
Journal of Robotics and Control (JRC)
Volume 6, Issue 2, 2025
ISSN: 2715-5072, DOI: 10.18196/jrc.v6i2.24511 624

Revolutionizing Numerical Approximations: A Novel
Higher-Order Implicit Method vs. Runge-Kutta for

Initial Value Problems
Mohammad W. Alomari 1, Iqbal M. Batiha 2*, Nidal Anakira 3, Ala Amourah 4,

Iqbal H. Jebril 5, Shaher Momani 6

1 Department of Mathematics, Jadara University, Irbid, P.C. 21110, Jordan
2, 5 Department of Mathematics, Al Zaytoonah University, Amman, Jordan

2, 6 Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE
3, 4 Faculty of Education and Arts, Sohar University, Sohar 3111, Oman

3 Applied science private university, Amman 11937, Jordan
4 Jadara University Research Center, Jadara University, Jordan

6 Department of Mathematics, Faculty of Science, University of Jordan, Amman, Jordan
Email: 1 mwomath@gmail.com, 2 i.batiha@zuj.edu.jo, 3 nanakira@su.edu.om,

4 AAmourah@su.edu.om, 5 i.jebril@zuj.edu.jo, 6 s.momani@ju.edu.jo
*Corresponding Author

Abstract—This work is dedicated to advancing the approxi-
mation of initial value problems through the introduction of an
innovative and superior method inspired by Taylor’s approach.
Specifically, we present an enhanced variant achieved by acceler-
ating the expansion of the Obreschkoff formula. This results in a
higher-order implicit corrected method that outperforms Rung–
Kutta’s (RK) method in terms of accuracy. We derive an error
bound for the Obreschkoff higher-order method, showcasing its
stability, convergence, and greater efficiency than the conventional
RK method. To substantiate our claims, numerical experiments
are provided, highlighting the exceptional efficacy of our proposed
method over the traditional RK method.
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I. INTRODUCTION

Initial value problems (I.V.Ps) form the crux of modeling
dynamic systems across scientific and engineering disciplines,
compelling the quest for precise and efficient solutions through
numerical approximation methods [1]–[13]. In the landscape of
established methods, the Euler method, despite its simplicity,
serves as a foundational approach, providing a baseline for
numerical integration. Modifications to the Euler method, in
pursuit of enhanced accuracy and efficiency, have yielded a
spectrum of techniques. To see more studies about the IVPs
and their generalizations, applications, and more, the reader
may refer to the references [14]–[33].

The Taylor method, distinguished by its systematic series ex-
pansion, stands out for its potential to deliver more intricate and
accurate approximations. However, its demand for increased

computational resources prompts exploration into alternative
methods such as the Midpoint method. This member of the
Runge-Kutta family strikes a balance between accuracy and
computational cost, making it particularly relevant for problems
with moderate complexity.

The most recognized method is the Runge-Kutta method,
which approximates the solution of ordinary differential equa-
tions (ODEs). It is an iterative method that computes ap-
proximate solutions by taking weighted averages of several
intermediate steps. The method is known for its accuracy
and versatility, with different orders of the method providing
varying levels of precision. The basic idea involves estimating
the slope of the solution curve at various points within a
given interval and using these estimates to iteratively refine
the solution. This method is widely used in scientific and
engineering fields where analytical solutions to ODEs are
difficult or impossible to obtain.

There is a huge backlog of good ingenious recent works
concerning the Runge-Kutta and Taylor methods, and their
consequences or other related methods. However, we tried our
best to attract the reader’s attention to the following recent
works and the references therein [34], [35]–[54]. For more
about the Taylor method and its consequences or other related
methods.

In the realm of approximating initial value problems (I.V.Ps),
our work introduces a new analytical method that stands out
as a significant departure from traditional approaches. Unlike
conventional methods, our approach is not merely an adaptation
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or incorporation of existing techniques, but rather a pioneering
and original construction tailored to address the intricacies of
I.V.Ps in ordinary differential equations (ODEs). This analytical
method, which encompasses a broader spectrum of solutions,
transcends the confines of established methodologies, present-
ing a novel framework for tackling the challenges associated
with I.V.Ps.

The core of our analytical method involves an accelerated
expansion of the Obreschkoff formula, resulting in a higher-
order implicit corrected method that redefines the landscape of
approximating solutions to I.V.Ps. Notably, our approach does
not treat the Taylor method as a foundational basis but rather
positions it as a special case within our more encompassing
framework. Through rigorous theoretical analysis and deriva-
tion of error bounds, we establish the stability, convergence, and
efficiency of our analytical method. We unveil a groundbreaking
approach designed to significantly enhance the accuracy and
efficiency of approximating initial value problems governed by
ordinary differential equations (ODEs).

Numerical experiments conducted to validate the capabilities
of our method further amplify its significance. These exper-
iments not only demonstrate the robustness and accuracy of
our analytical method but also underscore its superiority when
compared to conventional approaches, including the traditional
Taylor method. In summary, our analytical method for approx-
imating I.V.Ps in ODEs represents a pioneering contribution,
offering a fresh perspective that extends beyond the limitations
of existing techniques and provides a more comprehensive and
effective solution for a diverse range of mathematical contexts.

Throughout this work, let I be a real interval, and let
a, b ∈ I◦ (the interior of I) with a < b. We denote by Pn(t)
a polynomial of degree n defined on [a, b]. Furthermore, let
Pn(I) be the class of polynomials of degree n defined on an
interval I ⊆ R. Let f(x) be analytic at all points of the interval
[a, x], and let ϕ(t) ∈ Pn. If t ∈ [0, 1], by differentiation [55, p.
125], we obtain

d

dt

n∑
k=1

(−1)k(x− a)kϕ(n−k)(t)f (k)(a+ t(x− a))

= −(x− a)ϕ(n)(t)f ′(a+ t(x− a))

+ (−1)n(x− a)n+1ϕ(t)f (n+1)(a+ t(x− a)).

Since ϕ(n)(t) = ϕ(n)(0) = constant, we integrate from 0 to 1
with respect to t and obtain

ϕ(n)(0) [f(x)− f(a)] =

m∑
k=1

(−1)k−1(x− a)k

×
{
ϕ(n−k)(1)f (k)(x)− ϕ(n−k)(0)f (k)(a)

}
+ (−1)n(x− a)n+1

∫ 1

0

ϕ(t)f (n+1)(a+ t(x− a))dt.

