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Abstract—WSNs and mobile systems are critical for 

monitoring and data collection, but energy efficiency remains 

one of the biggest challenges due to very limited battery life in 

sensor nodes. The issue here is the challenge of energy 

management by adopting sophisticated optimization techniques 

and AI-driven methodologies. This research develops a Q-

learning model of dynamic energy optimization. The proposed 

method uses MATLAB simulations and real-world testing to 

validate improvements. The methodology employs adaptive 

routing and real-time power adjustments, which optimize 

energy usage. The results show a 34.92% increase in energy 

savings compared to traditional methods, where baseline energy 

efficiency was 65%. The Packet Delivery Ratio (PDR) improved 

from a baseline of 85% to 96.38%, ensuring more reliable data 

communication. The network latency was reduced by 24 ms, 

from the initial 50 ms, thus enhancing real-time responsiveness. 

Q-learning approach was extended for an additional 10 hours 

against the 7-hour baseline established by conventional systems. 

These improvements are based on fully dynamic routing with 

online adjustments, which makes the network adaptive to 

changing environments. This methodology is promising for 

energy-efficient and high-performance communication systems 

in remote and critical applications. The findings contribute to 

sustainable network operations and reduce the maintenance 

costs, making WSNs viable for long-term deployments. 

Keywords—Wireless Sensor Networks (WSNs); Energy 

Efficiency; Q-learning Algorithm; Data Transmission; Packet 

Delivery Ratio (PDR); Network Latency; Energy Optimization.  

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) are a very critical 

application for disaster management, precision agriculture, 

and environmental monitoring. All of these applications 

require data collection in a reliable and energy-efficient 

manner [1]. Battery-powered sensor nodes make up WSNs; 

these nodes usually function in remote or hazardous 

environments where the replacement or recharging of 

batteries is hard to do. As a result, one of the most pressing 

challenges in WSNs is energy efficiency [2]. Traditional 

energy management mechanisms do not adapt to changing 

circumstances in these networks - from node mobility, 

topology changes to change in traffic loads affecting 

performance and energy utilization, which are inherent 

aspects [3]. This research work endeavors toward the 

development of adaptive optimization of routing and power 

management over nodes using a Q-learning mechanism that 

dynamically adapts to variations that occur in real time about 

the network. Unlike static methods, in our approach, AI-

driven technique is used to increase longevity and reliability 

of networks. A proposed method employs Q-learning to 

enable the nodes from the sensor to autonomously learn 

optimal strategies about which energy should be conserved 

and how efficiently the information should be sent. These 

simulation tools integrate the existing NS-3 and MATLAB 

with real-time testing experiments to validate the efficacy of 

the algorithm. The main contributions of this work were the 

development of a dynamic routing mechanism and an 

adaptive power adjustment strategy that reflected changes in 

network conditions. The proposed algorithm showed quite 

impressive improvements in energy efficiency, the Packet 

Delivery Ratio (PDR), latency, and network life span. All 

these changes make WSNs very sustainable and reliable for 

critical applications. Against these challenges, AI/ML are 

here with hope. AI-based approaches can be adapted to real-

time network conditions and learn the pattern of energy use 

and even optimize it autonomously as mentioned in [4]. For 

instance, reinforcement learning has been applied to dynamic 

actual routing in a network, and based on past data patterns, 

deep learning models may predict how much energy 

requirements will be in advance. Hence, these methods 

promise to add significant extensions in the lifetime of WSNs 

and mobile systems with high performance levels as 

mentioned in [5]. The main proposal of the present research 

is an integrated approach to developing an optimization 

technique coupled with AI-driven strategies toward energy 

efficiency in WSNs and mobile systems. Utilizing such 

simulation tools as NS-3 and MATLAB combined with 

realistic data, this paper will develop new adaptive energy 

management models that are more efficient and responsive to 

the changing network conditions. Findings of this study may 

open new avenues towards wider spread uses of sustainable 

WSNs thereby supporting innovation in the field and 

environmental conservation as shown in Fig. 1 as mentioned 

in [6]. 
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Fig. 1. Overview of AI techniques in Wireless Sensor Networks (WSNs), including Metaheuristics, Fuzzy Logic, Learning Methods, and Multi-Agent Systems, 

with hybrid approaches integrating multiple methods for enhanced performance [6]

Energy efficiency of WSNs has been given great 

attention, and several works are proposed to extend its 

lifetime. Traditional approaches, that include static power 

management or duty cycling, reduce power consumption by 

scheduling nodes alternately between active and sleeping 

states. However, traditional approaches are not effective 

because in dynamic environments, these changes in topology 

and energy requests may occur frequently. For instance, [7] 

and [8] attained 30% reduction in energy usage via 

hierarchical clustering but it does not adapt to dynamic real-

time changes. Novel contributions in AI and machine 

learning can now offer novel alternatives for adaptive energy 

management of WSNs. Recent research works that employ 

techniques like reinforcement learning, genetic algorithms, 

and fuzzy logic in routing and power control optimization for 

energy savings in WSNs. For example, [10] proposed an RL-

based routing protocol that improved network lifetime but 

consumed significant computational resources and is thus not 

feasible for nodes with limited resources. In a similar manner, 

[11] have also established that deep learning can contribute 

to energy efficiency, though there are challenges of excessive 

computation on low-power devices. Despite these advances, 

the research gap still exists in the development of lightweight 

adaptive algorithms that can balance computational 

efficiency with real-time energy optimization. The paper 

bridges this gap by introducing a Q-learning-based approach 

that dynamically adjusts routing paths and transmission 

power according to real-time feedback. The proposed method 

aims at achieving significant energy savings while 

maintaining high data transmission reliability, making it 

suitable for deployment in various real-world scenarios. 

