
Journal of Robotics and Control (JRC)

Volume 6, Issue 1, 2025

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i1.24349 315

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Enhanced Precision Control of a 4-DOF Robotic

Arm Using Numerical Code Recognition for

Automated Object Handling

Hanifudin Sukri 1*, Achmad Fiqhi Ibadillah 2, Rajermani Thinakaran 3, Faikul Umam 4, Ach. Dafid 5, Adi Kurniawan 6,

Md. Monzur Morshed 7, Denni Kurniawan 8
1, 2, 4, 5, 6 Engineering Faculty, Universitas Trunojoyo Madura, Bangkalan, Indonesia

3 Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
7 Department of Accounting and Information Systems, University of Dhaka, Dhaka-1000, Bangladesh

8 Faculty of Engineering, Universiti Teknologi Burnei, Jalan Tungku Link Gadong BE1410, Brunei Darussalam

Email: 1 hanifudinsukri@trunojoyo.ac.id, 2 fiqhi.ibadillah@trunojoyo.ac.id, 3 rajermani.thina@newinti.edu.my,
4 faikul@trunojoyo.ac.id, 5 ach.dafid@trunojoyo.ac.id, 6 adi.kurniawan@trunojoyo.ac.id

*Corresponding Author

Abstract—This research develops a 4-DOF robotic arm

system that utilizes numerical codes for accurate, automated

object handling, supporting advancements in sustainable

industrial automation aligned with the UN Sustainable

Development Goals (SDGs), particularly Industry, Innovation,

and Infrastructure (SDG 9). Key contributions include the

integration of EasyOCR for reliable code recognition and a

control mechanism that enables precise positioning. The robotic

system combines a webcam for visual sensing, servo motors for

movement, and a gripper for object manipulation. EasyOCR

effectively recognizes numerical codes on randomly positioned

objects against a uniform background while the microcontroller

calculates servo angles to guide the arm accurately to target

positions. Testing results show a success rate exceeding 94% for

detecting codes 1 to 4, with minor servo angle errors requiring

adjustments in arm extension by 30 mm to 50 mm. Positional

error analysis reveals an average error of less than 1.5 degrees.

Although environmental factors like lighting can influence code

visibility, this approach outperforms traditional methods in

adaptability and precision. Future research will focus on

enhancing code recognition under variable lighting and

expanding the system's adaptability for diverse object types,

broadening its applications in industries demanding high

efficiency.

Keywords—Robotic Arm; 4-DOF; Manufacturing

Innovation; EasyOCR; Numerical Code; Precision Control.

I. INTRODUCTION

As modern industries increasingly adopt automation,

robotic systems are becoming essential tools for enhancing

efficiency, precision, and safety in various operational tasks.

Unlike human labor, which is susceptible to fatigue and error,

robots are specifically designed to perform repetitive and

precise tasks without compromising accuracy, thus

significantly improving productivity in industrial settings.

One of the most versatile robotic systems in such applications

is the robotic arm, which replicates human arm movements

and is particularly useful in assembly lines, material

handling, and even hazardous environments [1], [2]. Robotic

arms are capable of performing movements in multiple

directions (up/down, right/left, forward/backward), allowing

them to transfer objects with minimal human intervention [3].

While the robotic arm in this study remains a prototype, its

potential for industrial applications is substantial.

To mimic the complexity of human arms, robotic arms are

equipped with manipulators consisting of multiple segments

and joints, typically categorized into the arm, wrist, and

gripper [4]-[7]. These components enable robotic arms to

handle delicate tasks with precision. Furthermore, the

integration of computer vision enhances their functionality by

allowing the perception and interpretation of visual data.

Computer vision converts visual inputs (images or videos)

into valuable information, allowing robots to recognize

objects, track movements, and adapt to environmental

changes [8]. In robotics, computer vision is widely applied in

fields like automotive manufacturing, medical technology,

and automated inspection [9]-[12]. By integrating computer

vision algorithms, robotic systems can now process real-time

data to control their movements effectively, which is critical

for applications involving object recognition and

manipulation [13]-[17].

Although significant progress has been made in robotic

arm control, challenges remain, particularly in environments

where objects are randomly positioned and where object

recognition must be automated based on specific markers or

codes. Previous research has explored various control

strategies, such as Robotic Operating System (ROS)

integration, depth sensors, fuzzy logic, and Proportional-

Integral-Derivative (PID) controllers, each demonstrating

advancements in control precision [18]-[24]. However, these

approaches are often limited to structured settings and lack

the flexibility needed for handling objects in unpredictable

orientations or with specific identifying codes. Moreover,

while some studies have focused on pattern or color-based

recognition, there is a gap in research on implementing

numerical code-based object manipulation in robotic arms,

especially when dealing with randomly placed items.

This study addresses this gap by developing a 4-DOF

robotic arm that uses numerical code recognition to identify

and sort objects. The system integrates a webcam as a visual

sensor and employs EasyOCR—a deep learning-based

Journal of Robotics and Control (JRC) ISSN: 2715-5072 316

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

Optical Character Recognition (OCR) tool—to detect and

interpret numerical codes printed on objects. Unlike

conventional color or shape-based recognition methods,

numerical code-based recognition offers a straightforward

and efficient means of classifying objects with high precision.

However, this approach also presents unique challenges, such

as ensuring reliable detection under various lighting

conditions, background contrast, and object orientation. By

overcoming these obstacles, the system demonstrates a high

degree of flexibility and adaptability for industrial

applications.

The robotic arm developed in this study operates by

recognizing numerical codes on objects placed randomly on

a white surface within its workspace. The OCR system

processes images from the webcam to interpret the numerical

code, which then directs the robot to transport the object to a

designated location. This setup allows the robot to adapt to

varying object positions and orientations, a capability not

commonly seen in current robotic systems. The use of

EasyOCR enables accurate code detection even when objects

are partially rotated or placed in less ideal conditions,

addressing a critical gap in automated object manipulation.

Introducing a precision control system for a 4-DOF

robotic arm that leverages numerical code-based recognition,

allowing for accurate object manipulation in unstructured

environments. This feature enables the robot to manage tasks

that require adaptable object handling.

Pioneering the application of EasyOCR in robotic

systems to automate object sorting based on numerical codes.

Unlike previous research that focuses on color-based

detection or simpler control algorithms, this study utilizes

OCR for enhanced adaptability, paving the way for broader

industrial applications.

To address safety and ethical considerations, this robotic

system is designed to perform its tasks in environments

isolated from human operators, minimizing potential risks.

This aspect is crucial, as robots increasingly coexist with

human workers in various industries. Furthermore, this

research provides a foundation for future developments in

robotic automation, particularly in sectors where high-

precision sorting and handling are required. By emphasizing

OCR-based manipulation, the study contributes to an

evolving field of industrial automation, with potential

applications in logistics, automated warehousing, and

beyond.

In conclusion, the system developed in this study

demonstrates significant advancements in using computer

vision and OCR for robotic manipulation. With enhanced

adaptability to dynamic environments and an innovative

approach to handling numerical codes, this 4-DOF robotic

arm prototype has promising implications for improving both

the efficiency and accuracy of material handling in industrial

settings.

II. LITERATURE REVIEW

 Robot ARM

A robot arm is a mechanical device designed to mimic

tasks typically performed by the human hand. This robot is

known as a manipulator or robot arm, consisting of links and

joints. Each joint on the robot arm can move according to the

commands given, but the movement of the robot arm is not

the same as the movement of a human hand, which has the

ability to perform complex motions[25]-[27]. However, the

robot's joints possess a range of movement known as Degrees

of Freedom (DOF). A robotic manipulator has more freedom

of movement compared to a human arm. For example, the

robot's articulated elbow can move up and down, whereas the

human elbow can only bend in one direction when the arm is

straight.

Fig. 1 shows a robot arm capable of performing

movements that allow the robot to precisely reach specific

positions. The manipulator of the robot usually consists of the

arm and the wrist.

Fig. 1. Robot ARM

 Degree of Freedom

Degrees of Freedom (DOF) refers to the number of

independent movements that a system can perform. In

robotics or mechanics, DOF refers to the number of joints or

axes of motion a mechanism or robot has [28], [29]. DOF is

described as the degree of freedom a system has to move in

three-dimensional space, where each joint or axis of motion

on the robot adds one degree of freedom [30]-[33]. The

number of DOF required in the design of a robot arm or other

mechanical system depends on the application needs and the

complexity of the tasks to be performed. The higher the DOF,

the more complex and flexible the movements that can be

executed to complete specific tasks.

 Kinematics

Kinematics is the study of the motion of bodies without

considering the forces, torques, or moments that cause the

motion. The kinematics discussed here focuses explicitly on

studying and analyzing the movement of robot arms [6], [34],

[35]. Robot kinematics consists of two types (Fig. 2).

Forward kinematics calculates the orientation and position of

the end-effector based on the joint angles. Inverse kinematics,

on the other hand, is the reverse of forward kinematics; it

provides the end-effector's position and the required angles

that must be adjusted for each joint to reach that position.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 317

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

Fig. 2. Diagram block kinematics

 Forward Kinematics

Forward kinematics is the kinematic analysis used to

obtain the position coordinates (x, y, z) when the angles of

each joint are known (Fig. 3). For instance, if a robot with

multiple DOF is given, and the angles of each joint are

known, forward kinematic analysis can be used to determine

the robot's position coordinates. Forward kinematics is used

to determine the position and orientation of the end-effector

when the joint angle variables are known [36]-[42]. The given

joint angle variables are converted into the position and

orientation of the end-effector, which are referenced to a

coordinate system. The purpose of the forward kinematics

method is to obtain the x, y, and z coordinate values.

Fig. 3. Forward kinematics

 Invers Kinematic

Inverse kinematics, also known as reverse kinematics, is

used to find the joint angle variables of a robot in order to

determine the position and orientation of the end-effector

(Fig. 4) [36], [37], [41]. To achieve this, the robot's kinematic

equations are used to determine the joint parameters that will

provide the desired position of the end-effector.

Kinematic equations are used to simulate the movement

of a robot. The robot's configuration is determined based on

parameters for each actuator according to these equations.

The parameters are calculated using forward kinematics, and

this calculation is reversed to determine the joint parameters

needed to achieve the desired configuration. The inverse

kinematics method generally finds the parameter values

required for each actuator to reach the end goal. To determine

these parameter values, the robot must know the size,

number, and degrees of freedom of the actuators.

Furthermore, the formulas collected from various calculation

models must be embedded in the robot. This must be done

using direct graphical analysis and different research

methods.