(1)

This result is known as Darboux’s formula [56].
Suppose that f(x) is defined on an interval I ⊂ R and

that f (n)(x) is absolutely continuous on I . Let Pn(t) be a
polynomial of degree n with the coefficient of the term tn equal
to an, and let a ∈ I . Then,

f(x) = f(a) +

n∑
k=1

(−1)k−1

n!an

×
[
P (n−k)
n (x)f(x)− P (n−k)

n (a)f(a)
]

+
(−1)n

n!an

∫ x

a

Pn(t)f
(n+1)(t) dt.

(2)

This is a modified version of (1), which was proved in [?] (see
also [57]).

The concept of a harmonic sequence of polynomials, also
known as Appell polynomials, has been widely used in nu-
merical integration and expansion theory of real functions. We
recall that a sequence of polynomials {Pk (t, ·)}∞k=0 satisfies
the Appell condition (see [58]) if

∂

∂t
Pk (t, ·) = Pk−1 (t, ·) , ∀k ≥ 1,

with the initial condition

P0 (t, ·) = 1.

This holds for all well-defined ordered pairs (t, ·). A slightly
different definition was considered in [59].

In fact, Matić et al. in [59] established the following gener-
alization of the Taylor formula using the concept of a harmonic
sequence of polynomials:
Theorem 1. Let {Qn} ⊂ Pn(I) be a harmonic sequence of
polynomials, i.e., Q′

n = Qn−1 for all n ∈ N, with Q0 = 1.
Let I ⊂ R be a closed interval such that a ∈ I . If f : I → R
is a function such that, for some n ∈ N, f (n) is absolutely
continuous, then

f(x) = f(a) +

n∑
k=1

(−1)k+1
[
Qk(x)f

(k)(x)−Qk(a)f
(k)(a)

]
+ (−1)n

∫ x

a

Qn(t)f
(n+1)(t) dt,

(3)
for any x ∈ I .

Clearly, by setting Hn(t) = (t−x)k

k! , we recover the Taylor
formula. Constructing the sequence of polynomials Hk(t) can
be described as follows:

1,
1

n!an
P (n−1)
n (t),

1

n!an
P (n−2)
n (t), . . . ,

1

n!an
P ′
n(t),

1

n!an
Pn(t)

in which an ̸= 0. Equivalently, we write

Hk(t) =
1

n!an
P (n−k)
n (t), 1 ≤ k ≤ n, (4)

with an ̸= 0.
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Lemma 1. The sequence Hk(t) ∈ Pn(I) (1 ≤ k ≤ n), defined
in (12), forms a harmonic sequence of polynomials.

Proof. Clearly, since

H ′
k(t) =

1

n!an

d

dt
P (n−k)
n (t) =

1

n!an
P (n−k+1)
n (t) = Hk−1(t),

for all k = 1, 2, . . . , n. Also, we have

H0(t) =
1

n!an
P (n)
n (t) = 1,

which proves that Hk(t) forms a harmonic sequence of poly-
nomials.

Therefore, we have shown that the expansion by Matić et al.
is a special case of the original Darboux formula. Moreover,
it is possible to expand f using any general sequence of
polynomials.

In the next lemma, we construct a generalized Eu-
ler–Maclaurin formula for a general sequence of polynomials.
Lemma 2. Let {Pn} ⊂ Pn(I) be any sequence of polynomials.
Let f : I → R be such that f (n) is absolutely continuous on I ,
and assume that Pn(t)f

(n)(t) is integrable. Then, we have the
representation∫ b

a

f(u) du = Qn(f ;Pn) +Rn(f ;Pn), (5)

where

Qn(f ;Pn) :=

n∑
k=1

(−1)k

n!an

×
[
P (n−k)
n (a)f (k−1)(a)− P (n−k)

n (b)f (k−1)(b)
] (6)

and

Rn(f ;Pn) :=
(−1)n

n!an

∫ b

a

Pn(t)f
(n)(t) dt. (7)

Proof. Starting with the Darboux expansion for f along [a, b],

f(x) = f(y) +

n∑
k=1

(−1)k

n!an

×
[
P (n−k)
n (y)f (k)(y)− P (n−k)

n (x)f (k)(x)
]

+
(−1)n

n!an

∫ x

y

Pn(t)f
(n+1)(t) dt.

(8)

If we set x = a, y = b, and replace f(t) by
∫ t

a
f(u) du in

(8), we obtain the desired representation (5), which completes
the proof.

Theorem 2. Let {Hn} ⊂ Pn(I) be a harmonic sequence of
polynomials, i.e., H ′

n = Hn−1 for all n ∈ N with H0 = 1.

Let I ⊂ R be a closed interval such that a ∈ I◦ is fixed. If
f : I → R is real analytic on I◦, then

f(x) = f(a) +

∞∑
k=1

(−1)k+1
[
Hk(x)f

(k)(x)−Hk(a)f
(k)(a)

]
(9)

for any x ∈ I .

Proof. Since f (n+1) is continuous on I , from (3), we have

|Rn(x)| =
∣∣∣∣(−1)n

∫ x

a

Hn(t)f
(n+1)(t) dt

∣∣∣∣
≤
∫ x

a

|Hn(t)|
∣∣∣f (n+1)(t)

∣∣∣ dt
≤ sup

t∈[a,x]

∣∣∣f (n+1)(t)
∣∣∣ ∫ x

a

|Hn(t)| dt.

Now, since Hn is a harmonic sequence of polynomials, there
exists n0 ∈ N such that

|Hn(t)| ≤
1

n!
|x− t|n , ∀n ≥ n0.

Assuming the radius of convergence is |x− t| = ρ, we obtain

|Rn(x)| ≤ sup
t∈[a,x]

∣∣∣f (n+1)(t)
∣∣∣ |x− t|n+1

(n+ 1)!

= M · ρn+1

(n+ 1)!
−→ 0, as n → ∞.

This gives the expansion in (9), completing the proof.

A direct consequence of the above theorem is Taylor’s
theorem. Specifically, if one chooses

Hn(t) =
(t− x)n

n!
,

then (9) reduces to the well-known Taylor expansion of the real
function f near a point a.

