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5 Universidad Tecnica de Ambato (UTA), Ambato, Ecuador
Email: 1 gabriel.moreano.epn@gmail.com, 2 jtafur@pucp.edu.pe, 3 valeria.andino@espoch.edu.ec,

4 sergio.villacres@espoch.edu.ec, 5 ma.viscaino@uta.edu.ec
*Corresponding Author

Abstract—The control of nonlinear systems poses significant
challenges due to their inherent complexities, limiting the ef-
fectiveness of traditional control strategies. This paper presents
an improved fuzzy identification and control method for nonlin-
ear industrial systems, using Takagi-Sugeno fuzzy inference to
model nonlinear dynamics as an interpolation of multiple linear
subsystems. A key improvement of this approach lies in the
accurate identification of the nonlinear model, which leads to
fewer control system failures. The research contribution is the
development of a control strategy that enhances system reliability
while simplifying implementation. The method involves minimiz-
ing a cost function that optimizes the system’s output error,
refining the fuzzy identification process for dynamic adaptation
to varying operating conditions. The strategy also enables the
design of linear controllers for each subsystem and applies Parallel
Distributed Compensation (PDC) to regulate the overall nonlinear
system. This approach is validated through experimental testing
on an aero-pendulum system. The results show that the PDC-
based control scheme not only ensures high performance across a
wide operational range but also significantly reduces identification
errors compared to traditional methods. Given its improved
accuracy, reduced complexity, and adaptability, this approach
holds significant potential for practical application in industrial
environments, where robust and efficient control of nonlinear
systems is crucial for operational success.

Keywords—Fuzzy Identificationl; PDC Control; Takagi - Sugeno;
Nonlinear Systems; Industrial Control; Aeropendulum

I. INTRODUCTION

The control of nonlinear systems has historically posed a
significant challenge in both academic and industrial fields due
to the inherent difficulties in designing controllers that maintain
stability and efficiency across a wide range of operating condi-
tions. Nonlinear systems exhibit complex dynamic behaviors,
such as bifurcations and chaos, which make it difficult to apply
conventional linear control methods. Over the years, various
strategies have been proposed to tackle this problem; however,
many of these approaches are either too complex for practical

implementation or fail to deliver satisfactory performance over
a broad operational range. Some examples of nonlinear control
are presented in [1]–[5].

Among the methodologies developed to address nonlinear
control, fuzzy systems, particularly those based on Takagi-
Sugeno (T-S) models, have gained prominence due to their
ability to approximate complex nonlinear systems by interpo-
lating between multiple linear subsystems. Takagi-Sugeno type
fuzzy systems were introduced in [6], where a methodology was
proposed in which fuzzy rules follow an ”if-then” format, with
the particularity that the rule consequents are linear functions
(control examples [7]–[13]). Later, in [14], Sugeno and Kang
expanded the model by introducing techniques to represent non-
linear functions as interpolation of simpler functions.

The key advantage of this approach is that it allows for the
design of linear controllers for each subsystem and the use of
Parallel Distributed Compensation (PDC) to regulate the overall
nonlinear system. However, the fuzzy identification process,
which is used to construct T-S models, still faces significant
challenges, especially regarding the issue of singularity. In
many cases, fuzzy identification fails to accurately represent
the original nonlinear model, which can lead to control system
errors and negatively impact its performance.

A challenge with fuzzy identification is how the unit is
divided into fuzzy sets, especially with triangular membership
functions, which are the most common. This split can cause
problems when identifying systems with a batch of data due
to uniqueness in the regression matrix.. References [15]–[23]
propose ways to handle or avoid this problem. It’s also an issue
in type-2 fuzzy systems, with solutions using predictive and
neuro-fuzzy strategies [24]–[29], but these approaches can be
costly in terms of operations and computation.

The primary objective of this work is to propose a novel
approach for improving the fuzzy identification of nonlinear
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systems, specifically focusing on eliminating singularity in
the identification process. Singularity in fuzzy identification
occurs when the system of equations used to estimate the
model parameters does not have a unique or stable solution,
resulting in uncertainties in control and an increased likelihood
of failures. This problem is particularly acute in industrial
applications, where system stability and reliability are critical.
By enhancing the identification process, our approach enables
a more accurate representation of the nonlinear system, leading
to more robust and efficient control.

Moreover, this work introduces a least squares error cost
function for the identification process. This optimization crite-
rion minimizes the difference between the predicted and actual
outputs of the system, ensuring that the identified model closely
fits the real system’s dynamic behavior. Minimizing the mean
squared error not only improves the model’s accuracy but also
reduces the likelihood of control system failures (see [30]),
which is particularly important in industrial settings where
control errors can result in costly downtime or equipment
damage.

