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1,2,3,5 Unidad de Ingenierı́a Eléctrica Plantel Jalpa, Universidad Autónoma de Zacatecas,
Zacatecas, México
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Abstract—This study focuses on accurate temperature monitor-
ing to optimize classroom conditions, enhancing student comfort
and performance by providing precise data on temperature
dynamics and ensuring reliability through advanced algorithms
for handling missing data. Currently, advances in the Internet
of Things (IoT) have enabled the development of simple, scalable,
and intuitive systems for real-time environmental monitoring. This
work presents a novel architecture for monitoring temperature
dynamics in an electronic laboratory, leveraging a system of
interconnected IoT devices with Wireless Fidelity (WiFi) com-
munication. The system employs an ESP32 microcontroller and
DS18B20 temperature sensors placed strategically around the
classroom, including near windows and doors, to provide compre-
hensive data on heat distribution. The ESP32 is a small, low-cost,
and powerful electronic chip that acts as the central processor
for IoT systems, capable of handling data and connecting to a
Wireless Network trough WiFi. While the DS18B20 can be defined
as a digital sensor that accurately measures temperature and
transmits the data electronically to a connected device. Therefore,
the ESP32 microcontroller acts as the central processor, receiving
temperature data from the DS18B20 sensors, which are configured
to detect and transmit measurements. So, this data is then sent
over a secure local WiFi network for real-time monitoring and
analysis.

The proposed system offers several advantages over existing
solutions, including cost effective deployment, ease of integration,
and real time monitoring. By using a secure local network for
communication, it ensures reliable and uninterrupted data trans-
mission. Furthermore, the I-UFIR algorithm was implemented to
estimate missing temperature data points, significantly improving
the accuracy of temperature readings and providing smoother,
more reliable estimations. This system not only demonstrates the
feasibility of IoT-based temperature monitoring in educational
settings, but also highlights its potential to improve learning
environments by optimizing classroom conditions.

Keywords—Internet of Things; Temperature; Prediction; I-UFIR;
Node-RED

I. INTRODUCTION

Maintaining optimal classroom temperatures is crucial for
ensuring student comfort, focus, and overall well-being. Global
warming has led to record high temperatures, which cause
discomfort and impact daily activities, including those in class-
rooms [1]–[3]. Furthermore, uneven heat distribution caused by
sunlight, airflow, or occupancy patterns can result in localized
temperature variations that standard Heating, Ventilation, and
Air Conditioning (HVAC) systems struggle to regulate effec-
tively [4], [5]. These variations not only affect occupant comfort
but also lead to inefficiencies in energy usage, as systems often
overcompensate to maintain a uniform temperature [6]. Identi-
fying and addressing these disparities through precise tempera-
ture monitoring can help optimize climate control strategies and
enhance overall energy efficiency. In particular, classrooms in
buildings dedicated to electronics and automation courses face
additional challenges, as fluctuating temperatures can threaten
sensitive materials such as electronics, books, and supplies
[7]–[9]. Also, it has been identified that a bad temperature
control in classrooms can impact in different aspects as such as
cognitive performance, health, behavioral issues, and learning
[10]. Therefore, it is essential to continuously monitor the
thermal conditions of classrooms to maintain health, enhance
productivity, and ensure safety.

Continually monitoring temperature through a network of
sensors can achieve several benefits, including improved hu-
man comfort, energy efficiency, and protection of sensitive
equipment [11]–[14]. A sensor network, defined as a set of
spatially distributed sensors that cooperate to monitor and
record conditions such as temperature, humidity, pressure, and
motion, is a key tool for addressing these challenges.

Recently, the adoption of Internet of Things (IoT) has in-
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creased due to its numerous applications [15]–[18]. Specifically,
IoT has facilitated the control of comfort and human well-being
[19]–[21]. In [22], a project was proposed to create a sensor
network to collect data from various environmental sensors
and publish it to cloud services using ESP32 and Raspberry
Pi. Additionally, a Supervisory Control and Data Acquisition
(SCADA) system was presented in [23], consisting of analog
sensors, an ESP32, Node-RED, and Message Queuing Teleme-
try Transport (MQTT) for local communication. Regarding IoT
systems and prediction, a scheme using the same hardware com-
ponents previously described was proposed to predict maximum
temperature and humidity values based on measurements from
the previous three days, integrating an LSTM Neural Network
[24]. Other sophisticated algorithms have been used to control
room temperature based on Fuzzy Logic, ESP32, and IoT con-
cepts [25], [26]. According to several studies, Wireless Sensor
Networks have been implemented to supervise temperature in
different rooms using various technologies, algorithms, and
strategies, thus corroborating their increasing daily use [27]–
[30]. Although the variety of IoT systems offers significant
potential for temperature monitoring in classrooms, their lim-
itations include issues related to connectivity, computational
complexity, power consumption, sensor accuracy, scalability,
security, and adaptability. Addressing these challenges is crucial
for improving the effectiveness and reliability of IoT-based
temperature monitoring solutions in educational settings.

