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Abstract—The research aims to design robust controllers 

that achieve the stability of a single-wheeled robot under the 

presence of friction factors and to track different parameters to 

verify robust stability. This paper presents a new study of the 

unicycle robot system that is controlled using advanced control 

methodologies. The paper aims to improve the work of the 

unicycle robot system, due to its effective impact on improving 

the performance of driving the robot, which is reflected in the 

smoothness of the vehicle speed change, ensuring the stability of 

the robot and the safety of the investor in the uncertain work 

environment. The main goal is to achieve high dynamic 

performance for the unicycle robot system. The studied system 

is non-linear and is subject to the restrictions of the friction 

factor change with the speed change of the unicycle robot. What 

increases the difficulty of controlling this type of control system 

is the uncertainty of some parameters of the control system, such 

as friction factors. In this paper, two advanced control 

methodologies were proposed: the optimal controller and the 

optimal parametric controller. The research results showed that 

both the optimal and optimal parametric controllers succeeded 

in achieving stability despite the uncertainty of the parameters 

and multiple friction factors, but with a relative superiority of 

the optimal parametric controller. Previous research has 

discussed many controllers such as classical and advanced 

controllers such as sliding control and fuzzy control, but it has 

not previously dealt with the optimal parametric controller that 

will be discussed in this research. 

Keywords—Unicycle Robot; Optimal Parametric Controller; 

Optimal Integral Controller; Advanced Control. 

I. INTRODUCTION 

The importance of the paper is that the unicycle robot 

system can be widely used in large facilities, Such as 

hospitals, stadiums and large factories. where this can be 

done using the unicycle robot. The appropriate controller 

design to control the operation of the control system, taking 

into account the uncertainty of the control system parameters 

and their real modeling, will be reflected in the safe driving 

of vehicles, which leads to the comfort of the investor, 

whether he is a doctor, athlete, engineer or cleaner, and will 

be reflected in improving the performance and stability of the 

control system [1]. 

The single-wheeled robot system is a difficult problem 

because it is an unstable and highly vibrating system, and it 

is considered a system with high uncertainties. The problem 

is further complicated by the friction factors that arise when 

the robot moves on surfaces of different roughness, so the 

designed controller must face these complex issues. 

The emergence of the COVID-19 coronavirus has 

contributed to increased interest in autonomous robots to 

serve humans without direct interaction between them.as the 

importance of providing service in hospitals, restaurants and 

other tourist places has increased remotely, in order to reduce 

direct interaction between humans to reduce infections. 

Among these robots that have been developed is the unicycle 

robot due to its ease of driving and control. 

Many papers in recent years have addressed the subject of 

controlling the unicycle robot system and employing this 
paper in its application to various robots to serve humans in 

a way that ensures efficiency in driving these robots to 

achieve the desired response and tracking various reference 

paths. This requires that this system has a rapid response to 

the change in the friction factor that negatively affects the 

performance of the robot and its driving and may lead to 

unexpected accidents. Therefore, to avoid these accidents, 

work was done in this paper to design advanced controllers 

to ensure the best performance and fastest response for the 

unicycle robot system. What increases the difficulty of 

control is the presence of uncertainty in the dynamic and 

kinetic parameters such as the change in the friction factor of 

the robot as a result of rust and dirt that can accumulate over 

time [2]. 

This paper discusses the design of advanced controllers, 

including the optimal controller and the optimal parametric 

controller, to obtain high dynamic performance and 

resistance to uncertainties affecting the unicycle robot 

system. In this paper, the studied control system was 

simulated using the MATLAB/SIMULINK environment, 

and the results showed high performance of the control 

system. 

The optimal controller will be designed for a nominal 

parameter control system. It does not take uncertainty into 

account, while the optimal parametric controller takes 

uncertainty into account, by representing the system in the 
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form of an affine where uncertainty is taken into account in 

the two matrices (L, N) as we will see later. 

The paper contributed to solving the issue of tracking 

different paths with the presence of friction factors according 

to the horizontal and vertical movement directions. 

II. IMPORTANCE OF THE PAPER 

The importance of the paper is that the unicycle robot is 

used in many vital places, where a quick response is required 

due to the danger and importance of being present in the 

shortest possible time to save a patient's life or to treat the 

injured in dangerous workplaces such as large factories where 

it is difficult for ambulances to enter, so the unicycle robot is 
used as an alternative to achieve this goal, and the design of 

the appropriate controller to control the operation of the 

control system, taking into account the uncertainty of the 

control system parameters and their real modeling, will be 

reflected in the safe driving of the unicycle robot, which leads 

to human comfort. 

Despite these promising applications, controlling a 

single-wheeled robot presents challenges, especially in 

environments with dynamic conditions such as variable 

friction or uncertainty in control parameters. 

The reason for the importance of the single-wheeled robot 

is its low mechanical complexity, as it relies on one wheel 

and therefore requires only one motor, as well as its low cost 

compared to robots that require four wheels, as well as its 

small size. 

III. REFERENCE STUDIES 

Many studies dealt with the design of controllers for a 

unicycle robot. Among these studies we: 

A. First Paper 

In the paper [1] (2024) “An Integral Sliding-Mode-based 

Robust Interval Predictive Control for Perturbed Unicycle 

Mobile Robots”, the researchers: “Hector Ríos, Manuel 

Mera, Tarek Raïssi, Denis Efimov”, used the robust control 

methodology for trajectory tracking in single-disturbance 

unicycle mobile robots, where the proposed strategy included 

the design of a robust control law, It is based on the integral 

sliding mode control (ISMC) approach combined with a state 

feedback controller based on time-lapse prediction and a 

model predictive control (MPC) scheme. The robust 

controller handles some perturbations in the kinematic 

model, and with state and input constraints associated with 

the constraints of the workspace and saturated actuators 

respectively. The proposed approach ensures exponential 

convergence to zero of the tracking error, and the tracking has 

been verified through simulation using MATLAB. 

B. Second Paper 

In the paper [2] (2023) “Autonomous unicycle: modeling, 

dynamics, and control”, the researchers “Xincheng Cao, 

Dang Cong Bui, Dénes Takács, Gábor Orosz,” derived the 

kinematic equations of the unicycle robot system, based on 

the AP-Pellian method, for which the control system is 

represented by state equations in their minimum form. The 

PD controller was designed to achieve stability with 3 

rotational torques in order to control the unicycle robot from 

the fixed position and then follow the specified path. The 

control system was numerically simulated, and the results 

were good. 

