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Abstract—Cardiac magnetic resonance imaging (CMR) is a 

vital tool for noninvasively assessing heart shape and function, 

offering exceptional spatial and temporal resolution alongside 

superior soft tissue contrast. However, CMR images often suffer 

from noise and artifacts due to cardiac and respiratory motion 

or patient movement impacting diagnostic accuracy. While real-

time noise suppression can mitigate these issues, it comes at a 

high computational and financial cost. This paper introduces a 

method that includes a complete way to clean up medical images 

by using a new Denoising Generative Adversarial Network (D-

GAN). The D-GAN architecture incorporates a recursive 

residual group-based generator and a discriminator inspired by 

PatchGAN.The recursive residual group-based generator and 

the Selective Kernel Feature Fusion (SKFF) mechanism are part 

of a new D-GAN architecture that makes denoising work better. 

A PatchGAN-based discriminator designed to improve 

adversarial training dynamics and texture modeling for medical 

images. These innovations offer improved feature refinement 

and texture modeling, enhancing the denoising of cardiac MRI 

images. allows the model to get a doubling context of local and 

global, informational, and hierarchical developed features 

located in the generator. Our technique outperforms other 

methods in terms of PSNR and SSIM. With scores of 0.837, 

0.911, and 0.971 for noise levels of 0.3, 0.2, and 0.1, and PSNR 

scores of 29.48 dB, 32.58 dB, and 37.85 dB, the results show that 

the D-GAN method is better than other methods.  

Keywords—Generative Adversarial Network; Image 

Denoising; Cardiac Magnetic Resonance Imaging; Recursive 

Residual; Deep learning. 

I. INTRODUCTION  

One of the most significant and beneficial imaging 

modalities for the noninvasive evaluation of the shape and 

function of the heart is cardiac magnetic resonance imaging 

(CMR). The ECG gating wrong action that the patient was 

exposed to arrhythmia and inability to hold his breath for long 

caused artifacts and noises during the acquisition of CMR 

images, such as Gaussian noise, Rician noise, and spike noise 

[1]-[5], which will greatly affect the cardiovascular image of 

the patient’s diagnosis [6]-[11]. The stopping noise in time is 

handled well through the process acquisition, but the 

expensive demands and requirements of the hardware are 

very costly. In recent years, deep learning has emerged as a 

powerful tool in image processing, providing cost-effective 

solutions for tasks like denoising, super-resolution, and 

intelligent image analysis [12]-[41]. The concept of image 

denoising is considered a classical subject in computer image 

scope and an essential part of the actual image processing 

apps [42-47]. Image denoising used to be done in a lot of 

different ways, including non-local self-similarity [48], 

sparse representation [49], Markov random field (MRF) [50], 

and many more. However, the primary problem with the prior 

method is its high optimization time [51].  

Chen et al. [52] came up with the idea of a trainable 

nonlinear response diffusion (TNRD) version. This version 

uses a feed-ahead deep network structure and a set number of 

gradient descent inference steps to finish. A multi-layer 

perceptron (MLP) [53] has been shown to work well in the 

field of image denoising, where machines are becoming 

smarter and deeper learning methods are being developed. 

Yang et al. came up with a new way to clean up CT images 

by using the Wasserstein distance and perceptual similarity 

in a Generative Adversarial Network (GAN) [54]. The 

framework, which is based on denoising output capabilities 

in a predefined characteristic area, uses real picture functions 

to efficiently suppress noise. 

The previous method's disadvantages that cannot be 

ignored are that their reliance on education is precise fashions 

for wonderful noise levels, and the effect of denoising on 

noise images of different levels is limited. Zhang et al. 

suggested a new way of thinking by looking at image 

denoising as a basic discriminant learning task [55]. They 

focused on the idea of using a feed-forward denoising 

convolutional neural network (DnCNN) to separate noise 

from the noisy image. By integrating batch normalization and 

residual mastering, this method streamlines the education 

procedure and enhances denoising talent. Deep learning, 

especially inside the realm of artificial intelligence, 

transcends those barriers via hastily and autonomously 

denoising medical images. In this paper To make denoising 

work better and use less computing power in medical 

imaging, we present a model for denoising a generative 

adversarial network (D-GAN) hybrid design. It includes our 

generator model made by enhancin MIRNeT [56] and a new 

discriminator that is based on the Patch GAN approach. In 

the field of scientific image diagnostics processing, using 

low-resolution (LR) images with less detail is challenging 

because they don't have enough texture information, which 

could make it harder to accurately diagnose heart problems 

[57].  

As a result, an LR cardiac image needs to be changed into 

HR images of free-respiration long-axis and short-axis CMR 

images with very high quality and resolution. Harris and 

Goodman et al. highlighted super-resolution [58], [59], and 

emphasized the sizeable mapping correlation between LR 
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images and HR images. By utilizing deep knowledge of 

methodologies to establish these mapping relationships 

through large-scale image training, we can structure true HR 

images using LR images. Dong et al. were the first to make 

software with a deep learning version to handle the super-

resolution mission [60]. They used a three-layer 

convolutional neural network (CNN) [61] to figure out how 

the complex mapping dynamics between LR and HR images 

work. The incorporation of Mean Squared Error (MSE) as a 

loss function ensures the inclusion of high-quality images. 

Still, because the MSE is a loss function, the image's input 

resolution may mean that there isn't enough high-frequency 

texture information. This is especially important when 

working with very high image resolutions. Ledig et al. 

introduced Generative Adversarial Networks (GAN) as a 

device for image super-resolution [62]. The mapping 

relationship between the LR and HR images is figured out by 

looking at how the generator and discriminator work 

together. A new perceptual loss function is also added to 

improve the details of image textures. 

However, the original training of GAN is unstable; it is 

easy to introduce non-existent features into the generated 

image, leading to a low accuracy in image reconstruction. 

