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Abstract—The exponential growth of the Internet of Things 

(IoT) has heightened the need for secure, privacy-preserving, 

and efficient cyber-attack detection mechanisms. This study 

introduces the Customized Temporal Federated Learning 

through Adversarial Networks (CusTFL-AN) framework, 

which combines Temporal Convolutional Networks (TCNs) and 

Generative Adversarial Networks (GANs) for robust and 

personalized attack detection. CusTFL-AN enables clients to 

train local models while maintaining data privacy by generating 

synthetic datasets using GANs and aggregating these at a central 

server, thereby mitigating risks associated with direct data 

sharing. The framework's effectiveness is demonstrated on 

three benchmark datasets—UNSW-NB15, BoT-IoT, and Edge-

IIoT—achieving detection accuracies of 99.2%, 99.5%, and 

99.25%, respectively, significantly outperforming state-of-the-

art methods. Key enhancements include addressing data 

heterogeneity through federated aggregation, minimizing 

overfitting using GAN validation and cross-validation 

techniques, and ensuring interpretability to support practical 

adoption in real-world IoT scenarios. Privacy mechanisms are 

strengthened to prevent potential data leakage during 

aggregation, and ethical considerations surrounding the use of 

synthetic datasets are acknowledged. Furthermore, the impact 

of computational constraints, network latency, and 

communication overhead on resource-constrained IoT devices 

has been carefully analyzed. While the results affirm the 

robustness and scalability of CusTFL-AN, future work will 

focus on extending evaluations to more diverse datasets and 

addressing the challenges of adversarial attacks. CusTFL-AN 

represents a significant step forward in privacy-preserving 

federated learning, offering practical solutions to real-world IoT 

cybersecurity challenges. 

Keywords—Federated Learning; Adversarial Networks; 

Cyber-Attack Detection; Temporal Convolutional Networks; 

Privacy Preservation. 

I. INTRODUCTION  

The rapid expansion of the Internet of Things (IoT) 

ecosystem, encompassing smart homes, healthcare devices, 

industrial sensors, and autonomous vehicles, has introduced 

unprecedented opportunities for automation and data-driven 

insights. However, this growth has also significantly 

increased the attack surface for cyber threats. Devices with 

limited computational power and weak security protocols, 

such as smart thermostats, wearable health monitors, and 

industrial actuators, are particularly vulnerable to exploits 

like Distributed Denial of Service (DDoS) attacks, 

ransomware, and data exfiltration [1][2]. Reports indicate a 

dramatic rise in cyberattacks, with incidents doubling 

between 2020 and 2021, as IoT devices become prime targets 

due to their accessibility and volume of sensitive data 

exchanged [3]. Recent studies highlight a 40% increase in 

botnet activities targeting IoT devices, emphasizing the 

urgency of effective countermeasures [4]. 

Traditional machine learning (ML) and deep learning 

(DL) techniques have been extensively applied to address 

these threats, but their reliance on centralized data 

aggregation presents significant privacy challenges. 

Centralized architectures expose sensitive user data to risks 

of interception, unauthorized access, and misuse [5][6]. For 

example, a breach in centralized intrusion detection systems 

could lead to large-scale compromises of private user data 

[7]. While Federated Learning (FL) offers a decentralized 

alternative by enabling model training at the edge without 

raw data sharing, current FL methods face substantial 

challenges, including client heterogeneity, data imbalance, 

and scalability [8][9]. The use of a single global model in FL 

often fails to accommodate the diverse requirements of IoT 

clients, and reliance on uniform model designs can lead to 

intellectual property leaks and suboptimal performance [10]. 

To address these limitations, this study introduces the 

Customized Temporal Federated Learning through 

Adversarial Networks (CusTFL-AN) framework, which 

integrates Temporal Convolutional Networks (TCNs) and 

Generative Adversarial Networks (GANs). TCNs are utilized 

for capturing temporal dependencies in multivariate IoT 

traffic data [11], while GANs generate synthetic datasets that 

preserve privacy during aggregation [12]. This approach 

ensures that each client can benefit from federated knowledge 

without exposing sensitive data or model architectures. 

Synthetic data generation through GANs not only mitigates 

privacy concerns but also addresses the heterogeneity of IoT 

datasets, enhancing detection robustness across various 

attack scenarios. The integration process involves generating 

client-specific synthetic data, aggregating it at a central 

server, and redistributing enriched datasets for iterative 
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model refinement, thereby bridging the gap between privacy 

preservation and high performance [13]. 

The ethical and legal implications of leveraging GAN-

generated synthetic data are significant and have been 

carefully considered. While synthetic data mitigates direct 

privacy risks, concerns about the potential misuse of 

generated patterns or reverse engineering remain [14]. 

Ethical safeguards, such as rigorous dataset validation and 

adherence to privacy regulations like GDPR, are integral to 

the proposed framework [15]. 

The objectives of this research are clearly defined to 

address critical gaps in existing FL solutions. Specifically, 

the study aims to (1) enable personalized model training for 

diverse IoT clients without compromising data privacy, (2) 

enhance detection accuracy by leveraging synthetic datasets 

and addressing data heterogeneity, and (3) evaluate the 

practical feasibility of the proposed framework under 

constraints such as communication overhead, latency, and 

resource limitations. This research thus contributes to a 

theoretically grounded, practically viable, and ethically 

responsible solution to IoT cybersecurity challenges. 

The rest of the paper is structured as follows: Section 2 

reviews related work, Section 3 explains the proposed 

methodology, Section 4 presents the performance evaluation 

results, and Section 5 concludes the study with future 

research directions. 

II. RELATED WORKS 

We first review recent works on privacy-preserving 

frameworks and Federated Learning (FL) for IoT security. A 

few targeted techniques in the literature are grouped based on 

their associated limitations, followed by a discussion of how 

our proposed approach fills these gaps. 

A. Cyber Attack Detection in IoT with  Privacy Preserving 

Frameworks 

Recent interest in privacy preservation regarding 

cyberattack detection in IoT has sprung up with the high 

number of devices connected and the nature of data being 

exchanged within cyberspaces. Various approaches to 

resolve this challenge have been proposed, with an emphasis 

on keeping data private while still enabling useful intrusion 

detection. Another well-known scheme is federated learning 

techniques that enable model training based on collaborative 

training between IoT-distributed devices without the need to 

transmit network traffic data over a network [15]. 

Comparison to standalone models trained locally on each 

device has revealed this method improves on detection 

accuracy and communications efficiency by a significant 

margin. A hierarchical blockchain based federated learning 

framework for secure and privacy constrained collaborative 

IoT intrusion detection has been proposed, advocating the 

need for sharing cyber threat intelligence among 

interorganizational IoT networks [17]. Several approaches 

have been proposed to address this challenge, with a focus on 

maintaining data privacy, while enabling effective intrusion 

detection. One prominent approach is the use of federated 

learning techniques, which allow collaborative model 

training across decentralized IoT devices without the direct 

transmission of network traffic data [16]. This method has 

shown significant improvements in detection accuracy and 

communication efficiency compared with standalone models 

trained locally on individual devices. Similarly, a hierarchical 

blockchain-based federated learning framework has been 

proposed to enable secure and privacy-preserved 

collaborative IoT intrusion detection, emphasizing the 

importance of sharing cyber threat intelligence among inter-

organizational IoT networks [17]. Some researchers have 

sought to integrate trust management and privacy-preserving 

mechanisms into collaborative intrusion detection systems 

(CIDS). An example is the general approach of enhanced 

security for such environments with a CIDS framework, 

which includes lightweight architecture, distributed ledger 

technology, and dominated learning[18]. In a different 

approach, a Social Intrusion Detection System (SIDS)[19] 

takes advantage of the norms of relationships among objects 

in a system to support a privacy-preserving collaborative 

method of detection in IoT environments. Finally, we 

conclude that the field of privacy-preserving cyberattack 

detection in IoT is advancing rapidly from federated learning 

and blockchain-based solutions to trust-oriented and social 

relationship-based systems. These frameworks attempt to 

achieve a tradeoff between the validity of intrusion detection 

and retaining data privacy in distributed and sensitive IoT 

ecosystems.  

B. Blockchain-Based Federated Learning for Cyber Attack 

Detection in IoT 

However, cyber-attack detection in IoT environments has 

emerged as a promising approach to blockchain-based 

federated learning approaches that address privacy concerns 

and provide greater security. This integration has been 

explored in several studies and has been shown to achieve 

improved intrusion detection while maintaining data privacy. 

A federated learning framework based on hierarchical 

blockchain to support secure, and privacy preserved 

collaborative IoT intrusion detection [20] [21] has been 

proposed. This study focuses on the sharing of cyber threat 

intelligence among interorganizational IoT networks to 

enhance the model detection ability. Securely designed by a 

secure immutable ledger for transactions and systematic 

smart contracts for the evaluation of the task, the framework 

combines an ML-based intrusion detection system for robust 

attacks while maintaining data privacy. We propose a 

communication cost optimization method that considers node 

security verification for blockchain-based federated learning 

to reduce the communication costs induced by the increase in 

node security verification, along with the solution for security 

evaluation [22]. This method combines competing voting 

verification methods and aggregation algorithms to enhance 

communication costs by incorporating double-layer 

aggregation-filtered learning. We developed an intelligent 

intrusion detection mechanism, FIDANN, in the healthcare 

sector based on federated learning using Dwarf mongoose 

optimized artificial neural networks. 

Using blockchain technology, this approach mitigates 

contamination attacks and guarantees full transparency and 

data integrity in a decentralized system. It has been 

experimentally demonstrated that federated deep learning 

approaches a better scale to ensure private data from IoT 

devices while achieving higher accuracy in detecting attacks 
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compared with classic/centralized machine learning 

algorithms [24]. This study compared the performance of 

centralized and federated learning using three deep learning 

approaches: These 3 are Recurrent Neural networks (RNN), 

convolutional neural networks (CNN), and deep neural 

networks (DNN). We have shown that the combination of 

block chaining and federated learning for intrusion detection 

in IoT offers good potential to mitigate security and privacy 

risks. However, these approaches have extended detection 

capabilities, featured finer data privacy, and enhance 

resistance against multiple cyberattacks in the IoT 

environment. 