While the use of IoT for environmental monitoring and
control systems is increasingly widespread, it is important
to recognize that electronic systems are not without their
limitations. For instance, data acquisition can sometimes be
interrupted due to several situations, such as electrical black-
outs, disconnections, false contacts between components, or
magnetic fields from other devices [31]–[34]. Therefore, an
important task is to estimate these missing measurements in
diverse applications. Furthermore, several algorithms have been
proposed for this purpose, such as interpolation [35]–[37], tra-
ditional estimation algorithms [38]–[40], new implementations
aimed at addressing this problem [41]–[43], and strategies based
on machine learning [44]–[46]. However, the selection of an
appropriate technique depends on the specific requirements
of the application. To avoid the complexities of researching
the model, noise statistics, or applying complex algorithms,
there is an interesting algorithm called Iterative Unbiased Finite
Impulse Response (I-UFIR) that can effectively predict missing
measurements. Currently, there are several algorithms dedicated
to filtering signals. However, these well-known algorithms re-
quire knowledge of the signal to be processed, an approximation
model of the signal, a noise model, or extensive tuning to
achieve optimal results. In contrast, the I-UFIR does not require
this prior knowledge to obtain good results. Additionally, the
flexibility of I-UFIR to function as a filter, smoother, or
predictor outperforms other techniques.

Several existing IoT-based systems that monitor temperature
in various environments often overlook certain critical aspects
specific to classrooms, such as real time adaptability to chang-
ing conditions and the ability to handle data interruptions effec-
tively. Although these systems integrate sensors and advanced
algorithms, they often focus on more generalized environmental
monitoring or employ complex prediction techniques that may
require extensive tuning or prior knowledge of the signal
and noise characteristics. Additionally, many of these systems
rely on central air conditioning or assume ideal environmental
conditions, which may not be applicable in diverse educational
settings, particularly in classrooms without air conditioning.

In this work is proposed an IoT system for monitoring the
temperature in a classroom without air conditioning. The main
contributions of this research lie in the development of a real
time temperature monitoring system for classrooms using IoT
devices, which enables continuous tracking of heat behavior to
optimize learning environments. The system incorporates strate-
gically placed temperature sensors near windows and doors to
collect comprehensive data on environmental conditions, ensur-
ing accurate coverage of temperature variations throughout the
building. Additionally, the simplicity of the system and scala-
bility make it a practical solution for widespread deployment in
educational settings. Once the system is implemented, it could
be scaled to monitor temperature dynamics in larger institutions
or across multiple classrooms, enhancing energy efficiency by
identifying areas with uneven heat distribution and optimizing
HVAC systems accordingly. These improvements could result
in significant cost savings for educational institutions while
ensuring a comfortable and conducive learning environment for
students.

The system is proposed to record the temperature over several
hours and to implement the I-UFIR algorithm as a predictor
to estimate the absence of measurements due to faults in
the data recording. The proposed physical system consists of
a Raspberry Pi 4 as the Data management unit, an ESP32
development board with a DS18B20 temperature sensor as the
data transmitter, and a modem to create a closed Wi-Fi network.
All devices are planned to be linked using the software Node-
RED. So, this work is structures as follows. In Section II, the
general diagram of the proposed system architecture and the
details of each component are described. The I-UFIR algorithm
and its tuning are presented in Section III-B. Next, the complete
network configuration is specified in Section IV. Finally, the
results and conclusions are detailed in Sections V and VI.

II. ARCHITECTURE OF THE SYSTEM

The proposed strategy can be summarized in the Fig. 1,
which is composed of several physical components with Wire-
less Fidelity (WiFi) communication. The principal device is a
modem, which generate a local network with restricted access
by password. This modem is protected with a Wi-Fi Protected
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Access 2 (WPA2), which provides stronger encryption and
authentication through Advanced Encryption Standard (AES)
and Counter Cipher Mode with Block Chaining Message Au-
thentication Code Protocol to address vulnerabilities in WPA
and improve Wi-Fi network security. To guarantee the security
of communication between the ESP32, Raspberry Pi, and Node-
RED when using MQTT, it was employed the Transport Layer
Security / Secure Sockets Layer (TLS/SSL) encryption. In ad-
dition, this protocol can be combined with username/password
authentication to ensure the integrity and confidentiality of the
data that are exchanged between devices.

Fig. 1. General IoT Diagram of Wireless Sensor Network for Missing Data Prediction
Using Raspberry Pi, Node-RED, and ESP32.

Now, it is necessary to configure the transmitters, which
are numbered from Tx 1 to Tx 4 and consist of the ESP32
microcontroller and a DS18B20 temperature sensor. The ESP32
was selected over alternative microcontrollers, such as the
Arduino family, due to its built-in Wi-Fi capabilities, which
are essential for seamless IoT communication, as well as its
low power consumption, making it highly efficient for long
term deployment in networked environments. Additionally, the
processing of ESP32 processing power and flexibility in han-
dling data transmission make it an ideal choice for the proposed
temperature monitoring system.