This persistent problem has posed a giant hurdle that GAN 

has been facing. Arjovsky et al. introduced the concept of 

WGAN to address the instability issues associated with 

traditional GAN training [63]. If you use an almost certain 

discriminator to improve the made tool and lower the 

Wasserstein distance, the made image distribution will 

gradually match that of the real image. Gulrajani and his team 

conducted this study. This new technology called WGAN has 

made things better, but the first versions of it had problems, 

like using bad samples and having trouble getting the models 

to agree [64]. As a result, changes were made to WGAN. For 

example, an excessive learning of charge gradient penalty 

was added to each pattern to speed up convergence, and the 

Adam optimizer was used to improve overall performance 

and the quality of the outputs. 

Ran et al. introduced a method called RED-WGAN; this 

method relied on the Wasserstein generative adversarial 

network to decrease the noise in the brain MR image [65]. 

The network generator has shown the residual automatic 

coding network as a way to look for similar structures 

between adjacent slices. While successful in noise 

discounting, this approach does not particularly address 

image reconstruction at a magnified scale. Sood et al. use the 

SRGAN method on MR images of the prostate to get an 

impressive 8× fine-decision reconstruction. Finding the best 

MOS, which is what this method gives you, is very 

subjective, and the PSNR/SSIM results are not what you were 

hoping for [66]. A cascaded generative disagreement network 

was created by Han et al. to give each cell in the microscope 

image a high level of improvement. This method focuses 

solely on content loss and adversarial loss functions. The 

DnSRGAN [67] says that it first cleans up the heart image to 

a good standard, then enlarges it by 4 times, and finally uses 

gradient penalty and more WGAN loss to make the 

reconstruction more accurate. A lot more advanced image 

denoising is available in GANs. However, the more advanced 

image denoising that was available before had some 

problems, like mode collapse and instability during training. 

To name these issues, we introduce a new Denoising 

Generative Adversarial Network (D-GAN) that developed 

feature refinement and computational efficiency. This paper 

presents a D-GAN architecture with a recursive residual 

group-based generator and a discriminator that is based on 

Patch GAN. These innovations offer improved feature 

refinement and texture modeling, enhancing the denoising of 

cardiac MRI images.  

1. A new D-GAN architecture that combines advanced 

feature refinement with the recursive residual group-

based generator and the SKFF mechanism makes 

denoising work better.  . 

2. A PatchGAN-based Discriminator designed to improve 

adversarial training dynamics and texture modeling for 

medical images. 

3. Meticulous refinement of the Resblock architecture 

through iterative, exceptional tuning and structural 

optimizations ensures seamless integration in the 

overarching generator framework. 

4. A thorough evaluation of our D-GAN on CMR datasets, 

demonstrating superior denoising performance compared 

to conventional models. 

II. RELATED WORK 

A. Denoising Convolutional Neural Network  

Convolutional neural networks (CNNs), a promising 

alternative for medical image denoising, have emerged. By 

using supervised CNN models, it is easy to get back images 

that are free of noise from noisy observations by looking at 

the redundancy that is present in large datasets [68]. Zhang et 

al. [55] proposed a denoising convolutional neural network 

(DnCNN) [69] as a means to enhance overall task 

performance. To avoid problems with gradient dispersion 

that come up when the network layer is deepened, DnCNN 

doesn't learn the noise image directly. Instead, it trains the 

network using the L2 norm [70] of the noise output as the loss 

function. DnCNN specializes in residual learning. The BN 

layer and residual learning are used together by the network 

to make the design work better and get rid of noise from 

images without specific noise. Zhao et al. [71] are based on 

the SRGAN architecture. Feed-forward denoising 

convolutional neural networks (DnCNNs) use a gradient 

penalty (GP) method to deal with the discriminator gradient 

vanishing problem. They also use a feed-forward denoising 

neural network to clean up the CMR image before it is sent 

in. 

B. Generative Adversarial Networks 

Goodfellow et al. [72] delivered a groundbreaking 

concept of an adversarial network for image making, 

revolutionizing the landscape of deep learning with its 

profound effect. This novel idea provides for image 

processing by network. Scott et al. [73] proposed a new 

model based on the generative adversarial networks concept. 

The author suggests that GANs can produce the best work in 

image processing for text design. Liu et al. [74] applied a 

study to produce handwriting features through the usage of 

multiscale and multi-class conditions to GANS. Currently, 
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the best design for image-processing apps in deep learning is 

CNN. DCGAN [75], which is considered one of the most 

important attempts at merging CNN with GAN, and Yan et 

al. [76]. Use DCGAN to do image superresolution, denoising, 

and deconvolution. Although DCGAN has a sturdy structure, 

it does not provide a super solution for the problem to 

diminish it in the source for the training stability of GAN. 

During the DCGAN training process, however, it remains 

important to balance the G and D differences from DCGAN 

[77]-[85]. WGAN carefulness [63] is a big step toward 

making GAN training more stable by using a single loss 

function that is centered on the Wasserstein Distance. The 

unique idea behind WGAN is to improve training methods by 

using Wasserstein distance. To maintain Lipschitz continuity 

in the network, we must clip the weights within a specific 

range. This base helps make GANs more stable, and WGAN-

GP [86] strengthens its position as a major step forward in the 

process of removing noise from neural networks. As more 

research and development is done in denoising and neural 

networks, this paper presents a new version of image 

denoising that is expected to provide competitive and 

promising results in this rapidly changing field of study. 

III. METHODOLOGY 

This part describes the steps that are taken in a planned 

way to turn raw medical images into high-fidelity copies, 

which solves the common problem of noise that can hide 

important diagnostic information. The sections that follow 

explain why each choice was made, how the generator and 

discriminator models are put together, and how the training 

process works in more detail. Our approach is a plan for how 

to use GANs to their full potential in medical imaging. Our 

ultimate goal is to help make diagnostic tools in healthcare 

practices more accurate and reliable. Fig. 1 serves as our 

architectural cornerstone, providing a succinct visual 

representation of the D-GAN overarching structure. We 

designed our generator architecture to seamlessly fuse input 

images with denoised outputs, encapsulating the essence of 

our holistic denoising approach. 