The state of the art in nonlinear control has seen the
emergence of various approaches aimed at improving both
identification and control. For instance, recent works have
proposed using Linear Matrix Inequalities (LMI) to verify the
stability of T-S fuzzy models [31]–[33]. While these approaches
have proven effective in validating system stability, they do not
directly address the problem of singularity in identification. Ad-
ditionally, advanced techniques have been proposed for tuning
membership functions and automatically generating fuzzy rules
from empirical data [32]–[38]. Although these techniques have
improved the performance of fuzzy controllers, there remains
a need for more robust and practical methods that effectively
resolve the singularity problem.

This work positions itself at the intersection of these research
lines by proposing a method that not only enhances the accuracy
of fuzzy identification but also solves the singularity problem
in the regression matrix that arises during the identification
process. Our approach, by incorporating an identity matrix
scaled by a power factor with initial conditions, ensures that the
system of equations is complete and that the model parameters
can be estimated stably and accurately. In doing so, it prevents
singularity from affecting system performance, significantly
improving control robustness.

One of the key contributions of this work is the experimental
validation of the proposed methodology through its applica-
tion to the control of an aero-pendulum system. This system,
known for its nonlinear dynamics and complexity in terms of
control, serves as an ideal case study for demonstrating the
effectiveness of the improved identification and PDC control
strategy (see examples [39]–[44]). The experimental results
show that the proposed approach not only improves system
stability and controllability but also reduces identification error

and optimizes overall controller performance. Other control
techniques applied to the aeropendulum can be seen in [45]–
[54].

The contributions of this research are two. First, the de-
velopment of an improved fuzzy identification methodology
that provides a closer approximation to the original nonlinear
model, effectively minimizing control system failures. Second,
the integration of this identification technique with PDC control
strategies, which has been experimentally validated on an aero-
pendulum system, demonstrating its applicability in real-world
scenarios. These contributions position this work as a significant
advancement in the field of nonlinear system control, with
practical implications for industrial environments.

II. METHODS

The original fuzzy identification method, applied to dynamic
systems, is implemented using an input-output dataset, the
dataset to be used will have a sampling time ∆t = tk
seconds, for each k = 1, 2, 3, . . . , n samples. The input u[k]
should have sufficient frequency variations to model a complex
plant. High-frequency input signals are optimal for estimating
dynamic systems because they can excite a wider range of
the system’s modes, enabling a more thorough characterization
of its behavior. These signals offer greater resolution in the
frequency spectrum, helping to avoid issues such as resonance
or parameter correlation that may arise with low-frequency
signals. Moreover, they enhance the system’s observability and
controllability, facilitating precise parameter identification and
the capture of transient dynamics that might be difficult to
detect with lower frequencies.

The T-S fuzzy system is structured with R common if-then
rules, where the consequents of the fuzzy model are difference
equations. To represent the system dynamics, a common rule
can be constructed in the following form:
Ri: If y[k] is AL

1 and y[k− 1] is AM
2 and ...y[k−n+1]

is AN
n , then:

yi[k+1] = ai0 + ai1y[k] + ai2y[k− 1]+ ...+ ainy[k−
n+ 1] + ...

...+ bi1u[k] + bi2u[k− 1]+ ...+ bimu[k−
m+ 1]

Where a and b are the coefficients of each difference equa-
tion. There is a term independent of the system dynamics, which
accounts for the lag that the models might perceive.

The crisp output of the fuzzy system when evaluating each
of its rules is defined by:

y[k + 1] =

R∑
i=1

ŷiui(y[k], y[k − 1], ..., y[k − n+ 1])

R∑
i=1

ui(y[k], y[k − 1], ..., y[k − n+ 1])

(1)
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Where ui refers to the degree of firing of each fuzzy rule,
referring to the present state of the system and the past states.

How many past states to use depends on the system’s
complexity, the balance between accuracy and simplicity, and
the nature of the process. A more complex system may require
more past states to adequately capture its dynamics, while using
too many can increase complexity and the risk of overfitting.
Typically, the selection is made through experimentation, test-
ing different configurations and choosing the one that best fits
the system’s behavior.

Whereas that, ŷi is the clear output of the consequent of each
rule. The expression is rewritten as:

y[k + 1] = q1 ∗ ξ1(u1) + q2 ∗ ξ2(u2) + ...+ qR ∗ ξR(uR) (2)

Where ξi is called base functions of the fuzzy model, these
functions refers to the membership functions that describe how
input values are associated with fuzzy sets. These functions,
which can take different shapes like triangular, trapezoidal, or
Gaussian, define the degree of membership of an input to a
specific set, It is calculated by dividing the firing strength of a
rule by the total firing strengths of all the rules.