C. Third Paper 

In the paper [3] (2019) “Self-triggered MPC for trajectory 

tracking of unicycle-type robots with external disturbance”, 

researchers “Qun Cao, Zhongqi Sun, Yuanqing Xia, Li Dai” 

designed the controller based on the self-triggered predictive 

controller (MPC) methodology for the unicycle-type robot 

system, with a constraint on the control beam and taking into 

account limited external disturbances, where the design was 

based on the Lyapunov function and then the stability of the 

closed-loop system was improved, and the simulation results 

showed the effectiveness of the proposed algorithm. 

This paragraph introduces the latest research on the uni-

wheeled robot and the controllers used to organize its 

operation. 

IV. PROBLEM STATEMENT 

The dynamic model of the unicycle robot system taking 

into account the uncertainty of friction factors will be derived 

below. 

Despite these promising applications, controlling a 

single-wheeled robot presents challenges, especially in 

environments with dynamic conditions such as variable 

friction or uncertainty in control parameters. 

A. Modeling of the Unicycle Robot [1]-[32]: 

Fig. 1 shows the basic components of a single-wheeled 

robot: 

 

Fig. 1. The basic components of a unicycle robot 

These parts are: 

• The arm, which works similarly to an inverted pendulum. 

• The wheel. 

• DC motors, where there are two motors: the first to move 

the wheel and the second to return the arm so that it is 

vertical. Fig. 2 also shows the detailed structure with the 

coordinates for both the arm and the wheel. 

The working principle initially depends on the movement 

of the wheel by the first DC motor, and then the second DC 
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motor will be operated, which tries to keep the arm vertical 

without falling, so the control sentence can be described by 

two coordinate sentences, which are: 

• The first coordinate set to describe the arm, and the center 

of this set will be the center of gravity of the arm, and in 

this case, the movement of the arm will create two angles, 

which are 𝛼1(𝑡), which is the angle between the axis of 

the arm and the vertical line passing through the axis of 

the wheel, and 𝛼2(𝑡), the angle between the axis of the 

arm and the axis perpendicular to the plane of the wheel. 

  

(a) (b) 

Fig. 2. Detailed structure of the unicycle robot assembly with coordinates 

• The second coordinate system to describe the wheel, and 

the center of this system is the center point of the wheel, 

in this case, the movement of the wheel will create two 

angles, which are 𝛽1(𝑡), which is the angle resulting from 

the rotation of the wheel relative to the plumb line passing 

through point (A), and 𝛽2(𝑡), the angle resulting from the 

rotation of the wheel and the axis perpendicular to the 

plane of the wheel. 

To determine the mathematical model of the unicycle 

robot, the following Lagrange equation can be used [52]: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑟

) −
𝜕𝐿

𝜕𝑞𝑟

= 𝜏𝑟 (1) 

Where, 𝐿 is the Lagrange function. 𝑞𝑟   is the coordinate 

angles of the unicycle. 𝜏𝑟 is the torque applied to the unicycle.  

The Lagrange energy function is given by: 

L = 𝐸𝐾−𝐸𝑃 (2) 

Where, 𝐸𝐾  is the kinetic energy of the unicycle robot. 𝐸𝑃 is 

the potential energy of the unicycle robot. 

To find the mathematical model of the unicycle robot, the 

robot assembly can be divided into two separate parts and the 

mathematical model for each part can be found separately as 

follows: 

B. Mathematical Model of the Robot Arm 

It represents an inverted pendulum, and according to Fig. 

2(a), we notice that the robot arm has two degrees of freedom, 

which are the angles 𝛼1(𝑡), 𝛼2(𝑡). By applying the Lagrange 
relation to the angles 𝛼1(𝑡), 𝛼2(t)  ,we obtain the following 
mathematical model that describes the robot arm: 

(𝐽𝑤 + 𝑚𝑤𝑟𝑏𝑡
2 + 𝑚𝑏𝑡𝑟𝑏𝑡

2 )𝛼̈1 + 𝑚𝑏𝑡𝑟𝑏𝑡 cos(𝛼2) 𝛼̇2

− 𝑚𝑏𝑡𝑟𝑏𝑡𝑙𝑏𝑡 sin(𝛼2) 𝛼̇2
2

+ (𝜇𝑓 + 𝜇𝑎)𝛼̇1 − 𝜇𝑎𝛼̇2 = 𝜏𝑚 

(3) 

𝑚𝑏𝑡𝑟𝑏𝑡𝑙𝑏𝑡 cos(𝛼2)𝛼̈1 + (𝑚𝑏𝑡𝑙𝑏𝑡
2 + 𝐽𝑏𝑡)𝛼̈2 − 𝜇𝑎𝛼̇1

+ 𝜇𝑎𝛼̇2 − 𝑚𝑏𝑡𝑔𝑙𝑏𝑡 sin(𝛼2)
= −𝜏𝑚 

(4) 

The parameters of the robot arm are shown in Table I. 

TABLE I.  ROBOT ARM PARAMETERS 

Parameters Description Value 

𝐽𝑤 

Moment of inertia of the 

wheel with respect to the 

center of the arm 

0.000158 (𝑘𝑔. 𝑚2) 

𝑚𝑤 wheel mass 0.053 (𝑚) 

𝑟𝑏𝑡 Wheel radius 0.225 (𝑘𝑔) 

𝑚𝑏𝑡 arm mass 1.586 (𝑘𝑔) 

𝑙𝑏𝑡 

The distance between the 

center of the wheel and the 

center of gravity of the arm 

0.56 (𝑚) 

𝜇𝑓 
Wheel friction factor with 

the ground 
[0 , 1] 

𝜇𝑎 Wheel hub friction factor [0 , 1] 

𝑔 acceleration due to gravity 9.81 (
𝑚

𝑠𝑒𝑐2
) 

 

C. Mathematical Model of the Android Wheel 

Representing a scene as a touch control system as a 

reaction to the robot arm in the opposite direction to the arm 

above the rocket arm vertically, and determining the Fig. 2(b) 

we notice that the Android wheel has two degrees of freedom, 

which are the angles 𝛽1(𝑡), 𝛽2(𝑡). Which means the Lagrange 

relation on the angles 𝛽1(𝑡), 𝛽2(𝑡). We get the following 

mathematical model that describes the robot wheel: 

𝐽𝛽̈1 + (𝜇𝑝𝑟 + 𝜇𝑟𝑤)𝛽̇1 − 𝜇𝑟𝑤𝛽̇2 + 𝑚𝑔𝑙1 sin(𝛽1)

= −𝜏𝑚 
(5) 

𝐽2𝐶𝛽̈2 − 𝜇𝑟𝑤𝛽̇1 + 𝜇𝑟𝑤𝛽̇2 = 𝜏𝑚 (6) 

The parameters of the robot wheel are shown in Table II.     

