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Abstract—Removing Baseline Wander (BLW) is crucial in 

ECG signal filtering without altering its morphology, as BLW 

can hide critical diagnostic features such as ST-segment 

deviations, T-wave changes, and P-wave morphology. These 

distortions can lead to misinterpretations of the ECG, 

potentially resulting in incorrect diagnoses or missed clinical 

conditions, such as myocardial ischemia or arrhythmias.  In this 

study, the term optimal is defined by the ability of methods to 

effectively remove baseline wander while preserving the key 

morphological features of the ECG signal, such as the ST-

segment, T-wave, and P-wave, with minimal distortion. Some 

algorithms with minimal information and tuning offer 

acceptable BLW approximations. This study applies the I-UFIR 

filter to remove BLW and compares its performance with the 

Savitzky-Golay (S-G) filter and Wavelet transform with 9 and 

10 decompositions. The Savitzky-Golay (S-G) filter was chosen 

for its effectiveness in smoothing baseline wander while 

maintaining the original morphology of the ECG signal. 

Wavelet transform was selected for its multi-resolution analysis, 

which enables the separation of BLW from essential ECG 

features. To assess the performance of these methods, Mean 

Square Error (MSE), Root Mean Square Error, and box plot 

comparisons were used to quantify and visually analyze their 

effectiveness in baseline correction. Since determining the 

horizon for I-UFIR and S-G filters is challenging, two 

approaches are compared, first a traditional calculation and one 

based on the signal's sampling frequency. The comparison of 

these approaches for computing the optimal horizon can 

simplify BLW estimation, reducing both computational effort 

and time, as the traditional approach depends on iterative 

calculations.  Furthermore, two ECG signal sources are used for 

testing, one synthetic and the other real acquired using the ECG 

sensor AD8232, ADC ADS1115, and microcontroller MEGA 

2560. The AD8232 ECG sensor records the electrical signal of 

the heart, the ADS1115 ADC converts the analog signal into a 

digital form for processing, and the MEGA 2560 

microcontroller coordinates data acquisition, ensuring precise 

and dependable ECG signal capture for analysis. However, it is 

important to note that the study is based on ECG signals 

obtained from a single individual under specific conditions and 

recorded using a particular hardware setup, which may limit 

the generalizability of the findings to a broader population or 

different ECG recording systems and environments. Wavelet 

decompositions yield the best results for synthetic signals, while 

I-UFIR and S-G filters perform better with real signals.  

Keywords—Baseline Wander; I-UFIR Filter; Horizon for 

BLW; Savitzky-Golay; Wavelet.   

I. INTRODUCTION  

According to the World Health Organization, non-

communicable diseases (NCDs) cause 41 million deaths each 

year, accounting for 71% of global deaths. Each year, 17 

million people under the age of 70 die from an NCD, with 

86% of these deaths occurring in low and middle-income 

countries [1]. Cardiovascular diseases (CVDs) are 

responsible for most NCD-related deaths, with an estimated 

17.9 million deaths annually, followed by cancer with 9.3 

million, chronic respiratory diseases with 4.1 million, and 

diabetes with 2 million, including deaths due to diabetic 

nephropathy [2]-[6]. CVDs represent a group of heart and 

blood vessel disorders that include coronary heart disease, 

cerebrovascular disease, and rheumatic heart disease [7]-

[10]. Accurate ECG readings are essential for diagnosing and 

managing CVDs, providing vital insights into the electrical 

activity of the heart. High quality ECG signals are key to 

detecting abnormalities, which makes improving ECG signal 

quality a crucial step in addressing the global burden of 

CVDs. 

The electrocardiogram (ECG) is one of the most 

important clinical tools for diagnosing heart diseases, making 

the accuracy of the ECG crucial. The ECG signal is the 

electrical manifestation of the heartbeats over time, and this 

signal can be recorded under various conditions to detect 

different heart abnormalities [11]-[15]. The ECG signal 

consists of a P wave due to atrial depolarization, a QRS 

complex due to atrial repolarization and ventricular 

depolarization, and a T wave due to ventricular repolarization 

[16]-[20]. The P wave, QRS complex, and T wave are crucial 

components of the ECG signal, with each representing 

different phases of the electrical cycle of the heart. The P 

wave reflects atrial depolarization, the QRS complex 

corresponds to ventricular depolarization, and the T wave 

represents ventricular repolarization. So, an accurate 

detection of these segments is essential for diagnosing heart 

conditions like arrhythmias, myocardial infarction, and heart 
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block [21]-[24]. The abnormalities in these waves can 

indicate underlying cardiovascular issues. Fig. 1 shows an 

ECG signal from a healthy person, highlighting key 

components such as the P wave, QRS complex, and T wave. 

In contrast, Fig. 2, presented later in the manuscript, shows 

an ECG signal affected by Baseline Wander (BLW), 

demonstrating how BLW distorts the morphology of the 

signal and impacts diagnostic accuracy. 

 

Fig. 1. Representation of a cardiac cycle with the waves and segments in an 

ECG signal 

However, the quality of the ECG signal can degrade 

during the acquisition stage due to various interferences or 

noise, such as the 50 or 60 Hz frequency from the power line, 

artifacts caused by patient movement, and baseline wander 

(BLW) [25]-[28]. To address these challenges, effective 

baseline wander removal techniques in ECG signal 

preprocessing can improve the accuracy of cardiovascular 

disease diagnosis by preserving essential ECG features while 

mitigating signal distortion caused by noise and artifacts. All 

these factors could complicate the accurate identification of 

the elements that reflect the characteristics of the heart's 

physiological activity [29]-[32]. Consequently, an 

interference suppression or preprocessing stage should be 

applied before analyzing the electrocardiographic signal. One 

of the most important tasks in the preprocessing stage 

involves removing or correcting the baseline wander in the 

ECG signal [33]-[36]. Since BLW is a low-frequency 

fluctuation, this artifact can deform the true shape of the ECG 

record. Therefore, its presence can hide essential features like 

the ST-segment, T-wave, and P-wave, making the accurate 

diagnosis of cardiovascular conditions more difficult. 

 The nature of baseline wander in the ECG is not cardiac 

in origin. This artifact primarily arises from patient 

movement, the breathing process, and poor electrode-skin 

contact. As a result, it appears as a low-frequency artifact or 

noise, typically in the range of 0.5 to 0.6 Hz [37]-[40]. 

However, increased body movement caused by exercise or 

stress tests can cause the BLW frequency to vary from 0.05 

to 3 Hz [41][42]. Baseline wander at the lower end of this 

range (0.05 to 0.5 Hz) is commonly linked to respiratory 

movements, while higher frequencies (0.5 to 3 Hz) are 

typically caused by muscle contractions or changes in sensor 

position due to physical activity. Due to various types of 

noise that can affect ECG acquisition, a preprocessing step is 

recommended to remove artifacts from the ECG signal before 

estimating the BLW. To address this issue, traditional 

techniques are employed, such as digital filtering, wavelet 

transform methods, and adaptive filtering techniques, which 

have been widely used for ECG signal denoising [43]-[45]. 

Fig. 2 shows the ECG signal from file 103 of the MIT-BIH 

Arrhythmia Database [46][47], which presents the BLW 

phenomenon. Fig. 2 illustrates how the low-frequency 

fluctuations mask the normal shape of the ECG 

measurements. In this particular case, the BLW modifies the 

ST-segment, making it difficult to accurately evaluate the 

condition of the heart, such as potential ischemia. This 

example highlights the challenge presented by the presence 

of BLW in clinical diagnostics, as it can hide critical features 

needed for accurate interpretation.  

 

Fig. 2. ECG signal affected by Baseline Wander (BLW) 

 Given the significant impact of baseline wander on ECG 

interpretation, several filtering techniques have been 

developed to mitigate this issue while preserving the quality 

of the signal. In this work, these approaches can be 

categorized into digital filtering techniques, wavelet-based 

methods, and adaptive filtering strategies. First studies in 

[48]-[51], focus on different methods based on classical 

digital filtering techniques, such as FIR and IIR filters, for 

eliminating BLW. While these methods effectively reduce 

baseline wander, they often introduce signal distortion, 

particularly at lower frequencies, which can impair the 

accuracy of critical ECG features. These methods were 

evaluated using performance metrics including the Power 

Spectral Density (PSD), the Signal-to-Noise Ratio (SNR), 

and the Mean Square Error (MSE), but they may struggle 

with preserving morphological features of the ECG signal.  

