
Journal of Robotics and Control (JRC) 

Volume 6, Issue 2, 2025 

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i2.24812 660 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

A Novel Integral Interconnection Damping 

Assignment Passivity-Based Control Approach for 

Underactuated Inverted Pendulum System 

Minh-Duc Tran 1, Vinh-Hao Nguyen 2* 
1, 2 Department of Control Engineering and Automation, Ho Chi Minh City University of Technology (HCMUT), Viet Nam 

National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam 

Email: 1 tmduc.sdh222@hcmut.edu.vn, 2 vinhhao@hcmut.edu.vn 

*Corresponding Author 

 
Abstract—This study explores an application of robust 

nonlinear control to an underactuated inverted pendulum 

system (UIPS), a type of underactuated mechanical system, by 

first transforming the perturbed system into a form of a port-

controlled Hamiltonian system (PCH), then utilizing the 

Interconnection and Damping Assignment Passivity-Based 

Control (IDA-PBC) methodology to achieve the stabilization of 

an unperturbed closed-loop PCH system with an assigned 

energy function that qualifies as a Lyapunov candidate at the 

unstable equilibrium point. From there, the problem of 

robustification of IDA-PBC for a perturbed closed-loop PCH 

system with the state-dependent input matrix of the UIPS, 

subject to constant matched disturbances, is addressed by 

adding an outer-loop controller with an additional state. This 

results in a new system that preserves the framework of a PCH 

system, rejects the disturbance, and has a new energy function 

that again serves as a Lyapunov function at the desired 

equilibrium point. This proposed methodology is called integral 

IDA-PBC (iIDA-PBC). The effectiveness and applicability of the 

proposed method are thoroughly assessed through numerical 

simulations and experimental validation on the UIPS. The 

results demonstrate the method's proficiency in handling the 

system’s constant matched disturbances and model 

inaccuracies, underscoring the potential of iIDA-PBC for 

broader applications in systems facing similar control 

challenges. 

Keywords—Underactuated Inverted Pendulum System; IDA-

PBC; Robust Nonlinear Control; Hamiltonian Systems; 

Disturbance Rejection. 

I. INTRODUCTION 

Using a well-known underactuated system like the 

underactuated inverted pendulum system (UIPS) is often the 

preferred choice for researchers to explore and validate new 

control strategies, study chaos theory, and more. This is due 

to its highly nonlinear nature and underactuation, where the 

number of inputs is fewer than the degrees of freedom, 

making control strategies particularly challenging for the 

underactuated components. Recent studies demonstrate that 

UIPS is in fact able to work in the mentioned fields, and is 

used as a practical system to verify the research methodology. 

For few examples, O. Saleem and colleagues developed an 

adaptive fractional-order linear quadratic regulator for the 

UIPS and demonstrated its effectiveness through experiments 

[1]. Similarly, T. Li et al. (2024) investigate the effects of the 

fractional Gaussian noise excitation for the UIPS [2]. New 

intelligent methods have also been researched and applied, 

such as the RBF-ARX model-based predictive controller [3], 

while optimal robust adaptive fuzzy techniques were 

employed to enhance control performance [4]. Additionally, 

the Takagi-Sugeno fuzzy methodology has been extensively 

studied and implemented in multiple works [5]-[10]. 

Furthermore, chaotic behavior analyses have been conducted 

in several studies to explore complex system dynamics [11]-

[15]. Besides, it also serves as a valuable model for 

developing new mechanical systems, such as Segways [16], 

[17], human posture control systems [18], [19]-[22], self-

balancing robots [23]-[25]. Based on this analysis, we target 

to utilize the UIPS to qualify our controller proposal, namely 

Integral Interconnection and Damping Assignment Passivity-

Based Control (iIDA-PBC) technique. 

Regarding IDA-PBC, it is a control method for nonlinear 

systems that stabilize dynamic systems by designing them to 

achieve the desired energy structure. The technique modifies 

the system's dynamics to embed a target closed-loop 

behavior, typically by assigning a Hamiltonian structure (e.g. 

PCH) to the system, allowing the energy function to act as a 

Lyapunov function for stability. For PCH, it is a specific type 

of physical system used in control theory and system 

dynamics that incorporates both energy exchange and 

Hamiltonian mechanics. This framework models systems that 

can exchange energy with their environment through "ports," 

which are interfaces for input and output. 

Several studies on the mentioned approach, devoted to the 

class of underactuated systems have appeared in literature 

and industry. For instance, P. Borja (2024) [26] studies about 

how to remove the PDEs from his control design for IDA-

PBC, or Mattioni studies the controller in discrete models and 

with time delays [27][28]. Moreover, in [77][78], a new 

approach called cbI-PBC is introduced as a variation of 

passivity-based control, involving deeper analysis within the 

internal system. 

On top of that, IDA-PBC has been studied for many 

advanced models such as autonomous underwater vehicles 

[29]-[31], unmanned aerial vehicles [32]-[36],induction 

motors [37]-[39], permanent magnet synchronous motor 

[40]-[43], underactuated systems [44]-[49], robot [50]- [53], 

hybrid electric vehicles [54][55], power systems [56]-[63], 

and so on. In numerous practical scenarios, the system's state 

may not be directly measurable. To address this challenge, 
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studies in [79] and [82] propose an approach for designing an 

observer to estimate the system's state effectively. 

The IDA-PBC is effective in controlling unperturbed 

nonlinear systems; however, it does not maintain the desired 

equilibrium point when disturbances occur. These 

disturbances can be categorized into two types: matched and 

unmatched. Matched disturbances are related to modeling 

errors or any disturbance that can be mapped through the 

input matrix, whereas unmatched disturbances cannot be 

mapped through the input matrix and act independently of the 

control input. 

Researchers have started addressing the problem of 

rejecting such disturbances after achieving a stable closed-

loop system at the equilibrium point using IDA-PBC. Some 

approaches involve adaptive control [36] or the integration of 

an integral action, known as Integral Interconnection and 

Damping Assignment Passivity-Based Control (iIDA-PBC) 

[64][65]. Significant efforts have been made in this area. For 

instance, E. Franco and colleagues in [66] explored the 

implementation of iIDA-PBC for underactuated systems with 

actuator dynamics and uncertain coupling. In 2015, M. Ryalat 

et al. proposed an iIDA-PBC PID-like control approach [67]. 

However, these techniques introduce additional partial 

differential equations (PDEs), which can be challenging to 

solve. To address this issue, researchers [68]-[71] proposed 

integrating an integral action into the IDA-PBC framework 

to counteract disturbances without requiring additional PDEs. 

However, this method only addresses matched disturbances 

under the condition that the input matrix is constant. 

Furthermore, it requires a new coordinate transformation for 

underactuated systems to apply their proposed method. 

In this paper, we present a step-by-step procedure for 

designing an IDA-PBC on an UIPS, omitting the solving 

PDEs proof but providing remarks for those who wish to 

apply it to other systems. Next, we propose a different 

formulation of the iIDA-PBC methodology for handling 

constant matched disturbances. This approach does not 

introduce any additional PDEs, relaxes the requirement for a 

constant input matrix, and avoids the necessity of 

transforming to a new coordinate system. Finally, we 

demonstrate the effectiveness of the proposed method 

through both simulation and experimental results. The results 

show that constant matched disturbances are rejected. 

Additionally, some limitations are discussed, highlighting 

areas for future development. 

The organization of this paper is structured into five parts: 

First, a brief introduction to the IDA-PBC methodology for 

the PCH system is provided. Second, the dynamics of the 

UIPS with constant matched disturbances are presented, 

including the step-by-step design of the IDA-PBC on the 

UIPS, the effects of the mentioned disturbances on the 

closed-loop system, and the problem statement along with the 

proposed solution. Third, the methodology is introduced, 

including the stability proof and a visualized tuning 

procedure. Fourth, the results from both simulations and 

experiments are presented. Finally, the paper concludes with 

final remarks, a discussion of ongoing work related to the 

system, and suggestions for future research. 

Notation 1. In this manuscript, we use the notation as 

follows: 𝐼𝑛is a 𝑛 × 𝑛identity matrix, 0𝑛×𝑚 denotes a 

𝑛 × 𝑚that contains only zero in each of its entry. For 𝑞 ∈ ℝ𝑛, 

we define ‖𝑞‖𝐾
2 = 𝑞𝑇𝐾𝑞 for 𝐾 ∈ ℝ𝑛×𝑛 and 𝐾 = 𝐾𝑇 > 0. For 

𝑝 ∈ ℝ𝑛×𝑚, the symbol ‖𝑝‖ is its induced norm. The gradient 

of a mapping 𝑇(𝑞):ℝ𝑛 → ℝ is denoted as 𝛻𝑇(𝑞) ≜
(𝜕𝑇/𝜕𝑞)𝑇. 

Notation 2. The arguments of the functions are 

sometimes omitted for the availability of spaces and 

simplification. 

