRC, LQR, and PID [46], [47] contributes
to improving the performance and stability of 2WBMR systems,
with each approach suited to different operational challenges
and requirements. However, every technique also comes with
its own distinct advantages and disadvantages.

An extended approach to SMC is Hierarchical Sliding Mode
Control (HSMC), which has garnered significant attention in the
control of underactuated systems depending on the hierarchical
structure sliding surfaces, each sliding surface represents a
specific output variable of the system, the simplest is composed
of error and derivative of it, and the control strategy operates to
keep the system on these surfaces, adjusting the deviations to
maintain stability [48]–[51]. Therefore, applications of HSMC
include the control of double-pendulum crane systems [52],
[53], two-wheeled self-balancing vehicles [54], [55], and the
longitudinal movement of spherical robots [56], [57]. HSMC is
particularly effective in Single Input Multiple Output (SIMO)
systems, utilizing two types of sliding surfaces. The first-order
sliding surface is defined for each state variable to determine the
control signal that drives the system toward the sliding surface.
The second-order sliding surface, which is a linear combination
of the first-order sliding surfaces, provides the control signal
that ensures the system remains on the sliding surface. The
coordinated use of these two sliding surfaces enables efficient
control of systems with multiple interacting states and control
variables. Compared to other methods like PID and LQR,
HSMC is particularly efficient in dealing with the nonlin-
earities, uncertainties inherent in unstable and underactuated
systems, making it an ideal choice for such applications. In
addition, since HSMC is an advanced technique of the SMC
method, it will still experience Chattering [58]–[60], which is a
high-frequency oscillation that occurs when the control signal
changes too rapidly near the sliding surface, causing undesirable
vibrations in the system. However, this can be mitigated by
selecting appropriate control parameters.

Building on the HSMC previously introduced to stabilize
the body of the 2WBMR, the integration of an SMC for yaw
angle control provides a crucial enhancement. This addition
ensures a more comprehensive control model, significantly
improving overall system performance. Previous studies have
largely overlooked the yaw angle [24], [45]thereby preventing
the system from being controlled in a fully comprehensive
manner.

Although the design of HSMC and SMC controllers is
not overly complex, they involve a large number of control
parameters and lack a fixed tuning method, making the task
of parameter adjustment difficult and time-consuming. Conse-
quently, utilizing optimization algorithms to automatically iden-
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tify optimal parameter values is essential and has been widely
embraced by researchers. [61]–[65] The Firefly Algorithm (FA)
[66]–[69] , in particular, demonstrates exceptional performance
in optimizing systems that have multiple parameters. FA was
proposed by Yang in 2008 and is a stochastic algorithm
inspired by the flashing behavior of fireflies, which use their
light to attract mates and ward off predators. This algorithm
builds upon and advances previous algorithms like Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA) by
incorporating both the capability to inherit and improve upon
better solutions while maintaining randomness to avoid local
optima. Due to these characteristics, the Firefly Algorithm has
been applied to numerous control optimization problems., such
as optimizing trajectory planning [70]–[72], tuning parameters
for Fuzzy controllers [73]–[75] and other control systems [76],
[77].

While previous research articles have disregarded the yaw
angle and lacked optimization algorithms for the controller’s
performance, this has resulted in suboptimal system response
times, and the absence of the yaw angle in the model can
complicate control on real surfaces. By controlling both body
stabilization and yaw orientation, the combined HSMC-SMC
approach, along with the utilization of the optimization al-
gorithm Firefly Algorithm, enables higher precision control,
enhances stability, and improves response times. Furthermore,
controlling the yaw angle increases the system’s comprehen-
siveness, opening up new control strategies for the future,
allowing for free movement on surfaces at will or according
to specified terrain [78]–[80]. This represents a significant
foundational step for further research when applying the system
in real-world scenarios, such as industrial environments with
substantial disturbances and undefined loads. Thus, the research
has successfully achieved stable control and direction maneu-
vering of the 2WBMR to ensure comprehensive system control
and potential real-world applications. Additionally, the study
has applied the firefly algorithm, a powerful yet not widely
used optimization technique, to optimize the system control
parameters and enhance stability performance.