Second, approaches based on wavelets have been explored in 

[52]-[55], where different wavelet levels and thresholding 

techniques were applied to ECG signals contaminated by 

various types of noise, including BLW.  While wavelet-based 

methods have shown promising results in separating noise 

from the ECG signal, their effectiveness is highly dependent 

on the choice of decomposition levels and thresholding 

parameters, which can be difficult to optimize without prior 

knowledge of the signal characteristics. The goal of these 

studies was to identify the combination of decomposition 

levels and thresholding parameters that minimize distortion 

in the ECG signal while effectively removing BLW.  

However, the trade-off between noise removal and signal 

preservation remains a challenge. Third, adaptive filtering 

techniques have been investigated, particularly the Wiener 

Filter (WF) and the Kalman Filter (KF) [56]-[59]. These 

methods adapt to the characteristics of the signal and noise in 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1464 

 

Roberto Olivera-Reyna, Improved Horizon Calculation and Performance Comparison of I-UFIR and Filtering Techniques for 

Baseline Wander Removal in ECG Signals 

real-time, offering a more dynamic approach. In these works, 

it is compared the MSE, SNR, percentage difference in MSE, 

PSD, and spectrogram were used to compare the output of 

each filter, with the WF yielding better results. However, the 

performance of adaptive filters can be significantly impacted 

by the quality of the noise model and the computational cost, 

making them less practical for real-time applications in some 

cases. Additionally, in [60]-[62] have examined the 

performance of different IIR filters, such as Butterworth, 

Elliptic, Chebyshev I, and Chebyshev II. These methods were 

evaluated based on the SNR and a qualitative evaluation of 

their impact to the ECG signal. While these filters perform 

well in certain conditions, they may not be suitable for all 

types of ECG signals and can introduce phase distortion or 

require extensive parameter tuning. Each of the techniques 

described above requires prior knowledge of the ECG signal, 

an approximation model of the signal, a noise model, or 

extensive tuning to achieve the best results. The existing 

methods all have their strengths and weaknesses, but none are 

universally applicable across all types of ECG signals or 

clinical settings. The limitations of these techniques, such as 

their dependence on signal and noise models, their 

susceptibility to signal distortion, and the need for parameter 

tuning, highlight the need for more robust and adaptable 

solutions.  

 Regarding the evaluation metrics used in previous 

studies, PSD, SNR, and MSE are key indicators for assessing 

the effectiveness of baseline wander removal techniques. It is 

important to note that PSD provides insight into the 

frequency components of the signal, aiding in the evaluation 

of how well a method suppresses low-frequency BLW 

without altering essential ECG waves. The SNR measures the 

ratio of the desired ECG signal to background noise, 

reflecting the level of signal preservation after filtering. 

Meanwhile, MSE quantifies the difference between the 

filtered ECG signal and a reference clean signal, offering an 

objective assessment of signal distortion introduced by the 

BLW removal method. The selection of SNR, MSE, and PSD 

as evaluation metrics for BLW removal is important because 

they provide a comprehensive assessment of signal quality, 

accuracy, and frequency-domain characteristics. SNR 

ensures that the signal remains clear after BLW removal, 

MSE quantifies the deviation from the original signal to 

preserve waveform integrity, and PSD verifies that low-

frequency noise has been effectively suppressed without 

distorting important ECG features. 

 The research contribution is significant as it demonstrates 

the effective implementation of I-UFIR and S-G filters in 

low-cost ECG acquisition systems, highlighting their 

potential to enhance the accuracy and stability of wearable 

health monitoring devices. The study shows that these 

filtering techniques yield improved performance, evidenced 

by narrower whiskers and median values closer to zero, while 

also being computationally efficient and adaptable to 

resource constrained hardware. This makes them well suited 

for real-time ECG signal processing in remote patient 

monitoring and medical diagnostics.  

II. STATE-SPACE MODEL, BASELINE WANDER, AND 

ESTIMATORS 

A. Polynomial Degree in the State-Space 

The signal representation is carried out using a given 

polynomial degree in the state-space, which allows for an 

accurate description of the ECG signal within the defined 

time frame. It is clear that the selection of the polynomial 

degree plays a crucial role in modeling accuracy and filtering 

performance. A higher polynomial degree can better 

approximate baseline wander (BLW) by capturing more 

complex trends in the ECG signal. However, increasing the 

polynomial degree also introduces trade-offs, such as higher 

computational complexity, overfitting, and increased 

sensitivity to noise [63]. Once this is specified, the ECG 

signal can be represented within an interval of length 𝑁, 

where 𝑚 = 𝑛 − 𝑁 + 1. It is important to note that the ECG 

signal is considered to be timeless and deterministic. Also, it 

is assumed that the measurement of the ECG signal is 

affected by zero-mean noise, whose standard deviation is 

unknown, and that follows a Gaussian distribution, although 

not necessarily. Under these conditions, the representation of 

an ECG signal is expressed as follows. 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑤𝑘  (1) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (2) 

The state vector of the discrete-time system is denoted by 

𝑥𝑘 ∈  𝑅
𝐾, where 𝑘 is the time index, and 𝐴 represents the state 

transition matrix, which is used to project the state at the 

previous time step, 𝑥𝑘−1, to the current state 𝑥𝑘. In this 

context, 𝐵 is the matrix that models the system's noise. The 

measurement vector 𝑦𝑘 ∈  𝑅
𝑀 is obtained through the 

observation matrix 𝐶 ∈  𝑅𝑀×𝐾 , which maps the state 𝑥𝑘 to 

the measurements 𝑦𝑘  [64]-[66]. The process noise 𝑤𝑘is 

modeled as zero-mean white Gaussian noise, i.e., 𝑤𝑘 ∼
 𝑁(0, 𝑄𝑘)  ∈  𝑅

𝑀, where 𝑄𝑘  represents its covariance matrix. 

Due to the significant time and resource requirements for 

testing with various noise types, we assume zero-mean 

Gaussian noise for consistency and controlled comparison of 

the proposed techniques, acknowledging that alternative 

noise models could be explored in future studies to assess 

their robustness in diverse scenarios. Similarly, the 

observation noise 𝑣𝑘is also considered white Gaussian noise 

with zero mean, i.e., 𝑣𝑘   ∼  𝑁(0, 𝑅𝑘)  ∈  𝑅
𝑀, and its 

covariance is given by 𝑅𝑘. It is assumed that the vectors 𝑤𝑘 

and 𝑣𝑘, as well as the initial state, are independent of each 

other and uncorrelated at each instant. When considering the 

baseline wander 𝑏𝑘 in equation (2), this equation is defined 

as: 

𝑟𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 + 𝑏𝑘 = 𝑦𝑘 + 𝑏𝑘. (3) 

The baseline wander is simulated by adding an inclined 

line to a sinusoidal signal [67]: 

𝑏𝑘 = 𝑆 +𝑚𝑘 + 𝑉𝑐𝑜𝑠(2𝜋 
𝑘

𝑇
+ 𝜙), (4) 

the period of the sinusoid 𝑇 controls the severity of the 

baseline swing, 𝑚 controls the slope of the baseline wander, 

which can be represented as 𝑚 =  𝑡𝑎𝑛(𝜃). The selection of 

the parameters 𝜃 and 𝑉 in the baseline wander model is 
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crucial for accurately simulating real world baseline drift in 

ECG signals. The parameter θ determines the slope of the 

baseline wander, as it is related to m. A steeper slope, 𝜃 with 

a larger magnitude, results in a more pronounced drift over 

time, simulating conditions where gradual signal shifts occur 

due to patient movement or electrode instability. The 

appropriate value of  𝜃 depends on the expected baseline 

variations in clinical scenarios. Similarly, the parameter 𝑉 

controls the amplitude of the sinusoidal component, which 

represents oscillatory baseline drift often caused by 

respiratory influences or body movement. A higher 𝑉 results 

in more significant deviations, whereas a lower 𝑉 simulates 

minor fluctuations. Selecting 𝑉 requires considering 

physiological variations observed in real ECG recordings to 

ensure realistic baseline wander characteristics. Finally, 

different values for 𝜙 allows the generation of different 

baseline wander sequences with similar characteristics. The 

polarization term 𝑆 is set such that the values of the sequence 

stay within the range. 