In view of Lemma 2, we can generalize Theorem 2 for any
sequence of polynomials as follows:
Corollary 1. Let {Pn−k} ⊂ Pn(I) (1 ≤ k ≤ n) be any
sequence of polynomials. Let I ⊂ R be a closed interval such
that a ∈ I◦ is fixed. If f : I → R is real analytic on I◦, then

f(x) = f(a) +

∞∑
k=1

(−1)k+1

n!an

×
[
P (n−k)
n (x)f (k)(x)− P (n−k)

n (a)f (k)(a)
] (10)

for any x ∈ I , where an ̸= 0 is the leading coefficient of
Pn−k.

On the other hand, in 1949, Hummel and Seebeck [60] in-
dependently established a generalization of Taylor’s expansion,
where they developed a power series expansion that accelerates
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convergence twice as rapidly as the Taylor expansion. In fact,
they proved that

f(x) = f(y) +

m∑
k=1

(
m
k

)(
m+n
k

) f (k)(y)

k!
(x− y)k

+

n∑
k=1

(−1)k+1

(
n
k

)(
m+n
k

) f (k)(x)

k!
(x− y)k

+
(−1)n

(m+ n)!

∫ x

y

(x− t)m(t− y)nf (m+n+1)(t)dt.

(11)

This expansion is valid for all real-valued functions f ∈
Cm+n+1(I), where m,n = 0, 1, 2, . . . , for some interval I
with y ∈ I . Moreover, Hummel and Seebeck proved that

f(x) = f(y) +

m∑
k=1

(
m
k

)(
m+n
k

) f (k)(y)

k!
(x− y)k

+

n∑
k=1

(−1)k+1

(
n
k

)(
m+n
k

) f (k)(x)

k!
(x− y)k

+ (−1)n
m!n!(x− y)m+n+1

(m+ n)!(m+ n+ 1)!
f (m+n+1)(ξ(x))

for some ξ(x) ∈ (a, x).
Historically, the formula (11) was established ten years

earlier by Obreschkoff [61] in 1940. Due to the Second World
War, such an overlap in work may have occurred. The works of
Obreschkoff and Hummel–Seebeck represent a special case of a
more general formula established by Darboux himself in 1876,
as mentioned in [55, p. 125] and [62]. In the special case where
n = 0 in (11), we obtain the celebrated Taylor polynomials
along with their error term. As described by Hummel and
Seebeck, the case where n = m is particularly interesting
because it exhibits a faster rate of convergence compared to
the Taylor expansion. This can be observed by analyzing the
remainder term in (11) (see [60]).
Remark 1. Setting Pn(t) = (t − x)n in (2) yields the well-
known Taylor expansion formula. While it has been emphasized
that the Hummel–Seebeck and Obreschkoff formulas share an
identical nature, an intriguing observation arises when we in-
troduce a subtle transformation. Specifically, substituting Pn(t)
with

Pn+m(t) = (t− x)m(t− a)n

in the Darboux formula (2) remarkably leads to an equivalent
result. This substitution not only highlights the robustness of
the Darboux formula but also reveals a deeper connection
between these mathematical representations. The seamless in-
terchangeability of these components underscores the intricate
relationships embedded within these formulations, offering a
richer perspective on their interplay and structural coherence.

II. THE OBRESCHKOFF HIGHER-ORDER METHOD

This method aims to obtain an approximation for the well-
posed initial-value problem

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α. (12)

Suppose the solution y(t) to the initial-value problem has (m+
n + 1) continuous derivatives. Expanding y(t) in terms of its
(m+ n)-th Obreschkoff polynomial about ti and evaluating at
ti+1, we obtain

y(ti+1) = y(ti) +

m∑
k=1

(
m
k

)(
m+n
k

) y(k)(ti)
k!

(ti+1 − ti)
k

+

n∑
k=1

(−1)k+1

(
n
k

)(
m+n
k

) y(k)(ti+1)

k!
(ti+1 − ti)

k

+ (−1)n
m!n!(ti+1 − ti)

m+n+1

(m+ n)!(m+ n+ 1)!
y(m+n+1)(ξi),

for some ξi ∈ (ti, ti+1).
We begin by establishing the condition that the distribution

of mesh points is uniform across the interval [a, b]. This
requirement is ensured by selecting a positive integer N , from
which the mesh points are defined as

ti = a+ ih, for each i = 0, 1, 2, . . . , N.

The step size, or uniform spacing between the points, is given
by

h =
b− a

N
= ti+1 − ti.

Suppose that the unique solution to (12) has (m+n+1) contin-
uous derivatives on [a, b]. Then, for each i = 0, 1, 2, . . . , N−1,
we have

y(ti+1) = y(ti) +

m∑
k=1

(
m
k

)(
m+n
k

) y(k)(ti)
k!

hk

+

n∑
k=1

(−1)k+1

(
n
k

)(
m+n
k

) y(k)(ti+1)

k!
hk

+ (−1)n
m!n!hm+n+1

(m+ n)!(m+ n+ 1)!
y(m+n+1)(ξi),

for some ξi ∈ (ti, ti+1). Since y(t) satisfies the differential
equation (12), successive differentiation of the solution y(t)
gives

y′(t) = f(t, y(t)), . . . , y(k)(t) = f (k−1)(t, y(t)).
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Substituting these expressions into (13) yields

y(ti+1) = y(ti) +

m∑
k=1

(
m
k

)(
m+n
k

) hk

k!
f (k−1)(ti, y(ti))

+

n∑
k=1

(−1)k+1

(
n
k

)(
m+n
k

) hk

k!
f (k−1)(ti+1, y(ti+1))

+ (−1)n
m!n!hm+n+1

(m+ n)!(m+ n+ 1)!
f (m+n)(ξi, y(ξi))

(13)

The difference-equation method corresponding to (13) is
obtained by omitting the remainder term involving ξi. This
yields

w0 = α,

wi+1 = wi + hB
(m)
1 (ti, wi) + hB

(n)
2 (ti+1, wi+1), (14)

for each i = 0, 1, 2, . . . , N − 1, where

B
(m)
1 (ti, wi) :=

m∑
k=1

(
m
k

)(
m+n
k

) hk−1

k!
f (k−1)(ti, wi),

and

B
(n)
2 (ti+1, wi+1) :=

n∑
k=1

(−1)k+1

(
n
k

)
hk−1(

m+n
k

)
k!
f (k−1)(ti+1, wi+1).