In this paper, we propose a Hierarchical Sliding Mode
Control (HSMC) combined with Sliding Mode Control (SMC),
optimized using the Firefly Algorithm to ensure stable control
of a two-wheeled balancing mobile robot. The remainder of
the paper is organized as follows: The Introduction discusses
the background, the challenges of controlling two-wheeled
balancing robots, and the need for optimization in control
methods. The Method section describes the dynamic model
of the robot and the design of the HSMC-SMC controller,
along with the Firefly Algorithm used for optimization. In the
Results and Discussion, we present the simulation results that
assess both the stability of the HSMC-SMC controller and the
optimization performance of the Firefly Algorithm. Finally, the
Conclusion summarizes the key findings and suggests directions

for future work.

II. METHOD

A. Two-Wheeled Balancing Mobile Robot Modeling

Fig. 1 depicts the Two-Wheeled Balancing Mobile Robot
(2WBMR) system, illustrating its chassis with two indepen-
dently actuated wheels and the control unit responsible for
stability and maneuverability. The diagram presents three mu-
tually independent frames: frame {N} with three unit axes
(n1, n2, n3), which is fixed and attached to the ground; frame
{M} with three unit axes (m1,m2,m3), attached at the mid-
point of the wheel axis; and frame {B} with three unit axes
(b1, b2, b3), attached to the center of mass of the pendulum.
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Fig. 1. Two-wheeled Balancing Mobile Robot
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In the Fig. 1, d represents the distance between the two
wheels, l is the length of the inverted pendulum of the 2WBMR,
and r is the radius of the wheels. mB and mW are the
masses of the pendulum (excluding the wheels) and each wheel,
respectively. I1, I2, and I3 denote the moments of inertia about
the three coordinate axes of the inverted pendulum’s center of
mass. Additionally, J and K represent the moments of inertia
about the vertical axis through the wheel and perpendicular to
the corresponding axis, respectively.

Note that the subscripts below denote the position being
considered, including the left and right wheels, the midpoint
of the wheel axis, and the inverted pendulum, corresponding
to L, R, C, and B, respectively. The superscripts on the upper
indicate the frames (with frame N having no symbol). The
information about the parameters of the two wheels (L, R) and
the inverted pendulum body (B) are in Table I:

TABLE I. VARIABLES AND DEFINITIONS OF THE 2WBMR SYSTEM

Symbol Definition
ωL, ωR, ωB Angular velocity vectors of (L, R, B)
vL, vR, vB Velocity vectors of the center of mass of (L, R, B)
vM , ωM Linear and angular velocity vector in the {M} frame

xC , yC , zC Position of the center point of the system in the {M} frame
TL, TR Wheel torques at (L, R)
γL, γR Rotation angles of (L, R)
ẋ, α̇, β̇ Forward velocity, pitch rate, yaw rate
fL, fR Damping torques at (L, R)

The center of mass of each body is governed by the holo-
nomic constraints:

xB = xC + l sinα cosβ,

xL = xC −
d

2
sinβ,

xR = xC +
d

2
sinβ, yB = yC + l sinα sinβ,

yL = yC +
d

2
cosβ, yR = yC −

d

2
cosβ,

zB = l cosα.

(1)

Assuming the model’s motion lacks slipping, the longitudinal
velocity of the wheels depends on the wheel radius and angular
velocity. Additionally, the yaw angle is constrained based on the
velocities of the left and right wheels. According to the paper
in [11], there are nonholonomic constraints:

ẋL cosβ + ẏL sinβ = rγ̇L,

ẋR cosβ + ẏR sinβ = rγ̇R,

(ẋL + ẋR) sinβ = (ẏL + ẏR) cosβ.

(2)

which are equivalent to:

ẋC cosβ + ẏC sinβ − d

2
β̇ − rγ̇L = 0,

ẋC cosβ + ẏC sinβ − d

2
β̇ − rγ̇R = 0,

ẋC sinβ − ẏC cosβ = 0.