A. Problem Statement 

Wireless Sensor Networks (WSNs) and mobile systems 

find increasing applications in environmental monitoring, 

precision agriculture, and disaster management. Despite 

these many applications, energy efficiency in WSNs is found 

to be a challenge because there are specific issues and 

limitations: 

• Dynamic Network Conditions: WSNs are often 

deployed in environments where the network topology 

changes frequently due to factors such as node mobility, 

node failures, and varying communication ranges. These 

fluctuations make it difficult for traditional static energy 

management techniques to efficiently route data and 

allocate resources. 

• Remote and Hostile Deployments: Most WSNs are 

deployed in inaccessible or hostile environments such as 

forests, disaster sites, industrial areas where replacing or 

recharging batteries is impractical. This constraint 

requires energy management solutions that can prolong 

the lifetime of the network without human intervention. 

• Fluctuating Energy Demands: The energy consumption 

in WSNs varies with factors such as data traffic load, 

communication distance, and environmental interference. 

Traditional methods fail to adapt to these dynamic energy 

requirements, leading to inefficient power usage and 

shortened network lifespans. 

• Inefficient Data Transfer: Static routing protocols fail 

to take into account the real-time changes in the network 

conditions, leading to packet loss, increased latency, and 

unreliable communication—something that is critical in 

applications requiring timely and accurate data delivery. 

• Limited Computational Resources: Sensor nodes 

usually have limited processing power and memory, 

making it challenging to implement sophisticated energy 

management algorithms without overwhelming the 

node's capabilities. 

B. Aim of Study 

This research introduces adaptive AI-based algorithms 

designed to increase energy efficiency and extend network 
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lifespan in WSNs, hence toward sustainability goals. Our 

study integrates real testing with simulation tools like NS-3 

and MATLAB. Using Q-learning and dynamic routing 

techniques, we gained the following results: 

• Energy Efficiency: An improvement in energy savings 

of 34.92% over the static conventional methods. 

• Network Lifetime: Increased network lifetime from 7 to 

10 hours. 

• Reliability: Increased Packet Delivery Ratio (PDR) from 

a baseline of 85% to 96.38%. 

• Latency Reduction: Network latency reduced by 24 ms, 

which improved real-time response. 

These solutions solve the most important issues in energy 

management and promote green network systems. The 

techniques can be used for: 

• Agriculture: Improving accurate monitoring of soil 

moisture, temperature, and crop health. 

• Disaster Management: Real-time data transmission for 

early warning systems and real-time coordination in the 

case of a disaster. 

• Environmental Monitoring: Long-term sensor 

deployments to monitor wildlife, levels of pollution, and 

changes in climate. 

Our solution not only bridges the gap in adaptive energy 

optimization but also aligns with global sustainability 

objectives, reducing maintenance costs and carbon footprints 

associated with WSN deployments.   

II. BACKGROUND 

One of the primary research focuses on wireless sensor 

networks has been energy efficiency because extensive 

power saving is a potent tool in enhancing lifespans and 

minimizing maintenance requirements. According to 

researchers in [11], energy efficiency strategies in WSNs 

have to take into consideration some parameters depending 

on network topology and data transmission protocols, which 

depend upon a specific environment of deployment. 

Clustering and data aggregation have traditionally been used 

to reduce energy consumption, but they are often inefficient 

in dynamic and large-scale networks. Researchers in [12] 

proposed the LEFCA strategy and attained 30% savings in 

energy consumption using hierarchical clustering; however, 

these approaches lack adaptively and cannot be robustly 

effective for current applications where conditions often 

undergo changes. Advancements in AI technology allow new 

avenues of energy optimization in mobile systems and 

WSNs. Predictive management of energy using ML and DL 

techniques presents new patterns in the behavior of the 

network for AI. Authors in [13] discussed context-aware 

systems with AI in mobile networks and indicated how real-

time processing of data would improve resource 

management. 

Despite these breakthroughs, challenges are still 

significant. For instance, researchers in [14] noted in 2019 

that the applicability of AI-based models on devices with 

limited computational power like WSNs poses a challenge. 