TABLE I.  LIST OF ABBREVIATIONS 

Abbreviation Full Description 

UIPS Underactuated inverted pendulum system 

PDEs Partial differential equations 

PCH Port-controlled Hamiltonian 

IDA-PBC 
Interconnection and damping assignment - 

Passivity based control 

iIDA-PBC 
Integral interconnection and damping assignment - 

Passivity based control 

NMAE Normalized Mean Absolute Error 

NRMSE Normalized Root Mean Squared Error 

II. MATHEMATICAL MODELING 

A. Overview of The Port-Controlled Hamiltonian System 

and the Design of the IDA-PBC  

An underactuated system with n-DOFs, is described in the 

form of the port-controlled Hamiltonian as follows: 

 [
𝑞̇
𝑝̇
] = [

0 𝐼
−𝐼 −𝐷

] [
𝛻𝑞𝐻(𝑞, 𝑝)

𝛻𝑝𝐻(𝑞, 𝑝)
] + [

0
𝐺(𝑞)

] 𝑢 (1) 

Where the control input 𝑢 ∈ ℝ𝑚, which applies to the input 

matrix 𝐺(𝑞) ∈ ℝ𝑛×𝑚 with 𝑟𝑎𝑛𝑘(𝐺) = 𝑚(𝑚 < 𝑛). The 

system states 𝑞 ∈ ℝ𝑛 and the momenta 𝑝 = 𝑀𝑡(𝑞)𝑞̇ ∈ ℝ𝑛, 

the physical damping 𝐷 = 𝐷𝑇 ≥ 0.  

The mechanical energy function of the system, 

𝐻(𝑞, 𝑝) =
1

2
𝑝𝑇𝑀𝑡

−1(𝑞)𝑝 + 𝛺(𝑞) (2) 

is characterized by the kinetic term, associated with the 

positive definite inertia matrix 𝑀𝑡 = 𝑀𝑡
𝑇 ≻ 0, and the 

potential energy 𝛺(𝑞). The partial derivative of 𝐻(𝑞, 𝑝) with 

respect to 𝑞 is 𝛻𝑞𝐻(𝑞, 𝑝), and the partial derivative of  𝐻(𝑞, 𝑝) 

with respect to 𝑝 is 𝛻𝑝𝐻(𝑞, 𝑝).  

As in [72], to achieve the goal of stabilizing the system at 

the desired equilibrium (𝑞, 𝑝) = (𝑞∗, 0), the energy function 

(3) should be shaped in the new form:  

𝐻𝑑(𝑞, 𝑝) =
1

2
𝑝𝑇𝑀𝑑

−1𝑝 + 𝛺𝑑(𝑞) (3) 

For which, the new potential energy 𝛺𝑑(𝑞)should admit 

a strict minimizer in 𝑞∗and verify the conditions 𝛻𝑝𝛺𝑑(𝑞
∗) =

0 and 𝛻𝑝
2𝛺𝑑(𝑞

∗) > 0, and the inertial matrix 𝑀𝑑(𝑞) =

𝑀𝑑
𝑇(𝑞) ≻ 0. 

The target closed-loop system has the form: 

[
𝑞̇
𝑝̇
] = [

0 𝑀𝑡
−1𝑀𝑑

−𝑀𝑑𝑀𝑡
−1 𝐽2 − 𝐺𝐾𝑉𝐺

𝑇 − 𝐷𝑀𝑡
−1𝑀𝑑

] [
𝛻𝑞𝐻𝑑
𝛻𝑝𝐻𝑑

] (4) 
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This is achieved by using the IDA-PBC control law [72] 

as follows: 

{

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖
𝑢𝑒𝑠 = 𝐺

+[𝛻𝑞𝐻 −𝑀𝑑𝑀𝑡
−1𝛻𝑞𝐻𝑑 + 𝐽2𝛻𝑝𝐻𝑑]

𝑢𝑑𝑖 = −𝐾𝑉𝐺
𝑇𝛻𝑝𝐻𝑑

 (5) 

The suitable inertia matrix 𝑀𝑑(𝑞) and 𝛺𝑑(𝑞) are verified 

for the partial differential equations by matching (4) and (1), 

the result is as follows: 

{
𝐺⊥(𝛻𝑞𝛺 −𝑀𝑑𝑀𝑡

−1𝛻𝑞𝛺𝑑) = 0

𝐺⊥(𝛻𝑞𝐻 −𝑀𝑑𝑀𝑡
−1𝛻𝑞(𝑝

𝑇𝑀𝑑
−1𝑝) + 2𝐽2𝛻𝑝𝐻𝑑) = 0

 (6) 

Where 𝐺+(𝑞) = (𝐺𝑇𝐺)−1𝐺𝑇(𝑞) is the left pseudo-inverse 

matrix, the damping gain 𝐾𝑉 = 𝐾𝑉
𝑇 ≻ 0, the free matrix 

𝐽2(𝑞, 𝑝) = −𝐽2
𝑇(𝑞, 𝑝), 𝐺⊥(𝑞) is the full rank left annihilator 

of 𝐺(𝑞). The input 𝑢𝑒𝑠is called the energy shaping control 

law, which first shape the in to the form (4) without the term 

𝐺𝐾𝑉𝐺
𝑇(𝑞), then the input 𝑢𝑑𝑖, called damping injection law, 

adds the remaining term. 

Taking the time-derivative of 𝐻𝑑(𝑞, 𝑝) yields: 

( )1 0T T

d p d V t d p dH H GK G DM M H−= − +    (7) 

From (7), (𝑞, 𝑝) = (𝑞∗, 0) is the stable equilibrium of the 

closed-loop system (4) [72]. Furthermore, it is asymptotically 

stable if, according to Lasalle’s theorem, the largest invariant 

set under the system (4) satisfies the following: 

{(𝑞, 𝑝) ∈ ℝ2𝑛|𝐻̇𝑑(𝑞, 𝑝) = 0} = {(𝑞
∗, 0)} (8) 

If 𝑦𝑑 ≜ 𝐺
𝑇𝛻𝑝𝐻𝑑 is detectable, for the case 𝐷 = 0 in (7), 

as 𝑦𝑑 = 0 ⇒ (𝑞, 𝑝) = (𝑞∗, 0). For clearance, we have 

𝐻̇𝑑(𝑞, 𝑝) ≤ 𝑦𝑑
𝑇𝑢𝑑𝑖, in which 𝑦𝑑  is the passive output of (4) 

and the control 𝑢𝑑𝑖  defined as in (5) preserves passivity. 

Remark 1.  The current form of (6) includes terms such 

as the system's inertia matrix, kinetic energy, and the skew-

symmetric matrix, all of which are functions of 𝑞 and 𝑝, 

making the equation nonlinear and coupled. Solving this type 

of partial differential equation requires a specific structure to 

derive a solution. In this paper, the detailed proof of the steps 

for solving (6) is omitted due to its length and because it 

primarily follows well-established methods, as our focus is 

on addressing the rejection of the additive matched 

disturbance in the perturbed system, which will be mentioned 

in sequel. Readers seeking a deeper understanding of the 

proof are encouraged to refer to [72] and [73] for 

comprehensive insights. 

B. The System Dynamic of the UIPS 

The schematic of the UIPS is captured in Fig. 1. The 

dynamic of the UIPS is of the form [74], [69]. 

[
𝑥̈
𝜃̈
] = [

𝑓1(𝑥, 𝑥̇, 𝜃, 𝜃̇)

𝑓2(𝑥, 𝑥̇, 𝜃, 𝜃̇)
] + [

𝑔1(𝜃)

𝑔2(𝜃)
] (𝑣 − 𝑑) (9) 

Where 𝑥, 𝑥̇, 𝜃, 𝜃̇ ∈ ℝ are the system’s states 𝑓1, 𝑓2 ∈ ℝ and 

𝑔1, 𝑔2 ∈ ℝ are differentiable, 𝑣 ∈ ℝ is the control input, and 

𝑑 ∈ ℝ is the disturbance to be rejected, which is not known. 

 

Fig. 1. Schematic of the UIPS 

𝑓1 =
𝑚𝑙𝜃̇2 𝑠𝑖𝑛 𝜃 − (𝑏1 +

𝐵
𝑟
+
𝑘𝑡
2

𝑅𝑟
) 𝑥̇ +

1
𝑙
𝑐𝑜𝑠 𝜃 (𝑚𝑔𝑙 𝑠𝑖𝑛 𝜃 − 𝑏2𝜃̇)

𝑀 + 𝐽/𝑟 + 𝑚𝑠𝑖𝑛2 𝜃
 

𝑔1 =
𝑘𝑡/𝑅

𝑀 + 𝐽/𝑟 +𝑚 𝑠𝑖𝑛2 𝜃
 

𝑓2 =

1
𝑚𝑙2

(𝑀 +𝑚 +
𝐽
𝑟
) (𝑚𝑔𝑙 𝑠𝑖𝑛 𝜃 − 𝑏2𝜃̇) −

𝑚𝜃̇2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 −
1
𝑙
(𝑏1 +

𝐵
𝑟
+
𝑘𝑡
2

𝑅𝑟
) 𝑥̇ 𝑐𝑜𝑠 𝜃

𝑀 + 𝐽/𝑟 + 𝑚 𝑠𝑖𝑛2 𝜃
 

𝑔2 =

1
𝑙
𝑐𝑜𝑠 𝜃

𝑘𝑡
𝑅

𝑀 + 𝐽/𝑟 + 𝑚 𝑠𝑖𝑛2 𝜃
 

𝑔𝑑(𝑞) =
𝑘𝑡/𝑅

𝑀 + 𝐽/𝑟 + 𝑚 𝑠𝑖𝑛2 𝜃
> 0 

Where 𝑀 and 𝑚 are, respectively, the mass of the cart and the 

pendulum’s mass, 𝑙 is the length of the pendulum. 

𝐽, 𝑅, 𝑘𝑡 , 𝐵 are the inertia, resistance of the coil, torque 

constant and friction of the DC motor, respectively. 𝑟 is the 

radial of the pulley for the force transition from the rotation 

of the motor shaft to the cart. 𝑏1 and 𝑏2 are the torque friction 

of the cart and the pendulum of the system. 