The transmitters, described above, are located at Tx 1, Tx
2, Tx 3, and Tx 4, in a corner next to another room, in a
corner next to a window, in a corner next to another room, and
in a corner next to a door, respectively. The transmitters were
strategically placed near windows, doors, and room corners to
capture temperature variations caused by environmental factors
such as airflow, direct sunlight, and heat sources, which are
common in classroom settings. The sensors were placed in
these locations because windows often contribute to significant
temperature variations due to direct sunlight exposure or drafts

caused by poor insulation. Sensors were positioned near doors
because doors are frequently used and can cause temperature
fluctuations due to the exchange of air between the classroom
and adjacent spaces. Additionally, sensors were placed in the
corners of the room, as these areas can sometimes serve
as zones where temperature gradients occur due to limited
airflow or insulation irregularities. The hardware employed to
archive the measurements is the Raspberry Pi 4. Although there
are alternatives to using the Raspberry Pi, this device stands
out for its affordability, strong community support, versatility,
built-in connectivity, flexibility in hardware integration, low
power consumption, processing power, and scalability. These
advantages make it ideal for a wide range of projects, especially
in IoT and educational applications. The devices Raspberry Pi
4 and ESP32 are described with detail in the sections II-A and
II-B, respectively.

A. Raspberry Pi 4

The Raspberry Pi is a versatile and compact computing
platform widely used in educational, research, and development
projects due to its flexibility and robust features. The Raspberry
Pi is a Single-Board Computer (SBC) with several pins called
GPIO (General Purpose Input/Output), which are connections
that allow the Raspberry Pi to communicate with the outside
world [47]–[49]. This small computer is capable of controlling
devices, reading information, and communicating with other
devices effectively. Additionally, the Raspberry Pi can perform
common tasks such as processing and storing information,
browsing the internet, or creating documents.

The recommended operating system for this device is the
open-source Raspberry Pi OS (formerly Raspbian), a very
lightweight system based on Debian. However, any operating
system compatible with the Advanced RISC Machine (ARM)
architecture can be used [50]. Specifically, for this work,
the Raspberry Pi’s ability to establish an intuitive and fast
connection with other electronic development boards was the
key factor in selecting this technology. The main characteristics
of the Raspberry Pi 4 are described in Table I [51].

TABLE I. CHARACTERISTICS RASPBERRY PI 4

Features Raspberry Pi 4
Processor Broadcom BCM2711, Quad-core Cortex-A72 (ARM

v8) 1.5GHz
RAM 2GB, 4GB or 8GB LPDDR4
Storage microSD (up to 1TB)
Wi-Fi Connectivity 802.11ac, dual-band (2.4GHz/5GHz)
Bluetooth Bluetooth 5.0
USB Ports 2x USB 3.0, 2x USB 2.0
GPIO Pins 40 GPIO pins
Video Support 2x micro HDMI, up to 4Kp60
Operating System Raspbian, Ubuntu, and others
Power Consumption Relatively high, around 5-7W

In this table is described an overview of the key char-
acteristics of the Raspberry Pi 4, including its processor,
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memory options, connectivity features, and power consumption.
In particular, it supports dual-band Wi-Fi, Bluetooth 5.0, and
offers flexible storage via a microSD card, with video output
capable of up to 4K resolution. These features are what give
the Raspberry Pi its outstanding performance compared to other
programmable boards. Among the many advantages of the
Raspberry Pi, its powerful processor, support for 4K multi-
media, and a great software community can be highlighted.
However, some disadvantages can also be mentioned, such as
higher power consumption and relatively high price compared
to microcontrollers.

Regarding the software, the Raspberry Pi requires down-
loading and installing the operating system (OS) from the
official Raspberry Pi website [52]. The OS is installed on
a microSD card, and for this work, we recommend using
Raspberry Pi OS (Desktop) to take advantage of its graphical
interface. After installing the OS, it is necessary to update the
system, which can be done using basic commands provided
on the official Raspberry Pi website. Once the Raspberry Pi
OS is installed and updated, the Node-RED dashboard can be
deployed. The stepwise procedure for this installation is detailed
on the official Node-RED website [53]. If both platforms are
correctly installed, an IP address will be provided, allowing
Node-RED to be accessed and executed through any internet
browser.

B. ESP32

The ESP32 is a small yet powerful microcontroller, highly
popular in the world of electronics and programming. This
device has low power consumption and is a key tool for
IoT projects [54]–[56]. Like the Raspberry Pi 4, the ESP32
features several GPIO pins that can send or receive digital
signals, enabling interaction with various devices, from sensors
to actuators. Basically, the ESP32 is a versatile and relatively
easy-to-use microcontroller for electronics and IoT projects.
Studies show that it can be easily integrated with minimal
configuration [57], [58], and it is commonly used in projects
involving MQTT and Node-RED [59], [60]. The key features
of the ESP32 are listed in Table II [61].