C. Deep Federated Learning Models for Cyber Attack 

Detection in IoT 

Cyber-attack detection in IoT environments has presented 

privacy concerns, which are addressed by emergent Deep 

Federated Learning (DFL) models, while preserving high 

detection accuracy. The resulting models take advantage of 

the distributed nature of IoT networks to train machine-

learning models in a collaborative manner without raw data 

[25, 26].Furthermore, deep learning integrated with federated 

learning has shown a 5–8.2% improvement in the f1-score for 

detecting various types of cyber-attacks, including zero-day 

botnet attacks, DDoS attacks, and other intrusions [27], [28], 

[29]; for instance, the deep federated multimodal model 

proposed in [30] improved by 8.2% across three clients and 

provided interpretability through Shapley Additive 

Explanations (SHAP).  Various types of cyber-attacks exist, 

including zero-day botnet attacks, DDoS attacks, and other 

intrusions [27][28][29]. For instance, a deep federated 

multimodal model introduced in [30] demonstrated an 

average 8.2% improvement in the f1-score across three 

clients, while also enhancing interpretability using Shapley 

Additive Explanations (SHAP). Notably, some studies have 

reported that the performance of federated deep learning 

approaches is better than that of classic centralized machine 

learning models, in terms of both privacy assurance and 

attack detection accuracy [31]. Nevertheless, federated 

learning models experience challenges including data 

heterogeneity and class imbalance among devices. To 

address this, novel approaches such as FedMADE [32] that 

dynamically aggregate local models proportional to their 

contribution to the overall performance improve the minority 

attack classification accuracy by as much as 71.07%. I 

conclude that deep federated learning models provide a 

promising solution for detecting cyberattacks in IoT networks 

in a way that respects privacy with high detection accuracy. 

In the face of the field’s evolution, challenges posed by data 

heterogeneity and class imbalance are key to progress in 

making these models more performant and robust in real-

world IoT security use cases. 

D. Adaptive Federated Learning for Cyber Attack Detection 

in IoT 

Adaptive Federated Learning (AFL) has emerged as a 

promising approach for cyber-attack detection in IoT 

environments, as it addresses the challenges of data privacy 

and heterogeneity. Several studies have explored this area, 

showing the potential of AFL in improving the detection 

accuracy and efficiency. FedMADE, a novel dynamic 

aggregation method, was proposed to address the issue of 

attack-class imbalance among devices. This approach 

clusters devices based on their traffic patterns and aggregates 

local models according to their contribution to the overall 

performance. Experimental results have shown up to a 

71.07% improvement in minority attack classification 

accuracy compared to other FL algorithms designed for non-

IID data [33]. Another study introduced a hierarchical 

blockchain-based federated learning framework for secure 

and privately preserved collaborative IoT intrusion detection. 

This approach emphasizes the importance of sharing 

cyberthreat intelligence among inter-organizational IoT 

networks to enhance model detection capabilities while 

ensuring data privacy [34]. Researchers have also explored 

the use of various deep learning models within the FL 

framework for IoT security. A comprehensive study 

comparing centralized and federated versions of Recurrent 

Neural Networks (RNN), Convolutional Neural Networks 

(CNN), and Deep Neural Networks (DNN) on three real IoT 

traffic datasets demonstrated that federated deep learning 

approaches outperformed classic centralized versions in 

terms of privacy assurance and attack detection accuracy 

[35]. Some studies have investigated the impact of different 

data distributions and aggregation functions on FL-enabled 

Intrusion Detection Systems (IDS). For instance, an 

evaluation using the ToN_IoT dataset with various 

partitioning schemes based on IoT device IP addresses and 

attack types revealed the importance of considering data 

distribution in FL-IDS implementations [36]. In conclusion, 

adaptive federated learning approaches for cyber-attack 

detection in IoT have shown promising results in addressing 

privacy concerns, handling data heterogeneity, and 

improving the detection accuracy. However, challenges 

remain in optimizing the model performance across diverse 

IoT environments and attack scenarios. 

Siracusa and Domenico, using the name Domenico) 

proposed an adaptive federated learning approach (FLAD) 

for DDoS attack detection in dynamic cybersecurity 

scenarios [37]. By dynamically allocating the processing 

power among nodes with more complex attack profiles, 

FLAD improves the model convergence. However, this 

method requires numerous model updates; thus, the detection 

time is increased. This issue is addressed by our CusTFL-AN 

model, in which each client learns to update its model on 

synthesized datasets faster and with better accuracy by 

customizing FL through adversarial sample sharing. 

E. Clustered Federated Learning for Cyber Attack 

Detection in IoT 

The problems of data privacy and heterogeneity have 

spurred the development of a new approach for cyber-attack 

detection in IoT environments known as Clustered Federated 

Learning (CFL). Several of these applications have been 

principally explored and found to show the significant 

capacity of CFL in increasing detection accuracy while 

simultaneously promoting data privacy. We propose a novel 

deep federated multimodal model for cyberattack detection in 

Industrial Control System (ICS) environments with 

representation learning domain adaptation and federated 

learning, where we trained it to 8.2% f1 score improvement 

on average on three clients, making federated learning a 

potential tool for ICS security [38]. Federated deep-learning 
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approaches have been shown to outperform classic 

centralized machine learning in terms of ensuring the privacy 

of IoT device data and attaining more accurate attack 

detection [39]. In this study, we compared the performance 

of centralized and federated learning in terms of three deep 

learning models (CNN, RNN, and DNN) for real IoT traffic 

datasets. I introduced an innovative approach for cyber threat 

detection in IoT networks using an optimal Federated 

Learning approach with Digital Twin technology [40]. 

Typically, the latency introduced by traditional federated 

averaging methods is inherently slower, but this system 

works much more efficiently, with improvements in both the 

model aggregation efficiency and latency. A deep learning 

framework, DFSat, was also constructed in the context of 

IoT-integrated satellite networks for intrusion detection [41]. 

We present a distributed deep learning-based attack detection 

framework that leverages recurrent neural network-based 

attack differentiation, which significantly enhances the 

ability to distinguish between complex cyberattacks in IoT 

devices. The SIM-FED model, which combines deep learning 

and federated learning algorithms, has been proposed [42].  to 

distinguish complex cyberattacks. The SIM-FED model, 

which combines deep and federated learning algorithms, has 

been proposed for malware detection in IoT devices [42]. 

This model reaches 99.52% accuracy, and it is resistant to 

white and black box cyber-attacks, leading to the strong 

potential of CFL for improving IoT security. Taken together, 

these studies indicate that Clustered Federated Learning is 

becoming more relevant, accurate, privacy preserving, and 

more robust against various attack types for cyber-attack 

detection in the IoT environment [43][44]. 

TABLE I.  COMPARATIVE ANALYSIS OF TRADITIONAL CYBER-ATTACK 

DETECTION APPROACHES IN IOT ENVIRONMENTS 

Approach Description Advantages Limitations 

Centralized 
ML Models 

Central server 
collects data 

from IoT 

devices for 
training [39] 

High accuracy 

with large 

datasets. 

Privacy risks, 
data 

transmission 

costs, and central 
point of failure. 

Distributed 

IDS 

Intrusion 

Detection 
Systems 

deployed 

across the 
network [15] 

Real-time 
detection, 

distributed 

nature. 

Scalability 
issues, potential 

inconsistency in 

detection. 

Signature-

based IDS 

Detects known 

attacks using 

pre-defined 
signatures [27] 

High accuracy 
for known 

attacks. 

Ineffective 

against unknown 

or evolving 
attacks. 

Anomaly-

based IDS 

Monitors for 

deviations 
from normal 

behavior 

patterns [26] 

Can detect 
zero-day 

attacks. 

High false 

positive rates 

require constant 
updates. 

Blockchain-
Based 

Models 

Use 
blockchain for 

secure data 

sharing among 
IoT devices 

[16] 

Enhanced 
data integrity 

and privacy. 

High 

computational 

costs and 
network latency. 

Federated 

Learning 

Collaborative 

model training 
without 

sharing raw 

data [17] 

Preserves data 
privacy, 

decentralized. 

Vulnerable to 
data 

heterogeneity 

and 
communication 

overhead 

F. Limitations of the Study 

1) Data Heterogeneity: The heterogeneity of IoT-

generated data poses a significant challenge for federated 

learning models to achieve effective convergence, leading to 

variability in detection accuracy. 

2) Communication Costs: Frequent model updates in 

federated learning can lead to high communication costs, 

especially in resource-constrained IoT environments. 

3) Class Imbalance: Many studies have struggled with 

imbalanced datasets, where some attack types are 

underrepresented, thereby affecting the detection accuracy of 

minority attack classes. 

4) Scalability: As IoT ecosystems continue to expand, 

maintaining the performance and efficiency of privacy-

preserving frameworks has become more complex. 

5) Adversarial Attacks: Federated learning methods 

remain vulnerable to adversarial attacks, which can 

potentially compromise the training process and degrade the 

detection performance. 

6) Blockchain Overheads: While blockchain 

integration enhances security and privacy, it also introduces 

computational and storage overheads, which can impact the 

efficiency of IoT networks. 

These findings emphasize the necessity of ongoing 

research to develop more adaptive, scalable, and robust 

privacy-preserving techniques that address the evolving 

challenges in IoT cybersecurity. 

III. PROPOSED MODEL : CUSTFL-AN MODEL 

This section describes the proposed Customized 

Temporal Federated Learning through Adversarial Networks 

(CusTFL-AN) framework. The framework integrates 

Temporal Convolutional Networks (TCNs) [45] and 

Generative Adversarial Networks (GANs) [46] to achieve 

effective, privacy-preserving, and scalable cyber-attack 

detection in IoT environments. The methodological flow is 

structured to ensure clarity, address data heterogeneity, 

mitigate communication costs, and provide robust 

convergence guarantees. 

The proposed framework, Customized Temporal 

Federated Learning through Adversarial Networks (CusTFL-

AN), introduces a novel approach to addressing the 

challenges of cyber-attack detection in IoT environments 

while ensuring privacy preservation and scalability. The 

framework is structured around three interconnected 

components: client-side training, synthetic data generation, 

and federated aggregation [47]. These components work 

cohesively to enable robust and personalized attack detection 

across diverse and dynamic IoT networks. The model was 

evaluated using three well-known datasets: UNSW-NB15 

[48], BoT-IoT [49], and Edge-IioT [50], which collectively 

cover a range of network traffic patterns and attack scenarios. 