The analysis of kinematic equations can be solved in the

most basic way, which is by using trigonometry with the help

of graphs. Each component in the coordinates (𝑥, 𝑦, 𝑧) is

expressed as a transformation of each component in its own

space (𝑟, 𝜃). The radius 𝑟 in the equation is often referred to

as the length of the arm or the first link.

Fig. 4. Invers kinematics

Inverse kinematic equations can be determined by

applying trigonometry, observing each joint that moves in a

single direction. Below are the x, y, and z coordinates as

shown in Fig. 5.

Fig. 5. Coordinate x, y, and z

To find the solution for the inverse kinematics method,

the coordinates need to be simplified by converting the 3D

form into 2D. The first step in solving inverse kinematics

involves viewing the robot arm from above, or along the y-

axis, thus displaying the (x, y) plane. The target coordinates

of the end-effector along the x-axis are denoted as 𝑥, and the

coordinates along the y-axis are denoted as 𝑦. The required

angle for the motor to rotate, as well as the arm's extension

length for the end-effector to reach the target position, is

symbolized by (𝜃1) for the rotation angle (Fig. 6).

In determining the coordinates of the end-effector,

inverse kinematics must be adjusted to the workspace limits

of the robot's reach. Inverse kinematics involves calculations

opposite to forward kinematics. Forward kinematics is used

to obtain the position coordinates (x, y, z) when the angles of

each joint are known, whereas inverse kinematics is the

process of finding the joint angle variables to determine the

position and orientation of the end-effector.

The solution for inverse kinematics can be resolved using

inverse kinematics, which involves the Pythagorean theorem

and the law of cosines. This inverse kinematics solution must

be approached from two perspectives: the top view and the

side view of the robot arm structure. The first step in solving

inverse kinematics is viewing the robot arm from above, or

along the y-axis, displaying the (x, y) plane. The target

coordinates of the end-effector on the x-axis are referred to as

x, and on the y-axis as y. The angle that the motor must rotate

and the arm extension length needed for the end-effector to

reach the target position are symbolized by (𝜃1) for the

rotation angle.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 318

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

Fig. 6. Top view

To calculate the angle (𝜃) that the servo motor must rotate

to reach the target position coordinates of the end-effector,

the following formula is used:

𝜃1 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) (1)

Explanation, θ1 is the Angle, 𝑦 is the coordinate on the y-

axis, 𝑥 is the coordinate on the x-axis.

The next step in solving inverse kinematics is calculating

the rotation angles of the remaining three joints (𝜃2, 𝜃3, and

𝜃4) by viewing the robot's structure from the side, as shown

in Fig. 7 below.

Fig. 7. Side view

The robot arm's structure from the side view, which

displays the y-axis and the horizontal axis, represents the

surface plane or the (x, z) plane. The vertical target coordinate

of the end-effector, i.e., the coordinate on the y-axis, is called

y, and the target coordinate on the horizontal axis (coordinate

plane (x, z)) is the length of the extension (D). Therefore, the

inverse kinematics calculations using geometry to determine

the rotation angles of the joints 𝜃2, 𝜃3, and 𝜃4 that the motor

must rotate can be solved using the following formulas:

𝑑 = 𝐷 − 𝐿4 (2)

Explanation, 𝑑 is t x θ2 θ4, 𝐷 is the

extension length, 𝐿4 is the arm length 4.

Fig. 7 shown earlier forms a right-angled triangle with

sides (d, 𝑌𝑂𝑓𝑓𝑠𝑒𝑡, and R), where 𝑌 is the difference in

distance between the y-axis coordinate of the end-effector

(Y𝑂𝑓𝑓𝑠𝑒𝑡) and the position of the second motion axis (𝐿1).

𝑌𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑌4 − 𝐿1 (3)

𝑌𝑜𝑓𝑓𝑠𝑒𝑡 is the difference in distance (y-axis coordinate)

with the end-effector point.

𝑌4 is the distance between the first motion axis and the

position of the fourth motion axis is 18.

𝐿1 is the arm length 1. Using the Pythagorean theorem and

the cosine rule, 𝑅 and 𝛼 can be calculated using the following

equations:

𝑅 = √(2)2 + (𝑌𝑜𝑓𝑓𝑠𝑒𝑡)22
 (4)

𝑑

𝑅
= 𝑐𝑜𝑠 (𝑎1) (5)

By using the inverse function to find 𝛼1, the equation

becomes as follows:

𝑎1 = 𝑐𝑜𝑠−1 (
𝑑

𝑅
) (6)

Fig. 7 shown earlier forms a triangle with sides (𝐿2, 𝐿3,

and R). Using the cosine rule, 𝛼2 can be calculated with the

following equation:

(𝐿3)2 = (𝐿2)2 + (𝑅)2 − 2𝑥𝐿2𝑥𝑅𝑥𝑐𝑜𝑠(𝑎2) (7)

By using the inverse function to calculate 𝛼2, the equation

becomes as follows:

𝑎2 = 𝑐𝑜𝑠−1(
𝐿2

2 + 𝑅2 + 𝐿3
2

2𝑥𝐿2𝑥𝑅
) (8)

Then, to solve for 𝜃2, it is the sum of 𝛼1 and 𝛼2, as

follows.

𝜃2 = 𝑎1 − 𝑎2 (9)

To calculate 𝜃3, the cosine rule can also be used based on

the triangular plane formed in Fig. 7, with sides (𝐿2, 𝐿3, and

𝑅). The equation is as follows:

𝑅2 = (𝐿2)2 + (𝐿3)2 − 2𝑥𝐿2𝑥𝐿3𝑥𝑐𝑜𝑠(𝜃3) (10)

By using the inverse function to calculate 𝜃3, the equation

becomes as follows:

𝜃3 = 𝑐𝑜𝑠−1(
𝐿2

2 + 𝑅2 + 𝐿3
2

2𝑥𝐿2𝑥𝐿3

) (11)

The last joint, 𝜃4, can be calculated based on the angle

that must be formed by the servo motor rotation between 𝐿3

and 𝐿4. It is important to ensure that the gripper's orientation

is parallel to the surface (coordinate plane (𝑥, 𝑧)) for optimal

object gripping. Using the rule that the sum of the angles in a

triangle does not exceed 180°, the equation to calculate 𝜃4 is

as follows:

𝜃4 = 100° − {[100° − (𝑎2 + 𝜃3)] − 𝑎1} (12)

In some cases, if the height of the end-effector (Y4

position) is lower than the position of joint 2, the calculations

for 𝜃2 and 𝜃4 require different equations or calculation

methods. For the Y4 position lower than the position of joint

2, the robot's configuration is shown in Fig. 8 below.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 319

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

Fig. 8. Side view when the end-effector's y-axis position is below joint 2

Fig. 8 shows the movement scenario when the 𝑦-axis

position of the end-effector is below the position of joint 2,

creating a distance difference on the 𝑦-axis between the end-

effector and joint 2. This distance difference is symbolized as

𝑌𝑂𝑓𝑓𝑠𝑒𝑡. Therefore, the calculation for 𝜃2 is as follows:

𝜃2 = 𝑎2 − 𝑎1 (13)

To calculate 𝛼1, the same principles of the Pythagorean

theorem and the cosine rule for right-angled triangles are

used, as in equation (6) previously. The calculation of 𝛼2

employs the same cosine principle as in equation (8)

previously. Then, the calculation for 𝜃4 is as follows:

𝜃4 = 100° − {[100° − (𝑎2 + 𝜃3)] − 𝑎1} (14)

It is important to note that the zero reference point of the

environmental coordinate system is set based on the position

of joint 1 of the robot. Since the rotational axis of joint 1 is

along the y-axis, joint 1 serves as the reference point for both

the x-axis and z-axis in the environment. The zero point of

the y-axis is the working surface, measured up to the center

of the rotational axis of joint 2, where the rotational axis of

joint 2 is perpendicular to joint 1.

 Motion Path Control System

Forward and Inverse Kinematics are solutions to the

kinematic control of a robotic manipulator, which only focus

on the geometry of the robot [36], [37], [41], [43], [44]. These

solutions do not take into account other constraints imposed

by the workspace in which the robot operates. Specifically,

forward and inverse kinematics do not consider the

possibility of collisions between the robotic manipulator and

objects within the workspace. Therefore, a robot motion path

planning system is required so that the robot can move along

path points, including the starting point, intermediate points,

and the target point. There are various methods for

performing path planning, all of which aim to provide a series

of points, called via points, along the path. The simplest

method of path planning is to provide a sequence of end-

effector positions. In this method, inverse kinematics is

required to convert the end-effector positions into joint

configurations. For the robot to move precisely to each path

point resulting from the path planning, motion planning is

required. This motion planning is done by creating a position

function based on time, commonly known as a trajectory.

Since the trajectory is a function of time, the velocity and

acceleration of the robot along the path can also be calculated.

Trajectory planning can be carried out either in joint space or

Cartesian space.

 Image Processing Procedure

An image can be defined as a function 𝑓(𝑥, 𝑦) of size M

rows and N columns, where 𝑥 and 𝑦 are spatial coordinates,

and the amplitude of f at the coordinate point (𝑥, 𝑦) is called

the intensity or grayscale level of the image at that point. A

digital image consists of a number of elements, each element

having a specific location and value [45], [46], [47]. These

elements are referred to as picture elements, image elements,

pels, or pixels. Sources of noise in digital images can occur

during image acquisition or transmission. The performance

of image sensors or cameras is influenced by many factors,

such as environmental conditions during image capture with

a webcam, lighting levels, and sensor temperature, which are

the main factors affecting the level of noise in the resulting

image. If the values of 𝑥, 𝑦, and the amplitude 𝑓 are finite and

discrete, the image can be considered a digital image (Fig. 9).

Fig. 9. Example of digital image coordinates

 Grayscale Image

A grayscale image is a type of digital image where each

pixel is represented by a single intensity value (Fig. 10).

Grayscale images do not contain color information, only

representing the brightness or intensity level of each pixel.

One of the initial processes commonly performed in image

processing is converting a color image to a grayscale image,

as this simplifies the image model. For a digital image to be

processed by a computer, it must have a specific format. The

digital image format used is grayscale, called grayscale

because it typically uses black as the minimum color (0) and

white as the maximum color (255), with the colors in between

being shades of gray.

Fig. 10. Grayscale Image

 Otsu Thresholding

Otsu thresholding is a method used in image processing

for automatic segmentation based on histogram analysis. The

approach applied by the Otsu method involves discriminant

analysis by determining a variable that can distinguish

between two or more naturally formed groups [48], [49], [50],

[51], [52], [53], [54], [55]. The discriminant analysis

maximizes the separation of the object (foreground) and the

Origin coordinates

A pixel

Journal of Robotics and Control (JRC) ISSN: 2715-5072 320

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

background. To obtain the threshold value, a calculation must

be performed. The first step is to create a histogram to

determine the number of pixels at each grayscale level. The

grayscale levels of the image are denoted by 𝑖 to 𝐿. The

probability of each pixel at the 𝑖-th level is expressed in

Equation (15).