C. The Port Controlled Hamiltonian System of the UIPS 

Applying the feedback equivalence to (9) as follows [75]. 

𝑣 =
−𝑓1 + 𝑢1
𝑔1

 (10) 

The system (9) is of the form 

{

𝑥̈ = 𝑢1 − 𝑔𝑑𝑑

𝜃̈ =
𝑔

𝑙
𝑠𝑖𝑛 𝜃 −

𝑏2
𝑚𝑙2

𝜃̇ +
1

𝑙
𝑐𝑜𝑠 𝜃 𝑢1 −

𝑔𝑑𝑑

𝑙
𝑐𝑜𝑠 𝜃

 (11) 

The system (11) can be inferred as the port-controlled 

Hamiltonian system 

[
𝑞̇
𝑝̇
] = ([

0 𝐼
−𝐼 0

] − [
0 0
0 𝐷

]) [
𝛻𝑞𝐻

𝛻𝑝𝐻
] + [

0
𝐺(𝑞)

] 𝑢1

− [
0

𝐺(𝑞)
] 𝑔𝑑𝑑 

(12) 

Where 𝑞 = [𝑥 𝜃]𝑇, 𝑝 = [𝑥̇ 𝜃̇]
𝑇are the states of the port-

controlled Hamiltonian system. The system energy is of the 
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form 𝐻(𝑞, 𝑝) =
1

2
𝑝𝑇𝑀𝑡

−1𝑝 + 𝛺(𝑞), the potential energy 

𝛺(𝑞) =
𝑔

𝑙
𝑐𝑜𝑠 𝜃, 𝐷 = [

0 0

0
𝑏2

𝑚𝑙2
], and 𝐺(𝜃) = [

1
(1/𝑙) 𝑐𝑜𝑠 𝜃

]. 

Remark 2. In (11), the underactuation term 𝜃̈ contains the 

friction part  −
𝑏2

𝑚𝑙2
𝜃̇, which cannot be directly removed by 

the input 
1

𝑙
𝑐𝑜𝑠 𝜃 𝑢1 in all the operation range of the 

pendulum. As can be seen in (7), the dissipation matrix D, 

contains all the friction type, contributes to the stability of the 

system. This is the feature that makes this approach different 

than other nonlinear controllers.  

D. Formulation of IDA-PBC for the UIPS 

The IDA-PBC control law [72] with 𝑑 = 0 of the system 

(12) is given as follows 

𝑢1 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢 (13) 

Such that 

• The control input u is arbitrary. For IDA-PBC, this equals 

to zero. 

• 𝐾𝑉 = 𝐾𝑉
𝑇 > 0 and 𝑀𝑡 = [

1 0
0 1

] 

• 𝑀𝑑(𝜃) = 𝑀𝑑
𝑇(𝜃) = [

𝑘cos𝜃
𝑘𝑏

2
𝑐𝑜𝑠2 𝜃

𝑘𝑏

2
𝑐𝑜𝑠2 𝜃

𝑘𝑏2

3
𝑐𝑜𝑠3 𝜃

] 

• 𝛺𝑑(𝑞) =
3𝑎

𝑘𝑏
(𝑠𝑒𝑐2 𝜃 − 1) +

𝑃

2
[𝑥 −

3

𝑏
𝑙𝑛(𝑠𝑒𝑐 𝜃 +

𝑡𝑎𝑛 𝜃)]
2

satisfies 𝑞∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝛺𝑑 (𝑞) 

• 𝑢𝑒𝑠 and 𝑢𝑑𝑖  is defined in (4). 

• 𝐽2(𝑞, 𝑝) = −𝐽2
𝑇(𝑞, 𝑝) = 𝑝𝑇𝑀𝑑

−1𝐺𝜙𝑊1 

Where 𝜙(𝜃) = 𝑘 𝑠𝑖𝑛 𝜃 with 𝑘 > 0 

    𝑊1 = [
0 1
−1 0

] 

These functions and parameters are verified for all 

(𝑞, 𝑝) ∈ ℝ4 the partial differential equations (PDEs). 

𝐺⊥ (
1

2
𝑀𝑑𝑀𝑡

−1𝑒1𝛻𝑞𝐻𝑑 + 𝐽2(𝑞, 𝑝))𝑀𝑑
−1𝑝 = 0 (14) 

𝐺⊥(𝛻𝑞𝛺 −𝑀𝑑𝑀𝑡
−1𝛻𝑞𝛺𝑑) = 0 (15) 

Where 𝑒𝑟 ∈ ℝ2 is the r-th vector of the standard Euclidian 

basis and 𝐺⊥(𝜃) is the full rank left annihilator of 𝐺(𝜃), 
which means that 𝐺⊥𝐺(𝜃) = 0.  

The desired closed-loop dynamic (𝑢 = 0) is thus of the 

form as in (4). We recall the format of the closed-loop system: 

[
𝑞̇
𝑝̇
]

⏟
≜𝑥̇𝑝

= [
0 𝑀𝑡

−1𝑀𝑑
−𝑀𝑑𝑀𝑡

−1 𝐽2 − 𝐺𝐾𝑉𝐺
𝑇 − 𝐷𝑀𝑡

−1𝑀𝑑
]

⏟                        
≜𝜉(𝑞,𝑝)

[
𝛻𝑞𝐻𝑑
𝛻𝑝𝐻𝑑

]
⏟  
=𝛻𝐻𝑑

 
(16) 

We define new term, that is used for the stability proof in the 

latter section as follows: 𝑅𝑑 ≜ [
0 0
0 𝐺𝐾𝑉𝐺

𝑇] 𝑥𝑝 ≜

[
𝑞̇
𝑝̇
] 𝛻𝐻𝑑 ≜ [

𝛻𝑞𝐻𝑑
𝛻𝑝𝐻𝑑

], 𝐺𝑐(𝑞) ≜ [
0

𝐺(𝑞)
], 𝐽𝑑 ≜

[
0 𝑀𝑡

−1𝑀𝑑
−𝑀𝑑𝑀𝑡

−1 𝐽2 − 𝐷𝑀𝑡
−1𝑀𝑑

], and 𝜉(𝑞, 𝑝) ≜ 𝐽𝑑(𝑞, 𝑝) −

𝑅𝑑(𝑞). 

The new system’s energy of the UIPS is of the form: 

𝐻𝑑(𝑞, 𝑝) =
1

2
𝑝𝑇 [

𝑘cos𝜃
𝑘𝑏

2
𝑐𝑜𝑠2 𝜃

𝑘𝑏

2
𝑐𝑜𝑠2 𝜃

𝑘𝑏2

3
𝑐𝑜𝑠3 𝜃

]

−1

𝑝

+
3𝑎

𝑘𝑏
(𝑠𝑒𝑐2 𝜃 − 1)

+
𝑃

2
[𝑥 −

3

𝑏
𝑙𝑛(𝑠𝑒𝑐 𝜃 + 𝑡𝑎𝑛 𝜃)]

2

 

(17) 

The briefly procedure to derive the parameters for the 

control law (13) after for solving (14) and (15) in [73] is 

summarized as follows: 

TABLE II.  PARAMETER DERIVATION FOR IDA-PBC 

Calculation Steps for IDA-PBC Parameters 

Step 1. Start at system (11) where 𝑑 = 0. Calculate the 

gradient of 𝛻𝛺(𝑞), and find the full-rank left annihilator 

𝐺⊥(𝜃) of ( )G  . Note that 𝑀𝑡 = 𝐼. 

Step 2. Choose 𝜙(𝜃) = 𝑘 𝑠𝑖𝑛 𝜃 with 𝑘 > 0 and determine 

the inertia matrix 𝑀𝑑(𝜃) in the following form 

𝑀𝑑(𝜃) = ∫ 𝐺(𝑠)
𝜃

0

𝜙(𝑠)𝐺𝑇(𝑠)𝑑𝑠 +𝑀𝑑
0 

Where 𝑀𝑑
0 is the constant matrix that eliminates all the 

constants in the matrix derived from the integral term. 

Step 3. Define new input matrix 𝐺̃⊥(𝜃) = 𝜂(𝜃)𝐺⊥(𝜃), 

and calculate 𝜂(𝜃) =
𝜌

𝐺⊥(𝜃)𝑀𝑑(𝜃)𝑒2
, 𝜌 is a constant. 

Step 4. Find the potential energy 𝛺𝑑(𝑞) as follows: 

𝛺𝑑(𝑞) =
1

𝜌
∫ 𝐺̃⊥(𝑠)
𝜃

0

𝛻𝛺(𝑠)𝑑𝑠 + 𝛩(𝑧(𝑞)) 

Where 𝛩(𝑧(𝑞)) =
1

2
(𝑧(𝑞) − 𝑧(𝑞∗))

𝑇
𝑃(𝑧(𝑞) − 𝑧(𝑞∗))  

and 𝑧(𝑞) = 𝑥 −
1

𝜌
∫ 𝐺̃⊥(𝑠)
𝜃

0
𝑀𝑑(𝑠)𝑒2𝑑𝑠. 