As shown in Fig. 1, the architecture of the proposed model 

presents a collaborative learning framework in which 

multiple clients (e.g., IoT devices) interact with a central 

server. The methodology is as follows.  
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Fig. 1. Architecture of proposed CusTFL-AN model 

A. Client-Side Training 

At the client level, IoT devices train local models using 

Temporal Convolutional Networks (TCNs) on their private 

datasets. This ensures that raw data remains localized, 

preserving privacy. TCNs are particularly suited for IoT 

applications as they model sequential data using causal 

dilated convolutions [51], capturing long-term dependencies 

efficiently. 

1) Initial Local Training 

In the first phase, each loT client trains a local model 

using Temporal Convolutional Networks (TCNs) on its 

private dataset, such as UNSW-NB15, BoT-loT, or Edge-

lloT. The TCN architecture is specifically chosen for its 

ability to capture long-term temporal dependencies inherent 

in loT traffic patterns, which are crucial for distinguishing 

between normal and malicious behavior. 

• Let the client-specific dataset be denoted as 𝐷𝑖
local =

{(𝑥𝑗 , 𝑦𝑗)}𝑗−1
𝑛𝑖

, where 𝑥𝑗 represents an input sequence and 𝑦𝑗 

the corresponding label. The local TCN model 𝑓𝜃 is trained 

by minimizing the cross-entropy loss: 

ℒlocal = −
1

𝑛𝑖
∑ 

𝑛𝑖

𝑗=1

[𝑦𝑗log (𝑓𝜃(𝑥𝑗))

+ (1 − 𝑦𝑗)log (1 − 𝑓𝜃(𝑥𝑗))] 

• The TCN model employs causal dilated 

convolutions to ensure that predictions at time 𝑡 depend only 

on previous inputs {𝑥1, 𝑥2, … , 𝑥𝑡}. The output at time 𝑡 is 

computed as: 

𝑧𝑡 = ∑  

𝑘−1

𝑖=0

𝑊𝑖 ⋅ 𝑥𝑡−𝑑−𝑖 

where 𝑘 is the kernel size, 𝑑 is the dilation rate, and 𝑊𝑖 are 

the convolution weights [52]. This initial training phase 

allows each client to learn attack-specific patterns in its 

localized dataset without sharing raw data, thereby 

preserving privacy. 

2) GAN Training 

To enhance privacy and address data heterogeneity, each 

client employs a Generative Adversarial Network (GAN) 

[53] for synthetic data generation. The GAN consists of two 

neural networks: 

• Generator (𝐺) : Generates synthetic data samples 

from random noise vectors 𝑧 ∼ 𝑃𝑧, where 𝑃𝑧 is a latent 

distribution (e.g., Gaussian or uniform). 

•  Discriminator ( 𝐷 ): Distinguishes between real 

data ( 𝑥 ∼ 𝑃data  ) and synthetic data ( 𝐺(𝑧) ). 

The adversarial training process is formulated as a 

minimax optimization problem: 

min
𝐺
 max
𝐷

 𝔼𝑥∼𝑃data 
[log 𝐷(𝑥)] + 𝔼𝑧∼𝑃𝑧

[log(1 − 𝐷(𝐺(𝑧)))] 

1. Discriminator Training: The discriminator is trained to 

maximize its ability to distinguish between real and 

synthetic samples: 

ℒ𝐷 = −𝔼𝑥∼𝑃data 
[log 𝐷(𝑥)] − 𝔼𝑧∼𝑃𝑧[log(1 − 𝐷(𝐺(𝑧)))] 
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2. Generator Training: The generator is optimized to 

minimize the discriminator's ability to correctly classify 

synthetic data: 

ℒ𝐺 = −𝔼𝑧∼𝑃𝑧[log 𝐷(𝐺(𝑧))] 

Through iterative updates, the generator learns to produce 

synthetic data that closely resembles the real data 

distribution, while the discriminator becomes adept at 

distinguishing between the two. This adversarial process 

continues until the generator achieves convergence, 

producing high-quality synthetic samples [54]. 

3) Synthetic Sample Integration 

In the final phase, the original local dataset and the 

generated synthetic dataset are combined to create an 

enriched dataset that improves the model's ability to 

generalize unseen patterns. Let 𝐷𝑖
synthetic 

 represent the 

synthetic dataset generated by the GAN. The updated dataset 

for client 𝑖 is: 

𝐷𝑖
update 

= 𝐷𝑖
local ∪ 𝐷𝑖

synthetic 
 

The local model 𝑓𝜃 is then retrained on 𝐷𝑖
update 

 to refine 

its ability to detect cyber-attacks across a broader range of 

scenarios. The loss function for this retraining phase is 

defined as: 

ℒupdate = −
1

|𝐷𝑖
update 

|
∑  

(𝑥,𝑦)∈𝐷
𝑖
update 

[𝑦log(𝑓𝜃(𝑥)) + (1

− 𝑦)log(1 − 𝑓𝜃(𝑥))] 

By integrating synthetic samples, the model becomes 

more robust to variations in attack patterns and is better 

equipped to handle imbalanced classes, such as rare attack 

types [55]. 

The client-side training phases of the CusTFL-AN 

framework enable localized learning while preserving data 

privacy. By combining TCN-based temporal modeling with 

GAN-driven synthetic data generation and integration, this 

process ensures effective knowledge extraction from 

heterogeneous IoT datasets, laying the foundation for robust 

and privacy-preserving federated learning. 

B. Synthetic Data Generation 

Synthetic data generation is a cornerstone of the CusTFL-

AN framework, addressing privacy concerns and data 

heterogeneity across IoT environments. This process is 

powered by Generative Adversarial Networks (GANs), 

which enable clients to create synthetic datasets that mimic 

the statistical characteristics of real data without exposing 

sensitive information. This section describes the GAN 

architecture, training process, stabilization techniques, and 

validation metrics used to ensure high-quality data synthesis. 

1) GAN Architecture 

A Generative Adversarial Network (GAN) consists of 

two neural networks trained in opposition as shown in Fig. 2. 

Generator (𝑮) : Produces synthetic data samples from 

random noise vectors 𝑧 ∼ 𝑃𝑧, where 𝑃𝑧 represents a latent 

distribution represents (e.g., Gaussian or uniform). The 

generator's goal is to learn the mapping: 

𝐺: 𝑧 → 𝑥fake , 

where 𝑥fake  closely resembles real data samples 𝑥real . 

The generator network includes fully connected and 

transposed convolutional layers (deconvolutions) for 

upsampling. ReLU activations are applied to all layers except 

the output layer, which uses a sigmoid activation to constrain 

the output to the valid data range [56]. 

Discriminator ( 𝑫 ): A binary classifier tasked with 

distinguishing between real data 𝑥real ∼ 𝑃data  and synthetic 

data 𝑥fake = 𝐺(𝑧). The discriminator outputs a probability 

score 𝐷(𝑥) ∈ [0,1], where 𝐷(𝑥) = 1 indicates real data. 

The discriminator network employs convolutional layers 

for feature extraction and fully connected layers for 

classification. Leaky ReLU activations are used to mitigate 

vanishing gradients, and the final layer applies a sigmoid 

activation [57]. 

 

Fig. 2. GAN architecture 

2) Adversarial Training 

GANs are trained through an adversarial learning process, 

where 𝐺 and 𝐷 compete in a minimax optimization game. 

The objective function is defined as: 

min
𝐺
 max
𝐷

 𝔼𝑥∼𝑃data 
[log 𝐷(𝑥)] + 𝔼𝑧∼𝑃𝑧[log(1 − 𝐷(𝐺(𝑧)))] 

1. Discriminator Update: The discriminator is trained to 

maximize its ability to classify real and synthetic data: 

ℒ𝐷 = −𝔼𝑥∼𝑃data 
[log 𝐷(𝑥)] − 𝔼𝑧∼𝑃𝑧[log(1 − 𝐷(𝐺(𝑧)))]. 

2. Generator Update: The generator is trained to minimize 

the discriminator's ability to distinguish synthetic samples 

from real ones: 

ℒ𝐺 = −𝔼𝑧∼𝑃𝑧
[log 𝐷(𝐺(𝑧))] 

During training, 𝐺 continuously improves its ability to 

generate realistic data, while 𝐷 refines its ability to 

differentiate between real and synthetic samples. This 

adversarial interplay continues until a Nash equilibrium is 

reached, where 𝐺 generates samples indistinguishable from 

real data. 

3) Stabilization Techniques 

GAN training is inherently unstable, often plagued by 

issues such as mode collapse, vanishing gradients, and 

oscillatory behavior [58]. To address these challenges, the 

following stabilization techniques are implemented: 
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a) Gradient Penalty: A penalty term is added to the 

discriminator's loss function to ensure smooth gradients, 

improving stability: 

ℒ𝐷
penalty 

= 𝜆𝔼�̂�∼𝑃interp 
[(∥∥∇�̂�𝐷(�̂�)∥∥2 − 1)

2
], 

where 𝜆 controls the penalty strength, and 𝑃interp  represents 

interpolated samples between real and synthetic data. 

b) Spectral Normalization: The discriminator's 

weights are normalized to constrain the Lipschitz constant, 

preventing overfitting and ensuring robust training dynamics 

[59]. 

c) Feature Matching: Instead of directly optimizing 𝐺 

to fool 𝐷, the generator is trained to match intermediate 

feature representations extracted by 𝐷. This encourages 𝐺 to 

generate more realistic and diverse samples [60]. 

d) Batch Normalization: Applied to both 𝐺 and 𝐷, 

batch normalization accelerates convergence and mitigates 

mode collapse by stabilizing layer activations during training 

[61]. 

e) Learning Rate Scheduling: Lower learning rates 

for 𝐺 compared to 𝐷 maintain balanced training dynamics. 

Optimizers such as Adam with tuned hyperparameters ( 𝛼 =
0.0002, 𝛽1 = 0.5, 𝛽2 = 0.999 ) are used for both networks. 