TABLE II. ROBOT WHEEL PARAMETERS 

Parameters Description Value 

𝐽 = 𝐽𝑝

+ 𝑚𝑤𝑙1𝑐
2

+ 𝑚𝑏𝑡𝑙1
2 

torque of inertia of the wheel 1.66046 (𝑘𝑔. 𝑚2) 

𝐽𝑝 
Moment of inertia of robot 

arm 
0.0039 (𝑘𝑔. 𝑚2) 

𝑙1𝑐 robot arm length 0.56 (𝑚) 

𝑙1 
Distance between center of 

wheel and point (A) 
1.586 (𝑘𝑔) 

𝑙𝑏𝑡 
The distance between the 

center of the wheel and the 
center of gravity of the arm 

0.56 (𝑚) 

𝜇𝑝𝑟 
Arm friction factor with 

wheel 
[0 , 1] 

𝜇𝑟𝑤 
Wheel axle backlash friction 

factor 
[0 , 1] 

𝐽2𝑐 
Moment of inertia of the 

wheel with respect to its 

center 

0.00063 (𝑘𝑔𝑚2) 
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D. Mathematical mo Mathematical Model of the Unicycle 

Robot 

Approximating the trigonometric ratios in relations (3), 

(4) and (5) for small angles: 

sin(𝛽1) ≈ 𝛽1 , cos(𝛽1) ≈ 1   

sin(𝛼1) ≈ 𝛼1 , cos(𝛼1) ≈ 1 (7) 

The mathematical model of the unicycle robot after using 

the data given in Table I and Table II becomes as follows: 

0.0052𝛼̈1 + 0.0471𝛼̇2 − 0.0471α2𝛼̇2
2

+ (𝜇𝑓 + 𝜇𝑎)𝛼̇1 − 𝜇𝑎𝛼̇2 = 𝜏𝑚 
(8) 

0.0471𝛼̈1 + 0.6746𝛼̈2 − 𝜇𝑎𝛼̇1 + 𝜇𝑎𝛼̇2

− 8.7128α2 = −𝜏𝑚 
(9) 

0.1772𝛽̈1 + (𝜇𝑝𝑟 + 𝜇𝑟𝑤)𝛽̇1 − 𝜇𝑟𝑤𝛽̇2

+ 16.79472β1 = −𝜏𝑚 
(10) 

0.00063𝛽̈2 − 𝜇𝑟𝑤𝛽̇1 + 𝜇𝑟𝑤𝛽̇2 = 𝜏𝑚 (11) 

In order to find the equations of state for the robot arm 

model we impose the following variables: 

𝑥𝑝1 = 𝛼1 , 𝑥𝑝2 = 𝛼̇1, 𝑥𝑝3 = 𝛼2 , 𝑥𝑝4 = 𝛼̇2 (12) 

In order to find the equations of state for the robot wheel 

model we impose the following variables: 

𝑥𝑤1 = 𝛽1 , 𝑥𝑤2 = 𝛽̇1, 𝑥𝑤3 = 𝛽2 , 𝑥𝑤4 = 𝛽̇2 (13) 

Then we get the equations of state for the robot arm according 

to the following formula: 

𝑥̇𝑝1(𝑡) = 𝑥𝑝2(𝑡)  

𝑥̇𝑝2(𝑡) = −9.0577𝑥𝑝4(𝑡) + 9.0577𝑥𝑝3(𝑡)𝑥𝑝4
2

− 192.3077(𝜇𝑓 + 𝜇𝑎)𝑥𝑝2

+ 192.3077𝜇𝑎𝑥𝑝4

+ 192.3077𝜏𝑚 

 

𝑥̇𝑝3(𝑡) = 𝑥𝑝4(𝑡)  

𝑥̇𝑝4(𝑡) = (−12.7944 + 13.4268𝜇𝑓

+ 11.9444𝜇𝑎)𝑥𝑝4(𝑡)

− 0.6324𝑥𝑝3(𝑡)𝑥𝑝4
2 (𝑡)

+ 1.4824𝑥𝑝2 + 12.9155𝑥𝑝3

− 14.9091𝜏𝑚 

(14) 

The equations of state for the robot wheel are as follows: 

𝑥̇𝑤1(𝑡) = 𝑥𝑤2(𝑡)  

𝑥̇𝑤2(𝑡) = −5.6433(𝜇𝑝𝑟 + 𝜇𝑟𝑤)𝑥𝑤2(𝑡)

+ 5.6433𝑥𝑤4(𝑡) − 94.7754𝑥𝑤1

− 5.6433𝜏𝑚 

 

𝑥̇𝑤3(𝑡) = 𝑥𝑤4(𝑡)  

𝑥̇𝑤4(𝑡) = 1587.3𝜇𝑟𝑤𝑥𝑤2(𝑡) − 1587.3𝜇𝑟𝑤𝑥𝑤4(𝑡)
+ 1587.3𝜏𝑚 

(15) 

E. Block Diagram to Represent the Single-Wheel Robot 

System 

Fig. 3 shows the Simulink diagram to represent the single-

wheel robot system, in the open loop according to its 

mathematical model represented by state equations (14) and 

(15)[5][6]. 

 

Fig. 3. Simulink diagram to represent the unicycle robot system in the open 

loop 

F. Response of the Single-Wheel Robot in the Open Loop 

By implementing the scheme shown in Fig. 3, we obtain 

the following responses, where the input signal is the torque 

signal generated by the DC motor, and the response is the 

angles of the robot arm (𝛼1(𝑡), 𝛼2(𝑡))) and the angles of the 

wheel (𝛽1(𝑡), 𝛽2(𝑡)). 