ξi =
ui(y[k], y[k − 1], ..., y[k − n+ 1])

R∑
i=1

ui(y[k], y[k − 1], ..., y[k − n+ 1])

(3)

This being a simple value to determine. The output of each
fuzzy rule will be:

y[k+1] = a0 + a1y[k] + a2y[k− 1] + ...+ any[k−n+1]+

b1u[k] + b2u[k − 1] + ...+ bmu[k −m+ 1]

By combining this expression with equation (2), the follow-
ing is obtained:

y[k + 1] = (a10 + a11y[k] + ..+ a1ny[k − n+ 1] + b11u[k]...+

b1mu[k −m+ 1])ξ1 + (a20 + a21y[k] + ...+

a2ny[k−n+1]+ b21u[k]...+ b2mu[k−m+1])ξ2+

+...+ (aR0 + aR1 y[k] + ..+ aRn y[k − n+ 1]

+bR1 u[k]...+ bRmu[k −m+ 1])ξR
It can be expressed in matrix form as:

y[k + 1] = ϕθ (4)

where:
ϕ = [a10 a11 ... a1n a20 a21 ... a2n ... aR0 ... aRn

b11 ... b1m b21 ... b2m bR1 bRm]

The matrix contains the parameters to be estimated, specifi-
cally the coefficients of the consequents of each rule. Mean-
while, θ is known as the regressor, representing the matrix
formed by the base functions of the fuzzy model and the system
states.

θ = [ξ1 ξ1y[k] ξ1y[k − 1] ... ξ1y[k − n+ 1]

ξ2 ξ2y[k] ξ2y[k − 1] ... ξ2y[k − n+ 1] ...

ξR ξRy[k] ξRy[k − 1] ... ξRy[k − n+ 1]T

Since the estimation will be performed using a least squares
regression, the previously obtained dataset will be utilized. A
more straightforward interpretation of the matrices θ and ϕ
can be achieved by grouping them according to each rule, as
follows:

Θ = [θ1 θ2 .... θR] 1xR
ϕ(j) = [ϕ1(j) ϕ2(j) .... ϕR(j)] 1xR

Where, j is the sample number of the batch of data being
analyzed, if k samples are available, the result is:

Φ = [ϕ1(1) ϕ2(1) .... ϕR(1);

ϕ1(2) ϕ2(2) .... ϕR(2);

.

.

.
ϕ1(k) ϕ2(k) .... ϕR(k)] kxR

The batch of system outputs turns out to be:

Y = ΦΘ (5)

The cost function is the minimum square error, so we seek to
minimize:

V =
1

2

k∑
j=1

[y(j)− ϕ(j)θT ]2 (6)

To reduce the sum, the combined matrices are used and to
solve the square of matrix operations, it is multiplied by the
transpose:

V =
1

2
(Y − ΦΘT )T (Y − ΦΘT ) (7)

The cost function is minimized if:
∂V

∂Θ
= 0

ΘT = (ΦTΦ)−1ΦTY (8)

This method has a clear limitation: if unit partition sets
are used in the fuzzy universes, a linear dependence between
the columns of the matrix ϕ will be generated. This can be
easily demonstrated; let us consider two fuzzy universes, each
consisting of two sets, as shown in Fig. 1, if we calculate the
basis functions for an arbitrary value of the system states, for
example, y[k] = y[k − 1] = 55, the resulting basis functions
are:

ξ1 = u1(y[k]) ∗ u1(y[k − 1]) = (0.8) ∗ (0.8) = 0.64
ξ2 = (0.8) ∗ (0.2) = 0.16
ξ3 = (0.8) ∗ (0.2) = 0.16
ξ4 = (0.2) ∗ (0.2) = 0.04

(9)
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Fig. 1. input fuzzy sets

The basis functions are obtained directly using the T-norm
of the fuzzy sets, since the denominator of the equation (3) is
one in all cases due to the unit partition of the fuzzy sets.

Therefore, a portion of the matrix θ from equation 4 is as
follows:

θ =
[ξ1 ξ∗1y[k] .... ξ2 ξ∗2y[k]

.... ξ3 ξ∗3y[k] .... ]
(10)

Numerically, the example yields:

θ =
[0.64 0.64 ∗ y[k] .... 0.16 ∗ y[k] ....
0.16 0.16 ∗ y[k] .... ]

(11)

From the equation (11), it is observed that there is a linear
dependence between the third and fifth terms (of the simplified
matrix) for the same value of y[k]. In other words, the matrix
Φ is not full-rank, and therefore the expression ΦTΦ would not
be invertible.

Although the matrix Φ is non-singular, the expression
presents an incomplete solution. This is because the matrix
ΦTΦ will be square with dimensions corresponding to the
reduced rank. Consequently, the expression 8 will yield the
number of valid coefficients equal to the rank of the matrix Φ,
and it will complete the matrix with values close to singularity
at the points of conflict.

A small number of fuzzy sets and rules can lead to singularity
in the regression matrix, as it may not provide enough diversity
in the inputs or adequate coverage of the input space, causing
linearity or redundancy issues in the system. However, the
advantage of using fewer sets and rules is the reduction in
computational cost, since fewer operations and less memory
are required to run the model. Therefore, there is a trade-
off between system complexity (more sets and rules to avoid
singularity) and computational efficiency, which should be
considered when designing the fuzzy system.
Como

Adding an identity matrix multiplied by a factor γ can
help prevent singularity in some cases, and this method is
commonly known as regularization. It is used to stabilize ill-
posed problems or when a matrix is near singular, meaning its
determinant is close to zero.