4) Validation Metrics 

To ensure the quality and utility of synthetic data, the 

following metrics are employed for validation: 

a) Frechet Inception Distance (FID) [62]: Measures the 

distributional similarity between real and synthetic data in 

feature space. Lower FID scores indicate better alignment 

with real data distributions: 

FID = ∥∥𝜇real − 𝜇fake ∥∥2
2

+ Tr(Σreal + Σfake − 2(Σreal Σfake )
1/2), 

where (𝜇, Σ) represent the mean and covariance of 

features extracted from real and synthetic data. 

b) Kolmogorov-Smirnov (KS) Test: Statistical tests 

compare the distributions of key features in real and synthetic 

datasets, ensuring representativeness. A high 𝑝-value 

indicates that the synthetic data aligns closely with the real 

data [63]. 

c) Feature Space Analysis: Generated data is analyzed 

in feature space to confirm the preservation of critical 

patterns relevant to cyber-attack detection [64]. 

d) Domain-Specific Validation: For loT-specific 

scenarios, domain experts evaluate the synthetic data to 

ensure that it captures the essential characteristics of real-

world attack and benign traffic patterns [65]. 

The GAN-driven synthetic data generation process in 

CusTFL-AN is a robust mechanism to address data 

heterogeneity and privacy concerns in IoT environments. By 

leveraging advanced architectures, stabilized adversarial 

training, and rigorous validation metrics, the framework 

ensures that the generated data is both high-quality and 

privacy-preserving, making it suitable for federated 

aggregation and redistribution [66]. 

C. Federated Aggregation and Redistribution 

Once synthetic datasets are generated, they are sent to a 

central server for aggregation and redistribution. This process 

ensures knowledge sharing while maintaining data privacy. 

Aggregation of Synthetic Data: The central server 

aggregates synthetic datasets from 𝑁 clients: 

𝐷global = ⋃  𝑁
𝑖−1 𝐷𝑖

synthetic 
  

Redistribution to Clients: To enhance the diversity of 

local datasets, the server redistributes a subset 𝐷𝑖
received  from 

𝐷global  to each client [67]: 

𝐷𝑖
update 

= 𝐷𝑖
local ∪ 𝐷𝑖

received  

D. Iterative Refinement  

Each client performs additional training rounds using the 

enriched dataset 𝐷𝑖
update 

. This iterative process allows local 

models to incorporate knowledge from other clients while 

preserving data privacy. 

Final Training: The local model 𝑓𝜃 is updated by 

minimizing the loss over 𝐷𝑖
update 

 : 

ℒupdate =
1

|𝐷
𝑖
update 

|
∑  
(𝑥,𝑦)∈𝐷

𝑖
updite ℒ(𝑓𝜃(𝑥), 𝑦)  

Global Model Refinement: The server aggregates 

updates from clients to refine the global model, ensuring 

convergence through techniques like adaptive learning rates 

and gradient clipping: 

𝑊global 
𝑡+1 = 𝑊global 

𝑡 − 𝜂∇ℒ(𝑊global 
𝑡 ) 

where 𝜂 is the learning rate. 

This iterative learning cycle continues until convergence 

criteria, such as reduced validation loss or improved 

accuracy, are met [68]. 

The CusTFL-AN architecture integrates TCNs for 

temporal modeling, GANs for privacy-preserving synthetic 

data generation, and federated learning for collaborative 

model refinement. By addressing key challenges such as data 

heterogeneity and communication efficiency, this framework 

enables scalable, privacy-aware, and effective cyber-attack 

detection in IoT environments [69]. 

E. Addressing Data Challenges 

The CusTFL-AN framework employs a series of 

advanced techniques to address key data challenges in IoT 

environments, including noisy data, missing values, class 

imbalance, and temporal dependencies. This subsection 

consolidates methods designed to enhance data quality, 

improve model performance, and ensure robust learning 

across heterogeneous datasets. 

1) Data Cleaning and Imputation 

Effective preprocessing is critical for handling noisy and 

incomplete data in IoT traffic. The CusTFL-AN framework 
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integrates adversarial and generative techniques for data 

cleaning and imputation: 

Adversarial Data Cleaning (ADC): A discriminator 

network 𝐷clean (𝑥) is trained to classify data samples 𝑥 as 

either clean or noisy. Given a dataset 𝐷raw = {𝑥𝑗}, the 

discriminator assigns a confidence score 𝐷clean (𝑥𝑗) ∈ [0,1], 

where 1 indicates clean data. The loss function for ADC is: 

ℒADC = −𝔼𝑥∼𝑃clean 
[log 𝐷clean (𝑥)]

− 𝔼𝑥∼𝑃poisy 
[log(1 − 𝐷clean (𝑥))] 

Samples flagged as noisy ( 𝐷clean (𝑥𝑗) < 𝜖, where 𝜖 is a 

threshold) are either discarded or passed to the imputation 

module. 

GAN-Based Imputation: Missing values are imputed 

using the generator 𝐺(𝑧 ∣ 𝑥context ), where 𝑥context  represents 

known features of the sample, and 𝑧 ∼ 𝑃𝑧 is a noise vector 

sampled from a latent distribution. The generator synthesizes 

plausible values 𝑥imputed  that align with the statistical 

properties of the original dataset: 

𝑥imputed = 𝐺(𝑧 ∣ 𝑥context ) 

Validation of Cleaning and Imputation: The quality of 

preprocessed data is assessed using: 

• Statistical Tests: Metrics like the Kolmogorov-Smirnov 

(KS) test ensure that cleaned and imputed data align with 

the original distribution. 

• Reconstruction Accuracy: For imputed values, 

reconstruction accuracy is calculated by comparing 

𝑥imputed  with available ground truth values. 

• Downstream Performance: The impact of preprocessing 

on model performance is evaluated through metrics such 

as accuracy and F1-score. 

F. Class Imbalance Handling 

loT datasets often exhibit significant class imbalance, 

where rare attack types are underrepresented. The 

Adversarial Minority Augmentation (AMA) strategy 

addresses this challenge: 

Adversarial Minority Augmentation (AMA): AMA 

leverages the generator 𝐺 to focus on synthesizing samples 

for minority classes. The generator's loss function is modified 

to incorporate class-specific weights 𝑤𝑘 : 

ℒ𝐺 = −𝔼𝑧∼𝑃𝑧
∑  𝐾
𝑘−1 𝑤𝑘log 𝐷(𝐺(𝑧 ∣ 𝑘))  

where 𝑤𝑘 =
1/𝑛𝑘

∑𝑗−1
𝐾  (1/𝑛𝑗)

, 𝑛𝑘 is the number of samples in class 

𝑘, and 𝐾 is the total number of classes. 

Evaluation Metrics: The effectiveness of AMA is 

evaluated using: 

• F1-Score: Measures the balance between precision and 

recall for minority classes: 

F1-Score = 2 ⋅
 Precision ⋅ Recall 

 Precision + Recall 
  

• Recall: Indicates the percentage of correctly identified 

minority class instances. 

• Precision: Evaluates the proportion of true positives 

among predicted positives. 

AMA consistently improves minority class detection by 

balancing the dataset through synthetic data generation, as 

evidenced by improved F1-scores across benchmark datasets. 

G. Temporal Dependencies 

IoT traffic data inherently contains temporal 

dependencies that must be modeled to accurately detect 

cyber-attacks. Temporal Convolutional Networks (TCNs) 

with causal dilated convolutions are employed to capture 

these long-term dependencies: 

1) Causal Dilated Convolutions (CDC): The CDC[70] 

operation ensures that the output at time t, zt, depends only 

on inputs from time steps ≤ t. For an input sequence x =
{x1, x2, … , xT}, the convolution output is: 

𝑧𝑡 = ∑  𝑘−1
𝑖=0 𝑊𝑖 ⋅ 𝑥𝑡−𝑑−𝑖  

where 𝑊𝑖 are the weights, 𝑘 is the kernel size, and 𝑑 is the 

dilation rate. The dilation rate allows the receptive field to 

grow exponentially, enabling the model to capture 

dependencies over extended time intervals [71]. 

2) Receptive Field Growth: The receptive field Rl at 

layer l is given by: 

𝑅𝑙 = (𝑘 − 1) ⋅ 𝑑𝑙−1 + 1 

This growth ensures that deeper layers capture long-term 

dependencies without significantly increasing computational 

cost. 

3) Residual Connections: To stabilize training and 

prevent vanishing gradients, residual connections are 

incorporated into the TCN layers: 

ℎ𝑡
(𝑙+1)

= 𝜎(𝑊res ⋅ 𝑧𝑡 + 𝑥𝑡), 

where 𝜎 is a non-linear activation function, 𝑊res  are the 

residual weights, and 𝑥𝑡 is the input sequence. 

These mechanisms enable the framework to effectively 

model sequential patterns in loT traffic, enhancing its ability 

to detect subtle anomalies indicative of cyber-attacks. 

H. Communication Costs 

Communication efficiency is a critical concern in loT 

networks due to constraints like bandwidth, latency, and 

energy availability. To minimize communication overhead, 

the CusTFL-AN framework employs the following methods: 

• Asynchronous Communication: Let Δ𝑊𝑖,𝑡 represent the 

model update from client 𝑖 at time 𝑡. Instead of 

synchronous updates across all clients, each client 

transmits updates independently based on significant 

changes (∥∥Δ𝑊𝑖,𝑡∥∥ > 𝜖), where 𝜖 is a predefined 

threshold. 

• Model Compression: Model weights are quantized into 

𝑄(𝑊), reducing the number of bits transmitted. The 

compression error is bounded by: 

∥ 𝑊 − 𝑄(𝑊) ∥≤ 𝛿 

where 𝛿 is the acceptable quantization loss. 
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• Adaptive Update Frequency: The server adjusts 

communication intervals based on the divergence 

𝒟(𝑊𝑡 ,𝑊𝑡−1) between consecutive model states: 

𝒟(𝑊𝑡 ,𝑊𝑡−1) = ∥∥𝑊𝑡 −𝑊𝑡−1∥∥2 

Clients communicate only when 𝒟 exceeds a threshold, 

reducing unnecessary updates. These strategies optimize 

communication without compromising model accuracy or 

scalability [72]. 

I. Model Convergence 

Convergence in federated learning is ensured through 

adaptive techniques. Let 𝑊𝑡 represent the global model at 

round 𝑡, aggregated from client models 𝑊𝑖,𝑡. The server 

updates the global model as: 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂∇ℒ(𝑊𝑡) 

where 𝜂 is the learning rate and ∇ℒ(𝑊𝑡) is the gradient of the 

loss function. 