Step 5. Compute the skew-symmetric matrix  

𝐽2(𝑞, 𝑝) = −𝐽2
𝑇(𝑞, 𝑝) = 𝑝𝑇𝑀𝑑

−1𝐺𝜙𝑊1 with 𝑊1 =

[
0 1
−1 0

] 

 

Remark 3.  In order to follows the procedure, some 

conditions must satisfy. First, the system must have an 

underactuation degree of one. For instance, our UIPS has 2 

DOF with 1 input, satisfying this condition. However, if the 

UIPS has 2 pendulums, it becomes a 3 DOF system with 1 

input, resulting in an underactuation degree of two, which 

makes the mentioned method in [73] inapplicable. Second, 

the system in the form of (10) must have an inertia matrix 𝑀𝑡 
equals to an identity matrix of the same size. This condition 

is crucial for (14) to be parameterized in order to find 𝑀𝑑(𝑞). 
Moreover, for practical applications, having an arbitrary 

constant matrix 𝑀𝑡 is insufficient because in the PCH system, 

the states are defined as 𝑞 = 𝑀𝑡[𝑥 𝜃]𝑇and 𝑝 = 𝑀𝑡[𝑥̇ 𝜃̇]
𝑇, 

meaning the states cannot be directly measured unless it’s an 

identity matrix. However, this is not the serious case when 

the feedback equivalent (10) helps to solve this problem. 
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Third, the choice of 𝜙(𝜃) in step 3 to achieve a suitable 

desired inertia matrix 𝑀𝑑(𝑞) may restrict its domain. For 

example, our choice of 𝑀𝑑(𝜃) = 𝑀𝑑
𝑇(𝜃) ≻ 0 is limited to 

being a positive definite matrix in (−
𝜋

2
,
𝜋

2
), meaning the 

controller in (13) cannot swing up the system from the 

downward position. However, for some systems, such as a 

wheeled inverted pendulum, one can choose 𝜙 to be a 

constant and follow the remaining steps of the procedure to 

determine all the parameters for the control law (13), which 

is capable of performing both swing-up and balancing at its 

unstable equilibrium point, [76] in section 3.4.1. 

E. The Effect of the Matched Disturbance to the UIPS 

Recall that after matching equations of system (12) and 

(16), we obtain (15). Additionally, we have 𝐺⊥𝐺 = 0, so that 

the matched disturbance does not affect in the solution of the 

PDEs (14) and (15). In this section, we analyze its effect by 

recovering the matched disturbance when the system is stable 

at the equilibrium point (𝑞∗, 0), as follows: 

𝐺⊥(𝛻𝑞𝛺 − 𝐺𝑔𝑑𝑑 − 𝑀𝑑𝑀
−1𝛻𝑞𝛺𝑑)(𝑞

∗) = 0 (18) 

From (18), we have: 

𝐺⊥(𝐺𝑔𝑑𝑑 + 𝑀𝑑𝑀
−1𝛻𝑞𝛺𝑑)(𝑞

∗) = 𝐺⊥𝛻𝑞𝛺(𝑞
∗) (19) 

Since 𝛻𝑞𝛺(𝑞
∗) = 0 only if 𝜃 = 𝑘𝜋 with 𝑘 ∈ ℤ, we have the 

following: 

𝐺(𝑞∗)𝑔𝑑(𝑞
∗)𝑑 + 𝑀𝑑(𝑞

∗)𝑀−1(𝑞∗)𝛻𝑞𝛺𝑑(𝑞
∗) = 0 (20) 

Calculate (20), we obtain the shifting position: 

𝑥∗ =
2𝑔𝑑(𝜃

∗)𝑑

𝑃𝑘
 (21) 

In (21), if the system (16) is affected by a matched 

disturbance d , the system will stabilize at a new equilibrium 

position 𝑞∗ = (𝑥∗, 𝜃∗) = (𝑥∗, 0). 

F. Problem Statement 

Consider the perturbed system of the form (16) with the 

new definition term and 𝑑 ≠ 0. 

𝑥̇𝑝 = 𝜉(𝑥𝑝)𝛻𝐻𝑑(𝑥𝑝) + 𝐺𝑐(𝑥𝑝)𝑢 − 𝐺𝑐(𝑥𝑝)𝑔𝑑(𝑥𝑝)𝑑 (22) 

The constant disturbance d can be interpreted as the 

system modeling error, the input losses of power circuits, and 

frictions. This type of disturbance is referred to as a “matched 

disturbance,” and it causes the desired equilibrium point 
(𝑞, 𝑝)of the stable system (16) to shift to a different position. 

We will demonstrate this shifting phenomenon in the 

simulation results, where 𝑑 ≠ 0 at a specific time after the 

system has stabilized at the desired equilibrium. 

To overcome the problem, many methods have been 

proposed that introduce an additional state to merge the 

matched disturbance into the system and still preserve the 

structure of a PCH system, as in [68]-[71]. Following this 

approach, in this manuscript, the authors enhance the method 

that has been introduced in those, as it is only applicable to 

the systems where 𝐺 ∈ ℝ𝑚 is a constant matrix and requires 

a coordinate transformation when applied to the 

underactuated systems.  

The dynamic state feedback controller and an additional 

state for our proposed method is as (23). 

{
𝑢 = 𝑢̂(𝑥𝑝, 𝜁)

𝜁̇ = 𝑓(𝑥𝑝 , 𝜁)
 (23) 

Where 𝜁 ∈ ℝ, which is part of the new dynamic state 

feedback, which ensures that the system (10) becomes an 

unperturbed port-controlled Hamiltonian system with an 

stable equilibrium point at (𝑥𝑝
∗ , 𝜁∗) = (𝑥𝑝

∗ , 𝑐2𝐺𝑐
𝑇𝑥𝑝

∗ −

𝑐1
−1𝑐3

−1𝑑). This conclusion is clearly presented in Remark 5, 

following the proof of Proposition 2. 

III. METHODOLOGY 

In this section, we first present our proposed method for 

rejecting the matched disturbance of the system, including a 

step-by-step proof. Next, we present our assumption and 

lemma, to support stability analysis with an explanation and 

proof, respectively. Finally, we provide a step-by-step design 

procedure and a visualized structure for applying the 

proposed method to the perturbed system (22), followed by 

comments. 

A. Proposition of the iIDA-PBC 

Proposition 1: The disturbance rejection input u in (13) 

for the system (22) of the form (23) is introduced the 

following. 

𝑢 = −𝑐1𝑐3𝑔𝑑(𝑐2𝐺𝑐
𝑇𝑥𝑝 − 𝜁) (24) 

And the new system state is proposed as follows 

𝜁̇ = 𝐺𝑐
𝑇(𝑐2𝜉 − 𝑐1𝑔𝑑𝐼𝑛)𝛻𝐻𝑑 + 𝑐2𝐺̇𝑐

𝑇𝑥𝑝 (25) 

Where 𝑥𝑝 = [𝑞 𝑝]𝑇 ∈ ℝ4, and tuning parameters 𝑐1, 𝑐2 ∈

ℝ+, 𝑐3 > 0, and 𝐺𝑐(𝑞) = [0 𝐺(𝑞)]𝑇. 

The estimation error is defined as follows 

𝜀 ≜ 𝑐2𝐺𝑐
𝑇𝑥𝑝 − 𝜁 (26) 

The new closed-loop system is introduced as follows 

[
𝑥̇𝑝
𝜀̇
] = [

𝜉 −𝑐1𝑔𝑑𝐺𝑐
𝑐2𝐺𝑐

𝑇𝜉 + 𝑐1𝑔𝑑𝐺𝑐
𝑇𝐼𝑛 −𝑐1𝑐2𝑔𝑑𝐺𝑐

𝑇𝐺𝑐
] [
𝛻𝐻𝑑
𝛻𝐿𝑐

] (27) 

With 𝜉(𝑞, 𝑝) = 𝜉(𝑞, 𝑝) − 𝜉(𝑞, 𝑝) is the modelling error. 

The energy function of 𝐿𝑐(𝜀)is constructed as follows 

𝐿𝑐(𝜀) =
1

2
(𝜀 +

1

𝑐1
𝑐3
−1𝑑)

𝑇

𝑐3 (𝜀 +
1

𝑐1
𝑐3
−1𝑑) (28) 

Proof: 

Step 1. Define the Lyapunov candidate as follows 

𝐿𝑡(𝜀) =
1

2
𝑐3𝜀

𝑇𝜀 (29) 

Taking gradient of 𝐿𝑡(𝜀)with respect to 𝜀, we have 

𝛻𝜀𝐿𝑡 = 𝑐3𝜀 = 𝑐3(𝑐2𝐺𝑐
𝑇𝑥𝑝 − 𝜁) (30) 

For simplicity, we denote 𝛻𝜀𝐿𝑡 as 𝛻𝐿𝑡 . 