• Response of the angle between the arm axis and the 

vertical line passing through the wheel axis 𝛼1(𝑡): 

The angle 𝛼1(𝑡) is called the swing angle of the robot arm 

around the vertical axis (Pitch Angle), and when applying the 

optimal controller to the nonlinear single-wheel robot system. 

Fig. 4 shows the response of the angle between the arm 

axis and the vertical line passing through the wheel axis 𝛼1(𝑡) 

for the nonlinear single-wheel robot system in the open loop: 

 
Fig. 4. Response of angle 𝜶𝟏(𝒕) of the nonlinear robot system in the open 

loop 

• Roll Angle Response of Robot Arm  𝛼2(𝑡): 

The angle 𝛼2(𝑡) is called the angle of inclination of the 

robot arm relative to the vertical plane (Roll Angle), and 

when applying the optimal controller to the nonlinear single-

wheel robot system. 
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Fig. 5 shows the response of the angle between the arm 

axis and the axis perpendicular to the wheel plane 𝛼2(𝑡) for 

the nonlinear single-wheel robot system in the open loop: 

 

Fig. 5. Roll Angle Response of Robot Arm 𝜶𝟐(𝒕) of the nonlinear robot 

system in the open loop 

• The response of the angle resulting from the rotation of 

the wheel relative to the vertical line passing through 

point (A) 𝛽1(𝑡):  

Fig. 6 shows the response of the angle resulting from the 

rotation of the wheel relative to the vertical line passing 

through point (A) 𝛽1(𝑡) for the nonlinear single-wheel robot 

system in the open loop: 

 
Fig. 6. Response of angle 𝜷𝟏(𝒕) of the nonlinear robot system in the open 

loop 

• Angle response resulting from the rotation of the wheel 

and the axis perpendicular to the wheel plane 𝛽2(𝑡): 

Fig. 7 shows the angle response resulting from the 

rotation of the wheel and the axis perpendicular to the wheel 

plane 𝛽2(𝑡): for the nonlinear single-wheel robot system in 

the open loop: 

 

Fig. 7. Response of angle 𝜷𝟐(𝒕):  of the nonlinear robot system in the open 

loop 

From these responses shown in Fig. 4, Fig. 5, Fig. 6, and 

Fig. 7, we notice that the open-loop single-wheel robot 

system is unstable, and appropriate controllers must be 

designed that achieve strong stability when the single-wheel 

robot system parameters are uncertain. 

In this paragraph, we identified the mechanical structure 

of the single-wheeled robot and its main parts, deduced its 

mathematical model using the Lagrange method, then found 

the state equations and represented them in the MATLAB 

environment, then found the responses to the unicycle robot 

system in the open loop. 

V. DESIGN OF THE OPTIMAL CONTROLLER [62]-[80] 

Optimal controller is defined as the control vector design 

of a control system that minimizes the performance function 

to the lowest value, for the given eigenvalues of the control 

system. 

Fig. 8 shows the general block diagram of the linear 

quadratic optimal controller: 

 

Fig. 8. Block diagram of the optimal control problem 

The mathematical model of the control set based on the 

state variables is given by the following formula: 

 𝑥̇(𝑡) = 𝐴. 𝑥(𝑡) + 𝐵. 𝑢(𝑡)  

𝑦(𝑡) = 𝐶. 𝑥(𝑡) (16) 

According to Fig. 8, the control signal is given by the 

difference between the reference signal 𝑟(𝑡) and the linear 

combination consisting of the components of the state vector: 

𝑢(𝑡) = 𝑟(𝑡) − 𝑘𝑥(𝑡) (17) 

where 𝑟(𝑡) is the reference signal, 𝑘 is the optimal control 

gain vector of dimension (𝑛) and 𝑢(𝑡) is the control vector 

that must be designed to minimize the following cost 

function: 

 𝐽 =
1

2
∫ (𝑥𝑇𝑄𝑥 + 𝑅𝑢2)𝑑𝑡

𝑡𝑓

0
  (18) 

Both (Q, R) are positively defined symmetric matrices. 

The optimal control vector is given by: 

𝑢(𝑡) = 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . 𝑥(𝑡) (19) 

Where as the optimal control gain is: 

𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = −𝑅−1. 𝐵𝑇 . 𝑃 (20) 

Where (𝑃) is the solution to the following Riccati algebraic 

equation: 

𝑃. 𝐴 + 𝐴𝑇 . 𝑃 − 𝑃. 𝐵. 𝑅−1. 𝐵. 𝑃 + 𝑄 = 0 (21) 

Since the optimal quadratic controller is applied to the 

linear control system, the linear control system for the 

unicycle robot model was initially found based on Jacobi 

relations at the equilibrium point. 
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This paragraph explains the mechanism of designing the 

linear quadratic optimization controller. 

VI. LINEAR APPROXIMATION ACCORDING TO JACOBI 

[33]-[52] 

Let the nonlinear control system be described by the 

following state equations: 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))  

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡)) (22) 

Where 𝑥(𝑡) is the vector of state variables, 𝑦(𝑡) is the output 

signal, 𝑢(𝑡) is the input signal, 𝑓(𝑥, 𝑢), ℎ(𝑥, 𝑢) are nonlinear 

functions. Then the nonlinear control system can be 

approximated to the linear control system according to the 

following formula: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)  

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (23) 

Where the matrices of the linear system at the equilibrium 

point are given by the following relations: 

𝐴 =
𝜕𝑓(𝑥, 𝑢)

𝜕𝑥(𝑡)
|

(𝑥𝑒,𝑢𝑒)

, 𝐵 =
𝜕𝑓(𝑥, 𝑢)

𝜕𝑢(𝑡)
|

(𝑥𝑒,𝑢𝑒)

 (24) 

𝐶 =
𝜕ℎ(𝑥, 𝑢)

𝜕𝑥(𝑡)
|

(𝑥𝑒,𝑢𝑒)

, 𝐷 =
𝜕ℎ(𝑥, 𝑢)

𝜕𝑢(𝑡)
|

(𝑥𝑒,𝑢𝑒)

 (25) 

After finding the linear approximation of the unicycle 

robot system, the optimal linear quadratic controller is 

designed according to the following instructions: 

clc; 

clear all; 

Ff=0; 

Fa=0; 

Frw=0; 

Fpr=0; 