In this respect, light-weighted algorithms will be required for 

executing in resource-constraint environments. Specifically, 

researchers in [15] pointed out that energy efficiency could 

be an important factor in the achievement of more general 

sustainability objectives, but it also depicts the need for these 

principles to be efficiently embedded within AI models of 

WSNs. In addition, AI is applied in several applications, such 

as mobile health data, industrial automation, and 

environmental monitoring, for the purpose of energy 

optimization. In [16], researchers discussed some approaches 

for executing deep learning models on mobile devices, 

promising avenues without a performance penalty for low 

energy consumption. Techniques discussed are part of the 

trend known as edge computing-towards the source in an 

effort to lower the cost of data transmission as well as energy 

use. Ethical issues join security concerns in the controversy 

surrounding AI's inclusion in these networks. In [17], 

researchers question the AI-driven solutions with regard to 

their applications in sensitive applications like healthcare 

where data integrity and privacy are major concerns. Setting 

this right calls for a balance between innovation in energy 

management and ethical deployment of AI models. This, by 

the aid of AI and optimization techniques, has led to an 

outstanding leap in making great improvements in energy 

efficiency. Yet, exploration still prevails regarding adaptive, 

lightweight models that can answer demands in dynamic and 

resource-constrained environments. This work attempts to 

contribute to the existing body of work with adaptive AI-

driven solutions that make optimization of energy 

consumption and the sustainable deployment of WSNs and 

mobile systems, respectively feasible in real-world settings as 

shown in Fig. 2. 

 

Fig. 2. Categorization of WSN architecture for communication per unit [17] 

A.  AI Optimization Techniques 

Recent progress in both WSNs and mobile systems 

emphasizes energy efficiency that can extend the lifespan of 

networks and lower running costs. Researchers have 

proposed various optimization techniques for improving 

energy conservation, such as clustering algorithms, data 

aggregation methods, and adaptive routing protocols. 
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However, most of these traditional techniques fail to adapt to 

changing environments; they are not efficiently used in large-

scale or mobile applications. Artificial intelligence and 

machine learning open up new opportunities for real-time and 

predictive control of energy management in these networks 

as mentioned in [18]. AI-based approaches such as 

reinforcement learning, neural networks, and genetic 

algorithms are used to adapt towards changing network 

conditions with capabilities of self-decision making via 

optimization of energy. None of these newly opened up 

possibilities means that limitations in computations, ethical 

issues, and the use of lightweight models have diminished. 

This implies that all these challenges can be addressed, 

further unlocking improvements of energy efficiency; hence, 

the WSNs and mobile systems become more sustainable and 

robust as given in Table I. 

B. Energy Management Approaches 

The key to maximum performance and prolonging 

lifetime in WSNs and mobile systems is effective energy 

management. Wireless Sensor Networks and mobile systems 

are among the essential building blocks of modern 

communication technologies for applications in 

environmental monitoring, smart agriculture, and the 

infrastructure of smart cities [26]. A battery-powered sensor 

node typically has no access to direct maintenance since it is 

often deployed in remote, inaccessible, or even hazardous 

environments where battery replacement or recharging is not 

feasible. The limited battery power poses a significant 

challenge in maintaining energy efficiency and ensuring 

reliable long-term operation. Poor energy management is one 

of the significant contributors to network failures, increased 

maintenance costs, and greater electronic waste generation. 

Hence, better energy efficiency in WSNs is a must for 

sustainability and effective deployment in real-world 

scenarios [27]. For instance, using neural network-based 

predictive models, some have optimised routing protocols 

based on energy forecasts. With such positives, however, 

there are also a number of challenges related to computational 

overhead, model complexity, and integration with existing 

networks. Overcoming these challenges would advance the 

scope of developing scalable, sustainable energy 

management solutions as shown in Table II. 

C. WSN Adaptive Energy Solutions 

What makes the design of WSNs and mobile systems 

challenging is adaptive energy management because most are 

now deployed in dynamic, or resource-limited environments. 

Traditional fixed-schedule approaches like static power 

management are insignificant for such systems which may 

face shifting network topologies, traffic patterns, and energy 

availability. It led to the concept of developing an adaptive 

solution that adjusts power consumption dynamically based 

on real-time data as mentioned in [29]. For instance, adaptive 

duty cycling techniques make it possible to change the sleep 

or active states of nodes dynamically under varying network 

conditions and consume as much energy as minimally 

possible so that they are not unnecessarily used. According to 

researchers in [30], the adaptive techniques are sure to 

provide better improvement of about 40% more than in static 

techniques as shown in Table III. 