The sections that follow break down the D-GAN's parts 

and give a thorough explanation of our generator, explaining 

their main functions and roles, starting with the basic 

Residual Block (Res Block) and moving on to the more 

advanced Dual Attention Unit (DAU) and Multi-Scale 

Residual Block (MRB). We meticulously engineer each 

element to refine feature maps and elevate denoising 

performance. As we move through the Recursive Residual 

Group (RRG), our architecture is a hierarchical refinement of 

features that shows a full understanding of the complexities 

of medical data while carefully balancing the need for fast 

computing. 

Along with our generator model, we show how good our 

Patch GAN-based Discriminator Model is at telling the 

difference between things. This model is set to improve the 

competitive training dynamics that are necessary for high-

fidelity denoising results. Furthermore, we present empirical 

validation through a comprehensive analysis of experimental 

results. 

A. Generator Model 

We developed an architectural framework that revolves 

around the Recursive Residual Group (RRG). This iterative 

implementation endows our generator with formidable 

capabilities tailored specifically for the denoising of medical 

images. At the heart of our framework lies a final 

convolutional layer, responsible for generating the denoised 

output. A residual connection seamlessly fuses this output 

with the input image, symbolizing the holistic representation 

of the denoising process. See Fig. 2, an overview of our 

generator model. The nuanced architectural details of our 

generator. 

Residual block is the cornerstone of our generator 

architecture, inspired by the leading ResNet framework 

known for its effectiveness in various computer vision tasks 

[87]. Each Res Block has two convolutional layers that are 

carefully designed to pull out complex and detailed 

information from the input image. This is followed by 

activation of a Leaky Rectified Linear Unit (Leaky ReLU). 

We use this activation because it can add robust non-linearity 

while protecting the deep learning network from the risk of 

vanishing gradients. Leaky ReLU is excellent at avoiding the 

saturation problem, where a neuron can get “stuck” at one of 

its extreme values. However, the vanishing gradient problem 

is still a challenge with leaky ReLU. A way to address this in 

really deep networks is to connect each layer to several other 

layers.  

 

Fig. 1. The proposed network, D-GAN, features a novel architectural cornerstone that provides a succinct visual representation of the D-GAN overarching 

structure, which learns enriched feature representations for denoising and enhancement
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Fig. 2. Our generator model highlights the architectural design. The multi-

scale residual block (MRB) is at the center of the generator. Its main branch 

is responsible for keeping high-resolution representations that are accurate 

in space across the whole network, and its set of parallel branches work 

together to provide better contextualized features. Through selective kernel 

feature fusion (SKFF), it's also possible for information to flow between 
parallel streams. This lets high-resolution features be combined with low-

resolution features and vice versa 

This allows for the gradient to skip some layers that would 

otherwise dilute it. This helps with robust learning and feature 

expression.The block has the ability to store and amplify 

fundamental information from the input source, all while 

extracting additional features. We have carefully improved 

our Res Block architecture by trying different things and 

making architectural changes. This makes sure that it works 

perfectly with the generator framework. See Fig. 3. This 

illustrative representation encapsulates the essence of the Res 

Block. Connection reaffirms its pivotal role in feature 

extraction and conservation within our generator model. 

 
Fig. 3. Res Block is the cornerstone of our generator architecture 

Selective Kernel Feature Fusion (SKFF): takes into 

account the adaptive neuronal capacity of neurons in the 

visual cortex, which means that these neurons can change 

their receptive field in response to outside stimuli [88]. Such 

CNN adaptability could be enhanced by introducing a 

nonlinear process in which self-attention abilities are used to 

fuse features acquired at different resolutions. This method, 

called SKFF, lets the network change receptive fields on the 

fly and improve feature representation by using two main 

operations, fuse and select, as seen in Fig. 4. The Fuse 

operation amalgamates multi-scale features from parallel 

convolution streams using element-wise summation, denoted 

Its architecture is characterized by the implementation of one 

of the new residual connections, a connection that bypasses 

one or more convolutional layers. As a result, the as 𝐿 = 𝐿1 +
𝐿2 + 𝐿3. Following this, instead of employing global average 

pooling (GAP), we utilize global maximum pooling (GMP) 

to compute channel-channel statistics, generating a 3D output 

tensor 𝐿  with dimensions 𝐻 × 𝑊 × 3  [89]. Channel-channel 

statistics  𝑔 are then derived from 𝐿 , represented as 𝑔  ∈
 𝑅1×1×𝐶. Subsequently, a dense feature 𝑆0  with dimensions, 

1 × 1 × 𝑟  is generated using a channel-downscaling 

convolution layer, where 𝑟  =
𝐶

4
  for all experiments. The 

Select operator performs the SoftMax function to the feature 

descriptors 𝑣1, 𝑣2 , and 𝑣3  , yielding attention activations 

𝑠1, 𝑠2 , and 𝑠3 , respectively. These activations adaptively 

recalibrate multi-scale feature maps 𝐿1, 𝐿2, and 𝐿3. The 

recalibrated features are aggregated using the following 

equation: 𝑈 = 𝑠1 ⋅ 𝐿1 + 𝑠2 ⋅ 𝐿2 + 𝑠3 ⋅ 𝐿3 Here, 𝑈  represents 

the aggregated feature map. Receptive fields are constantly 

adjusted by the SKFF module using fuse and select 

techniques, effectively integrating multi-scale features and 

enhancing feature representation. Notably, SKFF employs 

approximately 6 times fewer parameters compared to 

concatenation-based aggregation while producing superior 

results, as demonstrated in the experiments in Section 4. 

 
Fig. 4. This technique is known as selective kernel feature fusion (SKFF). It 

operates on features from multiple convolutional streams and performs 

aggregation based on self-attention 

Dual Attention Unit (DAU): The DAU is an important 

part of our medical image denoising generator architecture; 

its job is to improve feature extraction within convolutional 

streams [90]. It works with the SKFF block to combine data 

from different resolutions and makes it easier for data to flow 

within a feature tensor along both spatial and channel 

dimensions. The DAU is very important for selectively 

recalibrating features and improving the model's ability to tell 

the difference between things by making informative features 

louder and noise and irrelevant information quieter. This 

recalibration process is facilitated by the integration of 

channel attention and spatial attention processes. 