𝑃𝑖 =
𝑛𝑖

𝑁
 (15)

Explanation, 𝑃𝑖 is the probability of the 𝑖-th pixel, 𝑛𝑖 is the

number of pixels with grayscale level 𝑖 is 24, 𝑁 is the total

number of pixels in the image.

The next step is to find the values of the cumulative,

cumulative mean, and global intensity. These values can be

determined using the formulas for calculating the cumulative

sum of 𝜔(𝑘) for 𝐿 = 0, 1, 2, …, 𝐿-1 in equation (16), the

formula for calculating the cumulative mean of 𝜇(𝑘) for 𝐿 =

0, 1, 2, …, 𝐿-1 in equation (17), and the formula for

calculating the global intensity mean of 𝜇𝑇(𝑘) for 𝐿 = 0, 1, 2,

…, 𝐿-1 in equation (18).

𝜔(𝑘) = ∑ 𝑝𝑖
𝑘
𝑖=0 (16)

𝜇(𝑘) = ∑ 𝑖. 𝑝𝑖
𝑘
𝑖=0 (17)

𝜇𝑇(𝑘) = ∑ 𝑖. 𝑝𝑖
𝐿−1
𝑖=0 (18)

In the equation above, the value of 𝑘 represents the

grayscale level at which each pixel range will be calculated.

To determine the between-class variance, the next step can be

seen in equation (19).

𝜎𝐵
2(𝑘) =

[𝜇𝑇𝜔(𝑘)−𝜇(𝑘)]2

𝜔(𝑘)[1−𝜔(𝑘)]
 (19)

From the results of the between-class variance

calculation, the maximum value is determined. The largest

value is used as the threshold (𝑘), as shown in equation (20).

𝜎𝐵
2(𝑘) = 𝑚𝑎𝑥1≤𝑥≤𝐿𝜎𝐵

2(𝑘) (20)

Explanation, 𝜔(𝑘) is the cumulative total, 𝜇(𝑘) is the

cumulative mean, 𝜇𝑇(𝑘) global intensity mean, 𝜎𝐵
2(𝑘) is the

threshold value.

The purpose of the between-class variance is to find the

threshold value from a grayscale image, where the threshold

value will be used as a reference to convert the grayscale

image to a binary image. Each image does not have the same

threshold value.

 Binary Image

Binarization converts the grayscale image colors into

black and white, or binary (Fig. 11). If pixels exist, the colors

will change from values of 0 and 255 in the image to pixel

values of 0 and 1 for each pixel [56], [57], [58], [59], [60]. As

a result, the image becomes black and white. The formula

used to convert a grayscale image to a black-and-white or

binary image is represented by equation (21).

𝑔(𝑥, 𝑦) = {
1, 𝑗𝑖𝑘𝑎 𝑓(𝑥, 𝑦) ≥ 𝑇
0, 𝑗𝑖𝑘𝑎 𝑓(𝑥, 𝑦) < 𝑇

 (21)

Explanation, 𝑓(𝑥, 𝑦) is the grayscale image, 𝑔(𝑥, 𝑦) is the

binary image, 𝑇 is the threshold value.

Fig. 11. Binary image and binary image representation

 Morphological Operations

Morphological operations are commonly applied to

binary (black-and-white) images to alter the structural shape

of objects contained within the image [61], [62], [63], [64],

[65], [66]. Morphology is an image processing technique

based on the shape of image segments. The goal of

morphological operations is to improve the results of

segmentation. Examples of morphological

operations/applications include:

a. Closing holes in the image.

b. Separating objects.

c. Forming a spatial filter.

d. Obtaining the skeleton of the object

e. Determining the position of the object in the image

f. Obtaining the structural shape of the object

 Erosion

Erosion is a morphological operation that reduces the

pixels at the boundaries between objects in a digital image

[67]. When erosion is performed, pixels at the boundaries of

the object being eroded are removed. The number of pixels

added or removed depends on the size and shape of the

structuring element used to process the image.

Fig. 12 Below is the result of the image after the erosion

process, applied to the original image with the structuring

element specified above. The green pixels represent those

removed after the erosion process, leaving only the black

pixels as the result.

Fig. 12. Morphological erosion operation

 Labeling Object

Labeling serves to group specific areas (pixels) and is

commonly used in character recognition applications and

object number detection. Binary images are frequently used

in image processing for further analysis. In a binary image,

multiple objects are displayed through the values that appear.

The objects that appear can be counted using labeling. There

are neighborhood rules that determine whether a pixel

belongs to a specific neighboring region (Fig. 13).

Journal of Robotics and Control (JRC) ISSN: 2715-5072 321

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

Fig. 13. Types of neighborhoods

 Image Segmentation

In image processing, sometimes we want to process only

specific objects. Therefore, image segmentation is necessary

to separate the foreground object from the background.

Typically, the output of image segmentation is a binary

image, where the desired object (foreground) is white (1),

while the background to be removed is black (0) [68], [69],

[70], [71], [72], [73], [74].

 Centroid

The centroid is the center point or the midpoint of an

object's area with coordinates (x, y). The centroid value for

each object will vary. The centroid is used to determine the

position of an object in an image. In a binary image or black-

and-white image, the centroid is also known as the center of

gravity, meaning the center of mass based on pixel intensity

in the image (Fig. 14) [75], [76], [77], [78].

Fig. 14. Process of finding the centroid value

Based on the example in Fig. 14, the centroid value can

be calculated using equations 22 and 23. Below is an example

of how to calculate the centroid value.

 . C x

𝑥𝑡 =
1

9
(2 × 1) + (2 × 1) + (2 × 1) + (3 × 1)

+ (3 × 1) + (3 × 1) + (4 × 1)
+ (4 × 1) + (4 × 1)

(22)

𝑥𝑡 =
1

9
(27)

𝑥𝑡 = 3

b. C y

𝑦𝑡 =
1

9
(2 × 1) + (2 × 1) + (2 × 1) + (3 × 1)

+ (3 × 1) + (3 × 1) + (4 × 1)
+ (4 × 1) + (4 × 1)

(23)

𝑦𝑡 =
1

9
(27)

𝑦𝑡 = 3

Based on the calculation results, the centroid value (x, y)

is (x = 3, y = 3).

 Optical Character Recognition (OCR)

OCR stands for Optical Character Recognition. OCR is a

technology used to recognize and extract text or characters

from a scanned or photographed image or document,

allowing the text to be processed and manipulated in

computer software [79], [80], [81], [82], [83]. This OCR

technology enables more effective and efficient document

digitization and processing, as it allows physical documents

to be converted into digital formats that can be processed

more easily and quickly. OCR is commonly used in

applications such as signature recognition, business card

scanners, and OCR applications that can detect text in an

image or video for automatic processing.

 EasyOCR

OCR, previously known as Optical Character

Recognition, is revolutionary for today's digital world. OCR

is essentially a complete process where images/documents in

the digital world are processed, and the text is converted into

editable, normal text. The purpose of OCR is to enable

readers to convert various types of documents, such as

scanned paper documents, PDF files, or images taken with a

digital camera, into editable and searchable data.

EasyOCR is essentially a Python package that uses

PyTorch as its backend handler [84], [85]. It detects text from

images, and in ’ , u ,

researcher found it to be the easiest way to detect text from

images. Additionally, with the support of a top-tier deep

learning library (PyTorch) on the backend, it makes the

accuracy more credible.

EasyOCR supports over 42 languages for detection

purposes (Fig. 15) [86], [87]. EasyOCR was created by a

company called Jaided AI.

Fig. 15. EasyOCR framework

III. METHOD

 Block Diagram

The system consists of four main sections: input, display,

control, and output, as depicted in the block diagram (see Fig.

16).

1) Input Section

A Logitech C270 webcam captures images of objects

within the workspace, which are sent to a computer for

processing. The webcam captures both video and pixel depth

data, essential for accurately mapping object positions.

2) Display Section

The computer interface, managed by the Processing IDE,

visually displays real-time information, including object

coordinates, recognized numerical codes, and calculated

servo angles.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 322

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

3) Control Section

The Arduino Uno microcontroller receives processed data

and sends precise commands to each servo motor based on

the calculated angles.

4) Output Section

The 4-DOF robotic arm utilizes servo motors to actuate

its joints, with the gripper serving as the end-effector to grasp

and move objects. Once object coordinates are identified,

inverse kinematics determines joint angles for the base,

shoulder, and elbow, which are then executed by the Arduino

controller to move the robotic arm to the specified position.

Fig. 16. Block diagram

 Flowchart of Object Retrieval Process

T p b ’ ,

shown in the object retrieval flowchart Fig. 17, demonstrates

how the arm identifies, captures, and moves objects based on

their numerical codes and positions. Initially, the robotic arm

is in a standby position, awaiting input. Once an object enters

the designated workspace, the webcam captures an image of

the workspace, focusing specifically on objects within the

specified area. This captured image undergoes several

preprocessing steps to ensure clarity and facilitate further

processing. First, the image is converted to a binary format,

simplifying the data by reducing it to black and white pixels,

which aids in distinguishing the object from the background.

Following this, noise filtering is applied to enhance image

quality by removing unnecessary visual artifacts that could

interfere with accurate detection.

After preprocessing, the system assigns labels to each

detected object, allowing them to be uniquely identified in the

subsequent segmentation phase. During segmentation, the

 bj ’ p p , p

p u . W bj ’

numerical code and position identified, VsCode transmits this

information to the Arduino microcontroller, initiating the

 b ’ qu . B

data, the microcontroller calculates the necessary angles and

sends instructions to each servo motor, guiding the robotic

 ’ . y, b ’ pp

 bj ’ , u y p up

the object and places it in a predetermined area according to

the identified numerical code, completing the sequence.

 Digital Image Preprocessing Flowchart

The image preprocessing steps, as outlined in the

flowchart Fig. 18, are designed to enhance image quality and

ensure optimal accuracy in object recognition. This process

begins with grayscale conversion, where RGB images are

transformed into grayscale, reducing data complexity and

improving processing speed. By converting the image to

grayscale, only the luminance values are retained,

simplifying the information without losing essential visual

details necessary for object detection.

Following grayscale conversion, thresholding using

 u’ pp . T b z qu

automatically determines the optimal threshold to separate

objects from the background, converting the image into clear

black-and-white regions. This contrast-enhancing step is

crucial, as it isolates the object by defining its boundaries

against the background, facilitating more accurate

recognition in the subsequent stages.

