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Abstract—This paper presents a method of synthesizing 

control laws based on the LQR controller and ADRC method 

for a two-wheel differential line-following robot when the robot 

dynamics have uncertain factors. First, the mathematical 

model includes line-following kinematic and dynamic models. 

LQR controller is designed based on the linear model of the 

robot when coincident with the line. When the robot has 

uncertain factors such as model parameter uncertainty and 

impact noise, the LQR controller will not ensure the control 

quality of the system. To overcome this, two observers are 

designed to observe the linear velocity and angular velocity 

states of the robot. This ensures more complete and accurate 

information of the model states in the LQR control law. The 

effectiveness of the control law is demonstrated through 

numerical simulation results and compared with the LQR 

controller. 

Keywords—LQR Controller; ADRC Method; ESO; Mobile 

Robot; Track Following.  

I. INTRODUCTION  

Differential 2-wheel robots have been widely used in 
various applications and environments due to their mobility 
and energy-saving characteristics. One of the main research 
directions of interest to researchers is the development of 
indoor autonomous robots such as factory robots, medical 
transport robots, delivery robots, and service robots [1]-[6]. 
These mobile robots all move along desired trajectories to 
perform required tasks. Therefore, the trajectory tracking 
control problem is an important issue in control. The content 
of this problem is how to generate the necessary linear 
velocity and angular velocity to allow the robot to follow a 
predetermined trajectory. That is, the error between the 
desired trajectory and the actual trajectory converges to zero 
[1]-[20]. 

The controller designed for Two-Wheeled Robot to 
follow a predefined path, as in many studies [5]-[17], can be 
broadly defined into two types: kinematic model-based and 
dynamic model-based. In the study [7]-[10], a channel-by-
channel control method based on the PID controller was 
proposed. The results showed that the response of the robot's 
channels was quite good but did not take into account the 
cross-channel effects and external disturbances. The control 
method based on the LQR set was presented in the studies 
[12][13]. This controller can select the preferred response for 

the robot states based on the choice of Q matrix and R matrix 
parameters. But using a linear model when the robot system 
has uncertain factors will reduce control quality or lose 
stability of the robot control system. To overcome the 
nonlinearity of the robot dynamics model, studies [18]-[27] 
have presented methods to design nonlinear control laws for 
this system. Studies [6][17][19][22] have generated desired 
trajectories based on Lyapunov functions and proposed a 
sliding mode control (SMC) method to control the robot on 
the desired path. The backstepping method is presented in 
studies [7][26][34][35] to design adaptive controllers for 
non-quadratic systems to deal with uncertain parameters. In 
studies [40]-[43] a hybrid fuzzy controller and its variants are 
presented. Controllers combined with neural networks are 
presented in studies [46][47]. The studies all give good 
results but do not take into account the input signals on real 
robots and the complexity of implementation on real models. 

One trend in controller design for objects with model 
uncertainty and impact disturbances is to use ADRC [48]-
[60]. ADRC is a robust control strategy, where the system 
model is extended with a new state boundary, which includes 
all the unknown dynamics and residual convolutions that are 
not considered in the conventional model. The direct 
estimation of the new state is performed using an Extended 
State Observer (ESO). This observer is responsible for 
monitoring and estimating the direct impact disturbances, 
and the errors of the modeled object compared to reality. In 
this way, although we have only a model with low accuracy, 
we can still design a good quality controller, robust against 
fluctuations for the real object, thereby indirectly simplifying 
the model. Any difference in the model will not affect the 
control mechanisms, including all the uncertainties in the 
extended state variables. In the studies [47] ADRC controller 
with PID feedback controller for line-following robot gives 
quite good results. However, there are still limitations of 
model-free controllers. 

This paper studies the design of an ADRC controller 
th`rough two observers of linear velocity and angular 
velocity states, combining the LQR controller for mobile 
robots. In order to maintain the advantages of the LQR 
controller and overcome its disadvantages, such as being 
based on a linear model at a working point when robot 
dynamics have uncertain factors, simulation results and 
comparisons with the LQR control law show the superiority 
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of this method. In addition, the authors also implemented the 
controller on a real robot system to demonstrate the 
effectiveness of the proposed control law. This paper is 
organized as follows: Section 2 presents the kinematic and 
dynamic model of the Two-Wheeled Robot Line Tracking 
Robot. The synthesis of the nonlinear controller is presented 
in Section 3. Section 4 presents the simulation results on 
Matlab software and the experimental results on a real robot. 
Conclusions and future research directions are described in 
Section 5. 