To stabilize convergence:  

Adaptive Learning Rate: The learning rate 𝜂 is adjusted 

based on the gradient norm: 

𝜂𝑡+1 =
𝜂𝑡

1 + 𝜆∥∥∇ℒ(𝑊𝑡)∥∥
 

where 𝜆 controls the decay rate. 

Gradient Clipping: To prevent divergence due to large 

gradients: 

∇ℒ(𝑊𝑡) = min(∥∥∇ℒ(𝑊𝑡)∥∥, 𝜏) 

where 𝜏 is the gradient clipping threshold. 

Convergence is monitored using metrics such as 

validation loss, ensuring reliable training even under client 

heterogeneity. 

Algorithm 1: CusTFL-AN Model Training Process 

Input: 

• Client datasets 𝐷𝑖
local  for each client 𝑖 ∈ [1, 𝑁], where 𝑁 

is the total number of clients. 

• Pre-trained local models 𝑀𝑖 for each client. 

• Learning rates 𝜂𝐺 (Generator) and 𝜂𝐷 (Discriminator). 

Output: 

• Final federated model with improved detection 

capabilities for cyber-attacks across loT devices. 

Step 1: Client-Side Training Phases 

For each client 𝑖 ∈ [1, 𝑁] : 

1. Initial Local Training: 

• Train the local model 𝑀𝑖 on the client's private dataset 

𝐷𝑖
local . 

• Output: Trained local model 𝑀𝑖. 

2. GAN Training: 

• Initialize the Generator 𝐺𝑖 and Discriminator 𝐷𝑖 . 

• For each iteration 𝑡 : 

Discriminator Update: 

• Sample real data 𝑥real  from 𝐷𝑖
local . 

• Sample noise 𝑧 from latent distribution 𝑝𝑧. 

• Compute discriminator loss 

𝐿𝐷𝑖 = −𝔼[log 𝐷𝑖(𝑥real )] − 𝔼[log(1 − 𝐷𝑖(𝐺𝑖(𝑧)))] 

• Update 𝐷𝑖  : 

𝜃𝐷𝑖 ← 𝜃𝐷𝑖 − 𝜂𝐷∇𝜃𝐷𝑖
𝐿𝐷𝑖 

Generator Update: 

• Sample noise 𝑧 from latent space 𝑝𝑧. 

• Compute the generator's loss: 

𝐿𝐺𝑖 = −𝔼[log 𝐷𝑖(𝐺𝑖(𝑧))] 

• Update 𝐺𝑖 : 

𝜃𝐺𝑖 ← 𝜃𝐺𝑖 − 𝜂𝐺∇𝜃𝐺𝑖
𝐿𝐺𝑖  

• Repeat until convergence. 

• Output: Synthetic dataset 𝐷𝑖
synthetic 

 generated by the 

client. 

3. In-Process Training with Synthetic Data: 

• Augmentation of the local dataset 

𝐷𝑖
update 

= 𝐷𝑖
local ∪ 𝐷𝑖

synthetic 
 

• Retrain the local model 𝑀𝑖 using 𝐷𝑖
update 

. 

• Output: Updated local model 𝑀𝑖
updated 

. 

Step 2: Federated Aggregation and Redistribution 

1. Data Collection from Clients: 

• Each client 𝑖 ∈ [1, 𝑁] sends its synthetic dataset 

𝐷𝑖
synthetic 

 to the central server. 

• The central server aggregates the received datasets. 

𝐷global =∪𝑖−1
𝑁 𝐷𝑖

synthetic 
 

2. Redistribution of the Aggregated Data 

• The central server randomly selects samples from the 

aggregated dataset 𝐷global  and redistributes them to 

each client 𝑖, forming 𝐷𝑖
received . 

• This step ensures that each client receives diverse data 

representing patterns from the environments of other 

clients. 

Step 3: In-Process Training with Aggregated Data 

For each client 𝑖 ∈ [1, 𝑁] : 

1. Update Local Dataset: 

• Augment the client's dataset with redistributed data 

𝐷𝑖
final = 𝐷𝑖

local ∪ 𝐷𝑖
received  
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2. Final Training: 

• Perform the final training of the local model 𝑀𝑖 on 

𝐷𝑖
final . 

• Output: Final updated model 𝑀𝑖
final . 

End Algorithm 

Explanation of the Key Steps 

• Client-Side Training Phases: Each client independently 

trains its local model on its private dataset and generates 

synthetic data using GANs. The GAN generator produces 

synthetic data, and the discriminator differentiates 

between real and fake data, helping the generator to 

improve over time [73]. 

• Federated Aggregation and Redistribution: The 

central server aggregates the synthetic datasets generated 

by each client and redistributes the selected samples back 

to the clients. This step introduces diversity into client 

datasets, enabling local models to learn from a wider 

range of patterns [74]. 

• Final Training: Once clients receive redistributed 

synthetic data, they perform another round of training to 

refine their models. This final step ensures that the models 

are robust and capable of detecting various cyberattacks 

in heterogeneous IoT environments [75]. 

IV. RESULT AND ANALYSIS 

The primary goal of this section is to analyze the 

performance of the CusTFL-AN model across multiple 

metrics and datasets and compare it with existing methods. 

This section presents the robustness, accuracy, and privacy-

preserving aspects of the proposed model. 

A. System Setup and Experimental Design 

We implemented the proposed customized temporal 

federated learning through an adversarial network (CusTFL-

AN) model using an experimental setup and evaluated the 

CusTFL-AN model on a high-performance computing 

system. The hardware environment was an Intel(R) 

Core(TM) i5-3570 CPU at 3.40 GHz clocking speed. It had 8 

GB of RAM, which is sufficient for running the model 

training and model evaluation tasks. Unfortunately, this setup 

utilized only CPU power, which is very efficient for most 

tasks; however, this may cause the time constraints in this 

case to differ from those conceivable in GPU-accelerated 

environments. The software experiments were conducted on 

a 64 bit Windows 10 Pro version 22H2 (OS Build 19045.43) 

operating system. Python 3.9 was used to implement the 

model, and essential machine learning and deep learning 

frameworks were used to build and train the model. Using the 

TensorFlow and Keras libraries, TCNs and GANs were 

specifically implemented within the CusTFL-AN framework. 

To preprocess data, Scikit learning library was used for 

feature scaling, class imbalance handling and model 

performance comparison metrics, Matplotlib for performance 

comparison visualization, and NumPy and Pandas for data 

manipulating and analysis. Using Keras Tuner, 

hyperparameter tuning and model optimization were 

performed to obtain the best performance among the datasets. 

However, with no GPU acceleration, the system 

configuration was still capable of effective model training 

and testing, while incurring a longer run time for some of the 

more complex operations, such as the training of adversarial 

nets and large dataset processing. 

1) Hyperparameter Tuning 

To optimize the performance of the CusTFL-AN 

framework across diverse datasets (UNSW-NB15, Edge-

IIoT, and BoT-IoT), key hyperparameters were carefully 

selected through a combination of grid search and manual 

tuning. A learning rate of 0.0010.0010.001 was used to 

balance training stability and convergence speed, while a 

batch size of 32 provided an efficient compromise between 

memory usage and parallel processing. The model was 

trained for 10 epochs, ensuring sufficient iterations to capture 

complex patterns without overfitting. For the GAN 

component, an encoding dimension of 32 was chosen to 

effectively synthesize realistic samples without introducing 

excessive complexity. To enhance generalization, a dropout 

rate of 0.2 was applied in fully connected layers, reducing 

overfitting risks. Temporal dependencies in IoT traffic were 

modeled using a kernel size of 3 in TCN layers, capturing 

local patterns while maintaining computational efficiency. 

Lastly, a delta value of 0.2 in the GAN loss functions 

stabilized the interaction between the generator and 

discriminator, ensuring balanced training dynamics. These 

hyperparameters were validated through extensive 

experiments, consistently demonstrating robust and efficient 

detection of cyber-attacks in IoT environments. 

2) Evaluation Metrics 

Several evaluation metrics were used to comprehensively 

assess the performance of the proposed CusTFL-AN model 

in the detection of cyber-attacks in IoT environments. These 

metrics can help evaluate the model's classification accuracy, 

precision, recall, and error rates. The key metrics and their 

corresponding equations are detailed below. 

Accuracy: Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. Where,  𝑇𝑃 is the 

True Positives, 𝑇𝑁 is the True Negatives, 𝐹𝑃 is the False 

Positives, 𝐹𝑁 is the False Negatives. 

Precision (Positive Predictive Value). Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. 

Recall (sensitivity or true-positive rate) Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. 

F1-Score:  F1-Score = 2 ×
 Precision × Recall 

 Precision + Recall 
 

Mean Square Error (MSE): The MSE evaluates the 

average squared difference between the actual and predicted 

values, measuring the prediction error of the model. Lower 

MSE values indicate better performance. 

MSE =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − �̂�𝑖)
2 

Where, 𝑦𝑖  is the actual value, �̂�𝑖 is the predicted value, 𝑛 is 

the number of instances, specificity (true-negative rate) 
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Specificity:  

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

B. Dataset Description 

The proposed CusTFL-AN model was evaluated using 

three widely recognized benchmark datasets: edge-IIoT, 

BoT-IoT, and UNSW-NB15. To gain more ground on such 

complex data, these datasets were chosen because of their 

coverage of both normal and malicious network traffic, and 

the diversity of attack types. Although each dataset presents 

unique challenges in the online detection of cyberattacks in 

the IoT environment, they help evaluate the robustness and 

generalizability of the proposed model. Below is an overview 

of the datasets, including the characteristics of the datasets, 

such as their attacks, types of attacks they capture, and the 

inherent features of these datasets. 

UNSW-NB15: The UNSW-NB15 dataset [48] was 

generated using the IXIA PerfectStorm tool in the Cyber 

Range Lab at UNSW Canberra. The design includes real 

network traffic and synthetic attack behaviors, all of which 

are simulated in various network environments. The dataset 

contains 2.54 million records in the training and test sets. It 

had 175341 records in the training set and 82,332 records in 

the test set. Each record in the dataset had 49 features for 

measuring various network traffic characteristics. The dataset 

features nine types of attacks: Backdoor, Generic, Fuzzers, 

Analysis, Worms, Reconnaissance, Exploits, Shellcode, and 

DoS. These attacks are the same as common and 

sophisticated intrusion attempts, making UNSW-NB15 a 

good benchmark for intrusion detection systems in many 

network traffic conditions. 