Once the equations for the interpretation of the ECG 

signal are established, various algorithms for processing the 

ECG signal with wander can be described.  

B. Maximal Overlap Discrete Wavelet Transform 

(MODWT) 

The Discrete Wavelet Transform (DWT) of a time series 

𝑋 is now a well-known method for analyzing its 

characteristics at multiple scales [68]. However, there is a 

variation called the Maximal Overlap Discrete Wavelet 

Transform (MODWT). This variation discards orthogonality, 

as it does not perform downsampling, in order to achieve 

characteristics such as translation invariance and the ability 

to analyze a time series with an arbitrary sample size 

[69][70].  By avoiding subsampling, MODWT preserves the 

temporal resolution of the signal while accommodating 

arbitrary sample sizes. This characteristic makes it 

particularly useful for ECG signal analysis, as it effectively 

estimates baseline wander noise through multi-resolution 

decomposition, enhancing the accuracy of further processing 

steps such as feature extraction and noise removal.  

Now, let {ℎ̃1} ≡ {ℎ̃1,0,… ℎ̃1,𝐿−1 } be the wavelet filter 

coefficients of a family of Daubechies wavelets with compact 

support [71], and let {𝑔̃1 } ≡ {𝑔̃1,0,… 𝑔̃1,𝐿−1 } be the 

corresponding scaling filter coefficients, defined by the 

quadrature mirror relation  𝑔̃1,𝑚 = (−1)𝑚+1 ℎ̃1,𝐿−1−𝑚. 

The wavelet filter  ℎ̃1 is associated with a unit scale, 

normalized in such a way that ∑ ℎ̃1
2
= 1/2, and it is 

orthogonal to its even shifts. For any sample of size 𝑁 ≥ 𝐿 

and with ℎ1,𝑚 = 0, let 

𝐻1,𝑘 = ∑𝑁−1
𝑚=0  ℎ̃1,𝑚   𝑒

−
𝑖2𝜋𝑚𝑘

𝑁  , 𝑘 = 0,… , 𝑁 − 1,  (5) 

Let the Discrete Fourier Transform (DFT) of { ℎ̃1} , and 

let 𝐺̃1,𝑘  denote the DFT of { 𝑔̃1}. Now, the wavelet filter { ℎ̃𝑗}  

for the scale 𝜆𝑗 ≡ 2𝑗−1  is defined as the inverse DFT of 

𝐻̃1,𝑘 = 𝐻1,2𝑗−1𝑘 𝑚𝑜𝑑 𝑁   ∏

𝑗−2

𝑙=0

𝐺̃1,2𝑙𝑘 𝑚𝑜𝑑 𝑁 (6) 

where 𝑘 = 0,…𝑁 − 1. The wavelet filter associated with the 

scale 𝜆𝑗 has a length of 𝑚𝑖𝑛 {𝑁, 𝐿𝑗  }, where 𝐿𝑗 ≡ (2𝑗 −

1)(𝐿 − 1) + 1. Additionally, the scaling filter { 𝑔̃𝐽 } for the 

scale 2𝜆𝐽 is defined as the inverse DFT of 

𝐺̃𝐽,𝑘 =∏

𝐽−2

𝑙=0

𝐺̃1,2𝑙𝑘 𝑚𝑜𝑑 𝑁,  𝑘 = 0,… , 𝑁 − 1 (7) 

In order to construct the partial-order Maximal Overlap 

Discrete Wavelet Transform of order 𝑗, it is assumed that 

{𝜒𝑘    } ≡ {𝜒0,… , 𝜒𝑁−1 } is the DFT of 𝛸 for an arbitrary value 

of 𝑁. The MODWT coefficient vector 𝑊̃𝑗, 𝑗 = 1, … , 𝐽 is 

defined as the inverse DFT of {𝐻𝑗,𝑘 𝜒𝑘  }  and is associated 

with changes at scale 𝜆𝑗. Similarly, the scaled MODWT 

coefficient vector 𝑉̃𝐽 is defined by the inverse DFT of 

{𝐺̃𝐽,𝑘 𝜒𝑘  }, and it is associated with averages at scale 2𝜆𝐽 and 

higher. For dyadic-length time series, the MODWT can be 

downsampled and rescaled to obtain an orthonormal DWT. 

Thus, the MODWT coefficients can be interpreted as 

weighted mean differences of the original observations. For 

this work, a Multi-Resolution Analysis (MRA) of the 

MODWT matrix will be used, with its parameters defined 

later. 

C.  I-UFIR Filter 

The filter known as the Iterative Unbiased Finite Impulse 

Response (I-UFIR) is obtained through a recursive process of 

the UFIR filter in its block version, which is carried out in 

two main phases, prediction and update [64,65]. This method 

does not require prior information about the statistics or the 

initial conditions of the process. In the I-UFIR algorithm, the 

estimation is performed iteratively using the variable 𝑙, which 

starts at 𝑙 = 𝑚 + 𝐾 and ends at 𝑙 = 𝑘. The I-UFIR filter 

operates with a set of measurements 𝑁, which is a time 

interval defined by the horizon [𝑚, 𝑘], ranging from [𝑚 =
𝑘 − 𝑁 +  1] to 𝑘. Therefore, the parameter 𝑁 is commonly 

referred to as the horizon or window. This algorithm also 

requires knowledge of the previous state estimate 

𝑥̂𝑙
− = 𝐴𝑥̂𝑙−1

− , (8) 

for the known previous state 𝑥̂𝑙−1
− , this approach avoids 

considering the previous covariance error. During the update 

phase, the I-UFIR algorithm performs a recalculation of the 

Generalized Noise Power Gain (GNPG) 𝐺𝑙 as follows: 

𝐺𝑙 = [𝐶𝑇𝐶 + (𝐴𝐺𝑙−1𝐴
𝑇)−1 ]−1, (9) 

this equation is derived from 𝐺𝑙 = (𝑊𝑚,𝑗
𝑇 ,𝑊𝑚,𝑙  )

−1
, where 

𝑊𝑚,𝑙 is the UFIR filter gain [64]. The equation (9) quantifies 

how the filtering process influences the noise present in the 

signal. Specifically, it measures the amplification or 

attenuation of noise as the filter operates over a given window 

size 𝑁. A larger 𝑁 enhances noise suppression by 

incorporating more past observations but may introduce a 

trade-off, causing response lag and reducing adaptability to 

rapid signal changes. 

 The residuals of the measurements can be defined as 

𝑧𝑙  =  𝑦𝑙  −  𝐶𝑥𝑙
−, (10) 
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The bias gain adjustment is obtained by 

𝐾𝑙  =  𝐺𝑙𝐶
𝑇 (11) 

and the estimated state is 

𝑥̂𝑙 = 𝑥̂𝑙
− + 𝐾𝑙𝑧𝑙 . (12) 

The bias gain adjustment 𝐾𝑙  plays a key role in controlling 

the adaptive nature of the filter during this iterative 

refinement. After obtaining the estimate 𝑥̂𝑙 , its smoothing is 

carried out through a simple projection over the interval 𝑙 −
𝑞, using the system matrix as follows 

𝑥̂𝑙−𝑞  =  𝐴
−𝑞 − 𝑥̂𝑙 . (13) 

According to the suggestions made in [72], to tune the I-

UFIR filter, we set 𝑙 = 2  and define 𝑝 = −𝑞 as follows 

𝑝 = ⌊−
𝑁 − 1

2
−
1

2
√
𝑁2 + 1

5
⌋ (14) 

By setting 𝑙 = 2 and defining 𝑝, the I-UFIR filter adapts its 

characteristics to balance denoising with preserving the 

important features of the ECG signal, ensuring effective 

baseline wander removal. 

Given the nature of the I-UFIR algorithm in its smoothing 

modality, the initial values of  𝑥̂ 𝑙−𝑞    are set to zero until the 

sample at 𝑁 + 1 is reached. This approach ensures that the 

filter gradually accumulates sufficient data within the 

predefined window size 𝑁 before producing meaningful 

estimates, preventing distortions caused by insufficient initial 

information. A pseudo-code of the iterative UFIR algorithm 

proposed by [64] is presented in Algorithm 1. Here, it is 

detailed the I-UFIR filter proposed by [64] in the form of 

pseudo-code. 