AP = [0 1 0 0; 0 -192.3077*(Ff+Fa) 0 -

9.0577+192.3077*Fa; 0 0 0 1; 0 1.4824 12.9155 -

12.7944+13.4268*Ff+11.9444*Fa]; 

BP = [0; 192.3077; 0; -14.9091]; 

AW = [0 1 0 0; -94.7754 -5.6433*(Fpr+Frw) 0 5.6433; 
0 0 0 1; 0 1587.3*Frw 0 -1587.3*Frw]; 

BW = [0; -5.6433; 0; 1587.3]; 

RP = 10; 

QP = 10*eye(4); 

[KP, SP, EP] = lqr(AP, BP, QP, RP) 

RW = 10; 

QW = 10*eye(4); 

[KW, SW, EW] = lqr(AW, BW, QW, RW); 

The first control beam is designed to regulate the robot 

arm and the second to regulate the robot wheel. After finding 

the optimal control gains, they are applied to the nonlinear 

control system with the gain values being readjusted due to 

the nonlinearity of the single-wheel robot system. 

VII. DESIGN OF THE OPTIMAL PARAMETRIC QUADRATIC 

REGULATOR FOR THE UNICYCLE ROBOT SYSTEM [53]-[69] 

An optimal parametric controller is defined as a control 

vector design for a control system that minimizes the 

performance function to a minimum value, taking into 

account the uncertainty of the control system parameters. 

The optimal parametric controller is designed according 

to the following steps: 

• First, the control statement must be formulated in affine 

form as follows: 

𝑥̇ = {𝐴0 + ∑ 𝐴𝑗∆𝑗

𝑁

𝑗=1

} 𝑥 + 𝐵. 𝑢 (26) 

𝑦 = 𝐶. 𝑥  

Where as: 

∆𝑗∈ [−1, +1] (27) 

The linear and uncertain state equations are written 

according to formula (26), where (𝐴0) is the nominal matrix, 

and the matrices  )𝐴𝑗) are called uncertainty matrices. 

• After finding the uncertainty matrices 𝐴𝑗, the matrices 𝐿𝑗 

and 𝑁𝑗 are found as follows: 

 𝐴𝑗 = 𝐿𝑗𝑁𝑗
𝑇 (28) 

• We find the matrices L and N from the previous 

matrices, as follows: 

𝐿 = [𝐿1 𝐿2 … 𝐿𝑗 𝐿𝑁]  

𝑁 = [𝑁1 𝑁2 … 𝑁𝑗 𝑁𝑁] (29) 

• The optimal parametric control beam is given by the 

following formula: 

𝑢𝑙𝑞𝑟(𝑡) = −𝐾. 𝑥(𝑡) (30) 

• Where K is the optimal parametric control gain vector 

which is given by the following formula: 

𝐾 =
1

𝜌
𝑅−1𝐵𝑇𝑆 (31) 

Where, 𝜌 is a positive design parameter chosen randomly, 

and in the research it was chosen 𝜌1 = 0.01 , 𝜌2 = 0.01  and 

it is calibrated randomly until the desired response is 

obtained. 𝑅 is the weighting matrix given when choosing the 

performance function to be minimized, which has the 

following formula: 

𝑗 = ∫ (𝑥𝑇𝑄0𝑥 + 𝑢𝑇𝑅𝑢)
∞

0
𝑑𝑡  (32) 

Where 𝑆 is the solution of the following modified Riccati 

equation: 

𝐴0
𝑇𝑆 + 𝑆𝐴0

𝑇 − 𝑆 (
1

𝜌
𝐵𝐵𝑇 −

1

𝛾
𝐿𝐿𝑇) 𝑆 + 𝑄0 + 𝛾𝑁𝑁𝑇 = 0 (33) 
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Where, 𝛾 is a positive design parameter chosen randomly, 

and is adjusted until the appropriate response is obtained, and 

in the research it was chosen 𝛾1 = 30 , 𝛾2 = 3. The 

parameters (𝜌, 𝛾)are set randomly and there are no reliable 

leaders, but the adjustment is done until an acceptable 

solution is obtained. According to the scheme (8), the control 

signal is given by the difference between the reference signal 

𝑟(𝑡) and the linear combination consisting of the components 

of the state vector: 

𝑢(𝑡) = 𝑟(𝑡) − 𝑘𝑥(𝑡) (34) 

Where 𝑟(𝑡) is the reference signal, 𝑘 is the optimal 

parametric control gain vector of dimension (𝑛) and where 

𝑢(𝑡) is the control vector that should be designed to minimize 

the cost function (28), both (Q, R) are positively defined 

symmetric matrices. 

VIII. APPLYING THE STEPS OF DESIGNING THE OPTIMAL 

PARAMETRIC QUADRATIC CONTROLLER TO THE UNI-WHEEL 

ROBOT SYSTEM [53]-[69] 

To design the optimal parametric controller for the 

spherical robot system, we follow the following steps: 

First: We represent the parameters of the friction factors 

in the following formula: 

𝜇𝑓 ∈ [0.1,0.7] ⟹ 𝜇𝑓 = 0.4 + 0.3𝛿1  ∶    𝛿1

∈ [−1, +1] 
(35) 

𝜇𝑎 ∈ [0.1,0.7] ⟹ 𝜇𝑎 = 0.4 + 0.3𝛿2    𝛿2

∈ [−1, +1] 
(36) 

𝜇𝑝𝑟 ∈ [0.1,0.7] ⟹ 𝜇𝑝𝑟 = 0.4 + 0.3𝛿3 ∶  𝛿3

∈ [−1, +1] 
(37) 

𝜇𝑟𝑤 ∈ [0.1,0.7] ⟹ 𝜇𝑟𝑤 = 0.4 + 0.3𝛿4 ∶  𝛿4

∈ [−1, +1] 
(38) 

Second: We write the nonlinear state equations 

represented by formula (14) and (15) according to the affine 

formula represented by formula (26). The following 

instructions in the Matlab program show the programming of 

the optimal parametric controller according to the affine 

formula: 

clc; 

clear all; 

Ff=0; 

Fa=0; 

Frw=0; 

Fpr=0; 

ro1=0.01; 

gamma1=30; 

A01 = [0 1 0 0; 0 -153.8462 0 67.8654; 0.9 0 0 1; 0 1.4824 

12.4824 -2.6459]; 