II. THE KINEMATIC AND DYNAMIC MODEL OF A TWO-

WHEEL DIFFERENTIAL LINE-FOLLOWING ROBOT  

To describe the behavior of a two-wheeled differential 
line tracking robot, it is necessary to define two different 
reference frames: the Oxyz robot coordinate system and the 
O’x’y’ inertial coordinate system. Fig. 1 is a simplified 
schematic illustration of a Two-Wheeled Robot Line 
Tracking Robot in practice [1]-[3]. The figure shows and 
names the important elements of the model, as well as the 
forces acting on the robot, considered: an axial force and a 
horizontal force on each drive wheel (the forces acting on the 
free wheels are considered negligible). The curve σ(q) 
represents the line that the robot needs to follow. 
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Fig. 1.  Diagram of the robot and its path 

A. Non-holonomic Constraints 

The motion of a differentially driven mobile robot is 
characterized by non-holonomic constraint equations, which 
are achieved by several assumptions and constraints that 
must be defined before building the kinematic and dynamic 
model of the robot: (1) The motion of the robot on a flat 
surface means zero potential energy; (2) The rolling 
constraint is completely slip-free: then each wheel touches 
the ground at a single point. The mobile robot frame depends 
on three constraint equations. The first constraint is that the 
robot cannot move in a yaw direction: 

'sin 'cos 0x y − + =                                (1) 

In which  = . The remaining two constraints are two non-

slip rollers:  

      
'cos 'sin 0

'cos 'sin 0

R

L

x y b R

x y b R

   

   

+ + − =

+ − − =
                            (2) 

B. Track Following  

As shown in Fig. 1, the parameter d represents the 
distance between the tracking point (P) and the point being 
tracked (Q). Equation (3) shows that the position of point Q 

can be determined by its components in the x'O'y' coordinate 
system, as well as by its belonging to the curve σ(q). 
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                                (3) 

Using the rotation matrix and known shape 
measurements of the vehicle, point Q can be placed relative 
to the center of mass as follows. 
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From equation (4), we have: 
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      (5) 

Since the coordinate system x'O'y' is fixed, or 

' '' , ' ,G x G yx v y v  = = = . Equation (5) can be expressed as: 

'
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Transforming equation (6) we get as follows: 

'
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          (7) 

In which θe= θ-θq. 

Since equations (7) are represented in the x'O'y' 

coordinate system, the rotation matrix ( )R   is used to find 

the expression of d and q  in the xOy coordinate system 

with 1

' ' ( )
T T

x y x yv v R v v−   =    , we get the following 

result: 

tan ( )

cos

y e x

x

e

d v p v d

v d
q

  





 = − − − −

 −
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

               (8) 

Since the robot does not slip, the relationship between vy 

and ω in (2) and using the parametric relationship l p b= − , 

we have: 

tan ( )e xd l v d  = − − −                       (9) 

Derivative θe, we get. 

( )e q c q q   = − = −                       (10) 

Where ( ) /qc q q=   is the curvature of the path for every 

q. Substituting in equation (8) we get (11): 
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v d
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−
= −                            (11) 

C. Dynamic Model 

When considering the robot as a rigid body, its dynamics 
can be studied by applying the principles of Conservation of 
Momentum and Conservation of Angular Momentum. The 
velocities and accelerations have been calculated in the 
general reference frame fixed on the ground x'O'y', but the 
vectors are represented in the mobile xOy frame, which is 
attached to the robot and has its angular velocity (Fig. 1). 

Applying the law of conservation of momentum, the 
following equations can be found: 

,

R L x

R L y

F F ma

T T ma

+ =

+ =
                                  (12) 

where m (kg) is the mass of the robot, ax and ay are the 
corresponding acceleration components on the xOy 
coordinate system. The acceleration vector a = ( ax, ay, 0) 
and the velocity vector v =( vx, vy, 0) are represented in the 
xOy coordinate system in the form: 
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         (13) 

and replaced according to (13), equation (12) can be 
expressed as follows 
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( )
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                       (14) 

Applying the Theorem of Conservation of Angular 
Momentum about the center of mass, we have the following 
equation of rotation of the robot: 

( ) ( )Z R L R LI b T T a F F = + + −                    (15) 

where Iz is the robot's moment of inertia about the 
longitudinal axis. 