TABLE II. CHARACTERISTICS OF ESP32

Features ESP32
Processor Tensilica Xtensa LX6, dual-core up to 240 MHz
RAM 520KB SRAM
Storage External Flash memory 2MB to 16MB
Wi-Fi Connectivity 802.11 b/g/n (2.4GHz)
Bluetooth Bluetooth 4.2 and BLE
USB Ports 2.0 Not available
GPIO Pins Up to 34 GPIO pins
Video Support Not available
Operating System FreeRTOS, ESP-IDF, Arduino
Power Consumption Very low, ideal for battery-powered IoT applications

Some advantages of the ESP32 are its very low power
consumption and lower cost compared to development boards.

The limited processing and memory capacity, the lack of USB
ports, and the need for greater programming knowledge for
complex projects are the main disadvantages of the ESP32.

C. Sensor DS18B20

The DS18B20 is a popular digital temperature sensor pro-
duced by Maxim Integrated. It is widely used in various appli-
cations due to its simplicity, accuracy, and ease of integration.
This component is a 1-wire digital temperature sensor that
provides temperature readings with a high degree of accuracy.
It has a range of -55°C to +125°C and offers a digital output,
meaning it can interface directly with digital devices like micro-
controllers. Some key specifications of the DS18B20 include an
accuracy of ±0.5°C from −10°C to +85°C, and a configurable
resolution from 9 to 12 bits, providing temperature precision
from 0.5°C to 0.0625°C [62]. Regarding power supply, it can
be powered either by an external supply from 3.0V to 5.5V.

The DS18B20 sensor has multiple advantages, especially
in scenarios that require multiple temperature measurements
with minimal wiring complexity. Its high accuracy, ease of
integration, and wide operating range make it a popular choice
for DIY projects, industrial systems, and IoT applications.

D. Node-RED

Node-RED is a platform designed for creating applications
based on flow programming, which is a way to program as a
network of black boxes, called “nodes” [63]. The main objective
of Node-RED is to develop IoT systems, the configuration
process is similar to block programming [64], [65]. Each node
performs a specific function based on the provided input and
the data flow between them [66]. This programming modality
is flexible and can accommodate a wider range of users. Node-
RED is well-suited for this work because it incorporates the
MQTT protocol, which enables stable communication between
the ESP32 and Raspberry Pi.

1) MQTT Protocol: The Message Queuing Telemetry Trans-
port (MQTT) is the protocol of data exchange for IoT messag-
ing [67], [68]. Recently, the MQTT was created to define as
to publish and to subscribe the data over the internet between
IoT devices. So, the Publisher and Subscriber share information
via Topics, and the connection between them is handled by the
MQTT broker.

Since the system proposed can be susceptible to errors of
network disruptions, sensor failures, or other potential issues,
several strategies can be implemented. For instance, the ESP32
microcontroller can be programmed to periodically verify its
connection to the local Wi-Fi network and reconnect automat-
ically in the event of a disruption. Similarly, the DS18B20
sensors can include error-checking protocols to detect faulty
readings or disconnections, prompting the ESP32 to flag the
issue for user attention. To address sensor failures, redun-
dant DS18B20 sensors could be deployed at critical locations,
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enabling the system to switch seamlessly to backup sensors
without interrupting data collection. Additionally, the Raspberry
Pi, acting as the central processing hub, could log errors and
notify users via email or SMS when network disruptions or
sensor anomalies are detected. However, a widely employed
strategy is the approximation of missing data using estimation
algorithms. To minimize the impact of missing measurements,
an algorithm specifically developed for this purpose is described
below.

III. ESTIMATOR UFIR

This section describes the State-Space Modeling to compen-
sate for the absence of measurements in a defined process,
such as satellite measurements, along with the detailed Iter-
ative UFIR Algorithm. Additionally, the pseudo-algorithm is
presented in detail for its implementation.

A. State-Space Modeling

The acquisition of the temperature signal can be represented
under a discrete state-space model through the following equa-
tions:

xkk = Axkk − 1 +Bwk, , (1)
yk = Cxk + vk, (2)

where xk ∈ RK is the state vector, yk ∈ RM is the observation
vector, and A ∈ RK×K is the state matrix, B ∈ RK×P , and
C ∈ RM×K .

The Gaussian white noise vectors wk ∼ N (0, Qk) ∈ RP and
vk ∼ N (0, Rk) ∈ RM are considered zero-mean, E{wk} = 0
and E{vk} = 0, with covariances E{wkw

T
n } = Qkδk−n and

E{vkvTn } = Rkδk−n, and the property E{wkv
T
n } = 0 for all

n and k.
Based on equations (1) and (2), the iterative UFIR filter

algorithm can be designed as follows.

B. Iterative UFIR

The Iterative UFIR (I-UFIR) has been widely implemented
to solve several problems [69]–[71]. Below, the UFIR filter
algorithm is described in an iterative format, akin to the Kalman
filter framework [72]. Algorithm 1 presents the pseudo-code
for this filter, where yk represents the noisy input signal, N
denotes the window or point horizon, and q is a step variable
that can be determined using either equation (3).

q =
N − 1

2
−
√

N2 − 1

12
(3)

This parameter can be related as p = −q, which serves for
filtering with p = 0, smoothing with p < 0, and prediction with
p > 0, providing flexibility to the Algorithm 1.