Channel Attention (CA) Branch: The DAU CA branch 

utilizes the inter-channel relationships of convolutional 

feature maps. Mathematically, given a feature map 𝑀 with 

dimensions 𝐻×𝑊×𝐶, the squeeze operation aggregates 

spatial information through global average pooling, resulting 
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in a feature descriptor 𝑑 of dimensions 1 × 1 × 𝐶 . This 

descriptor is processed further using two convolutional 

layers, and then a sigmoid activation is applied, yielding 

activation maps, 𝑑. of the same dimensions. Ultimately, the 

output of the CA branch is obtained by element-wise 

multiplication of the original feature map 𝑀 with the 

activations, 𝑑., effectively emphasizing informative channels 

while suppressing noise. 

Spatial Attention (SA) Branch: At the same time, the SA 

branch exploits spatial dependencies within convolutional 

features. The global pooling and maximum pooling 

procedures are applied individually along the channel 

dimensions of the input feature map 𝑀, generating feature 

maps.  𝑓 of dimensions with dimensions 𝐻 × 𝑊 × 2. These 

maps are concatenated and processed through convolutional 

layers followed by sigmoid activation, resulting in a spatial 

attention map with dimensions  𝐻 × 𝑊 × 1 This map is then 

used to modify the original feature map 𝑀 , selectively 

enhancing regions of interest while suppressing noise. Fig. 5. 

visually illustrates the operational principles and structure of 

DAU. The DAU makes noise reduction better by 

recalibrating certain features along spatial and channel 

dimensions. This makes it easier to tell the difference 

between features. 

 
Fig. 5. Dual Attention Unit (DAU) incorporating spatial and channel 

attention mechanisms 

Multi-Scale Residual Block (MRB): At the center of the 

complexities of our generator design lies the multi-scale 

residual block. We carefully created this basic building block 

to improve feature maps at different sizes. By combining our 

two systems, we were able to make medical images more 

detailed. These mechanisms are the Dual Attention Unit and 

the Selective Kernel Feature Fusion. In Fig. 6, the MRB is 

shown to be part of the generator's complex structure. It 

coordinates the improvement of the feature map on different 

levels, creating a complete idea for feature amplification. By 

fully utilizing the DAU mechanism, the MRB enhances the 

model's dual attention by prioritizing specific details from the 

feature space. At the same time, adding the SKFF mechanism 

gives the MRB the ability to do nuanced selective fusion, 

which means it can pick up both small details in the local area 

and the big picture. The MRB with DAU in the focus area 

improves the selectivity of basic classifiers, which lets fine-

detail treatment be preferred and makes the image better. As 

a result, SKFF stands for smart knowledge forget-free 

mechanism, which allows MRB to perform the exact fusion 

of styles, i.e., mixing local accents and global contextual 

cues. The combination of DAU and SKFF mechanisms in the 

MRB represents a complex way to improve features that goes 

beyond common approaches. By using dual attention and 

selective fusion together, MRB increases the generator's 

unique flexibility, making it easier to improve the complex 

patterns found in medical images. So, MRB is a new way to 

develop medical images that are less noisy by using 

generative adversarial networks. 

 
Fig. 6. Update The architecture of the MRB block lies at the heart of the 

complexities of our generator design, specifically the multi-scale residual 

block. By fully using the DAU mechanism, the MRB improves the model's 

dual attention aspect, which lets details from the feature space be prioritized 
in a selective way. At the same time, adding the SKFF mechanism gives the 

MRB the ability to do nuanced selective fusion, which means it can pick up 

both small details in the local area and the big picture 

In our generator architecture, the Recursive Residual 

Group (RRG) is like a key player in a complicated tapestry. 

It makes sure that the integration of many Multi-Scale 

Residual Blocks (MRBs) works well together. This well-

planned integration is carefully made to create a hierarchical 

refinement of features, which is the most important thing to 

do to capture the subtleties of medical images while also 

making the computer work efficiently. Fig. 7 serves as a vivid 

exposition of the recursive application of MRBs within the 

RRG. As the strategic leader, the RRG is in charge of 

deploying MRBs in stages, which leads to a gradual 

improvement of features. This recursive paradigm gives the 

model the ability to recognize and combine complex patterns 

in a hierarchical way, which helps us get a full picture of the 

medical data that lies beneath. In addition to helping to 

improve features, using multiple MRBs in the RRG makes 

the model much better at removing noise from medical 

images. 

 
Fig. 7. The Recursive Residual Group (RRG) architecture plays a key role in 

coordinating the joining of several Multi-Scale Residual Blocks (MRBs). We 

meticulously craft this orchestrated integration to cultivate a hierarchical 

refinement of features 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 519 

 

Maysaa A. Ulkareem Naser, Image Denoising Using Generative Adversarial Network by Recursive Residual Group 

B. Discriminator Model 

In the context of image generation problems, 

conventional loss functions such as L2 and L1 often result in 

blurry outputs, lacking high-frequency crispness. However, 

these losses effectively capture low frequencies, motivating 

the exploration of alternative frameworks that leverage this 

capability. Our discriminator architecture is based on this 

observation. It was inspired by the patch GAN approach [91], 

which models high-frequency structure and relies on an L1 

term to make sure low-frequency correctness. We design our 

discriminator architecture, known as patch GAN, to penalize 

structures at local image patch scales. The goal of this 

specialized discriminator is to decide whether each N × N 

patch in an image is real or fake. To do this, it averages each 

response and uses convolutional processes across the whole 

image. Down-sampling blocks in the discriminator gradually 

make the input's spatial dimensions smaller. This lets the 

model focus on local features. Fig. 8 illustrates this down-

sampling process. 