Algorithm 1. Pseudocode I-UFIR 

Input Parameters. 

𝑟𝑘: Measurement data, 

𝑁: Window size (determines how many past observations 

are considered) 

𝑞: Smoothing interval (defines how far back the 

smoothing extends) 

Results:  𝑥̂𝑘 Estimated state at time step k 

1: Begin : 

2: for 𝑘 =  𝑁 −  1, 𝑁, ... do 

3:      𝑚 =  𝑘 −  𝑁 +  1, 𝑠 =  𝑘 −  𝑁 +  𝐾 

4:         𝐺𝑠 = (𝑊𝑚,𝑠
𝑇 ,𝑊𝑚,𝑠 )

−1
 Compute Initial Gain 

5:      𝑥𝑙̃
− = 𝐺𝑠𝑊𝑚,𝑠

𝑇 𝑌𝑚,𝑠  Compute Initial State Estimate 

6:        for 𝑙 = 𝑠 + 1  to 𝑘   

7:            𝑥̃𝑙
− = 𝐴𝑥̃𝑙−1

−   Predict the state, eq. (5) 

8:    𝐺𝑙 = [𝐶𝑇𝐶 + (𝐴𝐺𝑙−1𝐴
𝑇)−1 ]−1 Update (GNPG), eq. 

(6) 

9:     𝐾𝑙  =  𝐺𝑙𝐶
𝑇      Compute bias gain adjustment, eq. (8) 

10:   𝑥̃𝑙 = 𝑥̃𝑙
− + 𝐾𝑙𝑧𝑙      Correct the state estimate, eq. (9) 

11:      end for 

12:      𝑥̂𝑘 = 𝑥̃𝑙            Store the final state estimate 

13:      𝑥̂𝑘−𝑞 = 𝐴−𝑞𝑥̂𝑘        Apply Smoothing Step, eq. (10)  

14: end for 

D. Suavizador Savitzky-Golay 

The Savitzky-Golay (S-G) smoother was used due to its 

similarity to working with a horizon 𝑁, like the I-UFIR filter. 

The S-G algorithm, also known as the least squares 

smoothing filter, was designed to retain high-frequency 

components in a signal while eliminating both noise and the 

average filter [73, 74]. The approach was originally 

developed in [75] and has since been widely applied to 

smooth various noisy signals.  

Mathematically, the S-G filter is based on a local 

polynomial least-squares approximation within a moving 

window of length 𝑁. For each window, a polynomial of 

degree 𝑑 is fitted to the data using a least-squares criterion, 

with the central value of the polynomial serving as the filtered 

output. The filter coefficients are derived by solving a linear 

system that minimizes the squared error between the 

polynomial and the data. With a fixed horizon 𝑁, the S-G 

filter effectively balances noise suppression and feature 

preservation, making it particularly suitable for ECG signal 

processing, as it preserves high-frequency components, such 

as QRS complexes, without significant phase distortion. 

In this work, we employ the generalized form of the S-G 

smoother described in [73], with respect to a polynomial of 

degree 𝑑 and a moving window of 𝑁 points. A pseudo-code 

for the S-G smoother is shown in Algorithm 2, and the output 

𝑥̂𝑆𝐺  represents the S-G estimate. The polynomial smoothing 

filter of length 𝑁 and order 𝑑 has been implemented with a 

function 𝑠𝑔, represented by the symbol 𝑆 in Algorithm 2, and 

is described in detail in [73]. 

Algorithm 2. Pseudocode of Savitzky-Golay 

Input Parameters: 𝑑, 𝑁, 𝑟𝑘 

Results: 𝑥̂𝑆𝐺|𝑘 

1: Begin: 

2: 𝑀 = (𝑁 −  1)/2 

3: [𝐿, 𝐿1] = 𝑠𝑖𝑧𝑒(𝑦𝑘) 
4: 𝑆 = 𝑠𝑔(𝑑, 𝑁)                    Length of 𝑁 of order 𝑑. 

5:    𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑀 + 1 𝑑𝑜           Input transients  

6:        𝑥̂𝑖 = 𝑆𝑖
𝑇  ∗ 𝑦𝑛|𝑁 

7:    end for 

8:    for 𝑛 = 𝑀 + 2 𝑡𝑜 𝐿 −  𝑀 −  1 do    Stable State. 

9:       𝑥̂𝑘  = 𝑆𝑀+1
𝑇 ∗ 𝑦𝑛− 𝑀:𝑛+𝑀 

10:   end for 

11:   for 𝑖 = 0 to 𝑀 do          Input and Output transients 

12:       𝑥̂𝐿− 𝑀+𝑖  = 𝑆𝑀+1+𝑖
𝑇 ∗ 𝑦𝐿− 𝑁+1:𝐿 

13:    end for 

 

It can now be observed that both the I-UFIR smoothing 

algorithm and the S-G smoothing algorithm share the same 

mathematical origin based on the discrete convolution. 

However, the S-G smoother was developed only for even-

order polynomials with a fixed delay 𝑞 = 𝑁/2, while the I-

UFIR algorithm does not impose such restrictions and is 

therefore more general. 

E. Characteristics Comparison of Algorithms  

The I-UFIR filter, MODWT, and S-G smoother each 

offer distinct advantages for ECG signal processing. The I-

UFIR filter is notable for its versatility—functioning as a 
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smoother, filter, or predictor—and can be easily adjusted 

using the parameters 𝑙 and 𝑝. It does not require a strict 

Gaussian noise assumption, making it effective in diverse 

noise conditions while ensuring waveform integrity. In 

contrast, MODWT excels in multi-resolution analysis by 

efficiently separating baseline wander across different 

frequency bands, though it assumes stationary noise and has 

higher computational complexity. The S-G smoother 

employs polynomial-based filtering, controlling smoothness 

through window size and polynomial degree, and is 

particularly effective at preserving high-frequency ECG 

features, such as QRS complexes, despite assuming smooth 

noise variations. 

The computational complexity of these techniques varies 

considerably. The I-UFIR filter exhibits moderate to high 

complexity due to its iterative and recursive operations, while 

MODWT is computationally intensive because of the multi-

resolution analysis and processing required for multiple 

decomposition levels. The S-G smoother, based on local 

polynomial least-squares fitting within a moving window, 

offers lower computational complexity, making it more 

efficient in scenarios with limited computational resources. 

In summary, each method presents distinct strengths, making 

them suitable for specific ECG processing applications 

depending on noise conditions and signal preservation 

requirements. 

III. MATERIALS AND METHODS 

Fig. 3 shows the methodology proposed in this work. In 

the stage that contains the unprocessed ECG signal, there is 

the synthetic ECG signal, to which the baseline wander 

artifact is added. The generation of the synthetic signal and 

the acquisition of the real signal are explained in detail in the 

following subsections. 

 

Fig. 3. ECG Signal Simulation Stages for BLW Estimation Comparison: 

Synthetic Signal, Synthetic Signal with BLW and Gaussian Noise, and BLW 

Estimation with Different Algorithms 

A. Synthetic Signals  

To generate the synthetic signal, it is proposed to use the 

function developed in [76], which simulates ECG signals 

using different parameters, such as sampling frequency, 

approximate number of beats, noise, mean heart rate, among 

others. In Fig. 3, a general overview is provided of how a 

synthetic signal is obtained. First, the ecgsyn function is used 

to generate a simulated ECG signal that contains the main 

waves of a PQRST complex. Next, a baseline wander signal 

is simulated using equation (4), which is then added to the 

simulated ECG signal. Finally, the signal is added to 

normally distributed noise to simulate some of the artifacts 

that can affect an ECG signal during its acquisition. Each of 

the parameters used in this stage will be presented in detail in 

the subsection on Algorithm Performance on Synthetic 

Signals.  