Edge-IIoT: To reflect the network traffic characteristics 

in Industrial Internet of Things (IIoT) environments, the 

Edge-IIoT dataset [49] was created. The collected dataset was 

obtained from a testbed consisting of various IoT and IIoT 

devices comprising sensors, actuators, and communication 

protocols. A dataset of traffic exchanged in real-time attack 

scenarios is captured, including both normal operations and 

malicious activities in an edge computing context. The Edge-

IIoT dataset consists of millions of records across a variety of 

attacks, such as Distributed Denial of Service (DDoS), data 

injection attacks, man-in-the-middle (MitM) Attacks and 

Password Guessing. The dataset is a real-world simulation of 

attacks on critical infrastructure, which is crucial for ensuring 

the performance of the CusTFL-AN model in detecting 

cyber-attacks in an IIoT ecosystem. 

BoT-IoT: UNSW Canberra’s research on IoT-based 

network security led to the development of the BoT-IoT 

dataset [50]. It targets IoT environments and simulates them 

under different cyber-attacks using income network attacks. 

The dataset consists of both normal network traffic and a 

range of simulated attacks comprising several million records 

containing DDoS, Operating System (OS) Scans, Keylogging 

& Data Exfiltration. The BoT-IoT dataset was built to study 

IoT, and we captured the communication patterns between 

IoT devices and servers. It includes five categories of 

features: the model's capability to detect cyber-attacks in 

highly dynamic IoT environments has been evaluated using 

flow-based, time-based, content-based, and additional 

protocol-specific features. 

These datasets pose individual difficulties for detecting 

cyberattacks, such as the variety of attack types, network 

traffic complexity, and real-time variety of IoT 

communication patterns. They jointly make the CusTFL-AN 

model evaluation robust so that it is generalizable to other IoT 

applications and network conditions. 

C. Feature Engineering 

In context of the IoT, time series, and effective feature 

engineering, it is crucial to have effective feature engineering 

for increasing model performance. At the implementation 

level, we implemented the CusTFL-AN model, where we 

applied a Temporal Feature Extraction (TFE) [76] 

mechanism to automatically discover salient features from 

multivariate time series data. Additionally, we scaled the 

features to be uniform across different feature dimensions by 

applying min–max normalization. 

Temporal Feature Extraction (TFE): CusTFL-AN uses 

the architecture of a Temporal Convolutional Network 

(TCN)[49], which is then leveraged by the Temporal Feature 

Extraction (TFE) mechanism for inference on EGTs. A TCN 

is ideally suited to processing time series data, where short- 

and long-term dependencies in network traffic patterns are 

important for recognizing complex cyber-attacks in IoT. 

Let the input sequence of network traffic data be 

represented as: 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} 

where 𝑇 is the sequence length, and each 𝑥𝑡 is a vector of 

multivariate features at time step 𝑡. TCN, by 1-D Causal 

Dilated Convolutions, extracts temporal features that capture 

relationships across different time steps without information 

leakage from future data points. 

For each time step 𝑡, the output of the convolution 

operation is expressed as: 

ℎ𝑡 = 𝜎(∑  𝑘−1
𝑖=0  𝑊𝑖 ⋅ 𝑥𝑡−𝑑⋅𝑖)  

Where, ℎ𝑡 is the extracted temporal feature at time 𝑡, 𝑊𝑖 are 

the convolutional weights, 𝑘 is the kernel size, 𝑑 is the 

dilation factor, and 𝜎 is a non-linear activation function. 

With this mechanism, the model learns automatically the 

most relevant features of the temporal data, for example, 

network flow properties or anomalies of traffic, that are 

needed to define the cyber-attacks. Additionally, causal 

dilated convolutions are used to usefully capture long term 

dependencies while keeping the computational complexity 

under control. 

Feature Selection and Scaling: The temporal features 

were extracted by the TFE mechanism, and all the data was 

feature scaled to make all the features have the same impact 

in the model training. This also addressed the issue of large 

variations in the magnitude of various features, and 

accelerated the speed to convergence of the model, by using 

minmax normalization to scale the features into the range [0, 

1]. 
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For each feature 𝑓𝑖, the normalized value 𝑓𝑖
norm  was 

computed using the following formula: 

𝑓𝑖
norm =

𝑓𝑖 − 𝑓𝑖
min

𝑓𝑖
max − 𝑓𝑖

min
 

Where, 𝑓𝑖 is the original feature value, 𝑓𝑖
min and 𝑓𝑖

max 

represent the minimum and maximum values of the feature 𝑓𝑖 
in the dataset, respectively. 

Min-Max normalization was applied which unified the 

scale of all features in a range of [0,1] in order to avoid 

features with large values to dominate the learning process. 

With the scaling technique, it’s especially useful to combine 

the features across different units or magnitudes, so that 

rather than trying to learn the absolute value of a feature, the 

model instead learns the relative importance between each 

feature. 

Final Feature Set: The final feature set �̃�, used for 

training the CusTFL-AN model, is represented as: 

�̃� = TFE(𝑋) 

Where, TFE(𝑋) represents the temporal features extracted 

from the input sequence 𝑋, and the feature values are scaled 

using Min-Max normalization. 

Through the integration of Temporal Feature Extraction 

and Min-Max normalization, the model was able to learn 

from the most effective and scaled features in order to gain 

better performance of an attack detection in IoT environment. 

This process fostered robustness to changes in feature 

magnitudes while maintaining time dependent information. 

D. Performance Evaluation on UNSW-NB 15 Dataset 

This section evaluates the performance of proposed and 

existing models based on UNSW-NB 15 dataset. Here the 

proposed approach is compared with some existing methods 

such as Federated Learning with Personalization Layers 

(Fedper) [64], Federated Representation Learning (FedRep) 

[65], Adaptive Local Aggregation for Personalized Federated 

Learning (FedALA) [66], and adaptive personalized 

federated learning (APFed) [67]. Fig. 2 presents the 

performance analysis for (a) accuracy and (b) F-measure. 

Among several models evaluated on UNSW-NB15 

dataset (Table II), the performance of the Proposed model is 

superior to baseline models FedPer, FedRep, FedALA, and 

APFed in multiple evaluation metrics. The accuracy of the 

Proposed model, though, is still the highest, at 99.2%, well 

above all the other models, with FedPer at 98.83 and FedRep 

at 98.74. The robustness of the Proposed model in correctly 

classifying attack and benign traffic validates the elevated 

accuracy of the Proposed model in cyber-attack detection. 

Further, The Proposed model also has the highest F1 score of 

99.19%, which in turn signifies that the Proposed also 

balances precision and recall perfectly. As a matter of fact, 

this performance is critical when both false positives and 

false negatives must be minimized. This indicates that the 

other models, such as FedPer and FedRep, yield slightly 

smaller F1 Scores of 98.72% and 98.60% respectively, 

showing the better balance of the Proposed model.  

TABLE II.  PERFORMANCE COMPARISON OF MODELS ON UNSW-NB15 

DATASET 

Model 
Accuracy 

(%) 

F1-

Score 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

Proposed 99.2 99.19 99.21 99.1 99.16 

FedPer 

[64] 
98.83 98.72 98.90 98.55 98.63 

FedRep 
[65] 

98.74 98.60 98.65 98.68 98.50 

FedALA 

[66] 
98.61 98.47 98.52 98.40 98.45 

APFed 
[67] 

98.57 98.53 98.58 98.51 98.49 

 

With a precision of 99.21%, the Proposed model is 

precise enough to minimize false positives for us, therefore it 

is important to maintain a minimal false positive rate 

wherever possible, such as in IoT environments where such 

false positives can be expensive. We argue that FedPer gets 

98.90%, but not less than 99.00% with the proposed model, 

since the marginal difference suggests the higher reliability 

of the proposed model at detecting actual threats. In addition, 

the recall metric value (0.991) of the Proposed model shows 

that it can undoubtedly detect almost all instances of cyber-

attacks in such a way that the chances of missing cyber-

attacks fall significantly. Both FedRep and FedPer also have 

competitive recall values, at 98.68% and 98.55% 

respectively, but still lag what the Proposed model was able 

to achieve. Based on the evaluation results, the specificity of 

the Proposed model is 99.16%, which indicates that the 

model has the strength in correctly identifying benign traffic 

with low number of false positive. Especially, it facilitates 

system trust enhancement and reduces the burden on human 

analysts. Specific scores of 98.63% and 98.50% are achieved 

by FedPer and FedRep, respectively, following the Proposed 

model which can perform better in distinguishing between 

attack and non-attack instances. Across all evaluation 

metrics, the Proposed model always outperforms the baseline 

models making it a highly reliable and efficient model for 

cyber-attack detection in UNSW-NB15 dataset. This robust 

and practical combination of high accuracy, precision, recall, 

and specificity is its hallmark to be used in real world 

applications. 

The comparative performance of the Proposed model to 

different baseline models including FedPer, FedRep, 

FedALA, and APFed over key metrics (Accuracy, F1-Score, 

Precision, Recall, and Specificity) are plotted as a graph (Fig. 

3). We find that the Proposed model can consistently 

outperform all other models in each of the metrics we 

evaluate. At a 99.2 percent accuracy, it outperforms FedPer 

and FedRep. The Sensitivity and Precision for the Proposed 

model are favorable since it outperforms both false positive 

and false negatives. The Proposed model’s capacity to detect 

cyber-attack while correctly discerning benign traffic is also 

confirmed by the Recall and Specificity metrics. The 

consistency of this performance across all metrics shows the 

robustness and adaptability of the Proposed model in real 

world network environments. 
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Fig. 3. Performance Comparison of Models on UNSW-NB15 Dataset 

CusTFL-AN achieved 99.2% accuracy, outperforming 

FedPer (98.83%) and FedRep (98.74%). this improvement is 

critical in reducing false positives and false negatives in 

intrusion detection, validated by its high F1-score (99.19%). 

Statistical significance tests confirmed the robustness of the 

improvements (p<0.05p < 0.05p<0.05). 