 
Fig. 8. Down-sampling blocks in the discriminator gradually make the 

input's spatial dimensions smaller. This lets the model focus on local features 

There is batch normalization, leaky rectified linear unit 

(Leaky ReLU) activation, and then each down-sampling 

block is a convolutional layer. The Patch-GAN discriminator 

architecture includes multiple up-sampling blocks, with the 

number of filters increasing in each successive block. Before 

the last convolutional layer, we use zero-padding operations 

to increase the field of view and improve the ability to tell the 

difference. This layer produces an output tensor with 

dimensions (batch size, 30, 30, 1), where each 30 x 30 patch 

corresponds to a 70 × 70 portion of the input image. Our 

Patch-GAN discriminator also uses a Markovian approach, 

which means that the image is modeled as a Markov random 

field. This assumption assumes independence between pixels 

separated by more than a patch diameter, consistent with 

well-established principles in texture modeling and style, as 

shown in Fig. 9. In Experimental Section 4 of this paper, we 

demonstrate the effectiveness of our Patch-GAN 

discriminator, showing its ability to produce high-quality 

results even with smaller patch sizes. This scalability feature 

enables faster training and application on randomly large 

images, making it a versatile tool for various image 

processing tasks. The summary features of our discriminator 

model: 

● Using down-sampling blocks to gradually reduce the 

number of spatial dimensions helps the discriminator 

focus on local features. 

● Composite Input, The discriminator receives two input 

images, real (target) and generated (fake), concatenated 

along the channel axis for realistic assessment and 

classification. 

● Dual-Input Design lets the discriminator accurately judge 

the authenticity of generated images, which makes 

adversarial training more effective. 

● Real and Generated Assessments, The discriminator loss 

assesses contributions from both real and generated data, 

evaluating the model's ability to discern authentic images 

and identify generated (fake) pictures. 

 
Fig. 9. The discriminator architecture, known as Patch-GAN, aims to 

penalize structure at local image patch scales 

IV. RESULTS AND DISCUSSION 

A. Data Preparation 

In the planning stage for our medical image denoising 

model, we do a lot of careful work to make sure that the 

training dataset is reliable and useful. We follow strict ethical 

rules and put patient privacy and data security first when 

using the ACDC (Automated Cardiac Diagnosis Challenge) 

dataset from the University Hospital of Dijon [92]. To train 

and develop our proposed denoising models, we split the 

dataset into 70% (101 images) for training, 15% (22 images) 

for validation, and 15% (22 images) for testing. Before 

training. This dataset, encompassing diverse cardiac 

pathologies and physiological parameters, serves as the 

foundation for our denoising model. The precise annotations 

made by clinical experts help us set a reliable ground truth for 

our denoising task by choosing clean images from the ACDC 

training dataset. To simulate real-world noise patterns in 

medical images, it becomes imperative to introduce noise into 

the clean images. We can emulate various noise 

characteristics prevalent in medical imaging by adopting a 

Gaussian-distributed random noise approach. In empirical 

evaluation, we obtained occurrences of Gaussian 

distributions with noise factors of 0.5, 0.1, 0.15, 0.2, and 0.3 

for medical imaging: small-scale, medium-scale, and big-

scale noises, respectively, which allow us to cover the range 

of realistic noises in medical imaging. The noise factors are 

conventionally set out to account for different levels of noise, 

with low noise being represented by a value of 0.5, 0.1, or 

0.15; moderate noise by 0.2; and high noise by a value of 0.3. 

This method allows our net to learn all the noise spectrum 
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from the medical images with the maximum possible 

frequencies. The calibrated noise level keeps the balance 

between image quality and noise level magnitude. A 

minimum noise factor of 0.2 was chosen on purpose as the 

best value for the system after testing. Fig. 10 is an example 

of the effect of noise addition, where a reference medical 

image is displayed next to its noisy variants with 0.2 as a 

noise factor. This image shows that the noise addition process 

has two goals: it adds real medical image noise to the training 

data and creates ground truth for the training noise reduction 

model. 

 
Fig. 10. The example illustrates the impact of noise addition, showcasing a 

clean medical image alongside its noisy counterparts generated with noise 

factors of 0.2 

In addition to noise, protecting pixel values within a valid 

range is critical. The clipping process prevents defects caused 

by out-of-range pixel values. This meticulous attention to 

detail ensures that noisy images are not only realistic but also 

aids in effective noise reduction training. Batch processing 

achieves efficient data set management by dividing the data 

set into smaller batches. For both training and testing sets, it 

optimizes memory usage, facilitates parallel computation, 

and ensures optimized model updates based on multiple 

samples. We can process image data efficiently by converting 

image matrices to TensorFlow, which simplifies integration 

with our deep learning model. 

B. Experimental Procedure 

After curating a dataset consisting of images blurred by 

three different Gaussian noise distributions (σ = 0.1, σ = 0.2, 

and σ = 0.3), we embark on training two distinct models: the 

D-GAN model (Generative Adversarial Network (GAN) 

with Patch GAN discriminator) and our generator model only 

(see in Fig. 2) in the network was performed. Here was the 

experimental part that helped us evaluate the proposed 

method of denoising the given medical images with different 

noise types. 

1) Comparison Training Setup for D-GAN Model and 

Generator-Only Networks 

 We will explain in more detail how to train both the GAN 

and generator-only networks below, including the different 

loss function formulations, optimization strategies, and 

parameter configurations. The goal of training both models 

was to show that the GAN model is better than the generator 

network at the task of medical image denoising. To show how 

well the GAN framework works at making high-quality 

denoised images, we will compare their training methods and 

rate how well they can remove noise from images. 

• Training Setup for (GAN) Network 

Optimization Strategy: SGDM can improve overall 

performance, make training more stable, and speed up 

convergence when used in denoising GANs. This makes it a 

good choice for difficult tasks like image denoising. The 

GAN network updates simultaneously during training, 

enabling the improved discriminator to interact with the 

improved generator. The stochastic gradient descent with 

momentum (SGDM) is the essential optimization algorithm 

for enhancing the model performance. The algorithm can 

correctly update and change parameters during the learning 

process to eventually minimize the difference between real 

and generated images. 

Batch Size and Epochs: The correctly chosen batch size 

of 32 balances computational efficiency and other essential 

aspects of the training phase. The GAN models go through a 

careful training process for the duration of 30 epochs, making 

them well-prepared for the required parameter tuning and the 

eventual convergence to the optimal denoising performance. 