B.  ECG Signal Acquisition Circuit Units 

The ECG signal acquisition circuit suggested is based on 

a connector cable with three adhesive electrodes, an AD8232 

ECG sensor module [77], an ADS1115 ADC module [78], a 

microcontroller MEGA 2560 development board, and a 

personal computer. Fig. 3 shows the block diagram of the 

proposed circuit for ECG signal acquisition in the ECG/Real 

signal stage. This circuit extracts, filters, amplifies, and 

digitizes the ECG signal, which is acquired by the 

microcontroller using the I2C communication protocol 

between the microcontroller and the ADS1115. It is 

important to note that the purpose of this acquisition circuit 

is to monitor an ECG signal of a person, so its resources are 

sufficient to achieve this goal. The robustness of the proposed 

circuit against varying environmental conditions, such as 

changes in ambient noise, electrode-skin contact, and 

electromagnetic interference, has not been extensively 

validated. Recognizing these limitations not only enhances 

the transparency of this study but also provides a basis for 

future work aimed at optimizing both the algorithms and the 

acquisition hardware for broader real-world applications. 

The expected ECG signal with the proposed hardware 

should consist of three main components: the differential 

ECG signal, the differential offset signal due to the 

electrodes, and the common-mode signal [79]. The 

differential ECG signal has a bandwidth ranging from 0.05 

Hz to 150 Hz, with a peak-to-peak amplitude of 

approximately 1 mV, although it can reach up to 3 mV peak-

to-peak. The interface between the skin and the electrode 

generates a low-frequency offset signal (±300 mV), which 

causes baseline wander [80]. The presence of BLW in the 

ECG signal can affect the interpretation of the data or, in the 

worst case, saturate the signal sequence. Finally, a common-

mode component of up to 1.5 V can be generated due to the 

potential difference between the electrodes and ground. 

Potential artifacts affecting ECG signal quality include 

variations in skin-electrode contact, electromagnetic 

interference, and patient movement. These factors can 

introduce noise or distortions, requiring careful preprocessing 

and filtering. It is worth mentioning that the ECG signals 

were acquired using the mentioned equipment in a nursing 

practice laboratory at the Universidad Autónoma de 

Zacatecas, Jalpa Campus. The signals were obtained from a 

single male individual, 47 years old, weighing 73 kg, and 

with a height of 1.63 m.  

Acquiring biopotentials presents a challenge in 

biomedical applications. Circuits must have certain 

characteristics, such as high Common-Mode Rejection Ratio 

(CMRR), high amplification gain, ease of construction, low 

power consumption, and low-cost electronic components. 

The baseline wander removal performance of the I-UFIR 
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filter, Savitzky-Golay (S-G) smoother, and MODWT wavelet 

is intended to be evaluated under controlled conditions. 

However, it is important to acknowledge potential 

limitations. The effectiveness of these algorithms can be 

sensitive to parameter tuning. For example, the selection of 𝑙 
in the I-UFIR filter, the polynomial degree and window size 

in the S-G smoother, and the decomposition levels in 

MODWT, where suboptimal parameter choices may degrade 

performance. 

IV. RESULTS AND DISCUSSION  

In this section, the results of the proposed algorithms for 

approximating the BLW will be discussed, both for synthetic 

signals and real signals acquired in the laboratory. In the first 

stage, the hypothesis is tested that the horizons 𝑁𝐼𝑈 and 𝑁𝑆𝐺of 

the Iterative UFIR (I-UFIR) and Savitzky-Golay (S-G) 

algorithms, respectively, provide an estimation of the BLW 

when set equal to the sampling frequency plus one. In the 

second stage, a statistical analysis of the results of the 

proposed algorithms with the acquired signals will be 

presented for comparison, since the reference BLW signal is 

not available to calculate the MSE. 

A. Algorithm Performance on Synthetic Signals 

Based on the process detailed in Fig. 3, synthetic signals 

were generated with three different sampling frequencies 

250, 360, and 500 Hz, adding several levels of noise by 

modifying the standard deviation 𝜎 to 0.05, 0.1, 0.15, and 0.2. 

Referring to equation (4), the amplitude 𝑉 of the BLW is kept 

constant at 0.5 mV, the period of the sine wave 𝑇 is set to 10, 

the slope 𝑚 is equal to 0.01, and 𝜑 is equal to 5. For this work, 

the polarization term 𝑆 was not considered, i.e., 𝑆 = 0 mV, 

as in the second data set generated in [67]. 

In Fig. 4, an example is shown of how the synthetic 

measurement was generated for the estimation of the BLW 

using the proposed algorithms. In Fig. 4a, the synthetic ECG 

signal is displayed using the ecgsyn function [76]. For the 

signal shown in Fig. 4a, a sampling frequency of 250 Hz was 

used, with approximately 60 beats, no additive noise within 

the function, an average heart rate of 82, and a heart rate 

standard deviation of 1. Additionally, a low-frequency (LF) 

to high-frequency (HF) ratio of LF/HF = 0.5 and an internal 

sampling frequency of 250 Hz were used. 

In Fig. 4a, the synthetic ECG signal is shown, along with 

the baseline wander signal, generated with equation (4) and 

the previously mentioned parameters, and a Gaussian noise 

with a mean of zero and a standard deviation of 0.05. In Fig. 

4b, the oscillatory behavior of the BLW can be observed. 

Finally, in Fig. 4c, the results of the BLW estimation from the 

proposed algorithms are plotted, Wavelet with 9 and 10 

decompositions, and I-UFIR and S-G with the horizon set 

equal to the sampling frequency plus one unit.  

To estimate the optimal horizon 𝑁̂𝑜𝑝𝑡 of the I-UFIR and 

S-G algorithms, the mean squared error must first be 

calculated as follows: 

𝜖(𝑁) = 𝐸{[𝑏𝑘 − 𝑥̂𝑘(𝑁)]
2} (15) 

where 𝑏𝑘is the BLW described in equation (4), and 𝑥̂𝑘  is the 

BLW estimation using I-UFIR or S-G with different values 

of 𝑁. A polynomial approximation of degree six is then 

performed on 𝜖(N), so that 𝜖̂(𝑁) = 𝑓𝑖𝑡6[𝜖(𝑁)], and 𝑁𝑜𝑝𝑡 is 

calculated as: 

𝑁̂𝑜𝑝𝑡 = |
𝜕

𝜕𝑁
(𝜖̂(𝑁))| (16) 

 

Fig. 4. ECG Signal Simulation for Baseline Wander Estimation Comparison: 

a) Synthetic Signal, b) Synthetic Signal with Baseline Wander and Gaussian 

Noise, c) Baseline Wander Estimation with Different Algorithms 

A sixth-degree polynomial approximation was chosen 

because it provided the best fit based on the least squares 𝑅2 

metric, which was the most accurate in the previous example. 

This ensures a precise estimation of 𝑁𝑜𝑝𝑡, minimizing fitting 

errors and improving the reliability of the I-UFIR and S-G 

algorithms, as illustrated in Fig. 5a and Fig. 5b. Fig. 5a and 

Fig. 5b show the process described above. In Fig. 5a, it can 

be seen how the error decreases as the horizon 𝑁 increases in 

both filters. In Fig. 5b, it is shown how a local minimum can 

be identified by taking the derivative in equation (16). The 

approach of setting the horizon 𝑁 of the I-UFIR or S-G filter 

to the sampling frequency plus one enables an effective 

approximation of the ECG baseline. This selection ensures 

that the window is large enough to average the PQRST 

complex, preventing the filter from tracking rapid 

fluctuations like the R peak while still capturing slow 

baseline variations. The additional unit ensures an odd 

window size, maintaining symmetry in the filtering process 

and enhancing stability and accuracy in baseline estimation. 

For the implementation of the Wavelet algorithm, various 

decompositions and different families of orthonormal 

wavelets were used. However, for the synthetic signals, the 

best results were obtained using the "Symlets" family and 9 

and 10 decompositions.  The Symlets wavelets were chosen 

due to their near-symmetrical properties and improved time-

frequency localization, which reduce signal distortion while 

preserving key features. Once the discrete wavelet transform 
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with maximal overlap was calculated, a multiresolution 

analysis was performed, so that the resulting signals were the 

BLW estimations. 

 
(a) 

 
(b) 

Fig. 5. Procedure for Calculating the Optimal Horizon Based on a Synthetic 

Signal Sampled at 250 Hz. a) Mean Squared Error and Curve Fitting with a 

6th Degree Polynomial for the I-UFIR and S-G Algorithms, b) Absolute 
Value of the Partial Derivative of the Approximate Function for the I-UFIR 

and S-G Algorithms 

Table I shows the results of the minimum squared error 

for the proposed techniques in this study, for signals 

generated with different sampling frequencies and varying 

noise simulation parameters. Here, it can be seen that the 

minimum error values are obtained using the Wavelet 

technique with 9 decompositions for Fs=250 and with 10 

decompositions for Fs=360 Hz and Fs=500 Hz. The error 

results from the I-UFIR and S-G filters are similar, with 

differences on the order of 10−4. However, the minimum 

values in most cases are recorded by the S-G filter, with a 

horizon calculated using the relationship 𝑁𝑆𝐺 = 𝑚𝑖𝑛 √𝑓2 . 