It is worth noting that if n = 1, then (14) recaptures the well-
known general Taylor’s method of higher order. In particular,
we are interested in the case when m = n, in which case (14)
simplifies to the difference equation

w0 = α,

wi+1 = wi + hB̃
(n)
1 (ti, wi) + hB̃

(n)
2 (ti+1, wi+1), (15)

for each i = 0, 1, 2, . . . , N − 1, where

B̃
(n)
1 (ti, wi) :=

n∑
k=1

(
n
k

)(
2n
k

) hk−1

k!
f (k−1)(ti, wi),

and

B̃
(n)
2 (ti+1, wi+1) :=

n∑
k=1

(−1)k+1

(
n
k

)
hk−1(

2n
k

)
k!

f (k−1)(ti+1, wi+1).

A. The Initial One-Step Obreschkoff Method

The initial one-step Obreschkoff method unexpectedly ex-
hibits similarities to the widely recognized trapezoidal method
[63, p. 351]. However, our methodology deviates from the
standard trapezoidal method in its formulation and construction.
We now present our approach in the following manner. Suppose
that the unique solution to (12) has a third continuous derivative
on [a, b]. Then, for each i = 0, 1, 2, . . . , N − 1, we have

y(ti+1) = y(ti) +
1

2
(ti+1 − ti)y

′(ti)

+
1

2
(ti+1 − ti)y

′(ti+1)−
(ti+1 − ti)

3

12
y′′′(ξi),

for some ξi ∈ (ti, ti+1). Since y(t) satisfies the differential
equation (12), we can express this as

y(ti+1) = y(ti) +
h

2
y′(ti) +

h

2
y′(ti+1)−

h3

12
y′′′(ξi).

Additionally, since y(t) satisfies the differential equation (12),
we substitute y′(t) = f(t, y(t)) to obtain

y(ti+1) = y(ti) +
h

2
f(ti, y(ti))

+
h

2
f(ti+1, y(ti+1))−

h3

12
y′′′(ξi).

Obreschkoff–Euler’s method, also referred to as the new
modified Euler’s method, constructs wi = y(ti) for each
i = 1, 2, . . . , N by omitting the remainder term. Hence,
Obreschkoff–Euler’s method is described as follows:

w0 = α,

wi+1 = wi +
h

2
f(ti, wi) +

h

2
f(ti+1, wi+1),

for each i = 0, 1, 2, . . . , N−1. It is straightforward to show that
this method is convergent, stable, and has an order of accuracy
equal to 3. Next, we present the difference equation for a special
case of (15).

B. Obreschkoff Method for n = 4

The Obreschkoff method is a high-order numerical approach
for solving initial value problems (IVPs). In this subsection,
we derive its formulation for the specific case of n = 4. The
Obreschkoff method when n = 4 is given by the difference
equation

w0 = α,

wi+1 = wi + hB̃
(4)
1 (ti, wi) + hB̃

(4)
2 (ti+1, wi+1), (16)

for each i = 0, 1, 2, . . . , N − 1, where

B̃
(4)
1 (ti, wi) :=

1

2
f(ti, wi) +

3h

28
f ′(ti, wi)

+
h2

84
f ′′(ti, wi) +

h3

1680
f (3)(ti, wi),

and

B̃
(4)
2 (ti+1,wi+1) :=

1

2
f(ti+1, wi+1)−

3h

28
f ′(ti+1, wi+1)

+
h2

84
f ′′(ti+1, wi+1)−

h3

1680
f (3)(ti+1, wi+1).

Proposition 1. The Obreschkoff method (16) is of order 8.

M. W. Alomari, Revolutionizing Numerical Approximations: A Novel Higher-Order Implicit Method vs. Runge-Kutta for
Initial Value Problems



Journal of Robotics and Control (JRC) ISSN: 2715-5072 629

Proof. Substituting the exact solution into the Taylor expansion,
we obtain after long simplification that

y(ti+1)− y(ti)−
h

2
f(ti, yi)−

3h2

28
f ′(ti, yi)−

h3

84
f ′′(ti, yi)

− h4

1680
f ′′′(ti, yi)−

h

2
f(ti+1, yi+1) +

3h2

28
f ′(ti+1, yi+1)

− h3

84
f ′′(ti+1, yi+1) +

h4

1680
f ′′′(ti+1, yi+1)

= O(h8),

which confirms that (16) is of order 8.

Remark 2. In general, by induction, one can observe that the
Obreschkoff method has an order of accuracy O(h2n).

III. CONVERGENCE AND STABILITY OF THE GENERAL
OBRESCHKOFF METHOD

To prove the convergence and establish an error bound for
the general Obreschkoff method (15), we require the following
key lemma [63, Lemma 5.8, p. 270].
Lemma 3. If s and t are positive real numbers, and {ai}ki=1

is a sequence satisfying a0 ≥ −t/s, then

ai+1 ≤ exp ((1 + i)s)

(
a0 +

t

s

)
− t

s
.

In the following result, we prove that the Obreschkoff method
of order 2n is convergent and derive an error bound.
Theorem 3. Suppose that f (k) (0 ≤ k ≤ 2n−1) are continuous
and satisfy the Lipschitz condition with constant Lk on the
domain

D := {(t, y) : a ≤ t ≤ b,−∞ < y < ∞} .

Further, assume that there exists a constant M such that∣∣∣f (2n)(t, y(t))
∣∣∣ ≤ M, ∀t ∈ [a, b],

where y(t) denotes the unique solution to the initial-value
problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α.

Let w0, w1, . . . , wN be the approximations generated by the
Obreschkoff method (15) for some positive integer N . Then,
the general Obreschkoff method described in (15) is convergent.

Proof. When i = 0, the assertion holds trivially since y(t0) =
w0 = α. Otherwise, from (15) and for m = n, we have

y(ti+1) = y(ti) +

n∑
k=1

(
n
k

)(
2n
k

)
× hk

k!

[
f (k−1)(ti, y(ti)) + (−1)k+1f (k−1)(ti+1, y(ti+1))

]
+ (−1)n

(n!)2h2n+1

(2n)!(2n+ 1)!
f (2n)(ξi, y(ξi)),

for i = 0, 1, . . . , N − 1. Similarly, from the equations in (15),
we obtain

wi+1 = wi +

n∑
k=1

(
n
k

)(
2n
k

)
× hk

k!