Step 2. Substituting (30) into 𝑢 in (24), we achieve 
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𝑢 = −𝑐1𝑔𝑑𝑐3(𝑐2𝐺𝑐
𝑇𝑥𝑝 − 𝜁) = −𝑐1𝑔𝑑𝛻𝐿𝑡 (31) 

Step 3. Substituting (31) into (22) to have the dynamic of 

𝑥̇𝑝 as follows 

𝑥̇𝑝 = 𝜉𝛻𝐻𝑑 − 𝑐1𝑔𝑑𝐺𝑐𝛻𝐿𝑡 − 𝑔𝑑𝐺𝑐𝑑 (32) 

Step 4. Taking the time-derivative of 𝜀 in (26) 

𝜀̇ = 𝑐2𝐺̇𝑐
𝑇𝑥𝑝 + 𝑐2𝐺𝑐

𝑇𝑥̇𝑝 − 𝜁̇ (33) 

Step 5. Substituting (32), and in (25), into (33), we 

achieve the second dynamic: 

𝜀̇ = (𝑐2𝐺𝑐
𝑇𝜉 + 𝑐1𝑔𝑑𝐺𝑐

𝑇)𝛻𝐻𝑑 − 𝑐1𝑐2𝑔𝑑𝐺𝑐
𝑇𝐺𝑐𝛻𝐿𝑡

− 𝑐2𝑔𝑑𝐺𝑐
𝑇𝐺𝑐𝑑 

(34) 

Step 6. From (33) and (34), the system can be summed up 

as follows: 

[
𝑥̇𝑝
𝜀̇
]

= [
𝜉 −𝑐1𝑔𝑑𝐺𝑐

𝑐2𝐺𝑐
𝑇𝜉 + 𝑐1𝑔𝑑𝐺𝑐

𝑇 −𝑐1𝑐2𝑔𝑑𝐺𝑐
𝑇𝐺𝑐

] [
𝛻𝐻𝑑
𝛻𝐿𝑡

]

− [
𝑔𝑑𝐺𝑐

𝑐2𝑔𝑑𝐺𝑐
𝑇𝐺𝑐

] 𝑑 

(35) 

Step 7. The system (35) is still perturbed by the matched 

disturbance 𝑑. Taking the gradient of (28) with respect to 𝜀, 
we have the following: 

𝛻𝐿𝑐 = 𝑐3𝜀 +
1

𝑐1
𝑑 = 𝛻𝐿𝑡 +

1

𝑐1
𝑑  

As the result, we have 𝛻𝐿𝑡  has the form 

𝛻𝐿𝑡 = 𝛻𝐿𝑐 −
1

𝑐1
𝑑 (36) 

Step 8. Substituting (36) into (35), we achieve (27).  

The proof is completed.                                                                ■ 

Remark 4. From proposition 1, the input 𝑢 in (13) is 

augmented with the additional state 𝜁, we recall (13) to 

conclude the final form of the input control law for the 

unperturbed system (12) as follows 

{
 
 

 
 
𝑢1 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢

𝑢𝑒𝑠 = 𝐺
+[𝛻𝑞𝐻 −𝑀𝑑𝑀𝑡

−1𝛻𝑞𝐻𝑑 + 𝐽2𝛻𝑝𝐻𝑑]

𝑢𝑑𝑖 = −𝐾𝑉𝐺
𝑇𝛻𝑝𝐻𝑑

𝑢 = −𝑐1𝑐3𝑔𝑑(𝑐2𝐺𝑐
𝑇𝑥𝑝 − 𝜁)

 

𝜁̇ = 𝐺𝑐
𝑇(𝑐2𝜉 − 𝑐1𝑔𝑑𝐼𝑛)𝛻𝐻𝑑 + 𝑐2𝐺̇𝑐

𝑇𝑥𝑝 

(37) 

Where the parameters of the control law (37) is defined in 

(13), and satisfies the condition in Proposition 2. The 

visualize structure of the proposed method can be shown in 

the Fig. 2. 

In the next section, a stability analysis is presented, along 

with an assumption and a lemma, to support the proof of 

stability for the proposed method. 

 

Fig. 2. The control structure of iIDA-PBC 

B. Stability Analysis 

Assumption 1: The matrix 𝜉(𝑞, 𝑝) satisfies the following 

a) The modelling error 𝜉 is assumed to be associated to only 

the term 𝑅𝑑, this means that 𝜉(𝑞, 𝑝) has the form 

𝜉(𝑞, 𝑝) = 𝐽𝑑(𝑞, 𝑝) − 𝑅̂𝑑(𝑞) (38) 

In which, the form of 𝑅̂𝑑(𝑞) = [
02×2 02×2
02×2 𝐺𝐾𝑉𝐺

𝑇]. 

b) There exists a boundary constant 𝜆 > 0 such that 

‖𝜉(𝑞, 𝑝)‖ < 𝜆 (39) 

Recall that 𝜉(𝑞, 𝑝) = 𝜉(𝑞, 𝑝) − 𝜉(𝑞, 𝑝). 

Remark 5. The modeling error in equation (38) is a 

specific type that can be compensated for using the proposed 

method. If 𝐾𝑉 ≠ 𝐾𝑉 , then the input u will compensate for the 

error between the two parameters. For instance, a system with 

𝐾𝑉 = 3 and 𝐾𝑉 = 25 will exhibit the same response as a 

system with 𝐾𝑉 = 25. Considering this, we make an 

additional assumption regarding the boundary of the system 

error to derive the conditions on the controller parameters 
{𝑐1, 𝑐2, 𝑐3}that ensure robustness against modeling errors. 

Lemma 1: The term dR defined in (16) has the rank 1, 

there exist a unitary matrix 𝑈(𝑞) = [𝑈2(𝑞) 𝑈1(𝑞)] ∈ ℝ4×4 

such that 

𝑅𝑑 = [
0 0
0 𝐺𝐾𝑉𝐺

𝑇] = 𝑈(𝑞)𝑑𝑖𝑎𝑔{0,0,0, 𝜆1}𝑈
𝑇(𝑞) (40) 

We achieve the following claim 

𝜉(𝑞, 𝑝)𝑈2(𝑞) = 04×3 (41) 

Proof:  

Calculating 𝑅𝑑 

𝑅𝑑(𝑞) =

[
 
 
 
 
 
0 0 0 0
0 0 0 0

0 0 𝐾𝑉
𝐾𝑉
𝑙
𝑐𝑜𝑠 𝜃

0 0
𝐾𝑉
𝑙
𝑐𝑜𝑠 𝜃 (

𝐾𝑉
𝑙
𝑐𝑜𝑠 𝜃)

2

]
 
 
 
 
 

 (42) 

The non-zero eigenvalues of 𝑅𝑑(𝑞) are 
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𝜆1 = 𝐾𝑉 (1 +
𝑐𝑜𝑠2 𝜃

𝑙2
) (43) 

And the decomposition of unitary of the square matrix in (42) 

is of the form 

𝑈1(𝑞) = [
0 0

1

√𝑐𝑜𝑠
2 𝜃
𝑙2

+ 1

𝑐𝑜𝑠 𝜃

𝑙√
𝑐𝑜𝑠2 𝜃
𝑙2

+ 1
]

𝑇

 

𝑈2(𝑞) =

[
 
 
 
𝐼2×2 02×1 02×1

01×2 −
𝑐𝑜𝑠 𝜃

𝑙√
𝑐𝑜𝑠2 𝜃
𝑙2

+ 1

1

√𝑐𝑜𝑠
2 𝜃
𝑙2

+ 1]
 
 
 
𝑇

 

(44) 

These resulted square matrix in (44) construct the unitary 

matrix verified by its property 𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝐼4×4. 

From (44), the claim from (40) and (41) is verified by 

computing. 

The proof is completed.                                                              ■ 

Lemma 1 is used in the proof of the following proposition 

2. 

Proposition 2: The following properties are given by the 

system (27): 

a) If 𝜉(𝑥𝑝) is bounded, for which 𝜆 ≠ 0 ,the system is 

asymptotically stable at (𝑥𝑝
∗ , 𝜁∗) = (𝑥𝑝

∗ , 𝑐2𝐺𝑐
𝑇𝑥𝑝

∗ − 𝑐1
−1𝑐3

−1𝑑) 

such that the gains 𝑐1, 𝑐2 of the controller satisfy as follows 

𝑐1
𝑐2
>

𝜆2

4𝜆1𝜆𝑑
 (45) 

Where 𝜆𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑔𝑑(𝜃)}, 𝜆1in (43). 

b) If 𝜉(𝑥𝑝) is zero, for which 𝜆 becomes zero, the system 

is asymptotically stable for 𝑐1, 𝑐2 > 0 at the equilibrium point 

(𝑥𝑝
∗ , 𝜁∗) = (𝑥𝑝

∗ , 𝑐2𝐺𝑐
𝑇𝑥𝑝

∗ − 𝑐1
−1𝑐3

−1𝑑). 

Proof: 

Step 1. Taking the time-derivative of the Lyapunov 

function candidate 𝐿(𝑥𝑝, 𝜀) = 𝐻𝑑(𝑥𝑝) + 𝐿𝑐(𝜀). 