B1 = [0; 192.3077; 0; -14.9091]; 

N1 = [0 0; -7.5955 -7.5955; 0 0; 2.007 -0.4718] 

L1 = [0 0; 7.5955 7.5955; 0 0; 2.007 -7.5955] 

B01 = (1/ro1)*B1*B1'-(1/gamma1)*L1*L1'; 

R1 = 1*eye(1); 

Q1 = 0.01*eye(4); 

C01 = Q1+gamma1*N1*N1'; 

P1 = are(A01, B01, C01); 

KP1 = (1/ro1)*B1'*P1 

ro2 = 0.01; 

gamma2=3; 

A02 = [0 1 0 0; -94.7354 -4.5146 0 5.6433; 0 0 0 1; 0 

634.92 0 -634.92]; 

B2 = [0; -5.6433; 0; 1587.3]; 

N2 = [0 0; 1.3012 1.3012; 0 0; 0 365.9622]; 

L2 = [0 0; -1.3012 -1.3012; 0 0; 0 365.9622]; 

B02 = (1/ro2)*B2*B2'-(1/gamma2)*L2*L2'; 

R2 = 1*eye(1); 

Q2 = 0.01*eye(4); 

C02 = Q2+gamma2*N2*N2'; 

P2 = are(A02,B02,C02); 

KP2 = (1/ro2)*B2'*P2 

By designing the optimal parametric regulator and 

simulating it using Matlab and designing the diagram using 

(Simulink) which represents the nonlinear unicycle robot 

system with the optimal parametric regulator, we get the 

diagram [44]-[51]. 

 

Fig. 9. The uncycle robot assembly with the optimal parametric controller 

• Robot arm angle response 𝛼1(𝑡): 

Shown in Fig. 10 Robot arm angle response 𝛼1(𝑡), for 

zero friction factors. 

 
Fig. 10. Robot arm angle response 𝛼1(𝑡) for zero friction factors 
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• Roll Angle Response of Robot Arm 𝛼2(𝑡): 

Roll Angle Response of Robot Arm shown in Fig. 11, for 

zero friction factors. 

 
Fig. 11. Roll angle response of robot arm 𝜶𝟐(𝒕) for zero friction factors 

• The angular response resulting from the wheel rotation 

relative to the vertical line  𝛽1(𝑡):  

Shown in Fig. 12 Robot wheel rotation angle response to 

vertical line 𝛽1(𝑡), for zero friction factors. 

 
Fig. 12. The response of the robot wheel rotation angle to the plumb line  

𝜷𝟏(𝒕) for zero friction factors. 

• Angle response resulting from wheel rotation 𝛽2(𝑡): 

When applying the optimal controller to the nonlinear 

single-wheel robot system, we obtain the angular response 

resulting from the rotation of the wheel and the axis 

perpendicular to the wheel plane 𝛽2(𝑡) shown in Fig. 13, for 

zero friction factors. 

 
Fig. 13. The angle response resulting from wheel rotation 𝜷𝟐(𝒕) for zero 

friction factors 

A. Analysis of the Response Results when using the Optimal 

Controller without Friction Factors 

From Fig. 13, we notice that the wheel rotation angle was 

followed by the unitary reference signal according to an 

inertial response, and therefore the arm must then react in 

reverse, and therefore to restore the balance of the robot arm, 

the response must be at a negative angle. This is shown in 

Fig. 10, where the arm angle follows the unitary signal, but 

with a negative value to counteract the wheel angle and 

achieve balance. We notice at the beginning of the transient 

state the presence of a positive peak for the angle, and this 

peak indicates the movement of the arm at the beginning of 

take-off in the same direction as the wheel angle, and then it 

returns to the negative value to achieve balance. 

We note that both angular responses 𝛼2(𝑡) and 𝛽1(𝑡) 

return to zero, indicating that equilibrium is achieved. Thus, 

we note the success of the optimal controller in achieving the 

wheel's pursuit of the reference signal and achieving the 

balance of the robot arm in the vertical position when there 

are no friction factors. 

B. Response of the Arm of the Single-Wheel Robot in the 

Presence of Friction Factors 

Friction factors arise between the point of contact of the 

robot's wheel and the ground due to the roughness of the 

ground on which the single-wheel robot moves, so the 

response of the single-wheel robot was studied for several 

friction factors, and the following responses were obtained: 

• Robot arm angle response  𝛼1(𝑡):  

Fig. 14 shows the Robot arm angle response 𝛼1(𝑡), for 

several friction factors. 

 

Fig. 14. Robot arm angle response 𝛼1(𝑡) for various friction factors 

• Roll Angle Response of Robot Arm 𝛼2(𝑡): 

Fig. 15 shows the Roll Angle Response of Robot Arm 

𝛼2(𝑡), for several friction factors. 

 

Fig. 15. Roll angle response of robot arm 𝜶𝟐(𝒕) for various friction factors 

• The angular response resulting from the wheel rotation 

angle relative to the vertical line  𝛽1(𝑡):  

Shown in Fig. 16 Robot wheel rotation response to 

vertical line 𝛽1(𝑡), for several friction factors. 
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Fig. 16. The response of the robot wheel rotation angle to the plumb line 

𝜷𝟏(𝒕) for several friction factors 

• Angle response resulting from wheel rotation 𝛽2(𝑡): 

Fig. 17 shows the Angle response resulting from wheel 

rotation 𝛽2(𝑡), for several friction factors. 

 

Fig. 17. The Angle response resulting from wheel rotation 𝜷𝟐(𝒕) for several 

friction factors 

C. Analysis of the Response Results when using the Optimal 

Controller for Multiple Friction Factors 

Through the previous figures from Fig. 14 to Fig. 17, we 

notice the success of the linear quadratic optimal controller in 

achieving the stability of the single-wheel robot system for 

multiple friction values, and even that stability remains 

achieved at very large friction values of order (0.7). 

Therefore, the nonlinear single-wheel robot maintains its 

performance well when moving on rough and smooth 

surfaces, with very small time differences. 

In this paragraph, the mechanism for designing the linear 

quadratic optimal controller is explained, after representing 

the control set in the form of affine. 