Since there is no slip, the only longitudinal forces present 
in the model are those generated by the electric motors 
driving each wheel. Under the assumption that the two 
wheels and their motors are identical and the wheels have a 
radius r (m). If the moments of inertia of the wheels are 
negligible, the dynamics of the wheel-motor assembly can be 
described as follows: 
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                               (16) 

where Bf is the total viscous friction coefficient between the 
rotor and the wheel. Since slip is not considered, the angular 
velocity of each wheel can be calculated from the velocity of 
the wheel center in the x direction, i.e.: 

, ,
;

R x L x
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 = =                            (17) 

Since the robot is considered a rigid body, the velocity of 
the wheels is related to the velocity at the center of mass and 
the angular velocity of the robot: 
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        (18) 

Substituting (18), and (17) into (16), the vertical force of 
the robot can be expressed as (19). 
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Substituting into equations (14) and (15) we have: 
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TR and TL are the forces that prevent the wheels from 
moving on the y-axis, but their values are unknown, so 
another equation is needed to get a deterministic system. 
Assuming the robot obeys non-holonomic constraints and 
assuming that the two wheels and their motors are identical 
[27]. From the system of equations (20) and with the above 
assumptions, we have the following dynamic system of the 
robot: 

2
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Let x =(x1, x2, x3, x4)T=(d,θe, vx,ω),  τv= τR+ τL and τω= τR- 
τL, from equations (9), (11) and (15) we have the state 
equation when there is noise and uncertainty about the 
robot's dynamics in the form: 
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   (22) 

where dv(t) and dω(t) are the external disturbance and 
uncertainty of the robot dynamics model. The parameters of 
the robot model are relatively calculated from the 
experimental model. 

III. CONTROLLER SYNTHESIS FOR TWO-WHEELED LINE 

TRACKING ROBOT  

Two control structures are commonly used for MIMO 
objects, called decentralized control and centralized control. 
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In decentralized control, the control law for each independent 
channel is simple where each channel is controlled as a SISO 
system. The coupling effects between joints, arising from the 
configuration changes during the motion, are treated as 
disturbances. Centralized control takes into account the 
entire robot structure, which is more difficult to design, but if 
the system model is given, the control performance can be 
significantly increased compared to decentralized control 
[60]. 

To control the robot to follow the predetermined line. 
The linear feedback control law is when the robot dynamics 
are uncertain and the impact of disturbances is difficult to 
ensure the control quality. The paper proposes a solution 
based on ADRC as an approach to control system design. 
The control structure is determined to combine decentralized 
and centralized control. The controller includes an LQR 
controller designed based on a linear model for 2 robot 
channels. Two EOS observers are designed to observe each 
channel and are used in the 2 LQR controllers. This control 
strategy considers the effects of cross-linking, disturbances, 
and parameter uncertainties through the values of the 
observed states on 2, but still ensures a simple and effective 
control structure in this case. 

A. LQR Controller Synthesis 

The LQR method is an optimal controller design method 
based on a linear model of a quadratic objective function 
[13][14][30]. From the linearized system of equations (22) at 
the operating point xlqr = (0,0, vd,0) with c(q)=0, we get an 
equation of the form: 

= +x Ax B                                    (23) 
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We need to find the matrix K of the optimal control 
value: τ0=[ τ0v,τ0ω]T=-Kx(t)  that satisfies the quality criterion 

J to reach the minimum value: 
0 0

0

( )T TJ dt



= + x Qx R  . In 

which Q is a positive definite (or positive semi-definite) 
matrix, R is a positive definite matrix. The optimal matrix K 

is determined to have the form: * 1

0

T−= − = −x R B P Kx . 

The matrix P must then satisfy the equation from the Riccati 
equation: 

1
1 1 0T T−+ + − =PA A P Q PBR B P                (24)  