(3)

If we apply the relationships of the 7 holonomic constraints
in 1 and the 3 nonholonomic constraints in 3, we can easily
confirm that the 2WBMR system has 3 degrees of freedom of
motion, including translation, rotation, and tilt.

By differentiating both sides of the equation (1), the veloc-
ities of the three parts {L,R,B} are determined corresponding
to the {N} trajectory system. Thus, the following equations are
obtained:

vL = (ẋC −
d

2
β̇ cosβ)n1 + (ẏC −

d

2
β̇ sinβ)n2,

vR = (ẋC +
d

2
β̇ cosβ)n1 + (ẏC +

d

2
β̇ sinβ)n2,

vB = (ẋC + lα̇ cosα cosβ − lβ̇ sinα sinβ)n1

+ (ẏC + lα̇ cosα sinβ + lβ̇ sinα cosβ)n2

− (lα̇ sinα)n3.

(4)

The angular velocities of the three bodies [11] are described by
the following equations for rotational motion:

ωL = ωM + γ̇Lm2 = β̇m3 +

(
1

r

)
(ẋ− d

2
β̇)m2,

ωR = ωM + γ̇Rm2 = β̇m3 +

(
1

r

)
(ẋ+

d

2
β̇)m2,

ωB = ωM + α̇b2 = (−β̇ sinα)b1 + α̇b2 + (β̇ cosα)b3.

(5)

To apply the Euler-Lagrange equation, it’s necessary to
compute the total kinetic and potential energy of the 2WBMR
system. The expression for the translational kinetic energy of
the 2WBMR can be formulated as:

Ttrans =
1

2
mW (vL)

T .vL +
1

2
mW (vR)

T .vR +
1

2
mB(vB)

T .vB
(6)

The rotational energy of the 2WBMR can be written:

Trot =
1

2
(ωL)

T ILωL +
1

2
(ωR)

T IRωR +
1

2
(ωB)

T IBωB (7)

The inertia matrices are assumed to have a diagonal form,
characterized by:

IL = IR = diag{K,J,K} IB = diag{I1, I2, I3} (8)

The potential energy of 2WBMR is given by:

V = mBgl cosα (9)

The Lagrange is defined by:

L = T − V = Ttrans + Trot − V (10)

To model the system, the Euler-Lagrange equations are utilized
as functions of the following six generalized coordinates:

p1 = xC , p2 = yC , p3 = α, p4 = β, p5 = γL, p6 = γR
(11)
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Now the Lagrange equation of motion is given by:

d

dt

(
∂L

∂ṗi

)
− ∂L

∂pi
= Pi+

∑
j

λjaji (i = 1 ∼ 6, j = 1 ∼ 3)

(12)
The nonholonomic constraints presented earlier are related to
the Lagrange multipliers as follows:

a1i =
∂

∂ṗi

(
ẋC cosβ + ẏC sinβ − d

2
β̇ − rγ̇L

)
,

a2i =
∂

∂ṗi

(
ẋC cosβ + ẏC sinβ +

d

2
β̇ − rγ̇R

)
,

a3i =
∂

∂ṗi
(ẋC sinβ − ẏC cosβ) .

(13)

In this context, each number a1i, a2i, a3i represents a motion
constraint of the system based on the nonholonomic equations.

The external forces acting on the system corresponding to
the six coordinates can be expressed as:

P1 = P2 = P4 = 0, P3 = −(P5 + P6),

P5 = TL − fL = TL − cf (γ̇L − α̇),

P6 = TR − fR = TR − cf (γ̇R − α̇).