It should be noted that the errors obtained by both filters show 

the same differences of  10−4 when the horizon is set equal 

to the sampling frequency plus one. It is also noticeable that, 

in most cases, when the optimal horizon is calculated, the S-

G filter achieves a lower error than the I-UFIR filter. 

However, it is also important to highlight that the horizon size 

used by the S-G filter is always larger. 

In Fig. 6, the difference in mean squared error results 

using different sampling frequencies and varying levels of 

noise added to the synthetic signals can be seen. In the graph 

of Fig. 6a, it can be observed that the technique using Wavelet 

with 9 decompositions achieves the lowest MSE for any noise 

level. This is followed by the I-UFIR and S-G techniques, 

using both horizon calculation methods, with an approximate 

difference of 2 × 10−3. The algorithm with the highest error 

is Wavelet with 10 decompositions. 

In Fig. 6b and Fig. 6c, the behavior of the proposed 

techniques is different. In the graph of Fig. 6b, the BLW 

estimation using Wavelet with 9 and 10 decompositions 

achieved the lowest MSE. The I-UFIR and S-G filters with 

the proposed horizons obtained similar errors, with an 

approximate difference of ±5 × 10−4. In Fig. 6c, the 

differences between Wavelet with 9 decompositions, I-UFIR, 

and S-G are smaller, highlighting the low error level of 

Wavelet with 10 decompositions. In this first stage, we can 

confirm that by calculating the baseline with a horizon of 𝑁 =
𝐹𝑠 + 1, I-UFIR and S-G algorithms provide an adequate 

estimation of the BLW. 

TABLE I.  RESULTS OF THE MINIMUM MSE FOR BASELINE WANDER ESTIMATION USING WAVELET TECHNIQUES WITH 9 AND 10 DECOMPOSITIONS, I-UFIR 

AND S-G 

Simulation Parameters Mean Square Error 

Sample 

Frequency 
BLW W9 W10 

I-UFIR, 

𝑁𝐼𝑈
= 𝐹𝑠 + 1 

I-UFIR, 

𝑁𝐼𝑈 = 𝑚𝑖𝑛 √𝑓1  

SG, 

𝑁𝑆𝐺  =  𝐹𝑠 + 1 

SG 

𝑁𝑆𝐺 = 𝑚𝑖𝑛 √𝑓2  

Fs=250 

Bw=0.5,𝜎=0.05 0.012785 0.020634 0.014623 0.01440, N =263 0.014821 0.014551, N =299 

Bw=0.5, 𝜎 =0.1 0.01257 0.020399 0.014506 0.01440, N =263 0.01471 0.01447, N =297 

Bw=0.5, 𝜎=0.15 0.012791 0.020708 0.015158 0.015139, N =267 0.015081 0.014553, N =313 

Bw=0.5, 𝜎 =0.2 0.01244 0.02012 0.015012 0.014992, N =263 0.01553 0.014956, N =313 

Bw=0.5, 𝜎 =0.5 0.01520 0.0223 0.01661 0.01609, N =289 0.01725 0.01650, N =325 

Fs=360 

Bw=0.5, 𝜎 =0.05 0.015239 0.0140 0.015868 0.015862, N =379 0.016234 0.015802, N =425 

Bw=0.5, 𝜎 =0.1 0.015019 0.0140 0.015918 0.015915, N =375 0.016323 0.015553, N =429 

Bw=0.5, 𝜎 =0.15 0.015350 0.01412 0.016043 0.01603, N =377 0.016416 0.01591, N =441 

Bw=0.5, 𝜎 =0.2 0.015272 0.01412 0.016161 0.016149, N =377 0.016412 0.016071, N =435 

Bw=0.5, 𝜎 =0.5 0.01569 0.01500 0.01670 0.016647, N =377 0.01753 0.016722, N =447 

Fs=500 

Bw=0.5, 𝜎 =0.05 0.01788 0.01595 0.01814 0.018226, N =525 0.018509 0.018056, N =595 

Bw=0.5, 𝜎 =0.1 0.018010 0.016022 0.01826 0.018257, N =525 0.018676 0.018205, N =595 

Bw=0.5, 𝜎 =0.15 0.0181 0.016000 0.018347 0.018337, N =527 0.018715 0.01828, N =593 

Bw=0.5, 𝜎 =0.2 0.0181 0.0161 0.018453 0.018442, N =527 0.018823 0.01835, N =593 

Bw=0.5, 𝜎 =0.5 0.01864 0.01626 0.01949 0.018902, N =529 0.01945 0.018854, N =593 
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(a) 

 
(b) 

 
(c) 

Fig. 6. Graphical Comparison of the Best Mean Squared Error Results at 

Different Noise Levels 𝜎  for the Proposed Techniques for BLW Estimation. 

MSE for Different Sampling Frequencies: a) 250 Hz, b) 360 Hz, and c) 500 

Hz 

The Wavelet method achieved the lowest MSE in 

estimating baseline wander in ECG synthetic signals but at a 

higher computational cost. In contrast, the I-UFIR and S-G 

filters offer a trade-off between accuracy and efficiency, 

making them more suitable for real time applications. The 

choice of method depends on application requirements, 

where Wavelets are preferable for minimizing MSE when 

computational resources allow, while I-UFIR remains a 

competitive alternative for low-power or real-time scenarios. 

These results can be supported based on Table II, which 

presents the results for the Root Mean Squared Error (RMSE) 

for the proposed techniques in this study, based on signals 

generated with different sampling frequencies and varying 

noise simulation parameters. Notably, the RMSE values 

closely mirror those of the MSE, reflecting a similar trend 

across different techniques. However, it is important to 

highlight the key distinction between these two metrics. 

While MSE provides a general measure of the squared 

differences between predicted and actual values, RMSE 

offers a more interpretable scale by taking the square root of 

the MSE, making it easier to assess the magnitude of the error 

in the same units as the original data. In this case, the lowest 

RMSE values are again achieved using the Wavelet technique 

with 9 decompositions for Fs=250 Hz, and with 10 

decompositions for Fs=360 Hz and Fs=500 Hz. 

B. ECG Extraction without External Converter A/D 

For the BLW estimation, an initial test was conducted 

without an external Analog-Digital (AD) converter, 

establishing a sampling frequency of 152 samples per second, 

using only the internal AD converter of the Arduino board. A 

sampling frequency of 152 was chosen because, after several 

tests with different sampling frequencies, this frequency best 

captured the main waves of an ECG as well as the desired 

behavior of BLW alteration. In Fig. 7a, the acquired ECG 

signal is shown, where BLW is present as the measurement 

exhibits intervals with changes in the mean and standard 

deviation. The same Fig. shows BLW estimations using the 

proposed techniques. For Wavelet with 9 and 10 

decompositions, the decomposition that best fits the baseline 

was manually chosen. However, if a mean square error-based 

search with respect to the input signal is used, the results 

obtained with Wavelet are unsatisfactory. Each 

decomposition should be inspected to select the one that best 

approximates the baseline. Meanwhile, the I-UFIR and S-G 

filters calculated the baseline wander simply by tuning the 

horizon to the sampling frequency value, performing this task 

automatically. 
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TABLE II.  RESULTS OF THE MINIMUM SQUARED ERROR FOR BASELINE WANDER ESTIMATION USING WAVELET TECHNIQUES WITH 9 AND 10 

DECOMPOSITIONS, I-UFIR AND S-G 

Simulation Parameters  Root Mean Square Error 

Sample Frequency BLW W9 W10 
I-UFIR, 

𝑁𝐼𝑈 = 𝐹𝑠 + 1 

I-UFIR, 

𝑁𝐼𝑈 = 𝑚𝑖𝑛 √𝑓1  
SG, 𝑁𝑆𝐺  =  𝐹𝑠 + 1 

SG 

𝑁𝑆𝐺 = 𝑚𝑖𝑛 √𝑓2  

Fs=250 

Bw=0.5, 𝜎=0.05 0.113070 0.143645 0.120925 0.12, N =263 0.12174 0.120627, N =299 

Bw=0.5,  𝜎=0.1 0.112116 0.142825 0.120440 0.12, N =263 0.121284 0.1202913, N =297 