IX. WHEN APPLYING THE OPTIMAL PARAMETRIC 

CONTROLLER 

The proposed system was simulated using the 

MATLAB/Simulink environment and the performance of the 

optimal parametric controller was tested for multiple friction 

factors, as follows: 

A. Response of the Arm of the Single-Wheel Robot System 

without Friction Factors 

For zero friction factors, the following responses were 

obtained: 

• Robot arm angle response 𝛼1(𝑡):  

Fig. 18 shows the Robot arm angle response 𝛼1(𝑡), for 

zero friction factors. 

 

Fig. 18. Robot arm angle response 𝛼1(𝑡) for zero friction factors 

• Roll Angle Response of Robot Arm 𝛼2(𝑡): 

Fig. 19 shows the Roll Angle Response of Robot Arm 

𝛼2(𝑡), for zero friction factors. 

 
Fig. 19. Roll angle response of robot arm 𝜶𝟐(𝒕) for zero friction factors 

• The angular response resulting from the wheel rotation 

angle relative to the vertical line  𝛽1(𝑡):  

Shown in Fig. 20 Robot wheel rotation response to 

vertical line 𝛽1(𝑡), for zero friction factors. 

 
Fig. 20. The response of the robot wheel rotation angle to the plumb line 

𝜷𝟏(𝒕) for zero friction factors 

• Angle response resulting from wheel rotation 𝛽2(𝑡):  

Fig. 21 shows the Angle response resulting from wheel 

rotation 𝛽2(𝑡), for zero friction factors. 

 

Fig. 21. The angle response resulting from wheel rotation 𝜷𝟐(𝒕) for zero 

friction factors 
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B. Analysis of the Response Results when using the Optimal 

Parametric Controller without Friction Factors: 

From Fig. 21, we notice that the wheel rotation angle was 

followed by the reference signal according to an inertial 

response, and therefore the arm must react in reverse, and 

therefore to restore the balance of the robot arm, the response 

must be at a negative angle, and this is shown in Fig. 18, 

where the arm angle follows the reference signal but with a 

negative value to counteract the wheel angle and achieve 

balance, and we notice at the beginning of the transient state 

the presence of a positive peak for the angle, and this peak 

indicates the movement of the arm at the beginning of take-

off in the same direction as the wheel angle, and then it 

returns to the negative value to achieve balance. We notice 

that both angular responses 𝛼2(𝑡) and 𝛽1(𝑡) return to zero, 

which indicates that balance has been achieved. Thus, we 

notice the success of the optimal parametric controller in 

achieving the wheel's pursuit of the reference signal and 

achieving the balance of the robot arm in the vertical position 

when there are no friction factors. 

C. Comparison of the Responses of the Optimal and 

Optimal Parametric Controllers in the Presence of 

Friction Factors: 

The responses resulting from the design of the optimal 

and optimal parametric controllers will be compared for 

different friction factors, as friction factors arise between the 

contact point of the robot wheel and the ground according to 

the roughness of the ground on which the single-wheeled 

robot moves, so the response of the single-wheeled robot was 

studied for several friction factors. 

First: For friction factors 𝐹𝑓 = 𝐹𝑎 = 0.3 , 𝐹𝑟𝑤 = 𝐹𝑝𝑟 =
0.3:  

• Comparison of the Robot arm angle response 𝛼1(𝑡): 

Fig. 22 shows the Robot arm angle response 𝛼1(𝑡), for 

friction factors: 𝐹𝑓 = 𝐹𝑎 = 0.3: 

 

Fig. 22. Comparison of the response of angle 𝜶𝟏(𝒕) when using the optimal 

and optimal parametric controllers for friction factors 𝑭𝒇 = 𝑭𝒂 = 𝟎. 𝟑 

• Roll Angle Response of Robot Arm 𝛼2(𝑡):  

Fig. 23 shows Roll Angle Response of Robot Arm 𝛼2(𝑡), 

for friction factors: 𝐹𝑓 = 𝐹𝑎 = 0.3. 

• The angular response resulting from the wheel rotation 

relative to the vertical line  𝛽1(𝑡):  

Shown in Fig. 24 Robot wheel rotation angle response to 

vertical line 𝛽1(𝑡), for friction factors: 𝐹𝑟𝑤 = 𝐹𝑝𝑟 = 0.3. 

 

Fig. 23. Comparisn of roll angle response of robot arm 𝜶𝟐(𝒕) when using the 

optimal and optimal parametric controllers for friction factors 𝑭𝒇 = 𝑭𝒂 =
𝟎. 𝟑 

 

Fig. 24. Comparison of the response of the angle 𝜷𝟏(𝒕) when using the 

optimal and optimal parametric controllers for friction factors 𝑭𝒓𝒘 =
𝑭𝒑𝒓 = 𝟎. 𝟑 

• Angle response resulting from wheel rotation 𝛽2(𝑡):  

Fig. 25 shows the Angle response resulting from wheel 

rotation 𝛽2(𝑡), for friction factors: 𝐹𝑟𝑤 = 𝐹𝑝𝑟 = 0.3 

 

Fig. 25. Comparison of the response of angle 𝜷𝟐(𝒕) when using the optimal 

and optimal parametric controllers for friction factors 𝑭𝒓𝒘 = 𝑭𝒑𝒓 = 𝟎. 𝟑 

• Comparison of the Robot arm angle response 𝛼1(𝑡):  

Fig. 26 shows the Robot arm angle response 𝛼1(𝑡), for 

friction factors: 𝐹𝑓 = 𝐹𝑎 = 0.7 

 

Fig. 26. Comparison of the response of angle 𝜶𝟏(𝒕) when using the optimal 

and optimal parametric controllers for friction factors 𝑭𝒇 = 𝑭𝒂 = 𝟎. 𝟕 
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• Roll Angle Response of Robot Arm 𝛼2(𝑡): 

Fig. 27 shows the response Roll Angle Response of Robot 

Arm 𝛼2(𝑡), for friction factors: 𝐹𝑓 = 𝐹𝑎 = 0.7 

 

Fig. 27. Comparison of the Roll Angle Response of Robot Arm 𝜶𝟐(𝒕) when 

using the optimal and optimal parametric controllers for friction factors 

𝑭𝒇 = 𝑭𝒂 = 𝟎. 𝟕 

• The angular response resulting from the wheel rotation 

angle relative to the vertical line  𝛽1(𝑡):  

Shown in Fig. 28 Robot wheel rotation response to 

vertical line 𝛽1(𝑡), for friction factors: 𝐹𝑟𝑤 = 𝐹𝑝𝑟 = 0.7 

 