[
f (k−1)(ti, wi) + (−1)k+1f (k−1)(ti+1, wi+1)

]
,

for each i = 0, 1, 2, . . . , N − 1. Utilizing the notations
yi = y(ti) and yi+1 = y(ti+1), we obtain the following by
subtracting the two equations:

yi+1 − wi+1 = yi − wi

+

n∑
k=1

(
n
k

)(
2n
k

) hk

k!

[
f (k−1)(ti, yi)− f (k−1)(ti, wi)

]
+

n∑
k=1

(−1)k+1

(
n
k

)(
2n
k

)
× hk

k!

[
f (k−1)(ti+1, yi+1)− f (k−1)(ti+1, wi+1)

]
+ (−1)n

(n!)2h2n+1

(2n)!(2n+ 1)!
f (2n)(ξi, y(ξi)).

Applying the triangle inequality, we obtain

|yi+1 − wi+1| ≤ |yi − wi|

+

n∑
k=1

(
n
k

)(
2n
k

) hk

k!

∣∣∣f (k−1)(ti, yi)− f (k−1)(ti, wi)
∣∣∣

+

n∑
k=1

(
n
k

)(
2n
k

) hk

k!

×
∣∣∣f (k−1)(ti+1, yi+1)− f (k−1)(ti+1, wi+1)

∣∣∣
+

(n!)2h2n+1

(2n)!(2n+ 1)!

∣∣∣f (2n)(ξi, y(ξi))
∣∣∣ .

Now, the function f (k−1) (k = 1, 2, . . . , n) satisfies the Lips-
chitz condition in the second variable with a constant denoted
as

L := max
1≤k≤2n−1

{Lk},

and it holds that ∣∣∣f (2n)(t, y(t))
∣∣∣ ≤ M.

Thus, we obtain

|yi+1 − wi+1| ≤ |yi − wi|+ L

n∑
k=1

(
n
k

)(
2n
k

) hk

k!
|yi − wi|

+ L

n∑
k=1

(
n
k

)(
2n
k

) hk

k!
|yi+1 − wi+1|

+
(n!)2h2n+1

(2n)!(2n+ 1)!

∣∣∣f (2n)(ξi, y(ξi))
∣∣∣ .
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For simplicity, let us define the following terms:

Sn(L, h) :=

(
1 + L

n∑
k=1

(
n
k

)(
2n
k

) hk

k!

)
,

Cn(L, h) :=

(
1− L

n∑
k=1

(
n
k

)(
2n
k

) hk

k!

)
,

and

En(h) := 2

n∑
k=1

(
n
k

)(
2n
k

) hk−1

k!
.

Before proceeding further, we note that

1

2
LhEn(h) = L

n∑
k=1

(
n
k

)(
2n
k

) hk

k!
≤ L · max

1≤k≤n
{hk} ·

n∑
k=1

(
n
k

)(
2n
k

) 1

k!

≈ L · max
1≤k≤n

{hk} · 0.6968600167

= K · 0.6968600167,

where we used Robbins’ inequality [64], which states that for
every positive integer k,

√
2πk

(
k

e

)k

e
1

12k+1 ≤ k! ≤
√
2πk

(
k

e

)k

e
1

12k .

Considering our ultimate interest in allowing h → 0+, it is
reasonable to assume that

1

2
LhEn(h) < 0.6968600167K,

where K is some fixed, nonzero positive real number, without
any adverse consequences. Consequently, we can infer that

|yi+1 − wi+1| ≤
Sn(L, h)

Cn(L, h)
· |yi − wi|

+
(n!)2h2n+1

(2n)!(2n+ 1)!Cn(L, h)
·M

=

(
1 +

Sn(L, h)− Cn(L, h)

Cn(L, h)

)
· |yi − wi|

+
(n!)2h2n+1

(2n)!(2n+ 1)!Cn(L, h)
·M

=

(
1 +

LhEn(h)

Cn(L, h)

)
· |yi − wi|

+
(n!)2h2n+1

(2n)!(2n+ 1)!Cn(L, h)
·M.

Employing Lemma 3, with

s(h) =
LhEn(h)

Cn(L, h)
, t(h) =

(n!)2h2n+1

(2n)!(2n+ 1)!Cn(L, h)
·M,

and

aj = |yj − wj | , for each j = 0, 1, 2, . . . , N,

we observe that

|yi+1 − wi+1| ≤ exp

(
(i+ 1) · LhEn(h)

Cn(L, h)

)
×
(
|y0 − w0|+

t(h)

s(h)

)
− t(h)

s(h)
.

Since |y0 − w0| = 0, we obtain

lim
h→0+

LhEn(h)

Cn(L, h)
= 0, and lim

h→0+

t(h)

s(h)
= 0.

Thus, we have

lim
h→0+

max
1≤i≤N

|yi+1 − wi+1| = 0,

which implies that wi+1 converges to yi+1. Consequently, the
Obreschkoff method of order 2n is convergent, as required.

Theorem 4. Under the assumptions of Theorem 3, we have

|yi+1 − wi+1| ≤
t(h)

s(h)
·
(
exp

(
(ti+1 − a)

LEn(h)

Cn(L, h)

)
− 1

)
,

(17)

for each i = 0, 1, 2, . . . , N − 1.

Proof. The inequality follows from the last inequality in the
proof of Theorem 3. Since (i + 1)h = ti+1 − t0 = ti+1 −
a, the error bound of this method is obtained from the above
inequality, which simplifies to (17).

Remark 3. According to the general theorem of stability for
well-posed initial value problems (IVPs), Theorem 3 implies
that the general Obreschkoff method described in (15) is stable
and consistent.

The primary significance of the error-bound formula pre-
sented in Theorem 4 lies in its direct proportionality to the
step size h. As a result, reducing the step size should yield
proportionally enhanced accuracy in the approximations.