𝐿̇ = 𝛻𝐻𝑑 𝑥̇𝑝 + 𝛻𝐿𝑐𝜀 ̇ (46) 

Step 2. Substituting (27) into (46), we achieve 

𝐿̇ = − [
𝛻𝐻𝑑
𝛻𝐿𝑐

]
𝑇

[
𝑅𝑑 −

1

2
𝑐2𝜉

𝑇𝐺𝑐

−
1

2
𝑐2𝐺𝑐

𝑇𝜉 𝑐1𝑐2𝑔𝑑𝐺𝑐
𝑇𝐺𝑐

] [
𝛻𝐻𝑑
𝛻𝐿𝑐

] (47) 

Step 3. Invoke lemma 1, the term 𝑅𝑑(𝑞) can be expressed 

as 

𝑅𝑑 = 𝑈1(𝑞)𝜆1𝑈1
𝑇(𝑞) (48) 

We transform the modelling error 𝜉 in (46) as the form 

𝜉 = 𝜉𝐼 = 𝜉[𝑈2 𝑈1][𝑈2
𝑇 𝑈1

𝑇]𝑇 

⇔ 𝜉 = 𝜉𝑈2𝑈2
𝑇 + 𝜉𝑈1𝑈1

𝑇  
(49) 

Recall from (41) that 𝜉(𝑞, 𝑝)𝑈2(𝑞) = 04×3. We have: 

𝜉 = 𝜉𝑈1𝑈1
𝑇  (50) 

Step 4. Substituting (48), (49), and (41) into (47), the 

expression of (47) is equivalent to the following 

𝐿̇ = − [
𝑈1
𝑇𝛻𝐻𝑑
𝛻𝐿𝑐

]
𝑇

[
𝜆1 −

1

2
𝑐2𝑈1

𝑇𝜉𝑇𝐺𝑐

−
1

2
𝑐2𝐺𝑐

𝑇𝜉𝑈1 𝑐1𝑐2𝑔𝑑𝐺𝑐
𝑇𝐺𝑐

]

× [
𝑈1
𝑇𝛻𝐻𝑑
𝛻𝐿𝑐

] 

(51) 

Step 5. We define the square matrix in (51) as follows 

𝑅1(𝑞) ≜ [
𝜆1 −

1

2
𝑐2𝑈1

𝑇𝜉𝑇𝐺𝑐

−
1

2
𝑐2𝐺𝑐

𝑇𝜉𝑈1 𝑐1𝑐2𝑔𝑑𝐺𝑐
𝑇𝐺𝑐

] (52) 

𝑅1(𝑞) can be expressed as follows 

𝑅1(𝑞) = [
𝐼1×1 01×4
02×1 𝐺𝑐

𝑇 ] [
𝜆1 −

1

2
𝑐2𝑈1

𝑇𝜉𝑇

−
1

2
𝑐2𝜉𝑈1 𝑐1𝑐2𝑔𝑑

]

× [
𝐼1×1 01×2
04×1 𝐺𝑐

] 

(53) 

Step 6. Defining the new square matrix in (53) 

𝑅𝑡(𝑞) ≜ [
𝜆1 −

1

2
𝑐2𝑈1

𝑇𝜉𝑇

−
1

2
𝑐2𝜉𝑈1 𝑐1𝑐2𝑔𝑑

] (54) 

It shows that 𝐿̇ ≤ 0 by ensuring that 𝑅𝑡(𝑞) > 0. The 

conditions that ensure 𝑅𝑡(𝑞) > 0 are as follows 

{

𝜆1 > 0

𝑐1𝑐2𝑔𝑑𝜆1 −
1

4
𝑐𝑐
2𝜉𝑈1𝑈1

𝑇𝜉𝑇 > 0
 (55) 

Since 𝜆1 = 𝐾𝑉 (1 +
𝑐𝑜𝑠2 𝜃

𝑙2
), adjusting 𝐾𝑉 > 0 holds the 

first condition in (55). For the second term, the condition 

holds for any 𝑐1, 𝑐2 satisfying the following 

𝑐1
𝑐2
>

𝜆2

4𝜆1𝜆𝑑
>

‖𝜉‖
2

4𝜆1‖𝑔𝑑‖
≥. . . ≥

𝜉𝑈1𝑈1
𝑇𝜉𝑇

4𝜆1𝑔𝑑
 (56) 

Remark 6. When the system (27) satisfies the condition 

(56), we can conclude that 𝐿̇ ≤ 0 where 𝑅1(𝑞) ≻ 0. Applying 

Lasalle’s theorem, the system converges to the largest 

invariant set defined by 𝑈1
𝑇𝛻𝐻𝑑 = 0 and 𝛻𝐿𝑐 = 0. We have 

in (27) that 𝑥̇𝑝 = 𝜉𝛻𝐻𝑑 if 𝛻𝐿𝑐 = 0. Since 𝑥̇𝑝 = 𝜉𝛻𝐻𝑑 is the 

closed-loop system of the form (3), so that 𝑥𝑝
∗ = (𝑞∗, 0) is an 

asymptotically stable equilibrium point. Furthermore, as 

𝛻𝐿𝑐 = 0 we have 

𝛻𝐿𝑐 = 0 ⇔ 𝑐3𝜀
∗ +

1

𝑐1
𝑑 = 0 ⇔ 𝑐3(𝑐2𝐺𝑐

𝑇𝑥𝑝
∗ − 𝜁∗) +

1

𝑐1
𝑑

= 0 ⇒ 𝜁∗ = 𝑐2𝐺𝑐
𝑇𝑥𝑝

∗ + 𝑐1
−1𝑐3

−1𝑑 

a) If 𝜉(𝑥𝑝) = 𝜉(𝑥𝑝) ⇔ 𝜉(𝑥𝑝) = 0, the constant 𝜆 = 0. 

In which, the condition (56) becomes true for any choice of 

𝑐1 > 0 and 𝑐2 > 0. The conclusion about the equilibrium 

point is stated in the same way as in Remark 6. 

The proof is completed.                                                 ■ 
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C. Implementation Procedure for iIDA-PBC 

We summarize the design procedure of the iIDA-PBC for 

the UIPS in 4 steps (Fig. 3): 

Step 1. From the open-loop system (9), applying feedback 

equivalence transform (10), we obtain (11), which can be 

interpreted as a PCH system (12). 

Step 2. Match the PCH system (12) with the desired 

system (13) to derive the control law (13) and the PDEs (14), 

(15), which must be solved to obtain the new energy function 

(17). 

Step 3. Solve the PDEs (14) and (15) by following the 

steps in Table II to derive the parameters for the IDA-PBC 

control law (13), The resulting closed-loop system (16) 

admits the equilibrium point at (𝑞, 𝑝) = (𝑞∗, 0) when 𝑑 = 0. 

Step 4. Using Proposition 1, we derive the iIDA-PBC 

control law (37) for the perturbed system (22) to become (27). 

With the choice of controller parameters from Proposition 2, 

the newly obtained closed-loop system (27) admits an 

equilibrium point at (𝑥𝑝
∗ , 𝜁∗) = (𝑥𝑝

∗ , 𝑐2𝐺𝑐
𝑇𝑥𝑝

∗ + 𝑐1
−1𝑐3

−1𝑑) 

where 𝑥𝑝
∗ = (𝑞∗, 0). 

Remark 7. The tuning procedure of the IDA-PBC 

parameters is summarized as follows, and it is primarily 

based on empirical observations and practical insights. 

 

Fig. 3. The iIDA-PBC design procedure for the UIPS 

Fig. 4 presents a block diagram outlining the process of 

tuning the parameters of the IDA-PBC controller for both 

simulation and experimental setups. The steps in the diagram 

are designed to be clear and straightforward, ensuring an 

intuitive understanding of the process. 

The parameter evaluation is based on the system's 

response characteristics, including overshoot, settling time, 

and oscillations. Each parameter corresponds to a specific 

aspect of the system’s dynamics. As described in equation 

(17), adjusting 𝑘 increases the gain in the kinetic energy 

equation, specifically affecting the inertia matrix 𝑀𝑑. 

Modifying 𝑃 impacts the gain in the cart’s position term in 

the potential energy equation, while tuning 𝐾𝑉 influences the 

dissipation properties of the system, as outlined in equation 

(37). 

Once the steps are completed and the user is satisfied with 

the system's response based on the obtained parameters, the 

tuning process can be concluded. 

Remark 8. The tunning of 𝑐1, 𝑐2, and 𝑐3 for the dynamic 

state feedback 𝑢 and the additional state 𝜁 is straightforward, 

as described in the control law (37). 

  

Fig. 4. The experiment tunning procedure for the IDA-PBC controller 

{
𝑢 = −𝑐1𝑐3𝑔𝑑(𝑐2𝐺𝑐

𝑇𝑥𝑝 − 𝜁)

𝜁̇ = 𝐺𝑐
𝑇(𝑐2𝜉 − 𝑐1𝑔𝑑𝐼𝑛)𝛻𝐻𝑑 + 𝑐2𝐺̇𝑐

𝑇𝑥𝑝
 

• Modify 𝑐1 ↑↓ to regulate the amplitude and the 

convergence rate of  𝜁 ↑↓ and 𝑢 ↑↓. 

• Adjust 𝑐2 ↑↓ if the convergence rate and the amplitude of 

𝜁 ↑↓ are insufficient. Besides, the convergence rate of 𝑢 ↑
↓ is also affected by 𝑐2. 

• Tune 𝑐3 ↑↓ to directly control the convergence rate of the 

input 𝑢 ↑↓ and the steady-state value of 𝜁. 

We have that 𝜁∗ = 𝑐2𝐺𝑐
𝑇𝑥𝑝

∗ − 𝑐1
−1𝑐3

−1𝑑, so adjusting 𝑐1, 𝑐3 

will affect the steady-state value of the additional state 𝜁. 

Moreover, both 𝑐1 and 𝑐3 influence the convergence rate of 

𝑢, but 𝑐3 is specifically dedicated to adjusting it, therefore, it 

is preferable to adjust the gain of 𝑢 using 𝑐3. The 

compensation input 𝑢 will converge to 𝑢∗ = 𝑐1𝑐3𝑔𝑑(0)𝜁
∗. 

Increasing 𝑐2 results in a higher peak of 𝜁 during the 

transient phase, while its steady-state value remains 

unchanged. 

IV.  RESULTS 

A. Simulation Results 

The simulations are performed in MATLAB with the 

initial states of the system set as (𝑥, 𝜃, 𝑥̇, 𝜃̇) = (0.1,0.3,0,0) 

(Fig. 5). 
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The system’s parameters are:  

𝑔 = 9.81, 𝑟 = 0.019099, 𝑅 = 0.32828, 𝐵 = 5.4207 × 10−4 
𝑘𝑡 = 0.077166, 𝑙 = 0.12419, 𝑏1 = 0.85151, 𝑏2 = 2.0887 × 10

−6 
𝐽 = 4.6843 × 10−5, 𝑚 = 0.040796,𝑀 = 0.029392. 