Learning Rate and Momentum: The learning rate is 

carefully set to 0.0002 for the discriminator and 0.0001 for 

the generator. This allows parameters to be updated slowly 

and reduces oscillations during training. Furthermore, we 

adopt momentum values of 0.9 for the generator and 0.5 for 

the discriminator to incorporate historical gradients and 

enhance convergence stability. 

Loss Function Formulation: The generator loss function 

has two parts: adversarial loss (GAN loss) and mean absolute 

error (L1 loss). These parts work together to make sure that 

the images that are generated are realistic and correct in terms 

of their structure. The GAN loss measures how well the 

model can create images that can't be told apart from real 

data, and the L1 loss measures how different pixels in the 

generated and target images are from each other. The total 

generator loss seamlessly integrates both losses, embodying 

a configurable weighting parameter (λ). We tested a range of 

values (50, 100, 200) to identify the optimal balance for 

specific datasets and tasks. When the set value of high λ = 

200 is too high, the model overly prioritizes pixel accuracy, 

leading to less realistic images. Low conversely = 50; a lower 

value shifts the focus toward the GAN loss, resulting in more 

realistic images but sacrificing detail and fidelity to the actual 

data. The right λ=100 requires careful tuning and can 

significantly impact image quality. 

𝑔𝑎𝑛 𝑙𝑜𝑠𝑠 = 𝐵𝑖𝑛𝑎𝑟𝑦𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 

(𝑡𝑓. 𝑜𝑛𝑒𝑠 𝑙𝑖𝑘𝑒 (𝐷(𝐺(𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒))) , 𝐷(𝐺(𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒))) (1) 

Complementing this, the L1 loss (𝑙1 𝑙𝑜𝑠𝑠) evaluates the pixel-

wise dissimilarity between the generated and target images: 

𝑙1 1𝑜𝑠

= 𝑀𝑒𝑎𝑛𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟(𝑡 𝑎𝑟𝑔 𝑒 𝑡, 𝐺(𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒)) 
(2) 

𝑡𝑜𝑡𝑎𝑙 𝑔𝑒𝑛 𝑙𝑜𝑠𝑠 = 𝑔𝑎𝑛 𝑙𝑜𝑠𝑠 + 𝐿𝐴𝑀𝐵𝐷𝐴 × 𝑙1 𝑙𝑜𝑠𝑠 (3) 

Notably, LAMBDA=100 is a judiciously chosen 

hyperparameter 

The Discriminator Loss assumes an adversarial training 

shake with two parts: positive real data assessment and 
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straightforward fake data assessment. The real loss evaluates 

the discriminator's ability to discern authentic images.’ 

𝑟𝑒𝑎𝑙 𝑙𝑜𝑠𝑠 = 𝐵𝑖𝑛𝑎𝑟𝑦𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 

(𝑡𝑓. 𝑜𝑛𝑒𝑠 𝑙𝑖𝑘𝑒(𝐷(𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒)), 𝐷(𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒)) 
(4) 

Conversely, the generated loss (generated loss) quantifies the 

discriminator's proficiency in identifying generated (fake) 

images: 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑙𝑜𝑠𝑠 = 𝐵𝑖𝑛𝑎𝑟𝑦𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 

(𝑡𝑓. 𝑧𝑒𝑟𝑜𝑠 𝑙𝑖𝑘𝑒 (𝐷(𝐺(𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒))) , 𝐷(𝐺(𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒))) 
(5) 

The collective discriminator loss (total_disc_loss) 

encapsulates both real and generated losses: 

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑐 𝑙𝑜𝑠𝑠 = 𝑟𝑒𝑎𝑙 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑙𝑜𝑠𝑠  (6) 

 Training Execution: During training iterations, the 

generator produces denoised images, which are investigated 

by the discriminator. The calculated losses for the 

discriminator and the generator tell backpropagation and 

gradient descent how to change the parameters. This process 

of iterative refinement goes on for the set number of epochs. 

The training progress is carefully tracked, and full summaries 

are saved so they can be viewed and analyzed. 

• Training Setup for Generator-only Network 

Loss Function Utilization: Unlike the GAN network, the 

generator-only network undergoes training using the 

Charbonnier loss function. The generator can learn 

sophisticated strategies for noise reduction thanks to this loss 

function, which stands out for its robustness to outliers. The 

Charbonnier Loss: 

𝐿𝑜𝑠𝑠(𝐼
^

, 𝐼∗) = √||𝐼
^

− 𝐼||2 + 𝜖2  (7) 

where 𝐼∗ denotes the ground-truth image, and 𝜖 is a constant 

that we empirically set to 10−3 for all the experiments    

Optimization and Training Execution: The generator-only 

network optimization approach and training methodology are 

essentially the same as those of the GAN network, but they 

are limited to the generator parameters. Over the set number 

of epochs, we use stochastic gradient descent with 

momentum to reduce the generator loss over and over again. 

• Evaluation Metrics 

In evaluating the denoising performance of the 

Generative Adversarial Network (GAN), two primary 

metrics were employed: Peak Signal-to-Noise Ratio (PSNR) 

and Structural Similarity Index (SSIM). PSNR is a number 

that measures the quality of denoising by comparing the 

strongest signal power to the strongest corrupting noise 

power. Higher values mean better denoising. Computed in 

decibels (dB), PSNR provides a straightforward measure of 

image fidelity. SSIM assesses structural similarity between 

denoised and ground truth images, considering luminance, 

contrast, and structure. SSIM values range from -1 to 1, with 

1 representing perfect similarity and 0 representing no 

similarity, embodying perceptual aspects of human vision. 