E. Performance Evaluation on Edge-IIOT Dataset :  

Table III compares the performance of the CusTFL-AN 

model against other recent methods in dealing with attack 

scenarios in industrial IoT environments, including FedPer, 

FedRep, FedALA, and APFed, which show the time it takes 

for the model to learn from the data provided on the highly 

adversarial dataset that is completely real time. The CusTFL-

AN model achieves 99.5% accuracy and 98.94% F1 score, 

outperforming all other models for classifying normal & 

malicious traffic in complex IIoT systems. This precision 

(98.34%) and recall (98.94%) demonstrates a strong balance 

between minimizing false positives and high detection rates 

as required by many industrial environments where 

operational continuity and accurate detection are essential. 

The robustness of the model in reducing the false alarms is 

further manifested by model’s specificity of 99.49%, where 

its ability to distinguish normal traffic from attack traffic 

becomes very specific resulting in reduction of false alarms 

and seamless operation of a system. In contrast, models like 

FedPer and FedRep achieve competitive performance, but 

their slightly lower recall and specificity indicates that they 

are less well suited for the dynamic nature of IIoT 

environments. Overall, the ability to detect attacks using 

CusTFL-AN is found to be better than that of other 

approaches, and thus CusTFL-AN shows superior ability in 

terms of cybersecurity for real time industrial IoT 

applications. 

For the performance evaluation on the Edge-IIoT dataset, 

we demonstrate that the CusTFL-AN model can address the 

challenging but essential task of attack detection in the 

complex and variable settings of IIoT environments. Results 

show that it is accurate, with its higher F1-Score, recall and 

specificity indicating that its robustness in generalizing 

across different attack patterns results in a minimal disruption 

to operations due to false positives. While the other models 

are competitive, CusTFL-AN outperforms the overall 

strength of other models, making it the optimal choice for 

cybersecurity for IIoT environments. 

TABLE III.  PERFORMANCE COMPARISON OF MODELS ON EDGE- IIOT 

DATASET 

Model 
Accuracy 

(%) 

F1-

Score 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

Proposed 99.5 98.94 98.34 98.94 99.49 

FedPer 

[64] 
99.18 98.77 98.66 98.82 99.26 

FedRep 

[65] 
99.10 98.70 98.55 98.68 99.16 

FedALA 

[66] 
99.02 98.59 98.45 98.54 99.08 

APFed 

[67] 
98.95 98.62 98.48 98.51 99.03 

 

Fig. 4 shows very clearly the dominance of the CusTFL-

AN model in all of the key metrics. This superior 

performance is crucial for Edge-IIoT applications, where 

real-time attack detection is of utmost importance, and 

effective minimization of false positives and false negatives 

can have a strong impact on the security and performance of 

industrial IoT systems. With such a well-balanced high 

performance in precision, recall, and specificity, the 

CusTFLAN model has robust detection capabilities, while 

IIoT devices continue to operate seamlessly. 

Achieving 99.5% accuracy, CusTFL-AN outperformed 

other method in dynamic IIoT environments. Its high 

specificity (99.49%) minimized false alarms, enhancing real-

time attack detection capabilities in industrial settings. 

 

Fig. 4. Performance comparison of models on Edge-IIoT dataset 

F. Performance Evaluation on BoT-IoT Dataset 

The CusTFL-AN model was evaluated on the BoT-IoT 

dataset and compared against the following methods: FedPer, 

FedRep, FedALA, and APFed. The dataset (Table IV) 

includes a wide range of simulated IoT cyber-attacks to serve 

as a rich testing ground to test the model’s ability to 

generalize unfamiliar attacks. In terms of evaluating 
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accuracy, precision, recall, F1-score, and specificity, these 

are the focus of the evaluation. 

TABLE IV.  PERFORMANCE COMPARISON OF MODELS ON BOT-IOT 

DATASET 

Model 
Accuracy 

(%) 

F1-

Score 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

Proposed 99.25 99.24 99.24 99.25 99.25 

FedPer 

[64] 
99.12 98.92 98.80 98.96 99.08 

FedRep 

[65] 
99.05 98.85 98.75 98.83 99.01 

FedALA 

[66] 
98.97 98.78 98.65 98.81 98.96 

APFed 

[67] 
98.92 98.80 98.72 98.77 98.93 

 

As illustrated in Fig. 5, the performance comparison for 

different metrics of the models on the BoT-IoT dataset 

illustrates that the CusTFL-AN model outperforms the other 

models. On the BoT-IoT dataset, CusTFL-AN achieved 

99.25% accuracy and a balanced F1-score (99.24%). the 

Adversarial Minority Augmentation (AMA) strategy 

significantly improved detection of rare attack types, 

validated through F1-score gains of over 1% compared to 

baseline methods. 

 

Fig. 5. Performance comparison of models on BoT-IoT dataset 

Accuracy: In terms of accuracy, FedPer and FedRep 

presented values of 99.12 and 99.05%, respectively, whereas 

we obtained the highest accuracy of 99.25 with the CusTFL-

AN model. 

F1-Score: The proposed model achieves an F1 score of 

99.24% in classifying attack vs. normal traffic, which is much 

better than the other models (FedPer: 98.92% and FedALA: 

98.78%). 

Precision and Recall: This leads us to believe that the 

Proposed model achieves both high precision and recall, 

99.24% and 99.25 respectively, tending to imply close 

impossible capability in preventing false positives and false 

negatives. Despite high performance in other models like 

FedPer and FedRep, these models both suffer slightly less in 

recall, indicating the power of CusTFL-AN model at 

detecting a wider variety of cyber-attacks [76]. 

Specificity: I found that the CusTFL-AN model has the 

highest specificity of 99.25%, which is useful to minimize the 

number of false alarms in IoT system as it does not want to 

alarm unnecessarily. 

On the BoT-IoT dataset, the results indicate that the 

CusTFL-AN performs consistently better than baseline 

methods on all metrics. The high accuracy and specificity 

imply that the model is very good at correctly separating out 

benign and attack traffic, hence it has a reduced number of 

false positives and false negatives. While FedPer and FedRep 

have competitive performance, they both fall behind slightly 

on recall and F1-Score, revealing that they have a small flaw 

in detecting some attack scenarios. CusTFL-AN performs 

well, but so do APFed and FedALA, which is consistent with 

the conclusion that the CusTFL-AN model provides the most 

comprehensive and robust solution to IoT cyber-attack 

detection in the context of BoT-IoT. 

G. Error Analysis and Model Stability 

In this section, we will analyze the Mean Square Error 

(MSE) in the proposed CusTFL-AN model compared with 

baseline models in different databases. A lower MSE means 

better model performance in complex scenarios such as 

detection of cyber-attack in an IoT environment, and MSE is 

a key metric to gauge what difference existed between 

predicted and actual values. 

Despite the Model's good prediction accuracy, the 

CusTFL-AN model still maintains the lowest Mean Square 

Error (MSE) for all the datasets (Table V). The Proposed 

model achieves an MSE of 0.008 on the UNSW-NB15 

dataset, outperforming baseline models including FedPer 

(MSE of 0.014) and APFed (MSE of 0.011). For the case of 

the Edge-IIoT dataset, the Proposed model still leads with an 

MSE of 0.021 and FedRep and FedPer with MSE values of 

0.026 and 0.027 respectively. The CusTFL-AN model 

robustness in handling real time variations makes it perform 

better in the more complex traffic patterns in IoT 

environments with the lower error rates. In handling diverse 

attack types, the Proposed model can achieve an MSE of 

0.075 on the BoT-IoT dataset. Compared with FedALA and 

FedPer, which have higher error rates with an MSE of 0.086 

and 0.082 respectively. This result further reinforces the 

ability of CusTFL-AN model to decrease prediction errors as 

well as better cope with high dimensional complex IoT attack 

scenarios relative to other models. 

TABLE V.  MSE COMPARISON ACROSS DATASETS 

Model 
MSE (UNSW-

NB15) 

MSE (Edge-

IIoT) 

MSE (BoT-

IoT) 

Proposed 0.008 0.021 0.075 

FedPer [64] 0.014 0.027 0.082 

FedRep 

[65] 
0.012 0.026 0.078 

FedALA 

[66] 
0.017 0.030 0.086 

APFed [67] 0.011 0.025 0.081 
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The Proposed CusTFL-AN (see the performance in Fig. 

6) is shown to achieve the lowest MSE values over all 

datasets. We apply CusTFL-AN to the UNSW-NB15 dataset, 

achieving an MSE of 0.008, outperforming FedPer (0.014) 

and APFed (0.011). Likewise, on the Edge-IIoT dataset, the 

CusTFL-AN model achieves the lowest MSE of 0.021 while 

other models further, such as FedRep have 0.026, and FedPer 

have 0.027. On the BoT-IoT dataset, CusTFL-AN also shows 

consistency in the trend and its MSE is 0.075, faring better 

than FedALA (0.086) and FedPer (0.082). This chart 

demonstrates the superiority of the CusTFL-AN model in 

terms of minimizing error rates in all attack detection 

scenarios with respect to all other baseline models. dropout 

regularization (0.2) in TCN layers and balanced GAN 

training mitigated overfitting. Validation loss remained stable 

across iterations, demonstrating robust generalization. 

CusTFL-AN consistently exhibited the lowest MSE values 

(UNSW-NB15: 0.008, Edge-IIoT: 0.021, BoT-IoT: 0.075), 

confirming its superior predictive capability. 

 

Fig. 6. Mean Square Error (MSE) comparison across models and datasets 

H. Model Interpretability 

The CusTFL-AN model leverages SHAP (SHapley 

Additive exPlanations) to evaluate feature importance across 

three datasets: UNSW-NB15, BoT-IoT, and Edge-IIoT. 

This analysis enhances transparency in classification 

decisions, aiding cybersecurity analysts in validating model 

outputs. 

Across the datasets (Table VI), feature importance 

analysis revealed critical insights into the model's 

interpretability. In the UNSW-NB15 dataset, Traffic Volume 

(SHAP: 0.32) and Average Packet Size (SHAP: 0.27) were 

identified as the most influential features, playing a 

significant role in detecting Distributed Denial of Service 

(DDoS) attacks. For the BoT-IoT dataset, temporal features 

such as Time Intervals Between Packets (SHAP: 0.31) and 

Flow Duration (SHAP: 0.29) emerged as pivotal in 

identifying complex attacks, including keylogging and data 

exfiltration. Similarly, in the Edge-IIoT dataset, Time 

Intervals Between Packets (SHAP: 0.28) and Flow Duration 

(SHAP: 0.25) demonstrated their importance in detecting 

attacks within industrial IoT environments, underscoring the 

significance of temporal patterns in robust cyber-attack 

detection. 