Bw=0.5, 𝜎=0.15 0.113097 0.143902 0.123117 0.123040, N =267 0.122804 0.120635, N =313 

Bw=0.5,  𝜎=0.2 0.111534 0.141844 0.122523 0.122441, N =263 0.124619 0.122294, N =313 

Bw=0.5,  𝜎=0.5 0.123288 0.149331 0.128879 0.126846, N =289 0.131339 0.128452, N =325 

Fs=360 

Bw=0.5,  𝜎=0.05 0.123446 0.118321 0.125968 0.125944, N =379 0.127412 0.125706, N =425 

Bw=0.5,  𝜎=0.1 0.122552 0.118321 0.126166 0.126154, N =375 0.127761 0.124711, N =429 

Bw=0.5,  𝜎=0.15 0.123895 0.118827 0.126660 0.126609, N =377 0.128124 0.126134, N =441 

Bw=0.5,  𝜎=0.2 0.123579 0.118827 0.127125 0.127078, N =377 0.128109 0.126771, N =435 

Bw=0.5,  𝜎=0.5 0.125259 0.122474 0.12922 0.129023, N =377 0.132401 0.129313, N =447 

Fs=500 

Bw=0.5,  𝜎=0.05 0.133716 0.126293 0.134684 0.135003, N =525 0.136047 0.134372, N =595 

Bw=0.5,  𝜎=0.1 0.134201 0.126578 0.135129 0.135118, N =525 0.136660 0.134925, N =595 

Bw=0.5,  𝜎=0.15 0.134536 0.126491 0.135451 0.135414, N =527 0.136802 0.13520, N =593 

Bw=0.5,  𝜎=0.2 0.134536 0.126885 0.135841 0.135801, N =527 0.137196 0.135462, N =593 

Bw=0.5,  𝜎=0.5 0.136528 0.127514 0.139606 0.137484, N =529 0.139463 0.137312, N =593 

Fig. 7b, Fig. 7c, Fig. 7d, and Fig. 7e illustrate the resulting 

ECG signals after removing the estimated BLW with the 

techniques Wavelet 𝑊𝐷 = 9, 𝑊𝐷 = 10, I-UFIR, and S-G, 

respectively. Here, several observations can be made 

regarding the performance of each technique. The Wavelet 

𝑊𝐷 =9 and 𝑊𝐷=10 decomposition offers a multi-resolution 

approach to baseline correction, its effectiveness strongly 

depends on selecting the appropriate decomposition level. As 

seen in Fig. 7b, and Fig. 7c, residual baseline drift persists, 

particularly after 20 seconds, suggesting that wavelet-based 

approaches may require adaptive thresholding or optimized 

decomposition selection methods to improve performance. 

Additionally, signal distortion may occur if an inappropriate 

level is chosen, leading to either excessive smoothing or 

insufficient BLW removal. On the contrary, the Iterative 

UFIR filter, see Fig. 7d, demonstrates superior BLW removal 

without requiring manual selection of parameters beyond 

tuning the horizon to the sampling frequency. This method 

effectively stabilizes the ECG baseline while preserving the 

morphology of the cardiac waveform, making it a robust 

alternative to wavelet decomposition. However, potential 

limitations include increased computational complexity 

compared to simpler filtering techniques. Similarly, the 

results of the SG filter, illustrated in Fig. 7e, also shows 

consistent baseline stabilization. Its polynomial smoothing 

capability helps maintain the integrity of high frequency 

components, reducing the likelihood of excessive smoothing 

observed in wavelet-based methods. However, SG filtering 

may be sensitive to window size selection, which could 

impact the overall balance between noise reduction and signal 

preservation.  

In contrast to synthetic ECG signals where noise and 

baseline wander are typically well defined, real world signals 

introduce additional variability due to sensor noise, motion 

artifacts, and physiological variations. This highlights the 

limitations of static decomposition levels in wavelet filtering 

and emphasizes the advantage of I-UFIR and SG algorithms. 

Since there is no reference baseline to determine the best 

technique for BLW estimation, a statistical comparison based 

on boxplots is proposed. It is worth remembering that a 

boxplot is a powerful tool that provides a concise visual 

summary of the error distribution of residuals of the model. 

The median line indicates the central tendency, if it is near 

zero, it suggests minimal systematic bias, whereas a deviation 

implies consistent over or underestimation. The interquartile 

range and whiskers reveal the spread of the residuals, with a 

narrow Interquartile Range (IQR) indicating low random 

error and a wide IQR, along with outliers, suggesting higher 

variability and occasional substantial deviations. 

Additionally, any skewness observed in the plot points to an 

uneven error distribution, potentially highlighting 

unaccounted factors or issues with the assumptions of the 

model. 

 

Fig. 7. a) Real ECG Signal Measurement without using the external 
converter and post-processing using various algorithms: b) Wavelet with 9 

decompositions, c) Wavelet with 10 decompositions, d) I-UFIR, and e) SG 
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Fig. 8a, Fig. 8b, Fig. 8c, and Fig. 8d shows the boxplots 

of four different signals acquired at this stage. Generally, it 

can be deduced that the ECG measurements without BLW, 

calculated with Wavelet with 9 and 10 decompositions, show 

a broader range within ±2.698𝜎 across the four signals, 

meaning that approximately 99% of the information lies 

within this range. The I-UFIR and S-G algorithms exhibit a 

narrower range within ±2.698𝜎. However, only in the first 

signal does the I-UFIR filter present lower variation. In Fig. 

8b, Fig. 8c, and Fig. 8d, Savitzky-Golay shows the most 

stable behavior. In addition to range and variability, the box 

plots further explain the distributional characteristics of the 

residuals. Notably, the median values for both the I-UFIR and 

S-G filters remain centered near zero across most signals, 

indicating that these methods effectively minimize 

systematic bias. Slight asymmetries in some plots suggest the 

presence of minor residual systematic errors that may warrant 

further investigation. Moreover, the fewer extreme outliers 

observed with the I-UFIR and S-G filters reinforce their 

robustness and consistent performance, underscoring its 

potential to reliably preserve key ECG morphological 

features across diverse signal conditions. 

C. ECG Extraction with External Converter A/D 

For this stage, it was proposed to use the ADS1115 A/D 

converter to establish a more common sampling frequency 

for ECG signal acquisition. In this case, the A/D converter 

was tuned to collect data at 250 samples per second. From 

Fig. 9a to Fig. 9d aims to show the processing of signals 

acquired with the external A/D converter and the BLW line 

estimation. First, in Fig. 9a, the real ECG signal is shown, 

where the wavy movement of the BLW signal accompanying 

the ECG signal. In Fig. 9b, Fig. 9c, and Fig. 9d, the ECG 

signal is shown, where the BLW signal was removed using 

the Wavelet filter with 9 decompositions, and I-UFIR and S-

G filters with the horizon set to the sampling frequency plus 

one, respectively. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 8. Boxplot of real ECG measurements without BLW and without using an external A/D converter 
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Fig. 9. Analysis of signals extracted with the ADS1115 A/D converter: a) 

Real ECG signal, b), c), and d) signals without BLW using the Wavelet, I-

UFIR, and S-G filters, respectively 

The second real ECG signal recorded using the external 

A/D converter is shown in Fig. 10a. Like the first signal, a 

wavy behavior is observed, but with higher amplitudes, along 

with abrupt changes in the signal. In Fig. 10b, Fig. 10c, and 

Fig. 10d, the ECG signals are shown once the BLW line was 

removed using the Wavelet filter with 9 decompositions, and 

the I-UFIR and S-G filters with the horizon set to the 

sampling frequency plus one, respectively. When closely 

examining the behavior of the acquired signal and the 

processed measurements during the 6 to 8-second interval, an 

abrupt change in the signal is noted, and the S-G technique is 

the one that stabilizes the signal to this change during this 

period. In contrast, the Wavelet filter with 9 decompositions, 

despite manually selecting the measurement that best fit the 

BLW, still preserves part of this behavior. 