1) Case study 1: Tuning Control Parameters for IDA-PBC 

 

 

Fig. 5. The system's response under different parameter configurations. 

The system's response with the IDA-PBC controller 

shows noticeable improvement as the parameters are adjusted 

following the guidelines in Remark 7. A comparison between 

case 1 and case 4 reveals that, although the overshoot in case 

4 is comparable to that in case 1, case 4 demonstrates superior 

performance with significantly reduced oscillations and a 

shorter settling time. 

By following the parameter tuning procedure outlined in 

remark 7, the input response of the system shown in Fig. 6 

and its error metrics with respect to the set point from Table 

III, demonstrates that suboptimal parameter choices, as seen 

in case 1 and case 2, lead to increased oscillations and longer 

settling times compared to the improved tuning parameters in 

case 3 and case 4. Furthermore, Fig. 6 illustrates that the 

simulated input results produce voltage values suitable for 

practical implementation in real-world systems, assuming a 

reasonable initial state of the system. These findings validate 

the feasibility and applicability of the proposed control 

method in practice. 

 

Fig. 6. The input value in each parameter configuration 

2) Case study 2: Rejection of Matched Disturbances Using 

the iIDA-PBC Method when 𝜉 = 𝜉 

The controller parameters are set as 5, 10k P= =  and, 

𝐾𝑉 = 𝐾𝑉 = 25 while the parameters {𝑐1, 𝑐2, 𝑐3} are tunned, 

and the initial additional state 𝜁 is zero. The disturbance gain 

constant 𝑑 = 0.1 is applied at the 15th second during the 30-

second simulation. 

In Fig. 7, case 1, with the parameters 𝑐1 = 𝑐2 = 𝑐3 = 0, 

corresponds to the system controlled only by the IDA-PBC. 

In this case, with the absence of 𝑑 = 0.1, the pendulum 

stabilizes at 𝜃∗ = 0, while the cart's position shifts according 

to equation (21): 

𝑥∗ =
2𝑔𝑑(0)𝑑

𝑃𝑘
=
2

1
𝑀 + 𝐽/𝑟

𝑑

𝑃𝑘

=

2
0.1

0.029392 +
4.6843 × 10−5

0.019099
10 × 5

= 0.1256 

It can be observed that increasing 𝑃 and 𝑘 in the IDA-

PBC method helps to reduce the cart's shifted position. 

However, this approach is not feasible, as the shifted position 

becomes zero only if 𝑃 or 𝑘 approaches infinity. 

The remaining cases demonstrate that the proposed 

method can effectively reject the constant matched 

disturbance. The results show that (𝑥∗, 𝜃∗) converges to zero 

within approximately 3 seconds, when 𝑑 ≠ 0. Adjusting 

𝑐1, 𝑐2 and 𝑐3 according to Remark 8 reveals that increasing 

these parameters reduces the amplitude of oscillations under 

disturbance. Specifically, all parameters contribute to 

amplitude reduction when increased.

TABLE III.  ERROR METRICS COMPARISON TABLE 

 NMAE (%) NRMSE (%) 

Case 1 2 3 4 1 2 3 4 
x  0.069 0.040 0.042 0.024 0.108 0.090 0.081 0.079 

  0.0175 0.0174 0.011 0.010 0.065 0.064 0.0619 0.0566 
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Fig. 7. The system's response under different parameter configurations 

In Fig. 8, the behavior of the proposed additional state 𝜁 

is depicted. In case 1, 𝜁 = 0, as expected from equation (37), 

given its initial value is zero. At the beginning, when 𝑑 = 0, 

it is observed that in case 2 and case 3, with 𝑐2 unchanged, 

the oscillations have similar amplitudes and convergence 

rates. However, in case 4, 5 and 6, increasing 𝑐2 results in 

larger oscillation amplitudes compared to the first two cases, 

though the convergence rates remain similar (as noted in 

Remark 8). 

 

Fig. 8. The value of the integral state of the controller 

When 𝑑 ≠ 0, changes in 𝑐1 and 𝑐3 (increased across case 

2, 3, 5 and 6) lead to a reduction in the steady-state value of 

𝜁, as highlighted in Remark 6. In case 3 and case 4, increasing 

𝑐2 reduces the settling time of case 4, as its larger 𝑐2 value 

accelerates convergence. Both cases, however, converge to 

the same value of 𝜁 = 5. The steady-state values of 𝜁are 

calculated as follows: 

• Case 2: 𝜁∗ =
𝑑

𝑐1𝑐3
=

0.1

0.1×0.1
= 10 

• Case 3: 𝜁∗ =
𝑑

𝑐1𝑐3
=

0.1

0.2×0.1
= 5 

• Case 4: 𝜁∗ =
𝑑

𝑐1𝑐3
=

0.1

0.2×0.2
= 2.5 

• Case 5: 𝜁∗ =
𝑑

𝑐1𝑐3
=

0.1

0.2×1.0
= 0.5 

These values are confirmed to be accurate when 

compared with the simulation results in Fig. 8. 

In Fig. 9, since 𝜁 → 𝜁∗ and (𝑥∗, 𝜃∗) → 0, the proposed 

control law ensures 𝑢 → 𝑢∗ = 𝑐1𝑐3𝑔𝑑(0)𝜁
∗ (as noted in 

Remark 8). Verification shows that case 2, 3, 4, 5 and 6 yield 

𝑢∗ = 3.14 for their respective parameter sets. For instance, in 

case 6, we have  

( )* * *

1 3

5

3 1

4.6
2

843 10
0.0

0

1
0

/

1
0.2 1.0 0 0

29392

3

.0190

4

9

5 1

9

. .

du c c g c c
M J r

 

−

= =
+

=   


=

+

 

Additionally, tuning {𝑐1, 𝑐2, 𝑐3} impacts the convergence 

rate of u . From previous results in Fig. 7 and Fig. 8, it is 

recommended to adjust 𝑐3 to improve the convergence rate of  

𝑢 without affecting the 𝜁's convergence rate. In contrast, 𝑐1 

and 𝑐2 are better suited for adjusting the metrics of 𝜁. 

 

Fig. 9. Compensation input under varying parameters 

Fig. 10 shows the total input value in the UIPS, for which 

𝑢1 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢. When there is no disturbance (𝑑 = 0), 

the responses in all cases converge to zero and are identical. 

When 𝑑 ≠ 0, in case 1, where 𝑢 = 0, although changes in 𝑢1 

occur due to the reaction of 𝑢𝑒𝑠 and 𝑢𝑑𝑖, the disturbance 

cannot be rejected because this case uses only the IDA-PBC 

controller (as shown in Fig. 7, and the formula 𝑢1 = 𝑢𝑒𝑠 +
𝑢𝑑𝑖). In the other cases, the proposed controller with different 

parameters (Fig. 10) shows that 𝑢1 is capable of rejecting the 

constant matched disturbance and remains within a practical 

range suitable for real-world configuration. This result forms 

the basis for applying the method to the practical model. 

 

Fig. 10. The input value in each parameter configuration 
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3) Case study 3: Rejection of Matched Disturbances Using 

the iIDA-PBC Method when 𝜉 ≠ 𝜉 

The controller parameters are {𝑐2, 𝑐3} = {0.2,1} and 

{𝑘, 𝑃} = {5,10} while the parameters {𝑐1, 𝐾𝑉 , 𝐾𝑉} are tunned, 

and the initial additional state 𝜁 is zero. 

In this Case Study 3, we examine the scenario where the 

𝐾𝑉  of the IDA-PBC controller differs from 𝐾𝑉, which is used 

in the compensation input 𝑢 of 𝜉 from the control law (37). 

The cases considered are pairs of cases 1 and 2, followed by 

cases 3 and 4, and finally cases 5 and 6. Across these pairs, 

the parameter 𝑐1 is gradually increased to ensure that the 

system response matches the desired system response (𝜉 →

𝜉). 

For example, in case 1, 𝐾𝑉 = 3, and 𝐾𝑉 = 25 is the 

desired value. We examine the parameter 𝑐1 in Proposition 2, 

specifically in (56). However, we do not calculate 𝜆, 𝜆1or 𝜆𝑑, 

instead, we gradually increase 𝑐1. The methods NMAE, and 

NRMSE are used to evaluate whether the achieved response 

matches the desired system. We aim to analyze the results 

across all paired cases as follows: 

Case 1 aims to achieve a response similar to that of Case 

2, while case 3 is expected to produce an output identical to 

case 4. Similarly, in the final pair, the system response in case 

5 is expected to closely resemble that in case 6. 

Analyzing 1c across the case pairs 1-2, 3-4, and 5-6 in Fig. 

11 and Fig. 12 demonstrates that increasing 𝑐1 reduces the 

deviation between the actual system response and the desired 

response. The evaluation of system performance as 𝑐1 is 

increased, following condition (56), is conducted using the 

NMAE, and NRMSE methods, as summarized in Table IV 

below. 