B. ADRC Method 

ADRC (Active Disturbance Rejection Control) is a 
control method in which the system model is extended with a 

new state variable [49]-[54]. This state variable includes all 
unknown dynamics and system disturbances that are not 
taken into account in the conventional object description. 
Estimation of this new state variable is performed using an 
Extended State Observer (ESO). This observer has the role 
of estimating the direct impact disturbances and errors of the 
object modeling compared to reality. In that way, although 
there is only a model with not too high accuracy, we can still 
design a good quality controller, thereby indirectly helping to 
simplify the model. The general structure of ADRC includes 
the following basic components: (1)-TD (Tracking 
Differentiator) is the component that determines the steady 
speed and the output response trajectory of the object. TD 
component can be extracted from the desired trajectory of the 
system. Control quality criteria will be used to calculate; (2)-
ESO (Extended State Observer): the component that 
estimates disturbance and model error. If the above two 
components are determined, we can control the desired 
object; (3)- Nonlinear error feedback controller, in the 
special case of ADRC error feedback can be a linear 
controller or PID controller. The control structure diagram of 
the Two-Wheeled Line Tracking Robot with LQR controller 
and ADRC is shown in the Fig. 2. 
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Fig. 2.  Control structure based on LQR and ADRC controllers 

The design of an ADRC controller for a robot is done on 
two separate channels. From the state equation (22), we 
separate the last two equations into two subsystems. These 
two subsystems are first-order objects, so we will synthesize 
the control law for each object. Synthesize the control law 
for the subsystem vx. 

Convert the state equation of the linear velocity of the 
robot to the following form: 

3

0( )v v v

dx
f t b

dt
= +                            (25) 

In which 2

3 4 02
( ) 2 ( ) . ( )

f

v v v v

B
f t x bx d t b t

mr
= − − + +  ; dv(t) is 

the noise and uncertain parameter part of the robot on the 
robot linear velocity channel; bv= b0v+ Δb0v, with b0v=1/mr is 
a known component in the object's model;  Δb0v - uncertainty 
of parameters m, r. 

If we can find a value of ˆ ( )v vf f t , with just one more 

integration step, we can solve for x3. For this reason, an 
extended state observer (ESO) was introduced. The ESO is 
also the key to any other ADRC controller. This observer 

will help us estimate the approximate value of ˆ
vf . 
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To construct ESO, first, we rewrite equation (25) in the 
form of a system of state space equations as follows:  

1 1 0

2 2
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( ) ( )0 1 0
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( ) (1 0).
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        (26) 

In the system of equations (26), there is an additional 

virtual input ˆ ( )vf t , which cannot be measured directly, but 

we can estimate it based on the ESO. The estimation is based 
only on the measurement and processing of the robot's inputs 

τv(t) and outputs x3(t). The equation of the extended state 
observer is given as (27): 
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       (27) 

In the above equation 
1 3

ˆ ˆ( ) ( )v t x t= ; 
2

ˆˆ ( ) ( )vv t f t= , based on 

this estimation, the disturbance rejection is performed 
through the following control law (28). 
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ˆ( ) ( )
( ) v v

v

v

t f t
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b




−
=                              (28) 

where: τ0v(t) is the input control law found based on the LQR 
method in the previous section. 

Substitute (28) into (25): 
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                    (29) 

When ˆ( ) ( )v vf t f t , we have: 

3 0( ) ( )vx t t                                    (30) 

Finally, the remaining task is to find the two parameters 
of the extended state observer l1v , l2v in equation (27). 
Finding l1v , l2v will be based on the principle of assigning 
reasonable poles to the observer. For the controller to work 
well, its observer must have fast enough dynamics; in other 
words, the poles of the observer must be such that its 
dynamics are faster than the dynamics of equation (30). 

Synthesizing the ADRC control law for the ω subsystem 
is done similarly to the v channel, we have the following 
control law: 

  0
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ˆ( ) ( )
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t f t
t

b
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−
=                             (31) 

where
2

4 4 3 02 2

1
( ) 2 ( ) . ( )
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f t x mbx x d t b t

I mb r
   
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 +  

; dω(t) 

is the noise and uncertain parameter part of the robot on the 
robot angular velocity channel; bω= b0ω+ Δb0ω, with 
b0ω=a/(r(Iz+mb2)) is the known component in the model of 
the object; Δb0v- the uncertainty of the parameters m, r, Iz. 

Substitute (21) into (25) with ˆ( ) ( )f t f t  , we have: 

4 0( ) ( )x t t                                    (32) 

From equations (30) and (32), we see that if the observed 
states are close to the actual values of the robot, the LQR 
control law ensures the stability of the system. 

IV. SIMULATION AND EXPERIMENTAL RESULTS  

The performance and efficiency of the proposed 
controller for the line-tracking robot are verified through the 
results obtained from simulations performed in 
Matlab/Simulink and the low-cost hardware platform 
developed. 