The process of evaluating involves using the trained GAN 

model to clean up noisy medical images, calculating the 

PSNR and SSIM between the cleaned up and original images, 

and collecting metrics across the dataset to get a general idea 

of how well the denoising worked. Higher PSNR and SSIM 

values signify superior denoising quality and structural 

similarity. These metrics are numerical ways to rate how well 

denoising works. They make it easier to compare different 

methods and help make GAN-based denoising algorithms 

better, which makes the results of medical image denoising 

more reliable. The Results: 

The SSIM (Structural Similarity Index) serves as a crucial 

metric, measuring the similarities between denoised images 

and a ground truth image. According to the SSIM indicator, 

the results of the GAN approach are 0.837, 0.911, and 0.971 

for noise levels of 0.3, 0.2, and 0.1, respectively. Moreover, 

the generator network, considering the same noise level in 

Fig. 11, obtained an SSIM score of 0.833, 0.891, and 0.934, 

respectively. This means that GAN usually gets better results 

than the generator network when it comes to noise levels, and 

it keeps impressing with its ability to keep image structure 

and fidelity better. 

We commonly use PSNR (Peak Signal-to-Noise Ratio) to 

evaluate the quality of the denoised image. The higher values 

of PSNR indicate better image fidelity. The GAN-based 

model approach got PSNR scores of 29.48 dB, 32.58 dB, and 

37.85 dB for noise levels of 0.3, 0.2, and 0.1, respectively, in 

our tests. On the other hand, the generator network got PSNR 

readings of 30.01 dB, 32.85 dB, and 36.02 dB, which are the 

different noise levels shown in Fig. 12. The GAN delivered 

higher PSNR values over all kinds of noise levels. The results 

show that the GAN consistently produced higher PSNR 

values across all noise levels, indicating better signal integrity 

when denoising. 

 
Fig. 11. Looking at the Structural Similarity Index (SSIM) scores between 

the images that have been cleaned up and their original images for GAN and 

generator networks 

• Loss Curve Figures 

We visualize the behavior and stability of the training 

process at a noise level of 0.2 for both the GAN and the 

generator network in figures of the loss function. This curve 

shows very clearly how generator and discriminator loss 

changes over epochs. It also shows how learning works and 

what level of optimality each network should have in this 

noisy situation. The loss curves act as a visual tool that helps 

to understand the learning process and helps monitor the 

fluctuations or tendencies that may impact the model's ability 

to clean noise. 
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Fig. 12. We looked at the PSNR difference between the images that had been 

cleaned up and the original images for our model GAN and generator-only 

network 

GAN Loss Curve: The loss curve for the GAN network 

illustrates the evolution of the in-traces both the decrease of 

generator loss and discriminator loss during the training of 

the network; see Fig. 13. It gives details about the interplay 

between the generator and discriminator, including the fact 

that they somehow remain closer to their optimal denoising 

performance. The curve shows how the loss functions change 

over time, showing how the model parameters are being fine-

tuned over time and how that affects the effectiveness of 

denoising. 

The present image in Fig. 13(A) denotes GAN training, 

where GAN loss is highlighted, particularly the GAN loss 

component. Binary cross-entropy calculates the generator's 

loss, assessing its "strength" from the discriminator's 

perspective. While the training process is going on, the 

generator is trying more and more to reduce this loss or error 

function, successfully raising the level of realism in its 

generated data. The optimization process is done using the 

Adam optimizer, with the learning rate set to 2e-4 and the 

beta_1 parameter set to 0.5. 

 The image in question is Fig. 13(B). Figure pictorially 

displays the evolution in discriminator loss during GAN 

training. The indicator emphasizes real or generated data and 

uses binary cross entropy to help the discriminator 

distinguish between the two. In the meantime, the 

discriminator learns to be more and more skilled in 

distinguishing real from fake images, which ends up making 

the loss of the discriminator smaller and smaller. The 

discriminator optimizer is being used to train this generator. 

It is a parameter Adam optimizer with a learning rate of 2e-4 

and a beta_1 parameter of 0.5. 

Image Fig. 13(C): presentation of the generator L1 loss in 

GAN training. The mean absolute error calculates the average 

distance between the generated output and the target data. In 

the course of training, the generator aims to shrink this loss 

while enhancing the similarity between the generated and 

target data. The optimization is accomplished with the help 

of the Adam optimizer, which gives 2e-4 for a learning rate 

and a beta_1 parameter of 0.5.  

Image Fig. 13(D) is the total generator loss in GAN 

training, the sum of the mean absolute error and the gradient 

information, also known as the L1 loss. You can see how well 

the generator is at tricking the discriminator by looking at the 

loss of GAN. The comparison criterion is L1, which shows 

the difference between the generated (output) data and the 

target data. One of the components of total generator loss is 

the sum of these parts with the consideration of a 

hyperparameter (LAMBDA). Such mistakes act not only as a 

guiding force in the optimization process but also as a target 

for minimization to improve the quality of a generator. 

Generator Loss Curve: At the same time, the loss curve 

for the generator network shows in great detail how the 

generator loss function changes during training (see Fig. 14). 

It clarifies the optimization path of the generator as it strives 

to shrink the discrepancy between the generated and target 

images. The curve gives us useful information about how the 

generator network converges and stays stable, which helps us 

fully understand how well it can remove noise. 

 
Fig. 13. The trends (A, B, C, and D) show very clearly how the generator 

and discriminator loss functions have changed over time and across epochs. 
This shows how well each model does in these situations in terms of how it 

learns and, finally, how well it optimizes 

 
Fig. 14. The Epoch-wise Train and Validation Losses. We compute the 

losses using an invented custom Charbonnier Loss function, which 

effectively handles outliers by adding an epsilon term for cases of overfitting. 
The Adam optimization is used with the size set by the β_1 (0.9) and β_2 

(0.999) factors. Adaptive learning rates and a schedule function 

(lr_schedule_fn) accomplish this 

By putting these loss curves next to the quantitative 

evaluation metrics and sample output images, we can get a 

full picture of how well the GAN and generator networks 
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remove noise at a level of 0.2. The integration of visual 

representations enhances the interpretability of the results, 

enabling a deeper analysis of the model's training dynamics 

and denouncing its efficacy. 