The idea is that by adding γI (where I is the identity matrix
and γ is a small positive factor), the eigenvalues of the resulting
matrix are shifted away from zero, reducing the likelihood of
the matrix being singular or nearly singular. This identity matrix
must have dimensions equal to the number of columns of the
original matrix Φ.
The cost function is given by:

V =
1

2

k∑
j=1

[y(j)− ϕ(j)θT ]2 + γ2
R∑

j=1

θ2j (12)

And in matrix form, it is expressed as:

V =∥ Y − ΦΘ ∥2 +γ2 ∥ Θ ∥2 (13)

V =∥ Ya − ΦaΘ ∥2 (14)

After extending the regression matrix, the number of rows in
the matrix increases and, therefore, the number of outputs in
the batch of data. Since there is no system output information
available for the samples in the extended matrix, the batch of
outputs will be filled with a column vector of zeros of the same
size as the identity matrix.

Ya =

[
Y
0

]
(15)

and,

Φa =

[
Φ
γI

]
(16)

With this extension, the coefficient matrix Θ is given by:

ΘT
a = (ΦT

aΦa)
−1ΦT

a Ya (17)

This expression ensures that the matrix Φa is full-rank,
thereby providing an effective solution. Naturally, this expres-
sion minimizes the estimation error as a function of the value
of γ. The smaller the perturbation, the lower the error, but it
also brings the matrix closer to singularity.

The choice of γ in regularization depends on balancing
stability and accuracy. Commonly, it is selected through cross-
validation or trial and error, testing different values and choos-
ing the one that minimizes generalization error. It can also
be adjusted based on the conditioning of the matrix or using
heuristics specific to the problem. In some cases, automatic
methods like the Akaike Information Criterion (AIC) or the
Bayesian Information Criterion (BIC) can help determine γ
optimally.
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A simple way to determine γ to avoid singularity in a fuzzy
estimation process is to choose it as a small percentage of
the largest eigenvalue of the matrix being regularized. This
ensures that the resulting eigenvalues are not close to zero,
preventing singularity without introducing excessive bias. A
practical approach is to select γ = ϵ · λmax, where ϵ is a small
factor, such as 0.01. This method is quick and effective for
stabilizing the system without significantly affecting accuracy.

To improve the estimation and seek an optimal solution, this
work proposes starting from the expression 17 and using the
coefficients obtained in the first iteration instead of the zero
outputs presented in equation (19), resulting in the following
minimization expression:

ΘT
b = (ΦT

b Φb)
−1ΦT

b Yb (18)

Where:

Yb =

[
Y
Θa

]
(19)

Meanwhile, the matrix Φb will follow the form shown in
(16), with the minimization factor γ.

III. RESULTS

A dynamic model of an aeropendulum will be built to demon-
strate the fuzzy identification of Takagi - Sugeno inference
applied to a nonlinear system. The aeropendulum is more
efficient than an industrial system for testing nonlinear system
identification methods due to its simplicity, low cost, and safety.
Its simpler structure allows for easier modeling and control,
while its operation is more economical and safer compared
to the risks associated with industrial systems. Additionally,
it enables the quick implementation of experimental techniques
and provides a controlled environment for obtaining consistent
results. The fuzzy identification method proposed in this work
can be applied to any type of system, as long as key factors are
considered: using a low number of fuzzy rules and fuzzy sets,
and extending the regression matrix through a regularization
method to avoid singularity issues.

It begins with obtaining the non-linear model of the system to
obtain identification data. According to Newton’s second law
for rotational movements, the following equation is derived,
which models the aeropendulum.

Iθ̈ = −mgl sin(θ)− bθ̇ + T (20)

where:
• mgl sin(θ) is the torque due to gravity.
• Bθ̇ is the torque due to friction.
• T is the torque generated by the propeller, which can be

expressed as T = kmu, where δ represents the duty ratio
of the PWM signal sent to the motor ESC.

As can be seen, there is a dependent variable as part of a
coefficient of the model, which generates the nonlinearity.

Since the motor used in the aeropendulum is a brushless
motor and knowing that its control is carried out through an
ESC, the input signal was adapted, where km, which was
initially a constant of proportionality, now turns out to be a
simple function of the relationship of work (δ) sent to the ESC.

T = 8δ − 8 (21)

This expression relates the pulse width of the PWM signal
generated by the controller to the torque of the model, enabling
a direct identification between the control action and the angle
of the aeropendulum.

This model was used to obtain the training data, based on
an input with high dynamic content. In Fig. 2 you can see the
input data, referring to the pulse width of the signal sent to the
motors (values between 1 and 2 for brushless motor control)
and as output (θ) the pendulum angle.

Fig. 2. Trainig data

In this work, only two state values are used: the current state
and the previous one. As mentioned in the methods section,
this choice is arbitrary and directly impacts the algorithmic
complexity of the fuzzy system. Using two states results in
a minimum of 4 rules, while three states would require at least
6 rules, and so on.