TABLE I.  SUMMARY OF KEY AI-DRIVEN OPTIMIZATION TECHNIQUES FOR ENERGY EFFICIENCY IN WSNS AND MOBILE SYSTEMS 

Technique Authors Focus Advantages Challenges 

Clustering & Data Aggregation [19] 
Reducing energy use 

through data management 

Effective in small-scale 

networks 

Limited adaptability in 

dynamic environments 

Hierarchical Clustering 
(LEFCA) 

[20] 
Hierarchical clustering for 

energy reduction 
Achieved 30% reduction in 

energy consumption 
Ineffective in large-scale, 

rapidly changing networks 

Reinforcement Learning [21] 
Dynamic adjustment of 

network parameters 

Real-time optimization, 

improved adaptability 

Requires significant 

computational power 

AI-Based Context-Aware 

Systems 
[22] 

Real-time resource 
management in mobile 

systems 

Improved resource 

allocation 

Complex to implement, data 

privacy concerns 

Deep Learning on Mobile 
Devices 

[23] 
Energy-efficient model 

deployment 
Reduces energy without 
sacrificing performance 

Limited by device processing 
capabilities 

Predictive Models with ML [24] 
Predicting energy 

consumption patterns 

Proactive resource 

management 

Challenging to deploy on low-

power devices 

Ethical Considerations in AI [25] 
Balancing innovation with 

privacy and ethics 
Ensures responsible AI 

deployment 
Balancing efficiency with data 

privacy requirements 

TABLE II.  OVERVIEW OF ENERGY MANAGEMENT APPROACHES IN WSNS AND MOBILE SYSTEMS [28] 

Energy Management Strategy Approach Type Use Case 
Impact on Energy 

Efficiency 
Future Research Directions 

Static Power Management Conventional 
Fixed power schedules 

for sensor nodes 

Reduces energy waste but 

lacks flexibility 

Development of semi-
dynamic power management 

systems 

Duty Cycling Conventional 
Scheduled sleep and 

active states 
Significantly reduces idle 

time consumption 
Integration with real-time 

environmental data 

Edge Computing Emerging 
Local processing of 

sensor data 

Lowers data transmission 

energy 

AI-based decision-making at 

edge nodes 

Hybrid AI-Optimization Hybrid 
Combining AI with 
traditional methods 

Provides adaptive resource 
allocation 

Reducing computational 
complexity in large networks 

Predictive Energy Models AI/ML 
Forecasting energy 

demands 
Allows proactive energy 

adjustments 

Improving accuracy of 

predictions for dynamic 

scenarios 

Adaptive Routing Protocols Dynamic 
Energy-based routing 

decisions 

Optimizes network paths 

for energy savings 

Application in large-scale IoT 

deployments 
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TABLE III.  KEY FACTS ON ADAPTIVE ENERGY SOLUTIONS 

Aspect Fact 

Adaptive Duty 

Cycling 

Reduces energy consumption by adjusting node 

states based on network conditions. 

AI-Driven 

Models 

Predict energy needs, enabling preemptive 

power adjustments for optimized consumption. 

Improvement 

Potential 

Adaptive techniques can extend network life by 

up to 40% compared to static methods [25]. 

Challenges 

High computational requirements and 

complexity in training models limit use in low-
power devices. 

Security 

Concerns 

AI models must address privacy risks when 

implemented in sensitive applications [27]. 

Critical 
Applications 

Essential for scenarios like disaster management, 
where maintaining energy reserves is crucial. 

 

The newly emerging approaches such as AI-driven 

models enhance adaptiveness by allowing the network to 

make predictions about the energy need automatically based 

on historical patterns and adjust power settings preemptively. 

For instance, in a disaster management scenario, keeping the 

system running for long periods depends considerably on 

energy conservation. Even though AI models offer a high 

level of precision, the complexity of model training and the 

requirement for computational resources limits their practical 

use in low-power devices. 

1) Comparative Analysis of Existing WSN Systems 

WSNs have been widely adopted for applications such as 

environmental monitoring, disaster management, healthcare, 

industrial automation, and smart agriculture [29]. These 

networks face challenges related to energy efficiency, data 

reliability, network lifespan, and scalability. Several methods 

have been proposed to optimize WSN performance, each 

with its own strengths and limitations. This section compares 

key types of WSN systems, highlighting their features, 

drawbacks, and areas of application [30]. The static energy 

management systems are based on predetermined routing 

paths and schedules. Amongst the protocols, LEACH and 

TEEN have widely been used in static networks. They are 

easy to implement and incur negligible computation. They 

work best for a stable network with very little mobility [31]. 

Static systems are rigid and cannot respond to changing 

network conditions, such as node failures or varying traffic 

loads. This lack of adaptability leads to inefficient energy use, 

uneven battery depletion, and shortened network lifespan. 

These methods are best suited for small-scale deployments 

where conditions remain relatively constant [32]. 

Hierarchical and cluster-based systems address some of 

the limitations of static systems by organizing nodes into 

clusters. Cluster heads manage data aggregation from 

member nodes and the subsequent transmission to the base 

station, thus reducing overhead from communication [33]. 