IV. PERTURBATIONS OF THE GENERAL OBRESCHKOFF
METHOD

The results of Theorems 3 and 4 do not take into account the
impact of round-off errors when selecting the step size. As h
decreases, a greater number of computations is required, leading
to an increased accumulation of round-off errors. In practice,
the difference equation given in (15) is not directly employed
to compute the approximation to the solution, denoted as yi, at
a mesh point ti. Instead, we use an equation of the form

v0 = α+ δ0,

vi+1 = vi + hB̃
(n)
1 (ti, vi) + hB̃

(n)
2 (ti+1, vi+1) + δi+1, (18)

for each i = 0, 1, 2, . . . , N − 1, where

B̃
(n)
1 (ti, vi) :=

n∑
k=1

(
n
k

)(
2n
k

) hk−1

k!
f (k−1)(ti, vi),
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and

B̃
(n)
2 (ti+1, vi+1) :=

n∑
k=1

(−1)k+1

(
n
k

)(
2n
k

) hk−1

k!
f (k−1)(ti+1, vi+1),

for each i = 0, 1, 2, . . . , N − 1.
Here, δi represents the round-off error associated with the

value vi. By employing techniques similar to those used in
the proof of Theorem 3, we can establish an error bound for
the finite-precision approximations of yi as computed by the
Obreschkoff method. Consequently, it is possible to formulate
an analogous result as follows.
Theorem 5. Let y(t) be the unique solution to the initial-value
problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α. (19)

Let v0, v1, . . . , vN be the approximations generated by the
Obreschkoff method (18) for some positive integer N . If
|δi| < δ for each i = 0, 1, . . . , N and the hypotheses of
Theorem 3 hold for (19), then

|yi − vi| ≤
(
t(h)

s(h)
+

δC(n, h)

LhEn(h)

)
·
(
e((ti−a)

LEn(h)
Cn(L,h) ) − 1

)
+ |δ0|e((ti−a)

LEn(h)
Cn(L,h) ).

(20)
for each i = 0, 1, 2, . . . , N .

Proof. The proof follows similarly to the proof of Theorem 3,
applied to the difference equation (18).

On the other hand, it is important to note that the error bound
(20) is no longer linear in h. In fact, since

lim
h→0+

(
t(h)

s(h)
+

δCn(L, h)

LhEn(h)

)
→ ∞,

it follows that as h approaches zero, the error bound increases
significantly. Despite this, since lim

h→0+
Cn(L, h) is a nonzero

finite value, for simplicity, it can be neglected. Thus, as the
step size h tends toward infinitesimally small values, the error
is expected to escalate. By employing calculus, it is possible to
determine a formal lower bound for the step size h. Further-
more, one can precisely determine the minimal value of the
round-off error by defining

R(h) =
t(h)

s(h)
+

δ

LhEn(h)
(21)

=
(n!)2h2n+1

(2n)!(2n+ 1)!hEn(h)
+

δ

hEn(h)
.

To determine the extreme values of R(h), we compute its
derivative

R′(h) =
(n!)2h2n+1En(h)M − 2δ(2n)!(2n+ 1)!E′

n(h)

2(2n)!(2n+ 1)!(En(h))2
.

This implies that[
(n!)2h2n+1En(h)M − 2δ(2n)!(2n+ 1)!

]
E′

n(h) = 0.

Since E′
n(h) = 0 is not possible (as En(h) is defined above

and is not a constant function), we must have

(n!)2h2n+1En(h)M − 2δ(2n)!(2n+ 1)! = 0.

As En(h) is a finite series in h of order n, we introduce the
following simplification:

hr = h2n+1 min
1≤k≤n

{hk},

βn =

n∑
k=1

(
n
k

)(
2n
k

) 1

k!
,

where r is a known fixed positive integer that depends on the
order of the Obreschkoff method used and does not exceed
3n+ 1. Thus, we obtain

h2n+1En(h) =

n∑
k=1

(
n
k

)(
2n
k

) h2n+1+k

k!

≥ 2δ(2n)!(2n+ 1)!

(n!)2M
≥ hrβn.

Hence, we conclude that

hr ≤ 2δ(2n)!(2n+ 1)!

(n!)2Mβn
,

or equivalently,

h ≤
(
2δ(2n)!(2n+ 1)!

(n!)2Mβn

) 1
r

.

This implies that R′(h) < 0, meaning that R(h) is decreasing.
Following the same procedure but setting

hr = h2n+1 max
1≤k≤n

{hk},

suggests that

h ≥
(
2δ(2n)!(2n+ 1)!

(n!)2Mβn

) 1
r

,

which implies R′(h) > 0, meaning that R(h) is increasing.
Hence, the minimal value of R(h) occurs when

h =

(
2δ(2n)!(2n+ 1)!

(n!)2Mβn

) 1
r

, n = 1, 2, . . .

As the step size h is reduced beyond this critical value, the
total error in the approximation tends to increase. Nevertheless,
it is important to note that, under typical circumstances, the
magnitude of the error, denoted by δ, remains sufficiently small.
Consequently, this established lower bound for h does not
significantly impact the efficacy or accuracy of the Obreschkoff
method in its computational implementation. Despite the the-
oretical considerations regarding the escalation of error with
decreasing h, the practical application of the Obreschkoff
method remains robust within the determined range of step
sizes.
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V. NUMERICAL EXPERIMENTS

In this section, we apply the Obreschkoff method of order
8 (16) with various step sizes to several initial value problems
(IVPs).
Example 1. The Obreschkoff method (16) is employed to
approximate the solution of the initial-value problem

y′(t) = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5. (22)

The specific parameters are set as follows: N = 10, h = 0.2,
ti = 0.2i, and w0 = 1. This approximation is then compared
with the exact solution given by

y(t) = (t+ 1)2 − 0.5et.

Furthermore, a comparison is made between the classical
Runge–Kutta (RK) approach and our approximation. Specifi-
cally, Fig. 1 illustrates the exact solution compared with second-
order methods using a step size of h = 0.2. Meanwhile, Fig. 2
and Table I present the absolute errors of the Obreschkoff and
RK methods of orders 8 and 6, respectively, with the same step
size.
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Fig. 1. Comparison of the exact solution with the Obreschkoff and Runge–Kutta
methods of orders 8 and 6, respectively, with step size h = 0.2, applied in Example 1
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Fig. 2. Absolute errors of the Obreschkoff and Runge–Kutta methods of orders 8 and 6,
respectively, with step size h = 0.2, applied in Example 1

As observed, the Obreschkoff method (16) provides sig-
nificantly better approximations compared to the well-known

Runge–Kutta (RK) method of order 6. Fig. 1 and Fig. 2
illustrate the comparison between the approximate solutions
obtained using both methods, along with their corresponding
absolute errors for a step size of h = 0.2.