(14)

with cf as the coefficient of viscous friction on the wheel axis.
When applying the Lagrange equations to the six generalized
coordinates, six Lagrange equations containing Lagrange mul-
tipliers are obtained. After solving these equations without the
appearance of Lagrange multipliers, three sets of equations are
derived as follows:(
mB + 2mW + 2

J

r2

)
ẍ−mBl

(
β̇2 + α̇2

)
sinα+mBl cosαα̈

+
2

r
cf

(
ẋ

r
− α̇

)
=

TL + TR

r(
I2 +mBl

2
)
α̈+mBl cosαẍ+ (I3 − I1 −mBl

2)β̇2 sinα cosα

− 2cf

(
ẋ

r
− α̇

)
−mBlg sinα = −(TL + TR)(

I3 + 2K +mW
d2

2
+ J

d2

2r2
− (I3 − I1 −mBl

2) sin2 α

)
β̈

+ cf β̇
d2

2r2
+
(
mBlẋ− 2(I3 − I1 −mBl

2)α̇ cosα
)
β̇ sinα

=
(TR − TL)d

2r
(15)

The general form of the robot’s dynamic equation is:

Mq̈ + Cq̇ +Dq̇ +G = Bτ (16)

where M is the inertia matrix, C is the centrifugal and
Coriolis force matrix, D is the damping matrix, B is the
input matrix, τ is the input variables respectively, and the state
q =

[
x α β

]T
.

With the output of the model determined by three states, x,
α, β, it is necessary to derive the robot’s dynamic equation

in matrix form from (16). Therefore, after converting to this
matrix form, the computed matrices are as follows:

M =

a11 a12 0
a21 a22 0
0 0 a33

 , C =

 0 c12 c13
0 0 c23
c31 c32 c33

 ,

G =

 0
−mBlg sinα

0

 , B =

 1/r 1/r
−1 −1
−d/2r d/2r

 ,

D =

d11 d12 0
d21 d22 0
0 0 d33

 , τ =

[
TL

TR

]
.

(17)

and

a11 = mB + 2mW + 2J/r2,

a12 = a21 = mBl cosα,

a22 = mBl cosα,

a33 = I3 + 2K +mW
d2

2
+ J

d2

2r2
− (I3 − I1 −mBl

2) sin2 α,

c31 = mBlβ̇
2 sinα,

c12 = mBlα̇ sinα,

c13 = mBlβ̇ sinα,

c23 = (I3 − I1 −mBl
2)β sinα cosα,

c32 = −(I3 − I1 −mBl
2)β̇ sinα cosα,

c33 = −(I3 − I1 −mBl
2)α̇ sinα cosα,

d11 =
2cα
r2

,

d12 = d21 = −2cα
r

,

d22 = 2cα,

d33 =

(
d2

2r2

)
cf .

In the future, The model can be adapted to further develop
a two-legged wheeled balancing robot, with the core balance
control derived from the current research. This demonstrates
adaptability for various types of balancing robots that evolve
from 2WBMR and can operate on more complex terrains.

B. Design of HSMC Combined with SMC Controller

To achieve effective stabilization of the 2WBMR system,
a controller combining Hierarchical Sliding Mode Control
(HSMC) with Sliding Mode Control (SMC) is designed, see
Fig. 2. This section details the mathematical formulation and
implementation of the combined HSMC-SMC controller, focus-
ing on the control strategy and its application to the 2WBMR
system. Initially, it is necessary to determine the mathematical
equations of the system. By multiplying both sides of equation
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(16) by the inverse of matrix M , the resulting system can be
expressed in the following form:

ẋ1 = x2

ẋ2 = f1 + g1u1

ẋ3 = x4

ẋ4 = f2 + g2u1

ẋ5 = x6

ẋ6 = f3 + g3u2

(18)

In which X and u represent the state of the system and the
input relationship, respectively, taking the form:

X =
[
x1 x2 x3 x4 x5 x6

]T
=

[
x ẋ α α̇ β β̇

]T
(19)

u =
[
u1 u2

]T
=

[
TL + TR TL − TR

]T
(20)

1) Hierarchical Sliding Mode Control: To design HSMC,
there are four states of the system that need to be controlled,
namely position (x), velocity (ẋ), pitch angles (α) and pitch
rate (α̇). The errors between these states and the reference are:

e1 = x− xd

e2 = ẋ− ẋd

e3 = α− αd

e4 = α̇− α̇d

(21)