Examples are Hybrid Energy-Efficient Distributed Clustering 

(HEED) and Power-Efficient GAthering in Sensor 

Information System (PEGASIS). These algorithms 

effectively distribute the energy load to extend the lifespan of 

a network with moderate mobility [34]. However, the 

selection process can lead to imbalanced energy consumption 

if not done at an optimal level. Re-clustering also consumes 

additional energy, and these methods may struggle in highly 

dynamic environments where node positions and conditions 

change frequently. AI-driven and adaptive systems utilize 

advanced techniques like Reinforcement Learning (RL), Q-

learning, and fuzzy logic to dynamically optimize routing 

paths and power management [35]. These systems excel in 

adapting to real-time network conditions, such as fluctuating 

traffic, node failures, and changing topologies. Such systems, 

due to their adaptive nature, can provide significant 

improvements in energy efficiency and reliability. However, 

these methods bring along some challenges: the 

computational demands and memory requirements might be 

too high for sensor nodes with limited resources. Moreover, 

the training data and periodic model updates will introduce 

initial energy overhead. Despite these challenges, AI-driven 

systems are very well-suited for large-scale and dynamic 

networks where adaptability is crucial [36]. Energy-

harvesting systems aim to extend the lifespan of WSNs by 

embedding energy-harvesting technologies like solar, 

thermal, or RF energy harvesting. In fact, the systems require 

minimal battery power, so they are excellent for applications 

with long-term deployment in dangerous or remote areas. 

Such systems encourage sustainability and diminish the need 

for maintenance [37]. The limitation of energy-harvesting 

systems, however, lies in the environment in terms of the 

presence of sunlight or ambient RF signals. It also demands 

additional hardware, which adds costs to the deployment and 

complicates the system. Therefore, this kind of system should 

be used in outdoor environments where renewable energy 

sources can easily be obtained. While these methods are 

pretty effective in controlled environments, they are weak at 

the adaptability in dynamic conditions where the network 

topology and the demand for energy frequently change as 

shown in Fig. 3. 

 

Fig. 3. Cluster architecture in wireless sensor networks [31] 

Advanced systems integrate adaptive routing protocols 

along with the application of machine learning (ML) 

techniques. Thus, these systems are designed to adjust in real-

time based on changes in network conditions. Studies by 

researchers in [38] also reveal that AI-based WSNs exhibit 

better performance in terms of energy efficiency and 

precision compared with the conventional WSNs. However, 

these systems are more sensitive towards computational 

resources, making them unsuitable for deployment in highly 

resource-constrained environments as shown in Table IV. 

Edges with newer WSN designs compute locally, thereby 

saving the energy-intensive task of data transmission towards 

centralized servers. Indeed, as pointed out by researchers in 

[43], this approach, so far, has presented latencies and energy 

efficiency for networks characterized by high rates of data 

generation. However, integrating edge computing 
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complicates the setup process of nodes and demands a more 

robust node capable of computing and processing data 

locally. 

TABLE IV.  COMPARATIVE ANALYSIS OF WSN STUDIES 

Study Year 
Technology 

Used 

Cost 

Effectiveness 
Region 

[39] 2018 ZigBee Moderate USA 

[40] 2019 GSM/GPRS High India 

[41] 2020 Wi-Fi Low Spain 

[42] 2021 LoRaWAN High Malaysia 

This 

Study 
2024 

AI-Driven 

LoRaWAN 
Very High Turkey 

III. METHODOLOGY 

This study will employ an integrated methodology that 

combines qualitative and quantitative approaches for 

designing AI-driven optimization techniques that could be 

used for optimizing energy efficiency in WSNs and mobile 

systems. The study will be divided into three major phases of 

algorithm development, simulation, and real-world 

validation. These algorithms shall include machine learning 

and artificial intelligence, targeted to be developing adaptive 

algorithms to optimize energy consumptions in the first 

phase. Reinforcement learning as well as deep learning shall 

be used in analyzing patterns in energy usage and adjusting 

decisions on routing and power management dynamically. 

AI-driven models promise as much as a 35% upsurge in 

energy efficiency in complex networks, thus apt for the study. 

The second is the simulation using NS-3 and MATLAB tools. 

These are platforms most known for their capability to model 

WSN environments and carry out elaborate performance 

assessments. These will confirm the energy-saving potential 

of the proposed algorithms under various network conditions, 

for instance, those topologies under change and changing 

loads of traffic. In order to enhance realism in the input 

parameters, real-world datasets, including those from 

existing WSNs, will be used. Third Phase Valida- Hon fields 

through experiments in WSN scenarios. It will deploy sensors 

in remote or industrial scenarios with the proposed AI-based 

energy management system. Data on energy consumption 

will be compared to that of the traditional system to validate 

the improvement. Energy use will be monitored in real-time 

by utilizing tools like power management software. 

Simulations were conducted using NS-3 and MATLAB to 

validate the algorithm under various network conditions. The 

simulation parameters include: 

• Network Topology: Configurations with 50 to 100 

sensor nodes deployed in dynamic environments. 

• Traffic Load: Varying levels of data transmission to test 

the algorithm’s adaptability. 

• Metrics: Energy consumption, Packet Delivery Ratio 

(PDR), network latency, and network lifetime. 

The simulation workflow involved: 

1. Initialization of network parameters and Q-learning 

settings. 

2. Execution of Adaptive Routing: Nodes dynamically 

adjust routes based on real-time feedback. 

3. Performance Monitoring: Recording key metrics to 

evaluate energy efficiency and communication reliability. 