A. Building a Model of a 2-Wheel Robot with a Line-

Tracking Differential 

The robot model is designed in the form of 2 differential 
wheels as shown in Fig. 3. The model parameters are 
determined relatively as follows: m=10(kg); a=0.18(m);  
b=0.3(m); l=0.068(m);r=0.035(m); L=0.25(m); W=0.18(m); 
Iz=9.292*10-3(kg/m2); Bf=1.543*10-4. 
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Fig. 3.  Line-tracking robot model 

The block diagram connecting the components of the 
robot is shown in Fig. 4. The two motors used are JGB37-
545 geared motors with encoders attached to the rotor shaft 
of the motor. The two motors are controlled via a 7A Dual 
DC Motor Driver Module, which can control two 
independent motors up to 7A per channel or less than 160W. 
The ATmega2560 microcontroller is used as the central 
controller, implementing the control law, observing and 
receiving data from sensors, and receiving and transmitting 
data with the Jetsion Nano board. The program execution 
cycle on the microcontroller is 30 (μs). Two relative 
encoders with a resolution of 328 (pulses/rev) mounted on 
the motor are used to calculate the angular velocity of the 
two wheels, the translational velocity of each wheel is 
calculated from formula (17). The translational velocity of 
the robot is calculated as the average of the translational 
velocities of the two wheels. The MPU6050 sensor is used to 
determine the rotational velocity ω of the robot by measuring 
the angular velocity at the z-axis on the sensor. The distance 
d and angle θe are determined through the image captured 
from the Kinect XBOX 360 camera. The method for 
determining the distance d and angle θe is shown in Fig. 5. 
Because the camera is mounted so that the vertical axis of the 
captured image coincides with the vertical axis of the robot. 
So the distance d is determined from the center of the line to 
the center of the bottom edge image in pixels and converted 
to m through the conversion formula built from an 
experiment. The angle θe = θ-θq, because it is not possible to 
directly measure the two values θ, θq from the sensors 
mounted on the robot. But in Fig. 5 we see that the angle θe 
is the angle formed by the tangent to the line at point Q with 
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the vertical axis of the image or the vertical axis of the robot. 
The system is powered by a DC source with a voltage of 12 
(V), a current of 5 (A), and a voltage of 5 (V) current of 10 
(A). The data acquisition software is built on the Jetsion 
Nano board connected to the Atmega 2560 microcontroller 
via a serial communication port. 
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Fig. 4.  Connection diagram of line-tracking robot 
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Fig. 5.  Method of calculating distance d and θe via Kinect camera frame 

B. Numerical Simulation 

The numerical simulation scenario is conducted under the 
condition that the robot will follow a path with a fixed small 
curvature c=0.01, the robot's translational velocity is stable at 
0.5 (m/s) when there is noise in 2 channels in the form dv=-
0.2+random(-0.4,0.4); dω=0.2-random(-0.4,0.4), where the 
fixed component represents the uncertainty in the model and 
model parameters, and the random component represents the 
external noise. The initial state values of the robot are as 
follows: d0=0.3 (m), θe0=0.5 (rad.), vx0=0 (m/s), ω0=0 
(rad./s). The parameters of the LQR control law found with 
the linearized model are at the point xlqr =(0, 0, 0.3, 0)T. The 
matrix K found by the above command in the software has 
the following value: 

0.9944

1.3539 2.244

0 0

1

0

1 0

 
=  

− 
K                 (33) 

The parameters of the two selected observers have the 
following values:  l1v=10, l2v=2, l1ω=10, l2ω=100. 

The simulation results performed with the proposed 
control law are shown in Fig. 6, Fig. 7, Fig. 8, and Fig. 9. 
From the results in Fig. 6, it can be seen that with the LQR 

controller, there is always a static error away from the line of 

d0.1(m). The proposed controller makes the robot follow 
the line exactly after 11.5 (s). The LQR controller cannot 
achieve the linear velocity at 0.5 (m/s) shown in Fig. 8. This 
is due to the uncertainty component of the model that the 
linear controller cannot overcome. The proposed controller 
brings the linear velocity to the desired value within 15 (s) 
but is still affected by random noise. The response of the 
robot to the yaw angle θe and angular velocity ω with the two 
controllers is shown in Fig. 7 and Fig. 9. From the results, it 
can be seen that the response of the proposed controller is 
faster than that of the LQR controller, but this also makes the 
response of the proposed controller have a higher overshoot. 
The statistical results based on the simulation data are shown 
in Table I. 
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Fig. 6.  Response distance error d of robot   
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Fig. 7.  Response to the robot's angular error θe. 