Next, the two first-layer sliding surfaces of the system are
constructed: {

s1 = c1e1 + e2

s2 = c2e3 + e4
(22)

where c1 and c2 are positive control parameters. The second-
layer sliding surface is synthesized from the combination of the
two first-layer sliding surfaces. Specifically, it is defined as:

S = λs1 + γs2 (23)

By setting ṡ1 = 0 and using the equation ẋ2 from equation
20, the equivalent control law ueq1 is obtained as follows:

ueq1 = −(c1ė1 + f1 − ẍd)/g1 (24)

Similarly, the second equivalent control law ueq2 is derived as:

ueq2 = −(c2ė3 + f2 − α̈d)/g2 (25)

To achieve the desired reference, the control input u1 based
on HSMC can be determined as:

u1 = ueq1 + ueq2 + usw (26)

where usw is given by:

usw = −(λg1ueq2+γg2ueq1+ η1sign(S)+k1S)/(λg1+γg2)
(27)

Here, η1 and k1 are positive parameters. To demonstrate the
stability of the controller, the Lyapunov function is chosen as:

V =
1

2
S2 (28)

The time derivative of the Lyapunov function V is given by:

V̇ = SṠ

= S(λṡ1 + γṡ2)

= S[λ(c1ė1 + ė2) + γ(c2ė3 + ė4)]

= S [λ(c1ė1 + f1 + g1u1 − ẍd) + γ(c2ė3 + f2 + g2u1 − α̈d)]

= S [λ(c1ė1 + f1 + g1(ueq1 + ueq2 + usw)− ẍd)

+ γ(c2ė3 + f2 + g2(ueq1 + ueq2 + usw)− α̈d)]

= S [λg1(ueq2 + usw) + γg2(ueq1 + usw)]

= S [(λg1 + γg2)usw + λg1ueq2 + γg2ueq1]

= S(−η1sign(S)− k1S)

= −η1|S| − k1S
2

(29)

Finally, the result is obtained:

V̇ = −η1|S| − k1S
2 < 0 (30)

From equation (30), it can be inferred that 2WBMR system
is stable based on the Lyapunov criterion. At that point, the
Lyapunov function measures the system’s energy (which is
always positive), and its derivative represents how this energy
changes. A negative derivative indicates that the Lyapunov
energy is approaching zero, meaning the system is moving
towards a stable state. That lead to the sliding surface S
converging to zero in finite time, which is equivalent to both
sliding surfaces s1 and s2 converging to zero. Thus, with the
positive coefficients c1 and c2, as s1 and s2 approach 0, the
errors will also stabilize and approach 0.

2) Sliding Mode Control: From equation (18), the yaw state
is controlled by u2. Therefore, it is possible to design SMC to
stabilize yaw angles (β) and yaw rate (β̇). The error between
the yaw state and yaw reference can be determined as follows:{

e5 = β − βd

e6 = β̇ − β̇d

(31)

Sliding surface based on SMC is written as:

s3 = c3e5 + e6 (32)

Taking the derivative of this sliding surface, we have:

ṡ3 = c3ė5 + ė6 = c3ė5 + f3 + g3u2 − β̈d (33)

Select the Lyapunov function:

V3 =
1

2
s23 (34)
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Fig. 2. Control structure

Taking the derivative of both sides of equation (36), we have:

V̇3 = s3ṡ3 = s3(c3ė5+ ė6) = s3(c3ė5+ f3+ g3u2− β̈d) (35)

The goal to be achieved is V̇3 < 0. Therefore, the input
control signal u2 can be selected as follows:

u2 = (1/g3)(−c3ė5 − f3 + β̈d − η2sign(s3)− k2s3) (36)

With η2 and k2 being positive constants. By substituting
u2 and V̇3, we can easily prove: V̇3 = −η2|s3| − k2s

2
3 < 0

and according Lyapunov criterion, s3 and e5 converges to zero.
Then yaw state is stable.

C. FA Optimization Algorithm

The Firefly Algorithm (FA) is a nature-inspired optimization
technique that mimics the behavior of fireflies, particularly their
bioluminescent communication patterns. First introduced by
Xin-She Yang, this algorithm is based on the idea that fireflies
are attracted to each other based on the intensity of their flashes.
In the FA, the brightness of each firefly corresponds to the
quality of a potential solution within a multidimensional search
space. The brightness is determined by the fitness function
specific to the optimization problem.