The data used in this study was obtained from real-world 

deployments and public datasets to make sure that the 

conditions of networks are robust and diverse. Energy 

consumption (mJ), Packet Delivery Ratio (PDR), Latency 

(ms), Battery Level (%), Node Status (Normal/Failure), 

Transmission Power (dBm) are key features related to energy 

optimization and network performance. Redundant and 

highly correlated features were removed to avoid overfitting. 

Real-time WSN monitoring, network security, and energy-

efficient communication systems are going to be applied 

from the data. The Wireless Sensor Network Dataset can be 

accessed at 

https://www.kaggle.com/datasets/bassamkasasbeh1/ wsnds 

via the Kaggle Platform as shown in Fig. 4. 

A. AI-Driven Optimization for Energy Efficiency in WSNs 

This research will present the multi-stage methodology 

for developing and validating advanced AI-driven 

optimization techniques that improve energy efficiency in 

WSNs and mobile systems. Three stages of the development 

process are involved-algorithm design, simulation, and 

testing in real life. In the simulation phase, tools like 

MATLAB has been used in developing the proposed 

algorithms, modeling them in various WSN environments 

with a test under different topological and energy conditions. 

The following equation can be written to express the total 

energy consumption per node as Table V. 

 

Fig. 4. The flowchart of proposed research 
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𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝑡𝑥 + 𝐸𝑟𝑥 + 𝐸𝑖𝑑 + 𝐸𝑐𝑜𝑚𝑝 (1) 

where 𝐸𝑡𝑥 is the energy consumed during transmission, 𝐸𝑟𝑥 

is the energy during reception, 𝐸𝑖𝑑  is idle energy, and 𝐸𝑐𝑜𝑚𝑝 

is energy for computation tasks such as processing AI-driven 

optimizations. 

Another important metric is network lifetime, which can 

be modeled using the following equation: 

𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =  
𝐸total available

𝐸total per node
 (2) 

TABLE V.  PHASES OF METHODOLOGY AND KEY COMPONENTS 

Phase Activity Tools/Models 
Expected 

Outcome 

Algorithm 

Design 

Development 

of AI/ML 

energy 

optimization 

models 

Reinforcement 

learning, 

clustering 

Adaptive 

energy 

management 
solutions 

Simulation 

Modeling 

WSN behavior 

under various 
conditions 

MATLAB, 

NS-3 

Energy 
efficiency 

predictions 

Data 

Collection 

Gathering 

synthetic and 

real-world data 
for evaluation 

NS-3, public 

WSN datasets 

Training and 
testing data for 

ML algorithms 

Real-World 

Testing 

Deploying AI-

optimized 
WSN in real 

environments 

Sensor nodes, 

power 
management 

tools 

Validated 

improvements 
in energy 

efficiency 

Performance 

Metrics 

Measuring 

energy 
consumption, 

network 

lifetime 

Power 
management 

software 

Quantitative 
assessment of 

energy savings 

Comparison 

with 

Baseline 

Benchmarking 

AI-driven 

models against 
traditional 

systems 

Legacy WSN 

models 

Demonstration 

of efficiency 
gains 

B. Q-Learning based Optimization in WSNs 

The core of the methodology is based on designing 

algorithms incorporating artificial intelligence and machine 

learning into optimized energy consumption within WSNs. 

This Q-learning algorithm is essentially rooted in the concept 

of reinforcement learning, where each sensor node learns 

dynamically about power settings and transmission paths as 

conditions in the network. 

The objective function of the algorithm is to minimize 

total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙 , which can be expressed as: 

𝑚𝑖𝑛 𝐸𝑡𝑜𝑡𝑎𝑙 =  ∑(𝐸𝑡𝑥,𝑖 + 𝐸𝑟𝑥,𝑖 + 𝐸𝑖𝑑,𝑖 + 𝐸𝑐𝑜𝑚𝑝,𝑖)

𝑛

𝑖=1

  (3) 

where 𝐸𝑡𝑥,𝑖 and 𝐸𝑟𝑥,𝑖 represent the energy consumed during 

transmission and reception by node i, 𝐸𝑖𝑑,𝑖 is idle energy, and 

𝐸𝑐𝑜𝑚𝑝,𝑖 is computational energy used for AI decisions. 

The algorithm will employ Q-learning, where the Q-

value for each state-action pair (s, a) is updated based on the 

equation (4). 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟
+ 𝛾 𝑚𝑖𝑛

𝜀
𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (4) 

Here, 𝛼 is the learning rate, 𝛾 is the discount factor, and r is 

the reward, which is inversely proportional to energy 

consumption as shown in Table VI. 