Fig. 17. Cube retrieval flowchart

C C

4 b

Journal of Robotics and Control (JRC) ISSN: 2715-5072 323

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

Fig. 18. Pre-processing process

The final step in the preprocessing phase is morphological

erosion, a technique used to refine object boundaries by

removing small noise particles. This operation reduces

unnecessary visual details around the object, sharpening its

edges and enhancing the accuracy of the OCR process. By

eliminating minor artifacts and smoothing edges,

 p u bj ’ u u

well-defined, improving the reliability of numerical code

detection.

Once these preprocessing steps are completed, the

prepared image is ready for the number code detection phase,

as depicted in Fig. 19. Here, the preprocessed image

undergoes character recognition using EasyOCR, allowing

for the precise identification of numerical codes on each

object. This sequence of steps in image preprocessing and

number code detection establishes a solid foundation for

accurate and efficient object handling by the robotic arm.

Fig. 19. Flowchart for number code detection

Fig. 20 depicts the number code detection process, where

the preprocessed image undergoes further analysis to

recognize numerical characters using the EasyOCR method.

T y C ’

capabilities to accurately identify and interpret the numerical

codes on each object, essential for precise object

classification and handling.

Fig. 20. Cube position determination flowchart

In addition to code detection, the system determines each

 bj ’ p by , u

preprocessed image data. The centroid, representing the

center or midpoint of the object's area, is identified with

coordinates (x, y). These coordinates are crucial for

positioning, as they provide the precise location of the object

within the workspace, allowing the robotic arm to accurately

align with and manipulate the target object.

 Hardware Circuitry

The webcam is the device used as the input. The input

from the webcam is the image of the object and the captured

characters. The object is within the specified workspace (20

cm in length, 27.5 cm in width). The resulting image is sent

to the personal computer via a direct connection using a USB

cable.

The GUI (Graphical User Interface) displays the angle

values for each servo, the x and y coordinates of the object,

and the numerical character. The obtained x and y coordinates

are processed using inverse kinematics calculations to

determine the angle values for each joint's servo. Once the

angle values for each joint's servo are calculated, the Python

program sends these values to the Arduino Uno through serial

communication.

The Arduino Uno, acting as a microcontroller, moves

each servo according to the obtained values. Afterward, the

four-DOF robotic arm reaches the object's x and y

coordinates, grips the object with the gripper, and moves it to

the default location or a desired location.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 324

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

In detail, the design of the tool used in this research is as

shown in Fig. 21. With the design of the robot arm as shown

in Fig. 22 and Fig. 23.

Fig. 21. Tool Design

Fig. 22. Link 2 dan 3

Fig. 23. Link 4

IV. RESULT AND DISCUSSION

 Object Placement Area Testing

The object placement area detection testing evaluates the

accuracy of the robotic ARM in locating and manipulating

objects based on their coordinates within the workspace (Fig.

24). This test involves placing an object within a defined

workspace area while a camera captures real-time video to

identify the object's position. Once coordinates are

determined, the robotic ARM responds by moving to the

designated location, following specific programmed

conditions that adjust its movement.

The object placement area measures 450×300 pixels, with

each centimeter corresponding to 23 pixels. Notably, the

webcam is positioned upside down, causing the centroid

values of each position to be inverted. This setup requires

software adjustments to ensure accurate location tracking and

movement coordination.

To simplify the process of determining (X, Y) axis

coordinates, the object placement area is divided into six

columns, each with its own unique adjustments programmed

in Arduino. These columns facilitate dynamic adjustments to

the AR ’ p b X Y u ,

represent coordinates relative to a reference point within the

workspace.

Fig. 24. Object Placement Area

In this system, the sX and sY values influence servo

motor positioning by adjusting angle changes (dX) and height

levels (dY1, dY2, and dY3) based on the detected object

location. This configuration allows the robotic ARM to

calibrate its mechanical response precisely in alignment with

the object's visual position. The area division and

corresponding adjustments ensure the ARM maintains

accuracy and flexibility in real-time object handling. The area

division is as follows:

 . Y 0-149:

C : (Y >= 0 && Y < 150)

 :

 X 45.

 Y1 C u u u : 105 - (((u Y * 10) /

1.52) / 30)

 Y2 C u u u : 180 - (((u Y * 10) /

1.52) / 40)

 Y3 C u u u : 50 + (((u Y * 10) /

1.52) / 50)

b. Y 150-330 X <= 300:

C : (Y > 150 && Y <= 330 && X <=

300)

 :

 X 50.

 Y1 C u u u : 85 - (((u Y * 10) /

1.52) / 30)

 Y2 C u u u : 165 - (((u Y * 10) /

1.52) / 40)

 Y3 C u u u : 65 + (((u Y * 10) /

1.52) / 50)

 . Y 150-330 X > 300:

C : (Y > 150 && Y <= 330 && X > 300)

 :

 X 40.

 Y1 C u u u : 85 - (((u Y * 10) /

1.52) / 30)

 Y2 C u u u : 165 - (((u Y * 10) /

1.52) / 40)

 Y3 C u u u : 65 + (((u Y * 10) /

1.52) / 50)

Journal of Robotics and Control (JRC) ISSN: 2715-5072 325

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

 . Y 331-450 X <= 300:

C : (Y > 330 && Y <= 450 && X <=

300) :

 X 53

 Y1 C u u u : 55 - (((u Y * 10) /

1.52) / 30)

 Y2 C u u u : 130 - (((u Y * 10) /

1.52) / 40)

 Y3 C u u u : 60 + (((u Y * 10) /

1.52) / 50)

 . Y 331-450 X > 300:

C : (Y > 330 && Y <= 450 && X > 300)

 :

 X 43.

 Y1 C u u u : 55 - (((u Y * 10) /

1.52) / 30)

 Y2 C u u u : 130 - (((u Y * 10) /

1.52) / 40)

 Y3 C u u u : 60 + (((u Y * 10) /

1.52) / 50)

The calculation results for points a to e can be seen from the

test results based on Fig. 25, Fig. 26, Fig. 27 and Fig. 28.

Fig. 25. Coordinate Point Testing for Number Code 1

Fig. 26. Coordinate Point Testing for Number Code 2

Fig. 27. Coordinate Point Testing for Number Code 3

Fig. 28. Coordinate Point Testing for Number Code 4

 EasyOCR Data Training

In this study, the OCR component relies on EasyOCR,

which primarily uses pre-trained models. However, for

specific use cases like recognizing distinct digits, it is

recommended to use a custom digit recognition model with

ResNet18 architecture. This section details the steps for fine-

tuning the OCR model for accurate number code detection.

a) Preprocessing

Preprocessing is a foundational step that enhances the

image quality to improve text detection and recognition

accuracy. Images are initially converted to grayscale to

reduce data complexity and focus on luminance, which is

crucial for accurate OCR.

b) Mid-process with ResNet

ResNet (Residual Network) is incorporated as a feature

extractor in this OCR pipeline. Known for its ability to

maintain performance in deep networks, ResNet processes

preprocessed images, extracting features that are crucial for

accurate digit recognition.

c) Training loop

The training loop involves multiple epochs, where the

dataset is processed p y p z ’

Journal of Robotics and Control (JRC) ISSN: 2715-5072 326

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

performance. Each epoch involves adjusting the model

weights to improve accuracy in recognizing specific digits.

d) Model Storage

After training, the model is saved for reuse, ensuring

consistent performance without requiring retraining. This

saved model is subsequently used in the EasyOCR-based

detection system.

 Testing EasyOCR Method for Number Code Detection

Testing the EasyOCR-based OCR system focuses on its

ability to accurately detect and recognize numerical codes

(specifically digits "1" through "4"). This section elaborates

on the operational architecture and steps involved in using

EasyOCR, along with the results obtained from number code

detection.

a) Installing EasyOCR

EasyOCR and dependencies (like PyTorch) are installed

in the development environment (e.g., VSCode) using pip.

Once installed, the OCR system is configured to process

images for number code detection.

b) Pre-processing

Pre -processing steps include:

1. HSV Conversion: p y yz

 p .

2. Noise Reduction: u u

 y C .

3. Converting the Image to Grayscale: C

 y p , u p

 y, u x .

The resulting preprocessed images are displayed in Fig.

29 to illustrate the effectiveness of each preprocessing step

and the quality of images provided to the OCR model for

further processing.

Fig. 29. Pre-processing results

c) Text Detection

Text regions within the image are detected using a deep

learning-based text detection model, such as CRAFT

(Character Region Awareness for Text). This model

generates bounding boxes that delineate the detected text

areas, as shown in Fig. 30, enabling the OCR system to isolate

areas of interest effectively.

Fig. 30. Text detection

d) Feature Extraction

Feature extraction is conducted using Convolutional

Neural Networks (CNNs), allowing the OCR model to

recognize characters within the detected regions accurately.

EasyOCR leverages these features to recognize text

efficiently within VSCode, facilitating seamless character

recognition without manual CNN implementation.

e) Displaying the Reading Results

The final OCR results, shown in Fig. 31, include

bounding boxes around the detected text regions, with

recognized text overlaid on the image. This visual

representation confirms the accuracy of text detection and

provides clear insight into the performance of EasyOCR in

real-time number code recognition.

Fig. 31. Reading results

The number code reading test involved presenting digits

"1" through "4" in front of the camera to verify the accuracy

and reliability of EasyOCR in detecting these codes. The test

outcomes, shown in Table I, confirm successful detection for

each presented digit.

TABLE I. NUMBER DETECTION TESTING

N Nu b C S u

1 1

2 2

3 3

4 4

Journal of Robotics and Control (JRC) ISSN: 2715-5072 327

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

 Testing the Inverse Kinematics Method for Object

Position

The implementation of the inverse kinematics method on

the robot is a key step where theoretical calculations are

translated into executable code, enabling precise robotic

movement based on input coordinates. This process involves

applying several calculations and adjustments to ensure that

the robot responds correctly to various (x) and (y) coordinate

inputs. Specific conditioning steps are included to calibrate

the coordinates, allowing the robot to move right and left

smoothly and accurately based on application commands.

This approach ensures that the robot accurately reaches the

desired positions in the workspace, improving overall

performance in object manipulation tasks.

 Overall System Testing

Testing of the ARM robot's movement is conducted once

the number codes and object coordinates have been obtained.

The purpose of this testing is to verify whether the ARM

robot's movement aligns with the provided input.

a) Testing Robot Movement with Number Code '1'

T b u u b “1”

with the object positioned on the workspace sheet (Fig. 32,

Fig. 33, and Table II). T bj ’ p p

randomly, as long as it remains within the defined workspace.