0 5 10 15 20 25
0

0.2

0.4

Time (s)

v
x
 (

m
/s

)

 

 

v
x-ADRC

v
x-LQR

  

Fig. 8.  Robot linear velocity response vx  
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Fig. 9.  Angular velocity response ω of the robot  
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TABLE I.  COMPARISON PARAMETERS OF TWO CONTROLLERS WHEN 

SIMULATING 

Variable 
LQR ADRC 

d θe vx ω d θe vx ω 

Settling Time (s) ∞ 9.8 ∞ 10.6 8.3 6 14.9 9.1 

Overshoot (%) 33.3 0 0 11.5 5.5 2 0 14 

Static error (m, rad, 
m/s, rad./s) 

0.1 0 0.2 0 0 0 0 0 

IAE (m, rad, m/s, 

rad./s) 
2.76 2.3 5.9 0.52 1.02 1.85 2.02 0.54 

C. Experimental Results 

Experiments were conducted to validate the results of the 
control law built according to the proposed method. The 
control program was written in C programming language on 
Arduino IDE software. The image processing program was 
written in Python language on the Linux operating system. 
The experimental data were saved on the Jetson Nano 
embedded computer. The robot was run along the line, with 
the initial condition being 0.5 (m) off the line and the 
deviation angle being 0.6 (rad.). The structural parameters of 
the line-tracking robot are given in the simulation section. 
The parameters of the control law are given in the simulation 
section. The response results of the line-tracking robot are 
shown in Fig. 10 to Fig. 13, showing that the response on the 
real system is quite similar to the response of the system with 
the simulation in the above section, which shows that the 
results of the proposed control law are valid. The linear 
velocity of the robot with the LQR controller (Fig. 10) does 
not reach the desired value of 0.5 (m/s), this is because the 
motor model is not fully recognized. The proposed controller 
has overcome the disadvantage of the LQR controller when 
the observer has observed the uncertainty of the model. 
Therefore, on the same distance of the same length, with the 
proposed controller the robot travels in 17.0 (s) while the 
LQR controller is 23.5 (s). The response of the robot angular 
velocity ω of both cases gives quite a good response (Fig. 
11). The response of the distance error d (Fig. 12) of both 
controllers goes to 0 but fluctuates around the line, with the 
proposed controller having a lower overshoot at the bends. 
The angular error response θe of both cases has the largest 
overshoot at the curve (Fig. 13) but still ensures the robot 
follows the line. The experimental statistical results based on 
the initial data when the vehicle starts to adhere to the line 
are shown in Table II. 
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Fig. 10.  Robot linear velocity response vx 
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Fig. 11.  Angular velocity response ω of the robot  
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Fig. 13.  Response to the robot's angular error θe 

TABLE II.  COMPARISON PARAMETERS OF TWO CONTROLLERS WHEN 

EXPERIMENTING 

Variable 
LQR ADRC 

d θe vx ω d θe vx ω 

Settling Time (s) 5.0 6.0 ∞ 3.5 5.0 6.0 10 3.8 

Overshoot (%) 44.4 0 0 150 0 0 0 55 

Static error (m, rad, 
m/s, rad./s) 

0.01 0 0.2 0 0.01 0 0.01 0 

IAE (m, rad, m/s, 

rad./s) 
1.75 2.62 5.13 2.63 1.31 2.93 3.24 2.25 

V. CONCLUSION  

In this article, we have synthesized the ADRC controller 
for mobile robot line-following based on the ADRC method 
and the LQR controller. The control law for the robot is 
combined with 2 observers at 2 channels of linear velocity 
and angular velocity of the robot to observe uncertain factors 
in the robot dynamics model. This will provide more 
information for the LQR controller in responding to 
uncertain factors and noise. In addition, although it is 
necessary to add 2 more observers compared to the 
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traditional LQR controller, the calculation of the parameters 
of the observer is quite simple and can be easily deployed in 
practice. The simulation results show the superiority of the 
proposed control method when the evaluation quality 
indicators are mostly better. The experimental results show 
that the proposed control method ensures that the real system 
operates to meet the requirements in the control task. In 
particular, it shows that the proposed control law ensures that 
the system is stable at the desired linear velocity. In future 
studies, the proposed method will also be studied in 
combination with nonlinear feedback controllers, fuzzy 
controllers, and objects with more complex structures. 
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