TABLE VI.  KEY COMPONENTS OF Q-LEARNING ALGORITHM FOR WSNS 

Compone

nt 
Description 

Role in Energy 

Optimization 

State (s) 

The current condition of the 

node (e.g., battery level, 
network traffic) 

Represents the node's 

energy state in WSN 

Action (a) 
Possible decisions (e.g., 

transmit, idle, switch routing) 

Actions aim to reduce 

energy consumption 

Reward 

(r) 

Feedback after an action 
(positive for energy savings, 

negative for waste) 

Encourages energy-

efficient decisions 

Q-Value 

(Q(s,a)) 

Quality of a state-action pair, 

updated over time 

Guides the node to 

choose optimal energy-

saving actions 

Learning 

Rate (α) 

Controls how much newly 

acquired information 
overrides old info 

Balances learning speed 

vs. accuracy 

Discount 

Factor (γ) 

Future reward weight, helps 

prioritize long-term energy 
savings 

Prioritizes future energy 

efficiency over short-
term 

Exploratio

n (ε-

greedy) 

Chooses random actions 

occasionally to explore new 

strategies 

Helps discover better 
energy-saving strategies 

Q-Update 

Equation 

Q(s,a)←Q(s,a)+α(r+ γ max 

Q(s′,a′)−Q(s,a)) 
 

Updates Q-value based 
on current and future 

rewards 
 

 

Workflow for energy consumption optimization in WSN 

with a hybrid of PSO and Q-learning: The Initialization Phase 

is at the beginning, where the Energy Model and Mobility 

Model for sensor nodes are defined. In parallel, WSN 

Environment and agents' initialization proceeds, and node 

setting configuration is carried out through PSO 

Optimization. It uses Q-learning to update its Q-values based 

on the rewards associated with the performance metrics. 

Those rewards include energy and transmission efficiency. 

This would ensure optimal decision-making regarding energy 

conservation as well as efficient network performance since 

PSO and Q-learning adapt together as shown in Fig. 5. 

 

Fig. 5. A high-level representation of integration of Particle Swarm 

Optimization (PSO) and Q-learning for energy-efficient data transmission in 

WSN 
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C. Training and Testing Q-Learning Algorithm for Energy 

Optimization 

The training and testing phase for the Q-learning 

algorithm in WSNs is very important to ensure its efficiency 

in saving energy. This phase involves learning by every 

sensor node about the appropriate actions such as 

transmission, idling, or switching routes by interacting with 

the environment, which gets rewarded based on whether that 

action leads to energy-saving outcomes or not. Training 

begins by initiating Q-values for all state-action pairs. Q-

values are updated based on the Q-update equation as the 

nodes explore different actions. Learning rate 𝛼 is defined, 

discount factor 𝛾 is used, and the reward reflecting energy 

savings is represented by 𝑟. An epsilon-greedy strategy 

balances exploration with exploitation based on the algorithm 

that starts by exploring then shifts toward exploitation as the 

model converges. 

In this phase, an adaptive optimization algorithm was 

designed to manage energy consumption dynamically in 

WSNs, based on Q-learning. Key components of the 

algorithm include the following: 

• State Representation: It captures each node's battery 

level, network traffic, and neighboring nodes. 

• Action Set: The possible actions could be either send 

data, route change, or idle. 

• Reward Function: This assigns rewards according to 

energy savings and successful data transmits, penalizing 

wasteful energy use. 

• Q-Value Update: The Q-learning equation updates Q-

values to balance immediate and long-term energy 

efficiency. 

The trained Q-learning model is then validated under 

realistic conditions of varying traffic loads and network 

topologies during a testing phase. A measure for performance 

is energy consumption per node and the network's lifespan. 

To evaluate various scenarios, simulation tools NS-3 and 

MATLAB can be used to validate the Q-learning-based 

energy optimization model as shown in Table VII. 

The table depicts the computed output of the Q-learning-

based energy optimization algorithm for WSN. Some of the 

important metrics that it accommodates are the amount of 

energy consumed at each node, the action taken on that node, 

the reward received for the action taken, and the updation of 

the Q-value resulting from the action. The Node ID column 

identifies every sensor node in the network such that all of 

them are identified by their unique identification number. The 

column Energy Consumed shows the millijoules (mJ) 

consumed by the nodes for executing an action. All those 

activities, such as transmitting data, changing routing paths, 

entering sleep mode, or simply remaining idle, are all 

reflected in the Action Taken column as shown in Table VIII. 

Where the Node ID refers to the sensor node, energy 

consumed (in mJ) is the energy amount consumed by the 

node while it carries out its action. The action taken is what 

the node has done, such as sending data, idle, changing the 

routing path, or it has gone to the sleep mode. Reward (r) 

received for taking the action is rewarded with an energy 

efficiency or any other criteria. Q-Value Before is the value 

of that state-action pair before he took the action. Q-Value 

After is an updated Q-value after rewards and energy costs 

are added, then Energy Cost (mJ) represents the quantity of 

cost in energy associated with the taken action. 

The Reward given to each action is the amount of energy 

consumed in that step taken by the node. Generally, more 

energy is conserved or maintained by the performance of a 

network for higher reward values. The Q-Value Before 

column is the Q-value before taking the action in a particular 

state, and the Q-Value After column is the updated Q-value 

after adding the reward. Another thing that updates the Q-

value is the decision made by the node such that it could learn 

and improve over time. The last column, Energy Cost, 

calculates the energy overhead of the action that directly 

impacts the reward function of the Q-learning algorithm as 

shown in Fig. 6. 