The algorithm simulates a population of fireflies where each
firefly adjusts its position iteratively by being attracted to
brighter fireflies. If a firefly finds another firefly that has a
brighter intensity, it moves toward that firefly. The distance
between fireflies and the light intensity they emit define the
movement’s magnitude and direction. The process iterates, with
fireflies converging towards optimal or near-optimal solutions
in the search space, as shown in the algorithm Algorithm 2.

The movement of the i-th firefly towards the j-th firefly is
modeled as:

xk+1
i = xk

i + µ0e
−ξr2ij (xk

j − xk
i ) + σϵi (37)

Where rij represents the distance between fireflies i and
j, µ0 is the attraction coefficient, ξ is the light absorption
coefficient, and σϵi introduces randomization to diversify the
search. The first term allows the firefly to follow the brighter
one, while the second term ensures exploration of the search
space through random movement. The coefficient ξ controls
the firefly’s visibility, reducing the attraction between fireflies as
the distance increases.Thus, by continuously moving toward the
position of brighter and closer fireflies (with the attraction coef-
ficient ξ gradually decreasing) and by reducing the randomness
factor σ, the fireflies will converge to an optimal point as they
gather in one area, usually around a local optimum solution. In
addition to gradually converging towards the global solution,
the fireflies continue to move randomly around the region via
the randomness factor σ, allowing them to explore new local
optima.

Like other optimization techniques, the FA balances ex-
ploration and exploitation. During the initial iterations, larger
values of the randomization factor σ promote exploration across
the search space. As the algorithm proceeds, σ is gradually
reduced, enabling fireflies to focus on exploiting areas around
the brightest solutions found so far. This balance ensures that
the fireflies do not prematurely converge to suboptimal solutions
while still refining their search around the most promising
areas.In the initial runs, we can accelerate the convergence
by reducing the randomness factor σ and increasing the light
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absorption coefficient ξ so that the fireflies move faster to-
wards brighter points. Conversely, when aiming to improve
the optimality of the convergence result, we can increase the
randomness factor σ to enhance the fireflies’ exploration of the
search space and discover new convergence points.

The firefly algorithm’s ability to adjust the attraction between
fireflies and combine randomness in the search process makes
it particularly effective for a variety of optimization problems.
Similar to Particle Swarm Optimization (PSO), FA also in-
volves tuning several parameters, such as the light absorption
coefficient ξ and the randomization factor σ, to achieve better
convergence and prevent being trapped in local optima.In
addition, by balancing between optimization and exploration
capabilities, we can accelerate the convergence rate through the
careful selection of the number of fireflies, the light absorption
coefficient ξ, and the randomness factor σ.

In the implementation provided, the range defines the bound-
aries of the search space, while the parameters σ, ξ, and δ
control the behavior of the fireflies. The number of generations
determines the total iterations, where the swarm dynamically
adjusts to find the optimal solution.

Algorithm 2 Firefly Algorithm diagram

1: Input: Number of fireflies n, ranges for variables, param-
eters σ, ξ, δ.

2: Output: Best solution found.
3: Initialize firefly positions xn randomly within the specified

ranges.
4: Calculate initial brightness Lightn.
5: for each generation T do
6: for each firefly i do
7: for each best firefly j do
8: Calculate distance r between fireflies i and j.
9: if Lightn(i) < Lightn(j) then

10: Calculate absorption coefficient µ← µ0 · e−γr2 .
11: Update position xn(i) ← (1 − µ) · xn(i) + µ ·

xn(j) + ξ · (rand(1, d)− 0.5).
12: end if
13: end for
14: Limit position xn(i) within the specified range.
15: end for
16: Evaluate brightness Lightn based on updated positions.
17: Update randomness parameter ξ ← ξ · δ.
18: end for
19: Record the best solution found.
20: Display the best solution and running time.