The physical limits of the system generate the identification
domain of the model, in this case the aeropendulum can move
between 35 and 135 degrees. Each state is associated with two
fuzzy sets with unit partitions as seen in Fig. 1.

Similarly, the smallest possible number of fuzzy sets is
chosen to reduce algorithmic complexity. Using 2 fuzzy sets
per state results in 4 rules, 3 sets per state leads to 9 rules, and
so on. A lower number of states and sets increases the likelihood
of achieving uniqueness in the identification process.

The input sets will be identical for each state of the system,
giving rise to 4 fuzzy rules:

R1: If y[k] is A1
1 and y[k − 1] is A1

2 then:
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y[k + 1] = a10 + a11y[k] + a12y[k − 1] + b10u[k]

R2: If y[k] is A1
1 and y[k − 1] is A2

1 then:
y[k + 1] = a20 + a21y[k] + a22y[k − 1] + b20u[k]

R3: If y[k] is A2
1 and y[k − 1] is A1

2 then:
y[k + 1] = a30 + a31y[k] + a32y[k − 1] + b30u[k]

R4: If y[k] is A2
1 and y[k − 1] is A2

2 then:
y[k + 1] = a40 + a41y[k] + a42y[k − 1] + b40u[k]

From the gathered rules, it can be observed that there are 16
coefficients to estimate. Once the regressor is constructed and
the mean squared error is minimized by applying equation (8),
the following consequents are obtained:

R1: y[k+1] = −0.51+1.94y[k]− 0.94y[k− 1]+ 0.51u[k]

R2: y[k+1] = −0.06+1.86y[k]− 0.89y[k− 1]+ 0.56u[k]

R3: y[k+1] = −0.94+2.01y[k]− 0.99y[k− 1]+ 0.39u[k]

R4: y[k + 1] = −0.36 + 1.92y[k]− 0.92[k − 1] + 0.51u[k]

By applying the extended cost function 17, the following
consequent functions were obtained:

R1: y[k + 1] = 0.38 + 1.59y[k]− 0.62y[k − 1] + 0.48u[k]

R2: y[k+1] = −0.09+0.99y[k]− 0.90y[k− 1]+ 0.55u[k]

R3: y[k+1] = −0.05+2.15y[k]− 0.24y[k− 1]+ 1.05u[k]

R4: y[k + 1] = 0.02− 0.68y[k] + 1.68[k − 1]− 0.60u[k]

In this work, the value of γ was selected by taking the
maximum eigenvalue of the matrix and multiplying it by a
scaling factor. This approach ensures that the regularization
term is appropriately adjusted to prevent singularity, while
maintaining the balance between system stability and accuracy
in the identification process.

Finally, by applying the proposed function with a double
identification iteration, the following functions for the conse-
quents of the fuzzy system were obtained:

R1: y[k+1] = −0.63+1.94y[k]− 0.94y[k− 1]+ 0.53u[k]

R2: y[k + 1] = 4.54 + 1.78y[k]− 0.97y[k − 1] + 0.37u[k]

R3: y[k+1] = −6.37+1.91y[k]− 0.72y[k− 1]+ 0.72u[k]

R4: y[k + 1] = −0.73 + 1.77y[k]− 0.78[k − 1] + 0.44u[k]

In the vast majority of the estimated coefficients across the
three applied methods, no significant variations are observed,
except in certain values where the singularities of the original
Takagi-Sugeno estimation method would clearly be found.

The three systems were tested with a unit step input to verify
their response and proximity to the original nonlinear model.

Fig. 3 shows that only the model estimated using the ap-
proach proposed in this work aligns with the nonlinear model
in aspects such as the system’s static gain Ke and the settling
time ts.

The start-up of the nonlinear system is delayed due to its
physical limitations, as the nonlinear model exhibits a char-

acteristic dead zone. In contrast, the identified models begin
at the same time as the transient response, since they are an
interpolation of linear models, which typically do not have dead
zones except in the case of zero input. Despite the difference
in the dead zone of the model, the rise time matches well for
both the extended simple model and the approach proposed in
this work.

Fig. 3. Testing of the systems with a unit step input

Fig. 4 illustrates the error between each estimated fuzzy
model and the nonlinear model of the aero-pendulum. The
approach proposed in this work achieved a lower RMSE
compared to the other two evaluated methods, indicating that
the model identified using this method provides a better fit
to the real data of the nonlinear system. This demonstrates
that the proposed approach captures the system’s dynamics
more accurately, reducing prediction errors and offering a more
precise estimation compared to the other methods.

Fig. 4. a) Original TS estimation rmse = 5.34, b) Extended TS estimation rmse = 12.23,
c) Proposed TS estimation error = 4.63

The ANOVA analysis shows statistically significant differ-
ences between the errors of the three models (‘Original‘,
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‘Extended‘, and ‘Proposed‘), with an extremely low p-value
(3.39 × 10−303), which is far below the significance level of
0.05. This indicates that at least one of the models differs
significantly from the others in terms of error (see Fig. 5). The
high F-statistic value (F = 939.28) reinforces this conclusion,
demonstrating that the variability between the errors of the
different models is considerably greater than the variability
within each group of errors. In summary, the results suggest
that the errors between the models are not equal, and further
comparisons are needed to identify which ones are significantly
different.