TABLE I. COMPARISON OF ABSOLUTE ERRORS IN THE RUNGE–KUTTA
(RK) METHOD OF ORDER 6 AND THE OBRESCHKOFF METHOD (OM)

OF ORDER 8 APPLIED IN EXAMPLE 3 WITH STEP SIZE h = 0.2

ti RK Error ×10−5 OM Error ×10−12

0.0 0.0000000 0.0000000

0.2 0.0456003 0.0124344

0.4 0.0977679 0.0304201

0.6 0.1571755 0.0548450

0.8 0.2244720 0.0897060

1.0 0.3002382 0.1376676

1.2 0.3849260 0.2002842

1.4 0.4787718 0.2868816

1.6 0.5816794 0.3996802

1.8 0.6930614 0.5515587

2.0 0.8116256 0.7460698

Example 2. The Obreschkoff method (16) is employed to
approximate the solution of the initial-value problem

y′(t) = t exp(y), 0 ≤ t ≤ 0.7, y(0) = 1. (23)

The specific parameters are set as follows: N = 10, h = 0.07,
ti = 0.07i, and w0 = 1. This approximation is then compared
with the exact solution given by

y(t) = − ln

(
exp(−1)− 1

2
t2
)
.

Furthermore, a comparison is made between the classical
Runge–Kutta (RK) approach and our approximation. Specifi-
cally, Fig. 3 illustrates the exact solution compared with second-
order methods using a step size of h = 0.07, while Fig. 4 and
Table II present the absolute errors of the Obreschkoff and RK
methods of orders 8 and 6, respectively, with the same step
size.
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Fig. 3. Comparison of the exact solution with the Obreschkoff and Runge–Kutta
methods of orders 8 and 6, respectively, with step size h = 0.07, applied in Example
2
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Fig. 4. Absolute errors of the Obreschkoff and Runge–Kutta methods of orders 8 and 6,
respectively, with step size h = 0.07, applied in Example 2

TABLE II. COMPARISON OF ABSOLUTE ERRORS IN THE RUNGE–KUTTA
(RK) METHOD OF ORDER 6 AND THE OBRESCHKOFF METHOD (OM)

OF ORDER 8 APPLIED IN EXAMPLE 2 WITH STEP SIZE h = 0.07

ti RK Error ×10−6 OM Error ×10−6

0.0 0.00000000 0.00000000

0.07 0.00079991 0.00000019

0.14 0.00185132 0.00000095

0.21 0.00853944 0.00000298

0.28 0.02081735 0.00000859

0.35 0.04176154 0.00002574

0.42 0.07708550 0.00008657

0.49 0.13675361 0.00035061

0.56 0.23260169 0.00187397

0.63 0.31537420 0.01536397

0.70 0.73768121 0.26095318

As observed, the Obreschkoff method (16) provides sig-
nificantly better approximations compared to the well-known
Runge–Kutta (RK) methods.
Example 3. The Obreschkoff method (16) is employed to
approximate the solution of the initial-value problem

y′(t) = y2, 0 ≤ t ≤ 0.9, y(0) = 1. (24)

The specific parameters are set as follows: N = 10, h = 0.09,
ti = 0.09i, and w0 = 1. This approximation is then compared
with the exact solution given by

y(t) =
1

1− t
.

Furthermore, a comparison is made between the
Runge–Kutta (RK) method and our approximation. Specifically,
Fig. 5 illustrates the exact solution compared with second-order
methods using a step size of h = 0.09, while Fig. 6 and Table
III present the absolute errors of the Obreschkoff and RK
methods of orders 8 and 6, respectively, with the same step
size.

To enhance our outcomes and improve the Obreschkoff
method (16), we consider the following example.
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Fig. 5. Comparison of the exact solution with the Obreschkoff and Runge–Kutta
methods of orders 8 and 6, respectively, with step size h = 0.09, applied in Example
3
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Fig. 6. Absolute errors of the Obreschkoff and Runge–Kutta methods of orders 8 and 6,
respectively, with step size h = 0.09, applied in Example 3

TABLE III. COMPARISON OF ABSOLUTE ERRORS IN THE RUNGE–KUTTA
(RK) METHOD OF ORDER 6 AND THE OBRESCHKOFF METHOD (OM)

OF ORDER 8 APPLIED IN EXAMPLE 3 WITH STEP SIZE h = 0.09

ti RK Error OM Error
0.0 0.000000000000 0.000000000000

0.09 0.000000078166 0.000000000009

0.18 0.000000234783 0.000000000038

0.27 0.000000556930 0.000000000130

0.36 0.000001253147 0.000000000454

0.45 0.000002875355 0.000000001817

0.54 0.000007090867 0.000000009054

0.63 0.000019952035 0.000000062989

0.72 0.000070376682 0.000000739863

0.81 0.000376619449 0.000021780352

0.90 0.004264157022 0.004944160607

Example 4. The Obreschkoff method (16) is employed to
approximate the solution of the system of linear initial-value
problems 

z′1(s) = z2, z1(0) = 1,

z′2(s) = −z1 − 2es + 1, z2(0) = 0,

z′3(s) = −z1 − es + 1, z3(0) = 1,

for 0 ≤ s ≤ 2, with specific parameters set as follows: N = 10,
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h = 0.2, and ti = 0.2i. This approximation is then compared
with the exact solution given by

z1(s) = cos(s) + sin(s)− es + 1,

z2(s) = − sin(s) + cos(s)− es,

z3(s) = − sin(s) + cos(s).