Fig. 32. First trial with number code '1'

In the first test, the ARM robot was able to detect and

move the object to the specified location. During this initial

test, the ARM robot performed as expected. The ARM robot

moved the object from the coordinates (154, 170) pixels,

which was converted to centimeters resulting in (6.6, 7.3) cm.

To determine the servo motor movement values, the

researcher used the inverse kinematics method that has been

implemented in the programming language with the

following formula:

Sumbu x = sX

Sumbu y = sY/23

y = 170/23

y = 7.3

dX = Sumbu x/6.6

dX = 154/6.6

dX = 23.3

L1 = dX + 50

L1 = 23.3 + 50

L1 = 73.3

L2 = 85 - ((sumY*10)/1.52)/30)

L2 = 85 – ((23.3 x 10 / 1.52) / 30)

L2 = 80.1

L3 =165 - (((sumY*10)/1.52)/40)

L3 = 165 – ((23.3 x 10 / 1.52) / 40)

L3 = 163.8 L4 = 65 + (((sumY*10)/1.52)/50)

L4 = 65 + ((23.3 x 10 / 1.52) / 50)

L4 = 66

Fig. 33. Second trial with number code '1'

In the second test, the ARM robot was able to detect and

move the object to the specified location. In this test, the

ARM robot performed as expected. The ARM robot moved

the object from the coordinates (347, 137) pixels, which was

converted to cm resulting in (15.1, 5.9) cm. To determine the

servo motor movement values, the researcher used the

inverse kinematics method that has been implemented in the

programming language with the following formula:

Axis x = sX

Axis y = sY/23

y = 137/23

y = 5.9

dX = Axisx/6.6

dX = 347/6.6

dX = 52.5

L1 = dX + 53

L1 = 52.5 + 50

L1 = 102.5

L2 = 55 - ((sumY*10)/1.52)/30)

L2 = 55 – ((23.3 x 10 / 1.52) / 30)

L2 = 83.4

L3 =130 - (((sumY*10)/1.52)/40)

L3 = 130 – ((23.3 x 10 / 1.52) / 40)

L3 = 179

L4 = 60 + (((sumY*10)/1.52)/50)

L4 = 60 + ((23.3 x 10 / 1.52) / 50)

L4 = 50.8

Journal of Robotics and Control (JRC) ISSN: 2715-5072 328

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

TABLE II. DATA COLLECTION TABLE FOR NUMBER CODE 1

T N .
C

Nu b
S u

C (x)

 u pu
(C)

S T

 u
X Y X Y 1 2 3 4

1 1 154 170 6.6 7.3 73.3 83.4 163.8 66.0 Su u

2 1 347 137 15.1 5.9 97.6 103.7 179.0 50.8 Su u

3 1 468 146 20.3 6.3 115.9 103.6 179.0 50.8 Su u

4 1 144 346 6.2 15.1 74.8 67.5 125.0 50.0 Su u

5 1 575 417 25 18.1 130.1 51.0 127.0 62.4

6 1 210 279 9.1 12.1 81.8 82.3 163.0 66.6 Su u

7 1 476 107 20.6 4.6 117.1 104.0 179.2 50.6 Su u

8 1 84 398 3.6 17.3 65.7 51.0 127.0 62.4 Su u

9 1 304 335 13.2 14.5 89.1 51.8 127.6 61.9 Su u

10 1 490 135 21.3 5.8 119.2 103.7 179.0 50.8 Su u

11 1 333 191 14.5 8.3 90.5 83.2 163.6 66.1 Su u

12 1 77 240 3.9 10.4 61.7 82.7 163.3 66.4 Su u

13 1 320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su u

14 1 320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su u

15 1 157 282 6.8 12.3 73.8 82.3 163.0 66.6 Su u

16 1 210 279 9.1 12.1 81.8 82.3 163.0 66.6 Su u

17 1 451 282 19.6 12.2 108.3 82.3 163.0 66.6 Su u

Su 94.11%

b) Testing Robot Movement with Number Code '2'

The first test of robot movement using number code '2'

involved placing the object within the workspace area (Fig.

34, Fig. 35, Table III). The object's position was placed

randomly as long as it remained within the defined

workspace.

Fig. 34. First trial with number code '2'

In the first test, the ARM robot was able to detect and

move the object to the specified location. In this test, the

ARM robot performed as expected. The ARM robot moved

the object from the coordinates (210, 279) pixels, which was

converted to centimeters resulting in (9.1, 12.1) cm. To

determine the servo motor movement values, the researcher

used the inverse kinematics method that has been

implemented in the programming language with the

following formula:

Axis x = sX

Axis y = sY/23

y = 279/23

y = 12.1

dX = Axis x/6.6

dX = 210/6.6

dX = 31.8

L1 = dX + 50

L1 = 31.8 + 50

L1 = 81.8

L2 = 85 - ((sumY*10)/1.52)/30)

L2 = 85 – ((12.1 x 10 / 1.52) / 30)

L2 = 82,3

L3 =165 - (((sumY*10)/1.52)/40)

L3 = 165 – ((12.1 x 10 / 1.52) / 40)

L3 = 163

L4 = 65 + (((sumY*10)/1.52)/50)

L4 = 65 + ((12.1 x 10 / 1.52) / 50)

L4 = 66.5

Fig. 35. Second trial with number code '2'

In the second test, the ARM robot was able to detect and

move the object to the specified location. In this test, the

ARM robot performed as expected. The ARM robot moved

the object from the coordinates (490, 135) pixels, which was

converted to centimeters resulting in (21.3, 5.8) cm. To

determine the servo motor movement values, the researcher

used the inverse kinematics method that has been

Journal of Robotics and Control (JRC) ISSN: 2715-5072 329

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

implemented in the programming language with the

following formula:

Axis x = sX

Axis y = sY / 23

y = 135 / 23

y = 5.8

dX = Axis x / 6.6

dX = 490 / 6.6

dX = 74.2

L1 = dX + 45

L1 = 74.2 + 45

L1 = 119.2

L2 = 105 - ((sumY*10)/1.52)/30)

L2 = 105 – ((5.8 x 10 / 1.52) / 30)

L2 = 179 L3 =180 - (((sumY*10)/1.52)/30)

L3 = 180 – ((5.8 x 10 / 1.52) / 30)

L3 = 179

L4 = 50 + (((sumY*10)/1.52)/50)

L4 = 50 + ((5l8 x 10 / 1.52) / 50)

L4 = 50

c) R b t M v m t T t w th C d “3”

T b u “3”

object positioned within the workspace sheet (Fig. 36, Fig.

37, and Table IV). The object's position is placed randomly,

as long as it remains within the defined workspace.

Fig. 36. “3”

In the first trial, the ARM robot was able to detect and

move the object to the specified location. In this test, the

ARM robot is said to have performed as expected. The robot

moved the object with coordinates (490, 135) pixels, which

was converted to (21.3, 5.8) cm. To determine the servo

motor movement values, the researcher used the inverse

kinematics method, which was input into the programming

language with the following formulas:

Axis x = sX

Axis y = sY/23

y = 135/23

y = 5.8

dX = Axis x/6.6

dX = 490/6.6

dX = 3.2

L1 = dX + 50 65

L1 = 3.2 + 45

L1 = 92.7

L2 = 105 - ((sumY*10)/1.52)/30)

L2 = 105 – ((23,3 x 10 / 1.52) / 40)

L2 = 103.6

L3 =180 - (((sumY*10)/1.52)/40)

L3 = 180 – ((23.3 x 10 / 1.52) / 40)

L3 = 179

L4 = 65 + (((sumY*10)/1.52)/50)

L4 = 65 + ((23.3 x 10 / 1.52) / 50)

L4 = 50.8

Fig. 37. S “3”

In the second trial, the ARM robot was able to detect and

move the object to the designated location as intended. In this

trial, the robot ARM was considered to be functioning as

desired. The robot ARM moved an object with coordinates

(157, 335) pixels, which was converted to (6.8, 14.6) cm. To

determine the servo motor movement values, the researchers

used the inverse kinematics method, which was already

implemented in the programming language with the

following formula:

Axis x = sX

Axis y = sY / 23

y = 335 / 23

y = 14.5

dX = Axis x / 6.6

dX = 157/ 6.6 dX = 23.7

L1 = dX + 50

L1 = 23.7 + 50

L1 = 76.8

L2 = 85 - ((sumY*10)/1.52)/30)

L2 = 85 – ((14,5 x 10 / 1.52) / 30)

L2 = 81.8 L3 =165 - (((sumY*10)/1.52)/40)

L3 = 165 – ((14.5 x 10 / 1.52) / 40)

L3 = 161.8

L4 = 65 + (((sumY*10)/1.52)/50)

L4 = 65 + ((14.5 x 10 / 1.52) / 50)

L4 = 66.9

Journal of Robotics and Control (JRC) ISSN: 2715-5072 330

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

TABLE III. DATA COLLECTION FOR CODE NUMBER 2

T N .
C

Nu b
S u

C (x)

 u pu
(C)

S
T u

X Y X Y 1 2 3 4

1 2 210 279 9.1 12.1 81.8 82.3 163.0 66.6 Su u

2 2 490 135 21.3 5.7 119.2 103.7 179.0 50.8 Su u

3 2 210 284 9.1 12.3 81.8 81.3 163.0 66.6 Su u

4 2 77 201 3.3 8.7 61.7 83.1 163.6 66.1 Su u

5 2 470 230 20.4 10 111.2 82.8 163.4 66.3 Su u

6 2 232 165 10 7.1 85.2 83.4 163.8 65.9 Su u

7 2 451 282 19.6 12.2 108.3 82.3 163.0 66.6 Su u

8 2 198 264 8.6 11.4 80.0 82.5 163.1 66.5 Su u

9 2 372 307 16.1 13.3 96.4 82.1 162.8 66.8 Su u

10 2 320 162 13.9 7.0 88.5 82.5 163.8 65.9 Su u

11 2 529 355 23.0 15.4 123.2 51.6 127.5 62.0 Su u

12 2 373 104 16.2 4.5 101.5 104.0 179.3 50.6 Su u

13 2 211 301 9.2 13.1 82.0 82.1 162.8 66.7

14 2 210 279 9.1 12.1 81.8 82.3 163.0 66.6 Su u

15 2 476 107 20.6 4.6 117.1 104.0 179.2 50.6 Su u

16 2 216 218 9.4 9.5 82.7 82.9 163.4 66.2 Su u

17 2 333 191 14.5 8.3 90.5 83.2 163.6 66.1 Su u

18 2 151 137 6.6 6 67.9 103.7 179.0 50.8 Su u

Su 94.11%

TABLE IV. DATA COLLECTION TABLE FOR NUMBER CODE 3

T N C Nu b S u
 C (x)

 u pu

(C)
S

T u

X Y X Y 1 2 3 4

1 3 315 143 13.7 6.2 92.7 103.6 179.0 50.8 Su u

2 3 157 335 6.8 14.6 76.8 81.8 161.8 66.9 Su u

3 3 117 164 5.1 7.1 67.7 83.4 163.8 65.9 Su u

4 3 585 403 25.4 17.5 131.6 51.2 127.1 62.3

5 3 333 191 14.5 8.3 90.5 83.2 163.6 66.1 Su u

6 3 77 240 3.9 10.4 61.7 82.7 163.3 66.4 Su u

7 3 320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su u

8 3 157 282 6.8 12.3 73.8 82.3 163.0 66.6 Su u

9 3 216 218 9.4 9.5 82.7 82.9 163.4 66.2 Su u

10 3 151 137 6.6 6 67.9 103.7 179.0 50.8 Su u

11 3 310 209 13.5 9.1 87.0 83.0 163.5 66.2 Su u

12 3 198 264 8.6 11.4 80.0 82.5 163.1 66.5 Su u

13 3 451 282 19.6 12.2 108.3 82.3 163.0 66.6 Su u

14 3 232 165 10 7.1 85.2 83.4 163.9 65.9 Su u

16 3 529 355 23.0 15.4 123.2 51.6 127.5 62.0 Su u

17 3 373 104 16.2 4.5 101.5 104.0 179.3 50.6 Su u

18 3 320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su u

19 3 372 307 16.1 13.3 96.4 82.1 162.8 66.8 Su u

Su 94.7%

d) Testing Robot Movement with Code Number "4"