Algorithm 1 Iterative UFIR Filter Algorithm

1: Input: yk, N,A,C,W, q
2: Begin
3: for k = N − 1, N do
4: m = k −N + 1, s = k −N +K
5: Gs = (WT

m,sWm,s)
−1Ym,s

6: x̂s = Gs(W
T
m,s)Ym,s

7: for i = s+ 1 : k do
8: x̃−

i = Aix̃i−1

9: Gi =
[
CT

i Ci +
(
AiGi−1A

T
i

)−1
]−1

10: Ki = GiC
T
i

11: x̃i = x̃−
i +Ki

(
yi −Hix̃

−
i

)
12: end for
13: x̂k = x̃k

14: x̂k−q = A−qx̂k

15: end for
16: Result: x̂k

IV. NETWORK CONFIGURATION

A. Programming ESP32

The development platform ESP32 requires programming
to read the sensor signal and transmit the information to
the Raspberry Pi 4. Therefore, it is necessary to establish a
pseudocode algorithm to summarize the code implemented on
the ESP32. In Algorithm 2, the configuration to read and to
transmit the DS18B20 sensor records is described stepwise.
This pseudocode consists of one section that initializes the
required libraries for the DS18B20 sensor, as well as the WiFi
connection and MQTT protocol, specifically specifying the
topic where the temperature is published. Next, the function
setup wifi establishes the WiFi connection and prints a message
with the connection status. This is followed by the callback
function, which requires two arguments the topic and the
message to print the received message from the topic variable.

This Arduino-based program uses an ESP32 microcon-
troller to monitor temperature via a DallasTemperature sensor
(DS18B20) and transmit readings to a Raspberry Pi MQTT
broker. The setup function initializes serial communication,
WiFi connectivity to the RED INDUSTRIAL IEI network,
and MQTT communication with the broker at 192.168.1.70,
calling the setup wifi and callback functions for configuration.
The reconnect section ensures the MQTT connection remains
active, attempting reconnection every 5 seconds if it drops
and subscribing to the topic upon success. The main logic
resides in the loop function, which periodically reads the sensor
data using the OneWire library, converts the temperature to a
string, prints a ”sending” message, and publishes the data to
the esp/Temperature4 topic. It also listens for messages on the
esp/Output4 topic and employs a non-blocking delay mech-
anism to ensure continuous operation. Robust error handling
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ensures reconnection and uninterrupted data transmission.

Algorithm 2 ESP32 Configuration

1: Input: Sensor
2: Begin
3: Initialize WiFi and MQTT client
4: Set ssid and password for WiFi
5: Set mqtt server IP address
6: Function setup wifi:
7: Connect to WiFi network
8: Print connection status
9: Function callback(topic, message):

10: if topic matches output then
11: Print received message
12: end if
13: Function setup:
14: Initialize serial communication
15: Call setup wifi
16: Set MQTT server and callback function
17: Function reconnect:
18: while not connected to MQTT: do
19: Attempt to connect to MQTT
20: if connection successful then
21: Subscribe to output topic
22: else
23: 5 seconds and retry
24: end if
25: end while
26: Function loop:
27: if not connected to MQTT then
28: call reconnect
29: end if
30: call client.loop
31: if sufficient time has passed or band is true then
32: request temperature from sensor
33: convert temperature to string
34: print sending message
35: publish temperature to topico
36: set band to true
37: wait 1 second to check callback
38: end if
39: Result: topico

B. Node Settings

Once each node is programmed to transmit temperature data
to the Raspberry Pi board, it is necessary to configure the Node-
RED platform. Specifically, the Message Queuing Telemetry
Transport (MQTT) protocol is used to link the received data
to the other nodes. With respect to the Quality of Service
(QoS) levels, the MQTT node provides different levels of
reliability. For the configuration, the maximum level, QoS=2,

was chosen, which is ideal for critical applications requiring
strict data accuracy and reliability, such as financial or medical
data transmissions. Fig. 2 shows the complete Node-RED
structure for recording measurements in a file and displaying
them graphically.

Fig. 2. Configuration proposed in Node–Red.

In Fig. 2, the first node is the “input MQTT”, which uses a
broker such as Mosquitto on the same Raspberry Pi. Therefore,
configuring MQTT requires only a few parameters the MQTT
broker’s IP address, port number, and, importantly, the topic
to which the temperature data will be sent. For this work, a
closed Wi-Fi network was used, assigning the MQTT server
the IP address 192.168.1.70, with port 1883, and naming the
topic esp/Temperature#. The symbol # is replaced according to
the specific sensor node from which the data is received.