III. RESULTS AND DISCUSSION

The main results presented in this study include validating
the stability of the proposed method, comparing it with the
PID control method, and using the Firefly Algorithm (FA) to

optimize the parameters of the proposed controller to enhance
control quality. The performance of the HSMC controller, in
conjunction with the firefly algorithm, is assessed through
simulations conducted using Simulink/MATLAB software.

The the parameters of the 2WBMR system are: d = 0.15(m),
l = 0.5(m), r = 0.11(m), mB = 6.575(kg), mW =
0.2121(kg), J = 2.651 × 10−4(kgm2), K = 5.229 ×
10−3(kgm2), I1 = 1.128 × 10−1(kgm2), I2 = 1.248 ×
10−1(kgm2), I3 = 4.641 × 10−3(kgm2), g = 9.81(m/s2),
cα = 0.1.

A. HSMC-SMC

B. Stable Control

In this subsection, to verify the stability of the HSMC-SMC
controller, simulations were conducted using Matlab with the
following adaptive control parameters: c1 = 4, c2 = 5, k1 =
2, λ = 18, β = 8.7, c3 = 10, and k3 = 10. The simulation
results for the state variables, including the position x, angle
α, and angle β, are presented in Fig. 3.

Fig. 3. System response under HSMC - SMC control

From the simulation results with the initial values α0 = π
6

and β0 = −π
2 , it is observed that the controller performs well

in stabilizing the angle α with minimal overshoot and remains
stable within 2 seconds. The settling time of up to nearly 2
seconds is due to the output signal being constrained during
the simulation process, ensuring that the output torque is more
suitable for real-world applications. The results demonstrate a
rapid response and robust stability, making it well-suited for
industrial environments with disturbances and complex terrains.
In future work, building on the current results, we will focus
on tracking control to enable the model to balance and follow
a trajectory.
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C. Comparision

In this section, to demonstrate the superiority of the proposed
method over the previously existing methods, we conducted
several comparisons of the stable control results between the
proposed HSMC-SMC controller and the stability controller
designed using the PID method. The initial conditions are kept
the same as α0 = π

6 and β0 = −π
2 , and the comparison results

are shown in Fig. 4.

Fig. 4. Comparison results

Based on the comparison results in Fig. 4, it can be observed
that the HSMC controller demonstrates significantly superior
stability performance compared to the PID controller. Firstly,
when comparing the stabilization speed, HSMC shows a much
faster response time, especially for the x coordinate, where
HSMC achieves stabilization in 1.2 seconds, while PID takes
nearly 15 seconds. Regarding overshoot, the HSMC controller
also performs much better, as shown in the responses of the
angles α and β, particularly the β angle with an overshoot of
nearly 30%.

D. Firefly Algorithm

In this subsection, the firefly algorithm is employed to search
for and optimize the control parameters of the HSMC controller,
specifically the parameters c1, c2, η1, λ, γ. The cost function
used to evaluate the brightness (efficiency) is defined as follows:

F =
1

1 + IAEx + IAEθ
(38)

With IAEX , IAEθ is Integral of Absolute Error of coordi-
nates, vertical angles, rotation angles. With the IAE error set in
the sample to ensure the smallest error value, the cost function
will have the maximum value corresponding to the highest

brightness, in order to align with the optimization algorithm to
reach the point with the highest brightness. Table II presents the
results of the FA algorithm used to tune the control parameters
of the HSMC controller and the cost function F shown in Fig. 5.

TABLE II. THE PARAMETERS OF THE CONTROLLER IN DIFFERENT ITERATIONS

Iteration c1 c2 k1 λ γ F
n = 5 2.8821 7.8619 29.5338 3.3849 1.7383 0.6777
n = 10 1.9633 4.6157 18.5637 7.8249 3.5755 0.7354

(a) Coordinates x

(b) Angle α

Fig. 5. Results demonstrating variations in response to different parameters.

From Fig. 4, we observe that the parameters obtained at
the 10th iteration yield a significantly better response in the
x-coordinate and the angle α compared to the parameters from
the 5th iteration. This indicates that the algorithm successfully
achieved its goal of optimizing the control parameters for the
HSMC controller.