As mentioned earlier, since real signals lack a BLW 

reference to calculate the MSE, it is necessary to analyze the 

real ECG results recorded using an A/D converter through the 

boxplot tool. Fig. 11a, Fig. 11b, and Fig. 11c shows the 

boxplots of three recorded signals after the BLW signal was 

removed using the proposed filters. In Fig. 11a, it can be 

observed that the BLW estimation with the I-UFIR filter 

provides a signal with a narrower ±2.698𝜎 range. However, 

the result using the SG filter shows fewer outliers in the 

negative part of the ECG signal than the UFIR filter. 

Meanwhile, the result using Wavelet with 9 decompositions 

has the widest information distribution range. 

 

Fig. 10. Analysis of signals extracted with the ADS1115 A/D converter: a) 

Real ECG signal, b), c), and d) signals without BLW using the Wavelet, I-

UFIR, and S-G filters, respectively 

For the real ECG signal 2 in Fig. 11b, the boxplots for the 

I-UFIR and S-G filters show similar results, with an upper 

limit difference of ±2.698𝜎 at 8.25 × 10−3 and a lower limit 

difference of 9 × 10−5. In contrast, the results using Wavelet, 

which accumulates 99% of the information over a wider 

interval than the previous filters, especially when using 9 

decompositions. Finally, in a third test, the solution using the 

SG filter appears to have greater stability compared to the 

other techniques. This statement is based on the narrower 

whiskers compared to other techniques and the median being 

close to zero at -0.015869.  In Fig. 11c, the third box plot 

further highlights the differences in variability and stability 

among the filtering methods. The Wavelet decomposition 

with 9 and 10 levels exhibits wider whiskers than the I-UFIR 

and S-G filters, indicating a higher spread of residuals. 

Notably, the Wavelet with 9 decompositions shows fewer 

outliers, likely due to its broader whiskers, which include 

more data within the interquartile range. In contrast, both the 

I-UFIR and S-G filters maintain narrower whiskers, 

reinforcing their ability to reduce variations while keeping the 

median centered near zero. Finally, in this third test, the S-G 

filter demonstrates the most stable performance, further 

confirming its robustness in preserving ECG signal 

morphology while minimizing baseline wander. The 

presence of outliers in the box plots of Fig. 8 and Fig. 11 can 

be attributed to several factors, including transient artifacts in 

the ECG signals, residual baseline wander that was not fully 

removed, and variations in signal acquisition conditions such 

as electrode contact instability or motion artifacts. In the case 

of Wavelet decomposition, wider whiskers suggest a greater 

spread of residuals, which may contribute to fewer detected 
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outliers, whereas the narrower whiskers in I-UFIR and S-G 

indicate more consistent filtering but may still leave some 

extreme residuals. These outliers could affect the overall 

performance by slightly increasing error metrics like MSE 

and RMSE, but their impact is localized rather than 

systematic. 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Boxplot of real ECG measurements without BLW and using an 

external converter A/D 

The previous results suggest that effective baseline 

wander removal has significant clinical implications, as 

preserving key ECG morphological features is essential for 

accurately diagnosing conditions like myocardial ischemia 

and arrhythmias. By minimizing distortions that can mask 

these critical features, the algorithms evaluated in this study 

have the potential to enhance automated ECG analysis and 

improve diagnostic reliability. Although technical metrics 

like MSE, RMSE, and boxplot provide quantitative and 

qualitative performance assessments, the ability of methods 

such as I-UFIR, Savitzky-Golay, and Wavelet transform to 

maintain ECG integrity directly translates into better patient 

care through more precise interpretation and reduced 

misdiagnoses. Ultimately, these improvements could support 

clinical decisions by reducing false positives and negatives, 

thereby facilitating timely and appropriate treatment 

interventions. While the study focuses on baseline wander 

removal, real world challenges such as electrode-skin contact 

variability, electromagnetic interference, and patient 

movement can introduce additional noise that affects ECG 

signal quality. These factors may impact the performance of 

the proposed algorithms by introducing transient artifacts or 

distortions that are not purely baseline wander, potentially 

reducing filtering effectiveness. Future work could explore 

adaptive filtering techniques or hybrid approaches that 

integrate motion artifact reduction to enhance robustness in 

practical settings. Additionally, evaluating the algorithms on 

ECG data collected under varying real world conditions 

would provide further insight into their reliability and 

applicability in clinical and ambulatory environments. 

V. CONCLUSIONS 

This work highlighted the inherent presence of baseline 

wander in ECG signals and the importance of its estimation 

and removal to obtain more stable measurements for 

detecting future parameters. To achieve this, the I-UFIR, S-

G, and Wavelet filters were used, with the latter being one of 

the most widely used techniques in the literature. The 

comparison of these algorithms was conducted in two 

scenarios, one by generating synthetic signals to provide a 

reference BLW. In this test, it was observed that the Wavelet 

technique, with 9 and 10 decompositions, was the most 

suitable for estimating the BLW based on results from the 

minimum Mean Square Error (MSE) and Root Mean Square 

Error (RMSE). The results demonstrated that for Fs = 250 Hz 

and noise with 𝜎 = 0.5, Wavelet decomposition with 9 levels 

achieved the lowest error, with MSE = 0.01520 and RMSE = 

0.123288, making it the most suitable method for these 

synthetic signals. For Fs = 360 Hz and Fs = 500 Hz with noise 

with =0.5, wavelet decomposition with 10 levels also 

achieved the lowest error, with MSE = 0.01500 and RMSE = 

0.01626 for Fs = 360 Hz, and MSE = 0.01500 and RMSE = 

0.127514 for Fs = 500 Hz, making it the most suitable method 

under these conditions. However, the I-UFIR and S-G 

proposals, using two different horizons, showed no 

significant differences in MSE compared to those obtained by 

Wavelet. 

In contrast, in a second experimental stage, where a basic 

and low-cost ECG signal acquisition system was proposed, 

this work demonstrated that, while the Wavelet technique 

excelled in synthetic signals with 9 and 10 decompositions, 
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the I-UFIR and S-G filters were more effective for BLW 

estimation in real world ECG scenarios. This advantage is 

potentially due to their simplicity, lower computational 

requirements, and robustness under noise, making them 

better suited for practical applications in low-cost hardware. 

These algorithms successfully reduced the impact of BLW in 

the acquired ECG signals, as verified by a statistical analysis 

with boxplots. Although both I-UFIR and S-G filters were 

effective, the slight advantage of the S-G filter, as evidenced 

by boxplot analysis, may be attributed to its better handling 

of specific frequency components in the ECG signal, 

resulting in slightly better performance than I-UFIR. In both 

experimental stages, the disadvantage of calculating the 

optimal horizon for I-UFIR and S-G was mitigated by 

matching this parameter. The approach based on setting the 

horizon to the sampling frequency plus one guarantees that 

the window is sufficiently large to average the entire PQRST 

complex. Consequently, the filter avoids tracking rapid 

fluctuations, such as the R peak, while still capturing slow 

baseline drifts. 

Finally, it is worth mentioning that the effective 

implementation of I-UFIR and S-G filters in low-cost ECG 

acquisition systems emphasizes their potential for improving 

the accuracy and stability of wearable health monitoring 

devices. This conclusion is supported by the narrower 

whiskers observed in these techniques, along with the median 

value, which is closer to zero in most cases, indicating 

enhanced performance compared to other methods. Given 

their computational efficiency and adaptability to resource-

constrained hardware, these techniques could play a key role 

in advancing real-time ECG signal processing for remote 

patient monitoring and medical diagnostics. However, this 

study has certain limitations that should be considered. First, 

the evaluation of BLW removal was conducted on ECG 

signals obtained from a single individual under controlled 

conditions, which may limit the generalizability of the 

findings to a broader population or different ECG recording 

environments. The hardware setup used for real ECG 

acquisition, while designed to be low-cost and accessible, 

may introduce specific artifacts or limitations that could 

influence the performance of the filtering techniques. Future 

work could focus on applying these methods to different 

biomedical signals or examining their combination with 

machine learning models to enhance ECG signal quality and 

facilitate automated diagnosis. Also, it would be interesting 

to explore incorporating stochastic models or adaptive 

techniques to better account for the real-world variations in 

ECG signals. 
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