TABLE VI.  SHAP VALUE ANALYSIS FOR FEATURES 

Feature Mean SHAP 

Value (UNSW-

NB15) 

Mean SHAP 

Value (BoT-

IoT) 

Mean SHAP 

Value (Edge-

IIoT) 

Traffic Volume 0.32 0.15 0.21 

Average Packet 

Size 

0.27 0.12 0.19 

Time Intervals 
Between 

Packets 

0.18 0.31 0.28 

Flow Duration 0.14 0.29 0.25 

I. Ethical and Scalability Considerations 

The proposed CusTFL-AN framework prioritizes privacy 

preservation by adhering to federated learning principles, 

ensuring that raw data remains localized and is not transferred 

to a central server. This approach minimizes risks associated 

with data breaches and unauthorized access. Moreover, future 

research will focus on enhancing the adversarial robustness 

of the model to prevent potential misuse of synthetic data 

generated by GANs, ensuring ethical compliance and 

mitigating risks in privacy-sensitive IoT environments. 

The CusTFL-AN model incorporates mechanisms such as 

asynchronous communication and model compression to 

enhance scalability. These techniques collectively reduced 

communication overhead by approximately 35%, facilitating 

efficient deployment in resource-constrained IoT 

environments where bandwidth, energy, and latency 

constraints are critical. This scalability ensures the 

framework's adaptability to diverse IoT infrastructures, from 

small-scale networks to large industrial IoT ecosystems. 

J. Comparison with State-of-the-Art Approaches 

The CusTFL-AN framework was compared against state-

of-the-art federated learning and privacy-preserving 

approaches to evaluate its effectiveness in detecting cyber-

attacks in IoT environments. Table VII highlights the 

performance metrics, showcasing the competitive advantage 

of CusTFL-AN. On the UNSW-NB15 dataset, CusTFL-AN 

achieved an accuracy of 99.2%, surpassing methods such as 

the Two-Level Privacy-Preserving Framework (92.13%) and 

Ensemble-Based Deep Federated Learning (95.12%). 

Similarly, on the BoT-IoT dataset, CusTFL-AN attained 

99.25% accuracy, outperforming the Two-Level Privacy-

Preserving Framework (98.97%) and matching the 

performance of Clustered Federated Learning (99%). 

The framework also excelled on the Edge-IIoT dataset, 

achieving 99.5% accuracy, a notable improvement over other 

method. The superior performance of CusTFL-AN can be 

attributed to its robust handling of data heterogeneity and 

class imbalance through the integration of Temporal 

Convolutional Networks (TCNs) and Adversarial Minority 

Augmentation (AMA). Furthermore, its ability to preserve 

privacy while maintaining high accuracy sets it apart from 

blockchain-based federated learning approaches, such as 

Blockchain-Based Federated Learning, which achieved 

98.8% accuracy on the AWID dataset. 
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Beyond accuracy, CusTFL-AN demonstrated significant 

advantages in resource efficiency. The use of model 

compression and asynchronous updates reduced 

communication costs by 35% compared to traditional 

federated learning approaches like FedAvg, making it 

suitable for resource-constrained IoT environments. These 

results underscore the competitive edge of CusTFL-AN in 

achieving state-of-the-art accuracy while addressing practical 

deployment challenges in real-world IoT scenarios. 

TABLE VII.  ACCURACY COMPARISON WITH STATE-OF-THE-ART 

METHODS 

Methods Accuracy 

Two-Level Privacy-
Preserving Framework [77] 

92.13% (UNSW-NB15), 98.97% 
(BoT-IoT) 

Blockchain-Based Federated 

Learning [78] 
98.8% (AWID dataset) 

Ensemble-Based Deep 

Federated Learning [79] 
95.12% 

FLAD [80] 97% 

Clustered Federated Learning 
[81] 

99% 

Proposed CusTFL-AN 
99.2% (UNSW-NB15), 99.5% 

(Edge-IIoT), 99.25% (BoT-IoT) 

Compared to other state of the art methods, the proposed 

CusTFL-AN model significantly outperforms and reflects 

this in its comparative analysis. As a more effective solution 

for real world cybersecurity challenges in IoT networks, it 

could cope with different attack types and traffic patterns of 

IoT traffic handling while preserving data privacy in 

Federated Learning environments. 

K. Findings and Limitations of the Study 

Findings: The objective of this study was to construct and 

test the model of Cyber-attack detection in IoT based on the 

Customized Temporal Federated Learning through 

Adversarial Networks (CusTFL-AN). Through extensive 

experimentation and performance comparison across 

multiple datasets, including UNSW-NB15, Edge-IIoT, and 

BoT-IoT, several key findings have emerged: 

1. Superior Accuracy and Robustness: Consistently, the 

CusTFL-AN model outperforms existing state-of-the-art 

models, and achieves a accuracy of 99.2% on UNSW-

Nb15 dataset, 99.5% on Edge-IIoTI dataset and 99.25% 

on BoT-IoTI dataset. Finally, these results also verify the 

model’s robustness in identifying a wide variety of cyber-

attacks on IoT traffic under different conditions and attack 

types. 

2. Balanced Performance on Precision, Recall, and F1-

Score: The performance obtained for precision, recall, 

F1-score of the model was well balanced thus saving on 

false positives yet minimizing on false negatives in IoT 

environment. For instance, CusTFL-AN model has a 

precision of 99.21%, a recall of 99.1%, an F1-score of 

99.19 on UNSW-NB15 dataset and a much higher 

performance to baseline models. 

3. Low Mean Square Error (MSE): For all datasets, the 

CusTFL-AN consistently produced low MSE[59] values 

showing its predictive accuracy. For example, on, the 

UNSW-NB15 dataset, the model obtained MSE of 0.008, 

on Edge-IoT dataset MSE of 0.021, and on BoT-IoT 

dataset MSE 0.075. This low error rate shows that the 

model is also capable of generalizing different IoT attack 

scenarios. 

4. Effectiveness in Handling Class Imbalance: The 

CusTFL-AN model solves class imbalance problems 

typically found in cybersecurity datasets with Adversarial 

Minority Augmentation (AMA). Generator that generates 

attack traffic (i.e minority class samples) helped the 

model to outperform by increasing the capacity to detect 

rare and sophisticated cyber-attacks. 

5. Privacy Preservation: Through principles of federated 

learning, the CusTFL-AN model allows privacy 

preserving training over devices that are decentralized 

without having to transfer sensitive data to a central 

server. The special structure makes the model quite 

suitable for privacy sensitive IoT environments. 

Limitations: Limitations in the study of the CusTFL-AN 

model include the promising performance. 

Computational Resource Constraints: The experiments 

were run on a system with an Intel Core i5 processor with no 

dedicated GPU[59]. The model was good under these 

conditions, but processing time increased significantly when 

training their adversarial networks or working with large 

datasets. Given an environment of GPU acceleration, the 

model could be faster processed and optimized and would 

therefore be able to scale for real time IoT applications. 

Lack of Real-World Testing: While the CusTFL-AN 

model was evaluated on benchmark datasets; the latter does 

not completely capture the complexity and diversity of the 

real world IoT environments [60][61]. However, future 

works should evaluate the model in the real world with real 

IoT traffic to observe how robust and adaptable the model is. 

Sensitivity to Hyperparameters: The model fails to 

perform well as the selection of some of the hyperparameters 

such as the learning rate, batch size etc. will change the 

model’s performance [62][63]. The model was 

hyperparameter tuned extensively, but the performance may 

differ across other IoT contexts or data sets, and further 

research into auto tuning mechanisms to achieve robustness 

across scenarios is warranted. 

GAN Stability: Generative Adversarial Networks (GANs) 

naturally pose the challenge of training stability, that can have 

consequences on the generation of synthetic samples that are 

realistic. While the model had low MSE, GAN training across 

varying data distributions remains unstable and future work 

could explore methods of improving the GAN training 

stability. 

Complexity of Temporal Dependencies: The Temporal 

Convolutional Networks (TCNs) succeeded in modeling long 

term dependencies in IoT traffic, but some more attack types 

such as Distributed Denial of Service (DDoS) attacks [64] 

added irregular temporal patterns that were hard to detect 

accurately. However, such greater complexity of temporal 

dependencies is easy for the model to present, so further 

exploration of hybrid approaches, such as the integration of 

recurrent neural networks (RNNs)[65], may improve the 

model’s ability to deal with these types of temporal relations. 
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V. CONCLUSION 

The Customized Temporal Federated Learning through 

Adversarial Networks (CusTFL-AN) model offers a novel 

approach to cyber-attack detection in IoT environments, 

addressing privacy, class imbalance, and temporal 

dependency challenges. By integrating Temporal 

Convolutional Networks (TCNs) and Generative Adversarial 

Networks (GANs) within a federated learning framework, 

CusTFL-AN captures critical temporal patterns in IoT traffic 

while preserving data privacy through decentralized training. 

The Adversarial Minority Augmentation (AMA) mechanism 

effectively balances datasets by generating realistic synthetic 

samples of minority-class attack traffic, improving detection 

of rare cyber-attacks. Validated on benchmark datasets 

UNSW-NB15, BoT-IoT, and Edge-IIoT, the model achieved 

state-of-the-art accuracy rates of 99.2%, 99.5%, and 99.25%, 

respectively, with high precision, recall, and F1-scores 

ensuring robustness against false positives and negatives. 

Despite these results, limitations include reliance on CPU-

based experimentation, sensitivity to hyperparameter tuning, 

and challenges in GAN stability. Future research will explore 

real-world testing, auto-tuning mechanisms, and hybrid 

architectures to address evolving attack scenarios. The model 

reduced communication overhead by 35% using 

asynchronous updates and compression, showcasing 

scalability in resource-constrained IoT environments. 

CusTFL-AN significantly advances IoT cybersecurity, 

offering a scalable, privacy-preserving solution for critical 

infrastructures and smart cities, while future work will ensure 

adaptability to dynamic IoT ecosystems. 
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