The first test involves using code number "4" for the

robot's movement (Fig. 38, Fig. 39, and Table V). The object

is positioned randomly within the defined workspace

dimensions.

In the first trial, the ARM robot was able to detect and

move the object to the designated location. In this test, the

ARM robot performed as expected. The robot moved the

object from the coordinates (480, 283) pixels, which were

converted to (20.9, 12.3) cm. To calculate the servo motor

movement values, the researcher used the inverse kinematics

method, which was implemented in the programming

language with the following formulas:

Axis x = sX

Axis y = sY / 23

y = 283 / 23

y = 12.3

dX = Axis x / 6.6

dX = 480/ 6.6

dX = 72.7

L1 = dX + 50

L1 = 72.7 + 50

L1 = 112.7

L2 = 85 - ((sumY*10)/1.52)/30)

L2 = 85 – ((12,3 x 10 / 1.52) / 30)

L2 = 82.3 L3 =165 - (((sumY*10)/1.52)/40)

L3 = 165 – ((12.3 x 10 / 1.52) / 40)

L3 = 163

L4 = 65 + (((sumY*10)/1.52)/50)

L4 = 65 + ((12,3 x 10 / 1.52) / 50)

L4 = 66.6

Journal of Robotics and Control (JRC) ISSN: 2715-5072 331

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

Fig. 38. Second trial with code number “4”

In the first trial, the ARM robot was able to detect and

move the object to the designated location. In this test, the

ARM robot performed as expected. The robot moved the

object from the coordinates (480, 283) pixels, which were

converted to (20.9, 12.3) cm. To calculate the servo motor

movement values, the researcher used the inverse kinematics

method, which was implemented in the programming

language with the following formulas:

Axis x = sX

Axis y = sY / 23

y = 215 / 23

y = 9.3

dX = Axis x/6.6

dX = 197/ 6.6

dX = 29.8

L1 = dX + 50

L1 = 29.8 + 50

L1 = 79.8

L2 = 85 - ((sumY*10)/1.52)/30)

L2 = 85 – ((9.3 x 10 / 1.52) / 30)

L2 = 83 70

L3 =165 - (((sumY*10)/1.52)/40)

L3 = 165 – ((9.3 x 10 / 1.52) / 40)

L3 = 163.5

L4 = 65 + (((sumY*10)/1.52)/50)

L4 = 65 + ((9.3 x 10 / 1.52) / 50)

L4 = 66.2

Fig. 39. Second trial with number code “4”

TABLE V. DATA COLLECTION TABLE FOR NUMBER CODE 4

T N C Nu b S u
 C (x)

 u pu
(C)

S
T u

X Y X Y 1 2 3 4

1 4 480 283 20.9 12.3 112.7 82.3 163.0 66.6 Su u

2 4 197 215 8.6 9.3 79.8 83.0 163.5 65.2 Su u

3 4 138 408 6.0 17.7 73.9 83.4 162.8 65.9 Su u

4 4 210 209 13.5 9.1 87.0 83.0 163.5 66.2 Su u

5 4 529 355 23.0 15.4 123.2 51.6 127.5 62.0 Su u

6 4 373 104 16.2 4.5 101.5 104.0 179.3 50.6 Su u

7 4 211 301 9.2 13.1 82.0 82.1 162.8 66.7

8 4 436 134 19.0 5.8 111.1 103.7 179.0 50.8 Su u

9 4 372 307 16.2 13.3 96.4 82.1 162.8 66.8 Su u

10 4 232 165 10 7.1 85.2 83.4 163.8 65.9 Su u

11 4 157 282 6.8 12.3 73.8 82.3 163.0 66.6 Su u

12 4 77 201 3.3 8.7 61.7 83.1 163.6 66.1 Su u

13 4 320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su u

14 4 347 137 15.1 5.9 97.6 103.7 179.0 50.8 Su u

16 4 468 146 20.3 6.3 115.9 103.6 179.0 50.8 Su u

17 4 117 164 5.1 7.1 67.7 83.4 163.8 65.9 Su u

18 4 451 282 19.6 12.2 108.3 82.3 163.0 66.6 Su u

Su 94.44%

Journal of Robotics and Control (JRC) ISSN: 2715-5072 332

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

V. CONCLUSION

This study successfully developed a 4-DOF robotic arm

system capable of recognizing and manipulating objects

based on numerical codes with high precision, achieved

through the integration of EasyOCR for code recognition and

a control mechanism ensuring accurate robotic arm

positioning. The testing results indicate a success rate

exceeding 94% in detecting and positioning objects with

numerical codes 1 through 4, with an average positioning

error below 1.5 degrees. The system adjusts arm length by

approximately 30 to 50 mm to optimize positioning. These

findings suggest that combining computer vision-based OCR

with inverse kinematics enhances accuracy in robotic tasks

requiring precision.

H , y ’ p by

environmental factors, such as lighting conditions, which

impact code readability. Minor discrepancies in servo angle

positioning necessitate further calibration in kinematic

calculations to maintain precise object positioning. These

observations underscore the need for further refinement in

calibration to enhance the y ’ p b y -world

conditions.

Future research should focus on developing more robust

code recognition algorithms using deep learning models

specifically trained for various lighting conditions.

 xp y ’ u y le a broader

range of object shapes and sizes would also increase its

applicability in industries requiring automated, high-

precision object handling, such as manufacturing and

logistics.

The contribution of this research lies in presenting a

reliable and adaptable robotic system that effectively

integrates OCR-based code recognition with robotic arm

control for precise object manipulation. These findings serve

as a foundation for further research in computer vision-based

robotic automation, demonstrating the potential of this

system to improve operational efficiency across various

industrial sectors.

REFERENCES

[1] . Sup , N. p , N. S u , S. u , “ b

Arm Control System via Ethernet with Kinect V2 Camera for use in

Hazardous Areas,” 2024 1st International Conference on Robotics,
Engineering, Science, and Technology (RESTCON), pp. 175–180,
2024, doi: 10.1109/RESTCON60981.2024.10463582.

[2] . W. S. u , “ b b Hyb

 b pu ,” 2022 22nd International Conference on

Control, Automation and Systems (ICCAS), pp. 325–327, 2022, doi:
10.23919/ICCAS55662.2022.10003830.

[3] J. Lin, Z. Gu, A. M. Amir, X. C , . , . S , “

 u b b x b ,” 2021
International Conference on High Performance Big Data and

Intelligent Systems (HPBD&IS), pp. 252–255, 2021, doi:
10.1109/HPBDIS53214.2021.9658471.

[4] Z. Ben H z , . , S. b , “ C p

of 4- b U b p Sy ,” 2022
International Conference on Theoretical and Applied Computer

Science and Engineering (ICTASCE), pp. 72–77, 2022, doi:
10.1109/ICTACSE50438.2022.10009733.

[5] S. Mori, K. Tanaka, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi,

“H -Speed Humanoid Robot Arm for Badminton Using Pneumatic-

 Hyb u ,” IEEE Robot Autom Lett, vol. 4, no. 4, pp.
3601–3608, 2019, doi: 10.1109/LRA.2019.2928778.

[6] . . T , . , T. . H , “S -scale robot

 p p b ,”
Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 469–475, Nov.
2021, doi: 10.18196/jrc.26124.

[7] W. Wei, K. u , . u , . G , “ -Time 3D Arm Motion

Tracking Using the 6- x U S S ,” 2021 IEEE

17th International Conference on Wearable and Implantable Body
Sensor Networks (BSN), pp. 1–4, 2021, doi:
10.1109/BSN51625.2021.9507012.

[8] P. Rosenberger et al., “ bj -Independent Human-to-Robot
H U T b V ,” IEEE Robot Autom Lett,
vol. 6, no. 1, pp. 17–23, 2021, doi: 10.1109/LRA.2020.3026970.

[9] Y. Yun, S. J. Lee, and S.- . , “ -Based Robot

 C Sy U H u p y,” IEEE Access, vol.
8, pp. 15017–15026, 2020, doi: 10.1109/ACCESS.2020.2964801.

[10] . Su , Y. C , Y. Wu, . , X. , “
C p pu b b W u ,” IEEE

Trans Emerg Top Comput Intell, vol. 6, no. 6, pp. 1345–1356, 2022,

doi: 10.1109/TETCI.2022.3146387.

[11] Z. Wang et al., “V -Based Calibration of Dual RCM-Based Robot
Arms in Human- b C b y Su y,”

IEEE Robot Autom Lett, vol. 3, no. 2, pp. 672–679, 2018, doi:
10.1109/LRA.2017.2737485.

[12] Y.-S. L.-K. Cio, M. Raison, C. Leblond Ménard, and S. Achiche,

“ C p b C U
Artificial Stereovision and Eye-T ,” IEEE Transactions on

Neural Systems and Rehabilitation Engineering, vol. 27, no. 12, pp.
2344–2352, 2019, doi: 10.1109/TNSRE.2019.2950619.

[13] . S u , . C , . y, . S u , “ p CV B :
Mobile Application to Support the Teaching of Computer Vision

C p ,” IEEE Transactions on Education, vol. 63, no. 4, pp. 328–
335, 2020, doi: 10.1109/TE.2020.2993013.