Fig. 5. Boxplot of the error comparison between the Original, Extended, and Proposed
models, illustrating the variability and distribution of errors across the three models
based on the ANOVA analysis.

A second test was conducted to verify the validity of the
models, this time generating step signals of various values over
a period of 20 seconds, with more than two thousand samples.
The system responses can be seen in Fig. 6.

Fig. 6. Testing the models with multiple step inputs

In the multi-step test graph, the responses of the real non-
linear system are compared with three estimation models: the
original Takagi-Sugeno (TS) model, the expanded TS model,
and the proposed approach. The nonlinear system serves as a
reference to assess the accuracy of these models.

The proposed approach (green dashed curve) shows the
best alignment with the nonlinear system, accurately following

the step changes and capturing the transitions effectively. The
original TS model (red curve) also performs well, but it
exhibits slight delays and overestimations in some transitions,
particularly around 7 and 15 seconds.

On the other hand, the expanded TS model (orange curve)
shows the largest deviations from the real system, with slower
rise times and a response that remains significantly below
the reference during the steps. In conclusion, the proposed
approach provides the best approximation to the dynamics of
the nonlinear system, outperforming the other two evaluated
models.

Fig. 7 again shows the evolution of the error for each model
relative to the nonlinear model. In this case, the similarity of
the model estimated with the proposed approach is even more
evident, particularly when the system reaches instability.

Fig. 7. a) Original TS estimation rmse = 2.818, b) Extended TS estimation rmse = 13.8,
c) Proposed TS estimation error = 1.28

Finally, a test was conducted with a sinusoidal input at a
frequency of 15 rad/s to verify the response speed of the models.
The results can be seen in Fig. 8.

This test allows for evaluating the model’s response at
different frequencies, checking its ability to handle smooth and
continuous variations, and verifying the system’s linearity and
robustness. Additionally, by varying the frequency of the signal,
different dynamic behaviors can be analyzed, providing a more
comprehensive validation of the model across a wide range of
operating conditions.

The error comparison is presented in Fig. 9, where it is
observed that the lowest mean squared error is exhibited by
the model with the extended identification. This is due to the
significant oscillation in the response around the equilibrium
point. The lower RMSE of the extended model in the sinusoidal
test suggests that this model is better suited for capturing
the system dynamics under oscillatory or frequency-specific
signals. Although the proposed model also performs well, its
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intermediate RMSE indicates that it strikes a good balance but
may not be as specialized in handling sinusoidal inputs as
the extended model. The original model, having the highest
RMSE, appears to struggle more with accurately following
the sinusoidal variations. This highlights the importance of
evaluating models with different input types to fully understand
their behavior and strengths.

Fig. 8. Test with a sinusoidal input

Fig. 9. a) Original TS estimation rmse = 9.98, b) Extended TS estimation rmse = 8.72 ,
c) Proposed TS estimation error = 9.15

A final validation of the proposed model was carried out
using a step input with added noise. This test was designed to
evaluate the robustness of the model under noisy conditions,
ensuring that it can maintain accurate performance even when
the input signal is subject to perturbations (see Fig. 10).

The Fig. 11 shows the error evolution of the three identified
models. The RMSE results demonstrate that the proposed model
significantly outperforms both the original and extended TS
models. With an RMSE of 4.21, the proposed model provides
the most accurate estimation, while the original TS model, with
an RMSE of 6.57, performs moderately well. In contrast, the
extended TS model shows the highest error, with an RMSE of
31.65, indicating that it is the least effective in capturing the
system’s dynamics. These results confirm the superiority of the
proposed model in terms of accuracy and robustness.

Fig. 10. Response of the proposed model to a noisy step input, demonstrating the
model’s robustness and ability to accurately estimate the system dynamics under noisy
conditions.

Fig. 11. a) Original TS estimation rmse = 6.57, b) Extended TS estimation rmse =
31.65 , c) Proposed TS estimation error = 4.21

A. PDC Control

To design the nonlinear fuzzy controller, we used the conse-
quents of the rules, thereby converting these difference equation
expressions into discrete state models. An example is shown for
the consequent of the first rule:

y[k + 2] + 0.63− 1.94y[k + 1] + 0.94y[k] = 0.53u[k] (22)

The expression in discrete state space is:[
x1[k + 1]
x2[k + 1]

]
=

[
−0.63

0

]
+

[
−0.94 1.94

1 0

] [
x1[k]
x2[k]

]
+

[
0.53
0

]
u[k]

It can be observed that the systems include a term without
dynamics, referred to as the affine term, which is responsible for
interpolating the discrete linear systems of the fuzzy model. If
tuning a regulator is desired, this offset value of the models
would need to be compensated. However, since this is a
servomechanism aiming to maintain the system at a reference
value, such compensation is not necessary.
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Once all the discrete models are obtained from the conse-
quent estimations, the next step is to tune as many controllers
as there are rules in the system. The simplest approach is to
apply the Riccati optimal controller, adjusting the weights as
needed, without considering the affine terms, as they do not
exhibit any dynamics. Additionally, an integrator stage should
be applied to ensure that the controlled variable remains at the
reference value.