Node-RED also provides a User Interface (UI) that facilitates
the display of information in real-time with minimal adjust-
ments. The integration of Node-RED and its UI played a key
role in the success of the system, their eases of implementation
and flexibility in system management made Node-RED an
invaluable component for managing the IoT-based architecture.
For this experiment, a Gauge Chart is proposed to present
the temperature from each transmitter. This graph is directly
connected to the output of the MQTT node, as shown in Fig.
2.

Next, the function node is arranged, this step requires a more
detailed configuration because it is responsible for organizing
the received information. This setup is described and outlined
in Fig. 3. Here, the data is organized by establishing the year,
month, day, hour, minute, and second, followed by the tem-
perature in degrees Celsius (°C) measured with the DS18B20
sensor.

Fig. 3. Function block configuration.

Finally, the function msg.payload receives the temperature
measurement, and the File Generator creates a file with a .txt
extension at a specified name and path.
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V. TESTING AND RESULTS

A. Experimental Setup

As soon as the proposed system is configured, it will be
possible to analyze the received data. The system collects
temperature data through DS18B20 sensors connected to ESP32
microcontrollers, which periodically measure and prepare the
data for transmission. The ESP32s then use Wi-Fi to send
this data in real time to the Raspberry Pi, which acts as the
central hub for data reception and processing. The Raspberry
Pi ensures the consistency and reliability of the data, employing
the I-UFIR algorithm to estimate and fill in any missing values.
Finally, the processed data is sent to the Node-RED platform
hosted on the Raspberry Pi, where it is displayed on a graphical
interface with gauge charts and fast updates for each transmitter.

For this research, three probes were conducted, recording
measurements from each transmitter every 5 minutes. The
classroom where the tests were conducted is located on the first
floor of a two-story building. Each transmitter is located in the
indoor area of a classroom at a height of 1 meter, following the
sequence from transmitter 1 to 4: near window 1, in the corner,
near the door, and near window 2, respectively. The experiment
began at 15:00 hours and ended after two days at 12:00
hours, resulting in a total recording duration of 69 hours. This
experiment duration was chosen to capture a comprehensive
range of classroom temperature fluctuations over different day
night cycles. So, this duration ensures the system records
temperature variations caused by daily environmental factors
such as sunlight, ambient temperature changes, and human
activity during the day, as well as the cooler, more stable
conditions typical at night. By including at least two full cycles,
the data provides a robust representation of typical classroom
conditions, allowing for a more accurate analysis of patterns
and influences on temperature dynamics. As an initial test,
measurements were taken with the sensors placed in the same
position at the center of the classroom to ensure they recorded
the same temperature. This temperature was compared with an
ambient thermometer, which showed a difference of ±2°C.

For the graphical representation of the data from each
transmitter, a user-friendly interface was designed based on
gauge monitors, as shown in Fig. 4. Each gauge monitor
is configured to show the temperature from Transmitter 1
to Transmitter 4. The Gauge Chart was chosen to represent
the temperature graphically due to its ability to provide an
intuitive and immediate understanding of temperature dynamics
for end-users. The dynamic updates of gauge graphs ensure that
users are always informed about the most recent data trends,
making it easier to identify anomalies or significant changes. In
addition to gauge graphs visualization, the system benefits from
saving data in .txt files. This feature allows users to archive
historical data for further analysis and reporting. Saving the
data in a simple, universally readable format like .txt ensures

compatibility with a wide range of analytical tools, enabling
easy processing and sharing.

Fig. 4. User Interface UI configured in Node-RED to monitor the temperature of four
transmitters.

B. Temperature Measurements

After completing the configuration of transmitters, the system
is ready to obtain the temperature measurements. In Figs. 5(a),
5(b), and 5(c) show three different probes, which began on
April 20, April 23, and April 26, respectively. The maximum
temperatures in probe 1 were recorded by Sensor 1, reaching
33.38 °C, while the minimum value was recorded by Sensor 3,
at 26.31 °C. In the second probe, the maximum measurements
were also obtained by Sensor 1, but the lowest value was
recorded by Sensor 2. In probe 3, Sensor 1 again recorded
the maximum values, while the minimum values were obtained
by Sensor 3.

The possible explanation for why node 1 recorded the highest
temperatures is that the afternoon sun hits the windows directly,
unlike node 2, where a tree partially shades the window.
The observed temperature variation of nearly 5°C between
sensors highlights significant differences in thermal dynamics
within the classroom. This disparity reflects the influence of
environmental factors such as direct sunlight, airflow patterns,
insulation quality, and the positioning of heat sources, for exam-
ple occupants or electronic devices. To guarantee the integrity
and reliability of the temperature measurements, the recorded
data were cross-validated with local temperature reports and
digital platforms accessed via mobile devices, ensuring the
measurements aligned with expected values for the time and
location. Additionally, a review of the data revealed no signif-
icant outliers, indicating consistent and reliable measurements,
even without applying advanced statistical methods.