 

 

Fig. 11. The system's response under different parameter configurations 

 

 

Fig. 12. The value of the integral state of the controller 

TABLE IV.  ERROR METRICS COMPARISON TABLE 

 NMAE(%) NRMSE(%) 

Case 1-2 3-4 5-6 1-2 3-4 5-6 
x  0.0168 0.0025 0.0012 0.038 0.0089 0.0046 

  0.0130 0.0027 0.0013 0.038 0.0117 0.0059 

  0.0148 0.0070 0.0041 0.043 0.0337 0.0222 

(Note: Smaller error percentages in Table IV indicate higher accuracy.) 

Increasing 𝑐1 reduces the error between the output 

response of the system and the desired closed-loop response. 

Furthermore, although there is a mismatch in 𝐾𝑉, the system 

response in cases 1, 3, and 5 demonstrates that both 𝑥 and 𝜃 

converge to 0, while 𝜁 successfully converges to the 

corresponding value, as explained in Remark 6 and in the 

previous case study. 

From Fig. 13, the simulated input values of the system, 

both when 𝐾𝑉 = 𝐾𝑉 and 𝐾𝑉 ≠ 𝐾𝑉, align well with real-world 

hardware conditions. For example, if the motor's power 

supply is 12V, the input values shown in the figure remain 

within a practical range of approximately -4V to +4V, 

demonstrating the controller's suitability for practical 

implementation in the practical UIPS system. 

 

Fig. 13. The input value in each parameter configuration 

4) Case study 4: Rejection of nonconstant Matched 

Disturbances using iIDA-PBC 

The controller parameters are fixed for {𝑐1, 𝑐2} = {1,0.2} 

and {𝑘, 𝑃, 𝐾𝑉 = 𝐾𝑉} = {5,10,25} while the parameters
3c are 

tunned, and the initial additional state 𝜁 is zero. 

In this case study, the authors introduce an input 

disturbance 𝑑 = 0.2 𝑠𝑖𝑛(2𝑡) to evaluate the impact of a non-

constant matched disturbance to the response of the closed-

loop system (27). 

To handle this disturbance, 𝑐3 is adjusted to minimize the 

steady-state error of 𝜁 while enhancing the convergence 
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It can be observed that case 1 and case 3 correspond to the 

IDA-PBC controller, while case 2 and case 4 represent the 

proposed iIDA-PBC controller to handle the constant 

matched disturbance 𝑑. 

The disturbance is applied at the 15th second of a total 60-

second dataset. The authors introduce an additional voltage 

𝑣𝑑 of 2 volts, corresponding to a disturbance calculated as 

follows: 

𝑑 =
𝑘𝑡
𝑅
𝑣𝑑 =

0.065

0.7878
× (−2) = −0.165 

The calculated 𝑑 is used to estimate the expected shifted 

equilibrium point of the system and compare it to the actual 

one in the practical UIPS. 

In Fig. 17, it can be observed that the cart position in all 

cases oscillates around 0 during the first 15 seconds, similar 

to the pendulum angle. This indicates that the system remains 

stable around the equilibrium point at the origin. At the 15th 

second, when the disturbance 𝑑 is applied by adding a voltage 

of 𝑣𝑑 = −2 (volts), the following behavior is noted: 

• Case 1: The cart position shifts by approximately 

0.02 meters from the origin, and the pendulum's oscillation 

amplitude increases by around 0.02 radians compared to the 

first 15 seconds. However, both the cart and pendulum still 

oscillate around the equilibrium point. The displacement of 

the cart from the origin can be calculated as: 

𝑥∗ =
2𝑔𝑑(0)𝑑

𝑃𝑘
=
2

1
𝑀 + 𝐽/𝑟

𝑑

𝑃𝑘
=

2
−0.165

0.1293 +
3.8704 × 10−5

0.019099
15 × 5

= −0.0335 

If we denote 𝑥𝑠ℎ𝑖𝑓𝑡 as the actual equilibrium shift point of 

the cart in Fig. 17, then 𝑥𝑠ℎ𝑖𝑓𝑡 ≈ 𝑥
∗. 

• Case 2: From Fig. 17, it is evident that the cart and 

pendulum positions consistently maintain and oscillate 

around the equilibrium point at (0, 0). At the 15th second, 

when the disturbance is applied, the cart position deviates 

momentarily but returns to the original equilibrium point, 

continuing to oscillate around it while keeping the pendulum 

balanced. This demonstrates that the controller successfully 

rejects the constant matched disturbance 𝑑. 

• Case 3: Similar conclusions can be drawn as in case 

1, but with a different set of parameters for the IDA-PBC 

controller, as previously mentioned. The estimate of the 

displacement 𝑥∗is calculated as 

𝑥∗ =
2𝑔𝑑(0)𝑑

𝑃𝑘
=
2

1
𝑀 + 𝐽/𝑟

𝑑

𝑃𝑘
=

2
−0.165

0.1293 +
3.8704 × 10−5

0.019099
10 × 10

= −0.0251 

As shown in Fig. 17, we clearly see that 𝑥𝑠ℎ𝑖𝑓𝑡 ≈ 𝑥
∗. 

• Case 4: Similar to case 2, we conclude that the 

proposed method successfully rejects the constant matched 

disturbance 𝑑. 

 

 
Fig. 17. The experimental system's response under different parameter 

configurations 

The oscillations of the pendulum and cart around the 

equilibrium point suggest that the system is still influenced 

by unknown disturbances, certain electrical or mechanical 

dissipation components, or variations in the practical balance 

position of the upright pendulum. In practice, the equilibrium 

point may not align perfectly with the theoretical balance 

position but instead lies within a small neighborhood near it. 

This is because, in most practical UIPS setups, the initial 

position of the system is recorded by the rotary encoder at 

𝜃 = ±𝜋. Consequently, there is no guarantee that the actual 

balance point of the pendulum in practice corresponds 

precisely to 𝜃 = 0. Therefore, improvements or new methods 

will be necessary in the future to address this issue. 

The steady-state value of 𝜁 in Case 2 and Case 4 can be 

approximated as: 

𝜁∗ =
𝑑

𝑐1𝑐3
=
−0.165

0.1 × 0.2
= −8.25 

The results in Fig. 18 demonstrate that this expected value 

closely matches the central value of 𝜁's oscillations in both 

cases after the disturbance 𝑑 is introduced.  

During the control process, the system input often 

operates within a narrow voltage range. Consequently, the 

supplied energy to the system (in this case a DC motor) is 

insufficient to generate the torque needed to move the 

pendulum cart, as this power from the voltage within the 

range in Fig. 19 is largely dissipated by friction in the 

electrical or mechanical components. The voltage range 

reveals that the system responds to input signals only when 

the voltage exceeds 2V, making this limitation the primary 

cause of the observed oscillations. When this voltage range is 

further narrowed through parameter adjustments, the 

amplitude of voltage variations increases significantly and 
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occurs more rapidly, inducing strong oscillations in the belt 

connecting to the pendulum cart. This can result in premature 

wear or even complete failure of the practical system. 

 

Fig. 18. The value of the integral state of the controller 

 

Fig. 19. The experimental input value of the system 

The formula for predicting 𝑢 based on 𝜁 in case 2 and case 

4, assuming the cart and pendulum velocities are zero, is 

given as: 

( )

( )

* * *

1 3

5

3 1

3.8
4

704 10
0.1

1
0
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1
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. 0
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In Fig. 20, it can be observed that the calculated voltage 

falls within the range affected by dissipative components, 

meaning the system is not influenced by this input. As a 

result, the oscillations arise due to the boundary regions 

where the input voltage exceeds the threshold required to 

affect the system response, leading to changes in its behavior. 

 

Fig. 20. The experimental compensation input 

V. CONCLUSION 

This study presents the design and application of both the 

traditional IDA-PBC and the proposed iIDA-PBC methods 

on the UIPS. By relaxing certain strict conditions in the 

previous researches in the controller design, the iIDA-PBC 

method can be extended to broader classes of systems that 

meet these requirements, as indicated in Remark 3. 

Compared to the conventional IDA-PBC, the iIDA-PBC 

more effectively rejects constant matched disturbances and 

avoids shifting the equilibrium point of the closed-loop 

system, as discussed in Section II.E and demonstrated in the 

simulation results (case study 2). Both simulation and 

experimental results confirm these advantages, highlighting 

the improved stability and effectiveness of the proposed 

approach. 

However, the proposed method has limitations. It has only 

been validated for constant matched disturbances and does 

not perform as expected for other types, such as time-varying 

disturbances. For instance, as shown in case study 4, the 

iIDA-PBC fails to reject a time-varying matched disturbance 

generated using a sine wave signal. Additionally, the 

oscillations observed in experimental results are attributed to 

insufficient input supply, likely due to power loss under low-

voltage conditions in the DC motor, static errors from state 

feedback, and potentially suboptimal choices of controller 

parameters. 

Future research will focus on extending the iIDA-PBC 

method to handle unknown time-varying matched 

disturbances and unmatched disturbances, including 

unmodeled dynamics, parameter variations, and external 

factors such as friction, external forces, or environmental 

influences. Moreover, optimizing the tuning parameters of 

the IDA-PBC method to enhance performance and 

adaptability across various system conditions is a worthwhile 

direction for future studies. Additionally, maintaining the 

port-controlled Hamiltonian framework while expanding the 

operational range of the system, currently constrained by the 

limitations noted in Remark 3, remains a key objective. It is 

essential to avoid introducing unnecessary complexity or 

highly intricate partial differential equations, as solving these 

can be challenging. Striking a balance between simplicity and 

robustness will enhance the method’s practicality, enabling 

its application in fields such as robotics, industrial 

automation, and transportation systems, where safety and 

efficiency are paramount. 
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