In addition, A comparative study was conducted to evaluate
the optimization performance of the Firefly Algorithm (FA)
against the widely used Particle Swarm Optimization (PSO)
algorithm. The results, as presented in Table III, indicate that
FA demonstrates superior convergence speed and optimization
quality, achieving a 10% improvement in the final optimization
result compared to PSO. Both algorithms were evaluated under
identical conditions, including the number of offspring, itera-
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tions, and similar runtime durations (446 seconds for PSO and
534 seconds for FA). The objective function employed for this
assessment was:

X = IAEx + IAEθ

which combines the integral of absolute errors of the system’s
variables.

TABLE III. COMPARISON OF PSO AND FA BY ITERATION

Iteration PSO FA
1 1.441334 0.669196
2 1.075355 0.611261
3 1.044186 0.570133
4 0.517183 0.426512
5 0.517183 0.385446

10 0.405362 0.376905
15 0.405362 0.376388
20 0.405324 0.375243
25 0.396149 0.374891

Thus, through the simulation results with different numbers
of loops and the comparison results with the PSO algorithm, it
has been proven that the application of the Firefly Algorithm
(FA) to optimize control parameters for the HSMC controller
is completely feasible and demonstrates superior efficiency
compared to current popular optimization methods such as PSO.

IV. CONCLUSION

The present study introduces an integrated control strategy
for Two-Wheeled Balancing Mobile Robots (2WBMRs) by
combining Hierarchical Sliding Mode Control (HSMC) and
Sliding Mode Control (SMC), optimized through the Firefly
Algorithm (FA). Our approach addresses key challenges asso-
ciated with traditional control methods by optimizing control
parameters to enhance stability and efficiency. The simulation
results demonstrated that the proposed HSMC-SMC controller,
optimized by FA, achieved a significant reduction in chatter-
ing and improved response times, with the HSMC achieving
stabilization in 1.2 seconds compared to nearly 15 seconds
for a traditional PID controller. Furthermore, the optimization
process reduced chattering amplitude by approximately 30%,
demonstrating the effectiveness of our approach in real-time
control scenarios.

Our results highlight the practical implications of the pro-
posed control strategy, particularly in industrial automation,
autonomous transportation, and mobile robotics, where precise
control, stability, and quick adaptation to varying conditions are
essential. By improving response times and reducing control
oscillations, this approach offers a more robust and reliable
solution for complex, nonlinear systems. However, it is im-
portant to acknowledge that our study primarily focused on
stability in balancing scenarios, and future work will explore
extended applications, such as trajectory tracking and enhanced
disturbance rejection, which would further validate the real-
world applicability of our method.

Despite the promising results, there are certain limitations to
our approach. The computational complexity of the optimiza-
tion process can be influenced by factors such as the system
model and computational hardware, and there is a potential risk
of the FA getting trapped in local optima, which depends on
parameter tuning. Addressing these challenges will be crucial
in future research, where we plan to test different optimization
algorithms in combination with HSMC and apply our method
to more complex robotic systems.

Our findings contribute to the broader field of nonlinear
control by providing a comprehensive control strategy that
integrates HSMC for system stability and SMC for precise
direction control. The use of FA for parameter optimization
opens up new possibilities for enhancing control performance
across various nonlinear, underactuated systems. This study
emphasizes the need for adaptive, efficient control solutions in
robotics and highlights how integrated control and optimization
can advance existing methods, particularly in environments
with dynamic and unpredictable conditions. Future work should
continue to explore the full potential of FA and other optimiza-
tion techniques, including testing in real-world applications to
validate the robustness and practical benefits of our approach.

In conclusion, the integration of HSMC, SMC, and the Firefly
Algorithm represents a significant step forward in developing
advanced control systems that are adaptable, efficient, and ca-
pable of handling real-world constraints. We encourage further
research to build on these findings, exploring new control
strategies and optimization methods that can be applied across
various industries, ultimately enhancing the design of control
systems for diverse robotic applications.
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