[14] Y. Xu, H. Z , . C , X. S u, . Z , “ S C
Strategy for Reach and Grasp of Multiple Objects Using Robot Vision

and Noninvasive Brain–C pu ,” IEEE Transactions on

Automation Science and Engineering, vol. 19, no. 1, pp. 360–372,

2022, doi: 10.1109/TASE.2020.3034826.

[15] S. , N. H , H. , . upp , C. Z , . Z , “
Dexterous Hand-Arm Teleoperation System Based on Hand Pose
 V ,” IEEE Trans Cybern, vol. 54, no. 3, pp.
1417–1428, 2024, doi: 10.1109/TCYB.2022.3207290.

[16] X. C , X. Hu , Y. W , X. G , “C b
Augmented Reality Based Brain- Computer Interface and Computer

Vision for High- C b ,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 28, no. 12, pp.
3140–3147, 2020, doi: 10.1109/TNSRE.2020.3038209.

[17] Y. Zhou et al., “S T -Dimensional Robotic Arm Control

B y u BC C pu V ,” IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol.
31, pp. 3163–3175, 2023, doi: 10.1109/TNSRE.2023.3299350.

[18] M. F. El- b S. . , “ p 4-

DOF arm robot using fuzzy logic controller and 2-DOF PID
 ,” 2021 International Mobile, Intelligent, and Ubiquitous

Computing Conference (MIUCC), pp. 258–262, 2021, doi:
10.1109/MIUCC52538.2021.9447617.

[19] T. . , T. S. , . N. , . , “ uzzy-PID

Controller for Two Wheels Balancing Robot Based on STM32
Microcontr ,” 2019 International Conference on Engineering

Technologies and Computer Science (EnT), pp. 20–24, 2019, doi:
10.1109/EnT.2019.00009.

[20] B. uzb , G. . B , G. by, . , “ ,
Implementation and Control of an Improved Hybrid Pneumatic-

 u b ,” IEEE Access, vol. 7, pp. 14699–
14713, 2019, doi: 10.1109/ACCESS.2019.2891532.

[21] . Sy , . S. N u , . j Su j , “T p
 b u p S ,” 2019 International Electronics

Symposium (IES), pp. 394–399, 2019, doi:
10.1109/ELECSYM.2019.8901679.

[22] N. T , . Yu, Z. Z , . N , “ N N -Tolerant Dual-

Neural-Network Scheme for Robust Kinematic Control of Robotic

Journal of Robotics and Control (JRC) ISSN: 2715-5072 333

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

 W U ,” IEEE/CAA Journal of Automatica
Sinica, vol. 9, no. 10, pp. 1778–1791, 2022, doi:

10.1109/JAS.2022.105869.

[23] . W. . Y H. C. C , “ C
 b C Sy b ,” International Journal

of Robotics and Control Systems, vol. 2, no. 1, pp. 97–104, 2022, doi:
10.31763/ijrcs.v2i1.557.

[24] Y. Zhang, L. Sun, and Y. Z , “ Hu

 b C Sy B uzzy C ,” 2022
International Conference on Artificial Intelligence and Autonomous

Robot Systems (AIARS), pp. 337–341, 2022, doi:
10.1109/AIARS57204.2022.00082.

[25] T. P. Cabré, M. T. Cairol, D. F. Calafell, M. T. Ribes, and J. P. Roca,

“ j -Based Learning Example: Controlling an Educational Robotic

 W C pu V ,” IEEE Revista Iberoamericana de
Tecnologias del Aprendizaje, vol. 8, no. 3, pp. 135–142, 2013, doi:
10.1109/RITA.2013.2273114.

[26] . . , H. H. , . . T H , “ pu
and Analysis of a 4-DOF Robotic Arm Using a Peer-Peer Messaging

Sy ,” 2019 International Conference on Electrical, Computer

and Communication Engineering (ECCE), pp. 1–4, 2019, doi:
10.1109/ECACE.2019.8679497.

[27] . T , . C u , Y. G , . S , H. p , “ : -
meter reach, two-kg payload, three-DoF open source robotic arm with

 u z b ,” HardwareX, vol. 10, p. e00209, 2021, doi:
https://doi.org/10.1016/j.ohx.2021.e00209.

[28] H. G u , S. V , H. y u , V. u , “
of Imitative Control Modalities for a 3 Degree of Freedom Robotic
 ,” 2020 4th International Conference on Computer,

Communication and Signal Processing (ICCCSP), pp. 1–6, 2020, doi:
10.1109/ICCCSP49186.2020.9315273.

[29] S. , S. S. , . . , . , V. u , “ b
with Three Degree of Freedom (DOF) operated by Bluetooth enabled
S p ,” 2024 International Conference on Intelligent and

Innovative Technologies in Computing, Electrical and Electronics
(IITCEE), pp. 1–6, 2024, doi: 10.1109/IITCEE59897.2024.10467660.

[30] S. Bouzoualegh, E.-H. Gu , Y. Z , “

Control of a Three Degrees of Freedom pu b ,” 2019

International Conference on Advanced Systems and Emergent
Technologies (IC_ASET), pp. 84–89, 2019, doi:
10.1109/ASET.2019.8870999.

[31] . , T. . T b , . S y , “C u
Generation Algorithm Design of a Four Degrees of Freedom Robot

 ,” 2023 3rd International Conference on Smart Cities,
Automation & Intelligent Computing Systems (ICON-SONICS), pp.
165–170, 2023, doi: 10.1109/ICON-SONICS59898.2023.10435330.

[32] Y.-C. Lin and C.-C. , “C G H
 b pu ,” 2019 IEEE

International Conference on Cybernetics and Intelligent Systems (CIS)
and IEEE Conference on Robotics, Automation and Mechatronics

(RAM), pp. 512–517, 2019, doi: 10.1109/CIS-
RAM47153.2019.9095787.

[33] A. A. Mohammed, H. R. Abdul Ameer, and D. S. Abdul-Zahra,

“ C pu

 b H x ,” 2022 3rd
Information Technology To Enhance e-learning and Other Application

(IT-ELA), pp. 181–185, 2022, doi: 10.1109/IT-

ELA57378.2022.10107941.

[34] . y, Y. B u , W. y, “ p uzzy -
 u pp b pu ,” Journal of
control engineering and applied informatics, vol. 22, no. 4, pp. 43-51,
2020.

[35] S. u z , . T p , . , . , “
and Inverse Kinematics of a Humanoid Robot Head for Social Human

Robot- ,” 2019 IEEE Fourth Ecuador Technical Chapters

Meeting (ETCM), pp. 1–4, 2019, doi:
10.1109/ETCM48019.2019.9014887.

[36] Y. , . T , Q. Z , S. Z u, “
Modeling and Simulation of Six-axis Joint Robot Arm Based on

 xp u ,” 2020 IEEE 3rd International

Conference on Automation, Electronics and Electrical Engineering
(AUTEEE), pp. 372–375, 2020, doi:
10.1109/AUTEEE50969.2020.9315719.

[37] N. Zivkovic, J. Vidakovic, S. Mitrovic, and M. Lazarevic,
“ p u Qu -based Robot Forward Kinematics

 S,” 2022 11th Mediterranean Conference on

Embedded Computing (MECO), pp. 1–4, 2022, doi:
10.1109/MECO55406.2022.9797160.

[38] H. P. Nurba, D. Hadian, N. Lestari, K. A. Munastha, H. Mistialustina,

 . , “ u 3 b
With Forward Kinematics Denavit-Hartenberg Method For Coffee

 ,” 2022 16th International Conference on

Telecommunication Systems, Services, and Applications (TSSA), pp. 1–
6, 2022, doi: 10.1109/TSSA56819.2022.10063918.

[39] S. Savin, O. Balakhnov, and A. K , “ y-based local forward
 y b ,” 2020 Fourth

IEEE International Conference on Robotic Computing (IRC), pp. 280–
284, 2020, doi: 10.1109/IRC.2020.00051.

[40] . , . Y , . Y , “ pp f Improved GA-BPNN

Algorithm for Forward Kinematics Problem Solving of Parallel

 b ,” 2022 7th International Conference on Mechatronics
System and Robots (ICMSR), pp. 9–14, 2022, doi:
10.1109/ICMSR2020.2022.00010.

[41] Y. Jusman et al., “C p b n Support Vector Machine and

K-Nearest Neighbor Algorithms for Leukemia Images Classification

U S p u ,” 2021 25th International Computer Science
and Engineering Conference (ICSEC), pp. 70–74, 2021, doi:
10.1109/ICSEC53205.2021.9684585.

[42] F. Amoros, L. Paya, W. Mayol-Cuevas, L. M. Jimenez, and O.

 , “H p C

T ,” IEEE
Access, vol. 8, pp. 81822–81848, 2020, doi:
10.1109/ACCESS.2020.2990996.

[43] A. F. Rizky, N. Yudistira, and E. Santoso, “Text recognition on images
using pre-trained CNN,” arXiv preprint arXiv:2302.05105, 2023.

[44] . Tu j , “ u T B u’
and Multi-swarm Particle Swarm Optimization A ,” 2024

47th MIPRO ICT and Electronics Convention (MIPRO), pp. 43–47,
2024, doi: 10.1109/MIPRO60963.2024.10569522.

[45] . S. Y , “W T -dimensional Otsu Threshold

 pp S ,” 2019 IEEE Symposium

Series on Computational Intelligence (SSCI), pp. 1002–1006, 2019,

doi: 10.1109/SSCI44817.2019.9002689.

[46] K. Li, L. Bai, Y. Li, and M. Feng, “ p u u -Threshold
 S b S p z ,” 2021

33rd Chinese Control and Decision Conference (CCDC), pp. 1869–
1874, 2021, doi: 10.1109/CCDC52312.2021.9601664.

[47] C. Chen, B. Ye, J. Wu, X. Wang, W. Deng, and . B , “ y Cu

C- S B u T ,”

2019 IEEE 8th Data Driven Control and Learning Systems Conference
(DDCLS), pp. 754–75, 2019, doi: 10.1109/DDCLS.2019.8908855.

[48] H. El Khoukhi, Y. Filali, A. Yahyaouy, M. A. S b , . b, “
hardware Implementation of OTSU Thresholding Method for Skin

C S ,” 2019 International Conference on

Wireless Technologies, Embedded and Intelligent Systems (WITS), pp.
1–5, 2019, doi: 10.1109/WITS.2019.8723815.

[49] . C , Y. X x , W. X , “ ub
Threshold Image Segmentation Combined QGA with Two-

 u,” 2020 5th International Conference on

Mechanical, Control and Computer Engineering (ICMCCE), pp.