It is possible to appreciate that the measurements in Fig. 5(a),
Fig. 5(b), and Fig. 5(c) follow the same behavior, with high
temperatures between 12:00 h and 00:00 h and low tempera-
tures between 00:00 h and 12:00 h. It is worth highlighting that
these probes were conducted during a hot season in Mexico,
and the classroom was closed except when opening to change
the batteries of the transmitters. So, different conditions were
taken into account. If the classroom was closed, it could create
a scenario where heat accumulation might occur. Additionally,
the heat generated by electronic equipment and its impact on
the precision of sensors were not studied in this experiment.
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(a)

(b)

(c)

Fig. 5. Temperature measurements in classroom on several dates (a) April 20-April 23,
2023, (b)April 23-April 26, 2023, and (c) April 26-April 29, 2023

The observed temperature pattern, with higher temperatures
during the afternoon and evening and lower temperatures
overnight, is influenced by a combination of external environ-
mental conditions and internal factors. Externally, this pattern
aligns with the typical daily solar cycle, where sunlight and
ambient heat peak in the afternoon and gradually dissipate
overnight. Internally, classroom ventilation plays a crucial role.
This process can amplify temperature peaks during the day
due to the limited airflow or heat retention within the building
structure. Additionally, the heat generated by occupants and
electronic devices during active classroom hours may fur-
ther contribute to elevated temperatures in the afternoon and
evening.

C. Prediction Temperature

During the development and implementation of the sensor
network, an error was detected when some sensors were unable
to collect a temperature value. This record appears as empty
in the .txt file, and when imported into the software Matlab,
it was labeled as Not a Number (NaN). The origin of this
fault is unknown. However,missing data can occur due to
several potential factors. First, hardware issues, such as sensor
malfunctions or faulty connections, can prevent the DS18B20
temperature sensors from accurately measuring and transmitting
temperature data. Second, network disruptions, including Wi-
Fi signal instability or temporary connectivity losses between
the ESP32 microcontrollers and the Raspberry Pi, can result
in data transmission failures. This could lead to gaps in the
temperature data. Additionally, software bugs or errors in the
data processing pipeline, such as incorrect configurations or
failure in data handling logic.

The occasional missing data shows that the issue rarely
occurred enough to seriously affect the reliability of the sys-
tem. However, the presence of NaN values emphasizes the
importance of the prediction algorithm in providing accurate
and uninterrupted performance. This compensation mechanism
allowed the system to handle occasional transmission issues
while maintaining the integrity of the overall dataset. When
this phenomenon is presented, the mean of each measurement
cannot be computed, unless the data is compensated.

In this part, the UFIR algorithm is computed to predict the
gap measurement. As discussed in III-B, the I-UFIR estimator
has the ability to predict lost data using the available previous
measurements [73]. This algorithm was implemented in Matlab
R2020b, with the temperature measurements imported from .txt
files.For this experiment, the I-UFIR algorithm was used with
a window size of N = 21, and the q parameter is obtained
using equation 3. Figs 6(a) to 6(b) illustrate the prediction of
gap measurements by using different algorithms. In these Figs,
the absence of temperature data for the Transmitter 1 in the
Probe 1 difficult to graph the mean. When the temperature is
not available from a transmitter, the mean is computed using

M. A. Navarrete-Sanchez, IoT-Based Classroom Temperature Monitoring and Missing Data Prediction Using Raspberry Pi and
ESP32



Journal of Robotics and Control (JRC) ISSN: 2715-5072 242

the data from the other probes, thus, the estimation can be
compared with the mean. In Figs 6(a) and 6(b), it is most ap-
parent how the mean (solid line) shows a displacement from the
mean computed when all measurements are present (circles).
In contrast, the prediction using the I-UFIR follows a stable
behavior, without sharp changes. A notable disadvantage of
implementing the I-UFIR algorithm is determining the optimal
horizon. However, based on previous works mentioned earlier,
it is possible to obtain the required results. In Fig. 6(c), the
estimation and mean apparently have the same response due to
variability in the existing values.

(a)

(b)

(c)

Fig. 6. Estimation of temperature data with gaps in different intervals on April 20-April
23, 2023, (a) gap 1, (b), gap 2, and (c) gap 3

Regarding to the interpolation techniques such as spline,
makima, and pchip are commonly used to approximate missing
data points or smooth datasets previously implemented in
Matlab®. The spline function implements cubic spline inter-
polation, producing a smooth curve by minimizing the second
derivative, which can lead to overshoots in highly oscillatory
data [74]. The makima function, or Modified Akima Piecewise
Cubic Hermite Interpolation, prioritizes robustness to outliers
and local variations by avoiding overshoots while maintain-

ing smooth transitions between data points [74]. The pchip
function, or Piecewise Cubic Hermite Interpolating Polynomial,
emphasizes monotonicity and preserves the shape of the data,
making it suitable for scenarios where maintaining physical
constraints is crucial [74]. However, these interpolation methods
lack the robustness and adaptive capabilities of techniques like
the I-UFIR filter, which can iteratively refine estimates, handle
noisy datasets, and avoid assumptions about the smoothness
of underlying data. Consequently, while spline, makima, and
pchip are efficient for interpolating well behaved data, they
may perform poorly in datasets with noise, irregularities, or
measurement loss, where I-UFIR techniques excel in providing
unbiased and reliable estimates.