Furthermore, a comparison is made between the classical
Runge–Kutta (RK) method and our approximation. Specifically,
Fig. 7, Fig. 9, and Fig. 11 illustrate the exact solution compared
with the Obreschkoff and RK methods for a step size of
h = 0.2. Meanwhile, Fig. 8, Fig. 10, and Fig. 12, along
with Tables IV, V, and VI, present the absolute errors of the
Obreschkoff and RK methods of orders 8 and 6, respectively,
using the same step size. Overall, the Obreschkoff method
provides remarkably accurate approximations compared to the
RK method.
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Fig. 7. The exact solution of z1(s) compared with the Obreschkoff and Runge–Kutta
methods of orders 8 and 6, respectively, with step size h = 0.2 applied in Example 4
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Fig. 8. Absolute errors of the Obreschkoff and Runge–Kutta methods of orders 8 and 6,
respectively, with step size h = 0.2 applied in Example 4 for z1(s)

VI. RECOMMENDATION

Based on comprehensive analytical and numerical assess-
ments, it is conclusively established that the Obreschkoff

method excels in approximating solutions to both linear and
nonlinear Initial Value Problems (I.V.P.s) when compared to
the Runge–Kutta (RK) method. The demonstrated superiority
of the Obreschkoff method extends beyond mere similarity,
revealing heightened stability and accelerated convergence. This
empirical evidence underscores the method’s robustness and
efficiency in handling diverse cases in mathematical modeling
and analysis.
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Fig. 9. The exact solution of z2(s) compared with the Obreschkoff and Runge–Kutta
methods of orders 8 and 6, respectively, with step size h = 0.2 applied in Example 4
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Fig. 10. Absolute errors of the Obreschkoff and Runge–Kutta methods of orders 8 and
6, respectively, with step size h = 0.2 applied in Example 4 for z2(s)

Furthermore, the Obreschkoff method presents distinct ad-
vantages over the RK method, particularly in cases involving
intricate or rapidly changing dynamics, or when an analytical
solution is required. Notably, it requires only three derivatives to
achieve a solution with an error of order O(h8). Its enhanced
stability ensures a more reliable approximation of solutions,
while the accelerated convergence significantly reduces the
computational burden. These features position the Obreschkoff
method as an invaluable tool for researchers, scientists, and
practitioners seeking precise and efficient solutions to a broad
spectrum of linear and nonlinear I.V.P.s.
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Fig. 11. The exact solution of z3(s) compared with the Obreschkoff and Runge–Kutta
methods of orders 8 and 6, respectively, with step size h = 0.2 applied in Example 4
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On the other hand, it is well known that Taylor’s method
of order n can be accurate; however, its main drawback lies in
the computational complexity of evaluating higher-order deriva-
tives. For this reason, researchers often prefer the Runge–Kutta
method, which typically provides the same or even greater
accuracy without explicitly computing high-order derivatives.
In this work, we have proposed a method that attains an
accuracy of order 8 while requiring only three derivatives,
unlike the Taylor method, which demands eight derivatives for
the same order of accuracy. The most significant advantage of
our proposed method is its ability to achieve a high level of
precision while minimizing computational cost, making it more
efficient and practical for various applications.

The Obreschkoff method has demonstrated remarkable per-
formance compared to other methods, particularly the widely
used RK method of order 6, as shown in Example 4. There is no
doubt regarding the efficiency of the Obreschkoff method (16);
indeed, this method provides outstanding approximations for
linear systems of I.V.P.s, especially when an analytical solution
is required.

In light of these findings, this work strongly recommends
the adoption of the Obreschkoff method (16) as a preferred
approach for solving I.V.P.s. Its proven advantages not only
contribute to the advancement of numerical techniques but also
pave the way for more accurate and efficient solutions across
various scientific and engineering disciplines.

TABLE IV. COMPARISON OF ABSOLUTE ERRORS IN THE RUNGE–KUTTA (RK)
METHOD OF ORDER 6 AND THE OBRESCHKOFF METHOD (OM) OF ORDER 8 APPLIED

IN EXAMPLE 4 WITH STEP SIZE h = 0.2 FOR z1(s)

ti RK Error OM Error (×10−11)
0.0 0.0000000 0.0000000

0.2 0.0426668 0.0008770

0.4 0.0927842 0.0036082

0.6 0.1468497 0.0084821

0.8 0.2008820 0.0156014

1.0 0.2506502 0.0250022

1.2 0.2919269 0.0366373

1.4 0.3207555 0.0506261

1.6 0.3337148 0.0667910

1.8 0.3281705 0.0850874

2.0 0.3024980 0.1054267

TABLE V. COMPARISON OF ABSOLUTE ERRORS IN THE RUNGE–KUTTA
(RK) METHOD OF ORDER 6 AND THE OBRESCHKOFF METHOD (OM) OF
ORDER 8 APPLIED IN EXAMPLE 4 WITH STEP SIZE h = 0.2 FOR z2(s)

ti RK Error OM Error (×10−12)
0.0 0.0000000 0.0000000

0.2 0.0027999 0.0436872

0.4 0.0234673 0.0918154

0.6 0.0650996 0.1405542

0.8 0.1301210 0.1856292

1.0 0.2202233 0.2229327

1.2 0.3363741 0.2486899

1.4 0.4788972 0.2611244

1.6 0.6476335 0.2557953

1.8 0.8421832 0.2318145

2.0 1.0622309 0.1882938

TABLE VI. COMPARISON OF ABSOLUTE ERRORS IN THE RUNGE–KUTTA (RK)
METHOD OF ORDER 6 AND THE OBRESCHKOFF METHOD (OM) OF ORDER 8 APPLIED

IN EXAMPLE 4 WITH STEP SIZE h = 0.2 FOR z3(s)

ti RK Error OM Error (×10−12)
0.0 0.0000000 0.0000000

0.2 0.0027999 0.0213162

0.4 0.0234673 0.0422994

0.6 0.0650996 0.0578981

0.8 0.1301210 0.0622939

1.0 0.2202234 0.0500710

1.2 0.3363742 0.0156541

1.4 0.4788973 0.0467403

1.6 0.6476337 0.1423305

1.8 0.8421834 0.2766675

2.0 1.0622312 0.4545253

VII. CONCLUSION AND FUTURE WORK

This paper presented the Obreschkoff method as a high-order
numerical approach for solving initial value problems (IVPs).
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Theoretical analysis confirmed its stability and convergence,
while numerical comparisons demonstrated superior accuracy
over classical Runge-Kutta methods. Despite its efficiency,
future work will focus on adaptive step-size implementation,
extending the method to stiff and large-scale systems, optimiz-
ing computational complexity, and exploring GPU paralleliza-
tion. Additionally, further comparisons with modern numerical
techniques and applications in real-world problems will provide
deeper insights into its practical utility.
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