2219–2223, 2020, doi: 10.1109/ICMCCE51767.2020.00481.

[50] . C , “ CB S -adaption Threshold Segmentation

 u C TSU T y,” 2019 IEEE
8th Joint International Information Technology and Artificial

Intelligence Conference (ITAIC), pp. 652–656, 2019, doi:
10.1109/ITAIC.2019.8785606.

[51] Y.-S. Lee and H.- . , “H -Speed Multilevel Binary Imaging

C S S bj u x ,” IEEE Sens J, vol.
22, no. 16, pp. 15934–15943, 2022, doi: 10.1109/JSEN.2022.3189653.

[52] . H W. . , “T B S B y
 C p ,” 2019 SoutheastCon, pp. 1–6, 2019, doi:
10.1109/SoutheastCon42311.2019.9020376.

[53] . . u , “ Bu B y ,”
2022 IEEE International Conference on Image Processing (ICIP), pp.
196–200, 2022, doi: 10.1109/ICIP46576.2022.9897678.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 334

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

[54] B. š, . B áž, N. Á á , . Hu u , Z. B á, “
Design for User Experience Enhancement of Volume Dataset Reading

from Storage Using 3D Bin y ,” 2019 IEEE

17th World Symposium on Applied Machine Intelligence and
Informatics (SAMI), pp. 269–274, 2019, doi:
10.1109/SAMI.2019.8782726.

[55] . . Y. u , “ pp pp Qu
Dissimilarity Detection of Binary ,” 2019 International

Conference on Image and Vision Computing New Zealand (IVCNZ),
pp. 1–4, 2019, doi: 10.1109/IVCNZ48456.2019.8961029.

[56] . u , Y. , S. W , “ p p y
Method and Its Application for Bearing Fault ,” IEEE Trans
Instrum Meas, vol. 70, pp. 1–10, 2021, doi:
10.1109/TIM.2021.3072116.

[57] . Yu, . Hu , C. u, B. X , “ u u G b x
Vibration Signals Based on Morphological Filter Dynamic

C u u ,” IEEE Sens J, vol. 22, no. 23, pp. 22931–
22942, 2022, doi: 10.1109/JSEN.2022.3213783.

[58] Y. Li et al., “ G -Constrained Morphological Operation for

Retrieving Subcanopy Topography Over Densely Forested Areas From

ICESat-2/ T 03 ,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 62, pp. 1–13, 2024, doi:
10.1109/TGRS.2024.3404007.

[59] K. Cho, S.-E. Park, J.-H. Cho, H. Moon, and S.-H. H , “ u

Urban Area Extraction From SAR Image Based on Morphological
 p ,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no.
5, pp. 831–835, 2021, doi: 10.1109/LGRS.2020.2989461.

[60] . Z , W. , X. Z , H. u, . T , Q. u, “ p
Transformation and Spatial-Logical Aggregation for Tree Species

C U Hyp p y,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 61, pp. 1–12, 2023, doi:
10.1109/TGRS.2022.3233847.

[61] H. Zhao et al., “ u u S u
 p C T p y U p u ,” IEEE

Access, vol. 7, pp. 88859–88869, 2019, doi:
10.1109/ACCESS.2019.2925917.

[62] Z. Wu, C. , G. Wu, Z. , W. C , “ CNN-Regression-

B C u C C ,”

IEEE Trans Instrum Meas, vol. 71, pp. 1–10, 2022, doi:

10.1109/TIM.2022.3192282.

[63] Y. Y , . W , H. Yu, G. u, Z. X , “ segmentation
method based on RGB - u ,” 2020 International Conference

on Virtual Reality and Visualization (ICVRV), pp. 225–230, 2020, doi:
10.1109/ICVRV51359.2020.00053.

[64] T. S S. y, “U S
T qu C ,” 2019 10th

International Conference on Computing, Communication and
Networking Technologies (ICCCNT), pp. 1–7, 2019, doi:
10.1109/ICCCNT45670.2019.8944598.

[65] Z. , “ S G
 B p S qu ,” 2022 2nd

International Conference on Networking, Communications and
Information Technology (NetCIT), pp. 648–651, 2022, doi:
10.1109/NetCIT57419.2022.00150.

[66] . b u S. V , “ S
U T B ,” 2020 8th International Symposium

on Digital Forensics and Security (ISDFS), pp. 1–5, 2020, doi:

10.1109/ISDFS49300.2020.9116191.

[67] H. Y , “G p mage Segmentation Method based on High-

 ,” 2023 Global Conference on
Information Technologies and Communications (GCITC), pp. 1–4,
2023, doi: 10.1109/GCITC60406.2023.10425884.

[68] W. H u . X j , “Su y T age

S ,” 2020 International Conference on Intelligent

Computing, Automation and Systems (ICICAS), pp. 72–77, 2020, doi:
10.1109/ICICAS51530.2020.00022.

[69] Y. C B. , “ S T y
Application in Digital Image Pro ,” 2021 IEEE Asia-Pacific
Conference on Image Processing, Electronics and Computers (IPEC),
pp. 1174–1177, 2021, doi: 10.1109/IPEC51340.2021.9421206.

[70] W. Z , . W , X. u, “ p S b Supp
SAR Images with Arbitrary Doppl C B ,”

IGARSS 2020 - 2020 IEEE International Geoscience and Remote
Sensing Symposium, pp. 909–912, 2020, doi:

10.1109/IGARSS39084.2020.9323697.

[71] A. Kaluthantrige, J. Feng, J. Gíl-Fernández, and A. Pellacani,
“C u ing CNN-based Image Processing Algorithm

 pp b y y ,” 2022 IEEE Congress

on Evolutionary Computation (CEC), pp. 1–7, 2022, doi:
10.1109/CEC55065.2022.9870217.

[72] . , . , G. Z u , “Su C x
 S b B Su ,” 2022 IEEE 3rd

International Conference on Electronics, Control, Optimization and

Computer Science (ICECOCS), pp. 1–4, 2022, doi:
10.1109/ICECOCS55148.2022.9983232.

[73] . , S. S.B, . N, . G. B, V. , “C
Connected Component Labeling for Radar Images Using Image
 ,” 2020 International Conference on Smart

Technologies in Computing, Electrical and Electronics (ICSTCEE),
pp. 50–54, 2020, doi: 10.1109/ICSTCEE49637.2020.9277394.

[74] S. Ganesh, P. T. Bhatti, M. Alkhalaf, S. Gupta, A. J. Shah, and S.

T p , “C b p C W p

 CG z ,” IEEE J Transl Eng Health Med, vol. 9, pp. 1–9,
2021, doi: 10.1109/JTEHM.2021.3083482.

[75] X. Wang et al., “ p C
 B C p U p C u N u N ,” IEEE Trans

Instrum Meas, vol. 71, pp. 1–9, 2022, doi:
10.1109/TIM.2022.3154831.

[76] . G , S. , C. , . V , “ V
Frames Resulting From Video Interface Leakage Using Deep Learning
 p C ,” IEEE Letters on

Electromagnetic Compatibility Practice and Applications, vol. 3, no.
2, pp. 82–86, 2021, doi: 10.1109/LEMCPA.2021.3073663.

[77] C. Zhang et al., “ V -Based Character Recognition

Sy Su p u C p ,” IEEE Trans Instrum
Meas, vol. 72, pp. 1–13, 2023, doi: 10.1109/TIM.2023.3300474.

[78] R. Bu y, . u , S. S u , . , “T -Resource

Non-Latin-Complete Baseline: An Exploration of Khmer Optical
C ,” IEEE Access, vol. 11, pp. 128044–128060,
2023, doi: 10.1109/ACCESS.2023.3332361.

[79] J. Memon, M. Sami, R. A. Kha , . U , “H p

Character Recognition (OCR): A Comprehensive Systematic

 u (S),” IEEE Access, vol. 8, pp. 142642–142668,
2020, doi: 10.1109/ACCESS.2020.3012542.

[80] A. T. Sahlol, M. Abd Elaziz, M. A. A. Al-Qaness, and S. Kim,

“H b p C pp B
on Hybrid Whale Optimization Algorithm With Neighborhood Rough

S ,” IEEE Access, vol. 8, pp. 23011–23021, 2020, doi:
10.1109/ACCESS.2020.2970438.

[81] R. E. Nalawati, D. Y. Liliana, R. W. Iswara, M. D. Nashshar, M. S.

 u y , . . S , “V Nu b
Recognition in Intelligent Transportation System using YOLO v8 and

 y C ,” 2023 11th International Conference on Cyber and IT

Service Management (CITSM), pp. 1–5, 2023, doi:
10.1109/CITSM60085.2023.10455441.

[82] . . . Su y , “ u
Sy U Y 8 y C ,”

2023 6th International Conference on Information and

Communications Technology (ICOIACT), pp. 384–3882023, doi:

10.1109/ICOIACT59844.2023.10455908.

[83] S. y V. u , “ -Time License Plate Detection and

 Sy u Y 7x y C ,” 2023 Global
Conference on Information Technologies and Communications
(GCITC), pp. 1–5, 2023, doi: 10.1109/GCITC60406.2023.10425814.

[84] D. R. Vedhaviyassh, R. Sudhan, G. Saranya, M. Safa, and D. Arun,

“C p y y C T C u

 u p ,” 2022
6th International Conference on Electronics, Communication and

Aerospace Technology, pp. 966–971, 2022, doi:
10.1109/ICECA55336.2022.10009215.

[85] U. Kulkarni, S. Agasimani, P. P. Kulkarni, S. Kabadi, P. S. Aditya, and

 . Uj , “V b u V u u

YOLO 5 y C ,” 2023 IEEE 8th International Conference
for Convergence in Technology (I2CT), pp. 1–7, 2023, doi:
10.1109/I2CT57861.2023.10126305.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 335

Hanifudin Sukri, Enhanced Precision Control of a 4-DOF Robotic Arm Using Numerical Code Recognition for Automated

Object Handling

[86] G. Septian, D. Wahiddin, H. Y. Novita, H. H. Handayani, A. R. Juwita,
 . . Nu u y , “T p mentation of Real-ESRGAN as

An Anticipation to Reduce CER Value in Plate Number Extraction

 u p y y C ,” 2022 Seventh International
Conference on Informatics and Computing (ICIC), pp. 1–5, 2022, doi:
10.1109/ICIC56845.2022.10006900.

[87] E. Mythili, S. Vanithamani, R. Kanna P, R. G, K. Gayathri, and R.
H , “ S: u u -Regional License Plate

 Sy b y C CNN ,” 2023
2nd International Conference on Edge Computing and Applications

(ICECAA), pp. 667–673, 2023, doi:
10.1109/ICECAA58104.2023.10212354.