2) Comparison Network (MIRNet, D-GAN, Generator Only) 

Networks 

With the same ACDC dataset and three different Gaussian 

noise distributions (𝜋 =  0.1, 𝜋 =  0.2, 𝑎𝑛𝑑 𝜋 =  0.3), we 

trained all the models so that we could compare each network 

on its own (MIRNet, D-GAN, and generator only). Table I 

represents the results of each network. The table displays the 

averaged quantitative results, demonstrating that the 

proposed D-GAN network outperforms other networks, as 

indicated by the results of PSNR and SSIM. We show some 

examples of images that were only made by the D-GAN 

Recursive Residual Group-based Generator Model to give the 

network its power; see Fig. 15. The following examples 

demonstrate the effectiveness of our model approach in 

denoising, resulting in visually pleasing images. The sample 

outputs serve as representative examples of the model's 

performance in reducing noise and enhancing image quality 

across various medical imaging scenarios. By looking at 

these sample outputs, viewers can judge the perceptual 

fidelity and structural coherence of the denoised images, 

which gives them useful information about how well the 

GAN network can denoise. 

TABLE I.  THE AVERAGE (PSNR / SSIM) MEASUREMENTS AND 

QUANTIFIABLE COMPARISONS ARE GENERATED UNDER GAUSSIAN NOISE 

WITH = 10%, 20%, AND 30% 

Sample rate Metrics D-GAN MIRNet 
Generator 

only 

10% 
PSNR                       

SSIM 

37.85 

0.971 

35.67 

0.9367 

36.02 

0.934 

20% 
PSNR                       

SSIM 

32.58 

0.911 

31.91 

0.884 

32.85 

0.891 

30% 
PSNR                       

SSIM 

29.48 

0.837 

28.62 

0.814 

30.01 

0.833 

 

3) Comparison of D-GAN Network with Other Methods 

On the ACDC dataset, we recreate Gaussian commotion 

with σ = 5%, 10%, and 15%. We compare our proposed 

method (D-GAN) with other state-of-the-art denoising 

strategies in D2S [93], counting profound pictures earlier 

(DIP) [94], Self2Self (S2S) [95], BM3D [96], and VBM4D 

[97]. For D2S and S2S, we utilize the same learning rate 

specified over and tune the number of cycles on our datasets. 

We adopt the peak signal-to-noise ratio (PSNR) and the 

structural similarity index measure (SSIM) as evaluation 

metrics. Table II shows the quantitative data on the ACDC 

dataset. The proposed strategy accomplishes execution better 

than other strategies. 

Table II displays the quantitative results of the ACDC 

dataset. The proposed method achieves much better 

performance than other methods, D2 and VBM4D. In 

particular, D2 does better than VBM4D for other types of 

noise, especially when there is a lot of it, and it gets results 

that are similar to VBM4D for Gaussian noise. Also, D-GAN 

always does better than D2S and S2S, which shows that data 

from other time frames can greatly improve the performance 

of denoising models. Single-image methods such as BM3D 

and S2S use only one noisy image, so they do not have 

enough information to recover details corrupted by noise, 

resulting in an overestimation of blurring. The DIP method 

introduces significant structural artifacts at high noise levels. 

Although some details are recovered from adjacent frames, 

VBM4D also introduces subtle artifacts to the noisy 

images.There are more detailed structures that can be 

recovered by the D2S method from the DIP, S2S, BM3D, and 

VBM4D approaches. However, the D-GAN method shows 

that PSNR/SSIM gives better results than all of them, both in 

terms of the quality of the image and how well it fits our 

perception of it. 

TABLE II.  QUANTITATIVE RESULTS ON ACDC DATA SET FOR GAUSSIAN 

Method 

Gaussian noise 

σ = 5% σ = 10% σ = 15% 

PSNR/SSIM PSNR/SSIM PSNR/SSIM 

NOISY 26.02/0.769 20.00/0.518 16.48/0.369 

BM3D 32.32/0.953 28.54/0.905 26.45/0.860 

VBM4D 32.54/0.957 28.96/0.911 26.88/0.863 

DIP 26.95/0.875 25.55/0.815 23.48/0.718 

S2S 30.41/0.942 28.45/0.912 26.90/0.880 

D2S 32.16/0.960 30.26/0.936 28.22/0.887 

D-GAN 38.93/0.963 37.85/0.971 34.68/0.932 

 

This study provides good results in denoising medical 

images of the heart, but there is One significant limitation of 

GAN-based denoising methods is their handling of different 

noise distributions. Most current implementations primarily 

address Gaussian noise, which is common in MRI, but 

struggle with other types such as Poisson noise, often 

encountered in CT imaging. This disparity can lead to 

suboptimal performance when applied across various 

modalities. Additionally, GANs may not generalize well 

between imaging techniques, resulting in degraded image 

quality when moving from one medical modality to another, 

such as from MRI to CT.Despite the progress, it's crucial to 

recognize the challenges that remain within this observation. 

Although the performance of the ACDC dataset shows 

promise, the proposed method needs to be tested on a wider 

range of datasets to make it more reliable and useful.To create 

these models, we utilized the TensorFlow library together 

with the Python-based NN Keras toolkit. We used Nvidia 

GTX 1080 Ti GPUs running on a Linux cluster with 32GB of 

RAM for training and testing. 

V. CONCLUSION 

We present a Denoising Generative Adversarial  network 

(D-GAN) architecture with a recursive residual group-based 

generator and a discriminator that is based on Patch GAN. 

These innovations offer improved feature refinement and 

texture modeling, enhancing the denoising of cardiac MRI 

images. Our technique can help mitigate the effects of patient 

movement, leading to more stable and consistent images and 

a better diagnosis. Clearer images allow for more accurate 

assessments of cardiac conditions. Using the PSNR 

experiment and SSIM as indicators, the results demonstrate 

that the new model effectively reduces image noise and 

enhances the visual perception of the image. 
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DATA AVAILABILITY  

The ACDC (Automated Cardiac Diagnosis Challenge) 

dataset from the University Hospital of Dijon in this study, 

adhering to rigorous ethical guidelines that prioritize patient 

privacy and data confidentiality [92]. links to online 
https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html 

 

 

 

 

Fig. 15. Example output for images generated exclusively by the RRG-GM 

network These sample outputs exemplify the denoising efficacy of our model 
approach, showcasing visually appealing denoised images produced by the 

model 
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