Using a tuning method based on the Riccati equation pro-
vides an optimal, stable, and robust solution for controller
design in complex systems. Its ability to balance precision and
control effort, its applicability to multivariable systems, and the
flexibility in defining control objectives make it a preferred
choice over other tuning methods, especially in applications
where stability and efficiency are crucial.

The general structure of the servomechanism is shown in Fig.
12, and this controller is designed for each rule of the fuzzy
system.

Fig. 12. Diagram of the structure of a controller

The integrative gain is obtained by extending the state model
matrices in the following form:

Aext =

[
A 0
−C 0

]
; Bext =

[
B
0

]
(23)

When tuning the controller using the Riccati optimal method,
the feedback gains and the integrator gain are obtained as
follows:

K =
[
k1 k2 −ki

]
(24)

Therefore, the control law is ultimately:

u[k] = −Kx+ kie (25)

Finally, the PDC fuzzy controller has the same background as
the identified model, the difference is that now the consequents
are the state feedback gains that will be used to improve and
regulate the dynamics of the plant.

R1: u[k] = −38.97x1 − 28.81x2 + 89.48e

R2: u[k] = −43.5x1 − 30.67x2 + 91.74e

R3: u[k] = −35.4x1 − 27.5x2 + 86.97e

R4: u[k] = −41.2x1 − 30.2x2 + 90.8e

The PDC controller associated with the original nonlinear
model of the aero-pendulum was tested with a step input to
bring it to a 90-degree position relative to the vertical, yielding
the following result, shown in Fig. 13:

Fig. 13. Step Test, ts aprox = 4.2 s, Ep = 0%

The control law (see Fig. 14) exhibits the expected behavior
for a system with moderate damping and overshoot, achieving
long-term stability. However, it could benefit from adjustments
to reduce the overshoot and improve the stabilization time.

Fig. 14. Control law response for the aeropendulum system using Parallel Distributed
Compensation (PDC), showing moderate damping and overshoot, with long-term
stability.

The curve exhibits a damped oscillatory behavior that begins
with a rapid increase (possible overshoot) and then oscillates
with progressively decreasing amplitude until it stabilizes at a
pulse width close to 1.7 milliseconds.
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The system appears to reach stability around 5 seconds,
which is a good indicator that the controller successfully
stabilizes the system.

The curve shows that the highest energy consumption occurs
during the initial oscillations, when the controller applies signif-
icant effort to correct the overshoot and stabilize the system. As
the system stabilizes, energy consumption decreases, reducing
to the minimum required in the steady state.

A second test was performed by adding white noise to the
system output to verify compensation. The curve (see Fig.
15) shows the output response of a system controlled by
PDC (Parallel Distributed Compensation) with added noise. In
the first few seconds, an oscillatory behavior with overshoot
is observed, indicating that the system initially exceeds the
target value before stabilizing. These oscillations are typical
in systems affected by noise and responding to a step input.
The overshoot could be an area for improvement if smoother
transients are required, as the system momentarily reaches an
angle higher than the desired one before correcting its behavior.

Fig. 15. Output response of the aeropendulum system controlled by PDC with added
noise, showing initial overshoot and oscillations before stabilizing around 100 degrees.

Despite the noise, the system stabilizes around 90 degrees,
with stability becoming visible around 10 seconds. However,
small persistent oscillations in the steady state remain due to
the noise, suggesting that while the PDC controller is robust,
it is still slightly affected by perturbations.

A final test with multiple reference points demonstrates the
efficiency of the control system shown in Fig. 16.

The provided curve shows the system’s response to dif-
ferent step inputs. In the first step, the system exhibits a
typical damped response with an initial overshoot and minor
oscillations before stabilizing around 50 degrees. The system’s
stabilization time is relatively fast, indicating that the controller
effectively adjusts the output to match the desired value. How-
ever, the presence of the initial overshoot suggests that the

controller could be fine-tuned to reduce this effect and improve
energy efficiency.

Fig. 16. Multi-step test

In the second and third step changes, the system shows
similar behavior, with small overshoots and oscillations before
stabilizing. After the second step, the angle reaches around 90
degrees, and when the input decreases, the system experiences
a slight undershoot before stabilizing near 60 degrees.