The proposed IoT-based temperature monitoring system
aligns with findings from other studies that highlight the ef-
fectiveness of IoT technologies in environmental monitoring.
For instance, the use of ESP32 microcontrollers and similar
sensors for temperature tracking has been reported as a cost-
effective approach in educational and industrial settings [75],
[76]. However, unlike previous studies that focus primarily
on accuracy against commercial sensors [77], [78], this work
emphasizes robustness in handling data loss through the I-UFIR
algorithm, showcasing its ability to estimate missing values
without abrupt changes, a key advancement over traditional
interpolation techniques. Furthermore, while many IoT systems
prioritize immediate data accuracy, this study broadens the
scope by demonstrating the potential for long term monitoring
in environments prone to interruptions, aligning with recent
calls for more resilient IoT frameworks [79]. Future studies
could build on this foundation by integrating additional environ-
mental factors like humidity or CO2 levels, as suggested in [80],
to enhance classroom comfort and energy efficiency, thereby
expanding the system’s real-world applications in educational
institutions.

VI. CONCLUSIONS

The proposed architecture effectively achieves the monitoring
of temperature dynamics in a classroom environment, specif-
ically an electronic laboratory. Through the use of intercon-
nected IoT devices with Wireless Fidelity (WiFi) communica-
tion, the system demonstrates a cost effective and efficient so-
lution for capturing and analyzing heat distribution. The ESP32
microcontroller and DS18B20 temperature sensors, strategically
placed near windows and doors, ensure comprehensive data
collection. The integration with Node-RED and the UI appli-
cation successfully validates the communication between the
publisher and subscriber, displaying real time temperature mea-
surements. To ensure the ethical deployment of the proposed
IoT-based temperature monitoring system, data privacy and
security must be prioritized. Implementing encryption protocols
for data transmission and storage, as well as limiting access to
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authorized personnel, will safeguard sensitive information and
prevent potential misuse.

Temperature data were collected over nine days, with peri-
odic interruptions every three days for system supervision. Each
transmitter was placed in a different location within the same
room, leading to temperature variations of up to 5 degrees Cel-
sius between the sensor recording the lowest values and the one
recording the highest. These differences highlight the impact
of sensor placement on measurements. The proposed system
focuses on extended temperature monitoring and the estimation
of missing data to ensure reliable and continuous operation,
prioritizing data continuity and the effectiveness of the I-UFIR
algorithm in addressing data loss or sensor interruptions. While
no reference system was available for direct comparison, this
work emphasizes the robustness of system and reliability rather
than specific temperature accuracy, showcasing its potential in
environments prone to data loss.

Regarding the estimation of temperature gaps, the prediction
using the I-UFIR algorithm was successfully applied, as the
missing data were estimated and did not show abrupt changes.
In other words, the estimations exhibited a similar behavior
compared to the other temperature measurements. The ability of
I-UFIR to provide smooth estimations ensures that the missing
data points align closely with the natural fluctuations of the
temperature measurements, avoiding abrupt changes that could
skew the overall data analysis. This smooth data estimation
is particularly important for maintaining the consistency and
precision of the system, as any sharp discrepancies in the tem-
perature readings could lead to incorrect conclusions or actions.
In future work, we propose to conduct a comprehensive analysis
of the robustness of I-UFIR algorithm by simulating larger
gaps in data, such as intentionally removing measurements to
evaluate its performance under varying conditions. This study
will focus on understanding the impact of signal behavior, noise
levels, and statistical properties on the algorithm’s estimation
accuracy, providing deeper insights into its reliability and
limitations. Despite the aim of this system being focused on
recording temperature measurements over extended periods and
estimating missing data to ensure a reliable and continuous
understanding of temperature dynamics, a comparison with
other temperature systems or commercial sensors could be
proposed to apply and evaluate various performance metrics.

The proposed IoT-based temperature monitoring system pro-
vides a practical and scalable solution for classroom envi-
ronments, particularly smaller spaces. However, its current
focus is limited to temperature monitoring, which restricts its
ability to provide a comprehensive understanding of classroom
conditions. Incorporating additional environmental factors, such
as humidity, CO2 levels, or light intensity, could enhance its
utility, enabling institutions to optimize energy usage, reduce
costs, and improve student comfort and performance. Scaling
the system to larger spaces with more complex environmental

factors may also require adjustments to the architecture and
transmitter placement.

Future improvements could involve enhancing the robust-
ness of the algorithm to address diverse fault conditions and
leveraging machine learning models to predict and dynam-
ically adjust environmental factors based on historical data.
These advancements would broaden the system’s real world
applications, offering a more comprehensive and reliable tool
for environmental monitoring. Such developments could sig-
nificantly benefit educational institutions by fostering better
learning environments and supporting energy efficient practices.
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[30] M. Yağanoğlu, F. Bozkurt, F.B. Günay, S. Kul, E. Şimşek, G. Öztürk,
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