Fig. 28. Comparison of the response of angle 𝜷𝟏(𝒕) when using the optimal 

and optimal parametric controllers for friction factors 𝑭𝒓𝒘 = 𝑭𝒑𝒓 = 𝟎. 𝟕 

• Angle response resulting from wheel rotation 𝛽2(𝑡):  

Fig. 29 shows the Angle response resulting from wheel 

rotation 𝛽2(𝑡), for friction factors: 𝐹𝑟𝑤 = 𝐹𝑝𝑟 = 0.7 

 

Fig. 29. Comparison of the response of angle 𝜷𝟐(𝒕) when using the optimal 

and optimal parametric controllers for friction factors 𝑭𝒓𝒘 = 𝑭𝒑𝒓 = 𝟎. 𝟕 

X. ANALYSIS OF THE RESPONSE RESULTS WHEN USING 

OPTIMAL AND PARAMETRIC OPTIMAL CONTROLLERS FOR 

VARIOUS FRICTION FACTORS 

Through the response forms shown in Fig. 22 to Fig. 28 

above, we notice the success of the optimal linear quadratic 

controller and the optimal parametric regulator in achieving 

the stability of the single-wheel robot system for many 

friction values, and even that stability remains achieved at 

very large friction values of order (0.7). Therefore, the 

nonlinear single-wheel robot maintains its performance well 

when moving on rough and smooth surfaces, with very small 

time differences. It can be noted that the optimal parametric 

controller outperforms the optimal controller in general. 

According to Fig. 22 and Fig. 23, we notice that in the 

transient state stage, the optimal parametric controller 

outperforms, and according to Fig. 24, we notice that the 

maximum overshoot when applying the optimal parametric 

controller is much better than the optimal controller. 

Table III shows a summary of the temporal features as a 

result of comparing the two controllers for the factors  𝐹𝑓 =
𝐹𝑎 = 0.3 , 𝐹𝑟𝑤 = 𝐹𝑝𝑟 = 0.3. 

TABLE III. SHOWS A SUMMARY OF THE TEMPORAL FEATURES AS A 

RESULT OF THE COMPARISON BETWEEN THE TWO CONTROLLERS FOR THE 

FOLLOWING FACTORS 𝑭𝒇 = 𝑭𝒂 = 𝟎. 𝟑 , 𝑭𝒓𝒘 = 𝑭𝒑𝒓 = 𝟎. 𝟑 

𝐹𝑓 = 𝐹𝑎 = 0.3 
𝐹𝑟𝑤 = 𝐹𝑝𝑟 = 0.3 

 

Optimal Parametric 

Controller 

linear quadratic 

optimal controller 

applied 

controller 

𝛽2(𝑡) 𝛼1(𝑡) 𝛽2(𝑡) 𝛼1(𝑡)  

𝑇𝑟

= 1.704 𝑠𝑒𝑐 

𝑇𝑟

= 2.3 𝑠𝑒𝑐 

𝑇𝑟

= 1.064 𝑠𝑒𝑐 

𝑇𝑟

= 2.14 𝑠𝑒𝑐 
Rise Time 

𝑇𝑠

= 6.695 𝑠𝑒𝑐 

𝑇𝑠

= 4.658 𝑠𝑒𝑐 

𝑇𝑠

= 3.975 𝑠𝑒𝑐 

𝑇𝑠

= 5.78 𝑠𝑒𝑐 

Stability 

time 

Non 
𝑀𝑝

= 4.765 0
0⁄  

Non 
𝑀𝑝

= 6.85 0
0⁄  

Maximum 
overshoot 

Non 
𝑇𝑝

= 0.2 𝑠𝑒𝑐 
Non 

𝑇𝑝

= 0.2 𝑠𝑒𝑐 

Maximum 
overshoot 

time 

 

Table IV shows the summary of the temporal features as 

a result of the comparison between the two controllers for the 

factors 𝐹𝑓 = 𝐹𝑎 = 0.7 , 𝐹𝑟𝑤 = 𝐹𝑝𝑟 = 0.7.  

TABLE IV. SHOWS THE SUMMARY OF THE TEMPORAL FEATURES AS A 

RESULT OF THE COMPARISON BETWEEN THE TWO CONTROLLERS FOR THE 

FACTORS 𝑭𝒇 = 𝑭𝒂 = 𝟎. 𝟕 , 𝑭𝒓𝒘 = 𝑭𝒑𝒓 = 𝟎. 𝟕 

𝐹𝑓 = 𝐹𝑎 = 0.7 
𝐹𝑟𝑤 = 𝐹𝑝𝑟 = 0.7 

 

Optimal Parametric 

Controller 

linear quadratic optimal 

controller 

applied 

controller 

𝛽2(𝑡) 𝛼1(𝑡) 𝛽2(𝑡) 𝛼1(𝑡)  

𝑇𝑟

= 1.705 𝑠𝑒𝑐 

𝑇𝑟

= 6.66 𝑠𝑒𝑐 

𝑇𝑟

= 1.064 𝑠𝑒𝑐 

𝑇𝑟

= 2.105 𝑠𝑒𝑐 
Rise Time 

𝑇𝑠

= 6.695 𝑠𝑒𝑐 

𝑇𝑠

> 10 𝑠𝑒𝑐 

𝑇𝑠

= 3.97 𝑠𝑒𝑐 

𝑇𝑠

= 9.06 𝑠𝑒𝑐 

Stability 

time 

Non Non Non Non 
Maximum 

overshoot 

Non Non Non Non 

Maximum 

overshoot 

time 

 

When designing the optimal parametric controller, the 

uncertainty of the friction factors was taken into 

consideration because the uni-wheeled robot's sentence was 

not written in affine form. As for the linear quadratic optimal 

controller, it was designed at the nominal values of the 

friction factors. This justifies the superiority of the optimal 

parametric controller over the optimal controller sometimes, 

and at other times the superiority of the linear quadratic 

optimal controller over the optimal parametric controller, 
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depending on the distance of the friction factor values from 

the nominal values. 

The research can be developed by taking into account 

non-meteoric terrain, as well as variable friction coefficients, 

avoiding obstacles that may obstruct the path of the single-

wheel robot, and adaptive controllers can be used and their 

results compared with the research results. 
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