IV. DISCUSSION

The main objective of this work was to present an improved
approach for the identification of nonlinear dynamic systems,
with a specific focus on enhancing system identification tech-
niques. The addition of the Parallel Distributed Compensation
(PDC) control to the aeropendulum was used as a practical
application to validate the effectiveness of the proposed iden-
tification method. Through the results, it was observed that
the identification technique successfully captured the nonlinear
behavior of the aeropendulum, as demonstrated by the accuracy
of the control response in various test scenarios, including
noisy step inputs. The Root Mean Square Error (RMSE) values
indicated that the proposed approach for system identification
offered superior performance compared to traditional methods
like the Takagi-Sugeno (TS) models, both in terms of accuracy
and dynamic response.

Specifically, the proposed identification approach achieved an
RMSE of 4.21, outperforming the original TS estimation with
an RMSE of 6.57, and significantly better than the extended
TS estimation, which had an RMSE of 31.65. Additionally, the
control tests, which served as an application of the identified
model, confirmed that the PDC controller could stabilize the
aeropendulum effectively. The system was able to manage
external noise while maintaining stability, proving that the
model identification process had successfully captured essential
system dynamics.
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In comparison with previous research, such as [55]–[60], the
present study demonstrated similar effectiveness in controlling
complex, nonlinear dynamics. However, the main contribution
of this study lies in the improved identification process, which
enhances the control system’s response. Previous studies have
typically focused on control performance without placing as
much emphasis on the underlying system identification, which
is where this study makes a unique contribution.

Furthermore, studies such as [61]–[67] that employed the
Takagi-Sugeno models for system identification showed reason-
able results, but as the RMSE values in our study demonstrate,
the proposed identification approach clearly outperformed the
TS models, offering a much more accurate representation of
the system’s behavior. The success of the PDC controller in
stabilizing the system, particularly in the presence of noise,
also aligns with findings from other studies that demonstrate the
robustness of PDC controllers in nonlinear control applications.

The key implications of this study highlight the importance of
accurate system identification as a foundation for effective con-
trol. The improvements in RMSE values and the robust handling
of noise suggest that the proposed identification approach can
be highly beneficial for a variety of nonlinear systems where
accurate dynamic modeling is critical. By providing a more
accurate model of the aeropendulum’s behavior, the controller
is better equipped to predict and manage the system’s responses,
leading to improved stabilization and overall performance.

The application of PDC control to the identified model fur-
ther confirmed that the enhanced identification process directly
benefits practical control applications. The system’s ability to
handle noise while maintaining stability demonstrates the prac-
tical applicability of the proposed identification technique in
real-world scenarios, where external disturbances are inevitable.
This suggests that the proposed method can be extended to other
systems with similar nonlinear dynamics, where robust control
and accurate identification are necessary.

One of the strengths of this study lies in its focus on system
identification as the primary contribution. While many studies
focus primarily on control techniques, this research emphasizes
the crucial role of accurate identification in enhancing control
performance. The successful application of PDC control serves
as a practical validation of the identification process, showing
that it can be effectively used in real systems like the aeropen-
dulum.

V. CONCLUSION

The proposed approach for the identification of nonlinear
dynamic systems using fuzzy models has proven to be an
innovative and effective solution, addressing critical issues such
as matrix singularity. By combining Takagi-Sugeno models
with least squares identification techniques, it has achieved a
precise representation of complex systems. The elimination of
singularity in the identification process represents a significant

breakthrough, allowing for greater confidence in the results and
more accurate control.

This approach is not only robust in representing nonlinear
systems, but when integrated with an optimal controller, it
dynamically adjusts system parameters based on operational
conditions. This adaptability makes it a powerful solution,
capable of effectively responding to environmental changes and
system variations, thus enhancing both system performance and
stability in real-time applications.

Despite the advances achieved, several future research direc-
tions are proposed to further explore and expand the potential of
this approach. First, it is essential to compare this method with
other novel identification approaches, such as neural networks
and optimization algorithms, which have shown great promise
in modeling and controlling complex systems. A comparative
analysis will provide insight into the advantages and limitations
of each method in terms of accuracy and applicability.

Additionally, verifying and comparing the algorithmic com-
plexity of this method against other approaches will be crucial.
Algorithmic efficiency is a key factor for practical implemen-
tation, particularly in real-time nonlinear systems. A detailed
study of computational complexity will help identify optimiza-
tion opportunities and potential improvements in performance.

Another important area for future study is the evaluation of
hardware requirements needed for the efficient implementation
of this method. Comparing it with other techniques will help
determine the processing and storage demands, ensuring that
the system can be deployed on hardware with limited resources,
such as embedded devices or real-time systems.

Finally, it is critical to study the system’s response in real-
time control applications. The ability to quickly adapt to chang-
ing operational conditions is vital in industrial, robotic, or en-
ergy systems, where response time and stability are paramount.
Assessing the system’s behavior in real-world environments
will validate its applicability and robustness.

In conclusion, the proposed approach not only resolves key
identification challenges in nonlinear systems but also provides
an adaptable and accurate framework for control across a
wide range of applications. However, to maximize its impact
and efficiency, it will be essential to continue investigating
and comparing this method with other emerging solutions,
evaluating its algorithmic complexity, hardware requirements,
and real-time performance.
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