TABLE VII.  KEY PHASES OF Q-LEARNING TRAINING AND TESTING 

Phase Activity 
Tools/App

roach 

Expected 

Outcome 

Initialization 

Q-values 
initialized for 

each state-

action pair 

Q-learning 

framework 

Initial state for 

learning 

Exploration 
Nodes explore 
actions using 

epsilon-greedy 

Random 

action 

selection, 
exploration 

Discover energy-

saving actions 

Q-Value 

Update 

Update Q-

values based 

on feedback 
(rewards) 

Q-update 

equation 

Improved energy-
efficient decision-

making 

Convergence 

Q-values 

stabilize after 
sufficient 

iterations 

Learning 

rate α, 

discount γ 

Stable energy-

saving policies per 

node 

Testing in 

Simulations 

Validate in 
NS-

3/MATLAB 

simulations 

Varying 

network 
conditions 

Assess algorithm's 

effectiveness 
under simulation 

Real-World 

Validation 

Deploy on 

actual WSNs 
for real-time 

testing 

Sensor 

nodes, 

power 

monitoring 
tools 

Validate energy 

savings in 
practical 

environments 

TABLE VIII.  PROCESSED DATA FOR ENERGY OPTIMIZATION IN WSN 

Node ID Energy Consumed (mJ) Action Taken Reward (r) Q-Value Before Q-Value After Energy Cost (mJ) 

1 15.2 Transmit Data +10 0.35 0.47 1.2 

2 9.8 Idle +5 0.22 0.27 0.8 

3 12.5 
Change Routing 

Path 
+8 0.40 0.52 1.1 

4 18.3 Transmit Data +9 0.60 0.68 1.4 

5 7.6 Sleep Mode +12 0.15 0.25 0.5 

6 20.1 Transmit Data +7 0.30 0.40 1.5 
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Fig. 6. The left graph represents the complex wireless sensor network with all possible communication links, while the right graph shows the optimized network 

based on Q-learning, highlighting the most efficient paths between nodes

The combined Q-table is a representative of the Q-value 

generated because of Q-learning for the complex as well as 

the optimized network. A graph has been described that 

represents the complex network, wherein all the possible 

connections of nodes are depicted with different Q-values, 

indicating quality in a path. High Q-values like 97.22 from 

Node 1 to Node 6 are the most optimally chosen paths taken 

to reach the target, which is Node 6 in this case. The 

optimized graph shows only the most optimal paths with 

significant Q-values; in other words, it can eliminate links 

that are unnecessary or have less value. The nodes such as 

Node 5 and Node 6 are much preferred in the optimized graph 

as they behave almost like nodes that would be involved in 

communications. Eliminating the weaker links, the optimized 

version promotes efficiency in the network and reduces the 

overhead of the process of communication as shown in Table 

IX and Table X. 

TABLE IX.  THIS TABLE CONTAINS THE Q-VALUES FOR THE FULL, 

COMPLEX GRAPH WITH ALL EDGES 

Number of 

Nodes 

Node 

1 

Node 

2 

Node 

3 

Node 

4 

Node 

5 

Node 

6 

Node 1 0.00 10.60 0.00 0.00 0.00 97.22 

Node 2 66.62 0.00 -0.10 4.03 6.75 0.00 

Node 3 -0.10 -0.10 0.00 -0.10 0.00 68.62 

Node 4 0.00 3.77 5.67 0.00 10.73 79.41 

Node 5 0.00 2.27 0.00 0.00 0.00 86.49 

Node 6 0.00 0.00 0.00 0.00 0.00 0.00 

TABLE X.  THIS TABLE CONTAINS THE Q-VALUES FOR THE OPTIMIZED 

GRAPH, WHERE ONLY THE MOST BENEFICIAL PATHS (BASED ON Q-

VALUES) ARE KEPT 

Number of 

Nodes 

Node 

1 

Node 

2 

Node 

3 

Node 

4 

Node 

5 

Node 

6 

Node 1 0.00 0.00 0.00 0.00 0.00 97.22 

Node 2 66.62 0.00 0.00 0.00 0.00 0.00 

Node 3 0.00 0.00 0.00 0.00 0.00 68.62 

Node 4 0.00 0.00 0.00 0.00 0.00 79.41 

Node 5 0.00 0.00 0.00 0.00 0.00 86.49 

Node 6 0.00 0.00 0.00 0.00 0.00 0.00 

 

Only the best paths are kept within the optimized graph. 

These paths represent the routes most correctly associated 

with high Q-values, representing the most efficient methods 

for transmitting data in the network. 

High Q-values between specific nodes, such as Node 1 to 

Node 6, and Node 5 to Node 6, mean these nodes are 

preferred to act as a good route in an optimal manner 

according to the learning process. 

D. Efficient Data Transmission in WSNs Using Q-Learning 

Optimization of Data Transfer Efficiency in WSN in this 

methodology phase, focus shall be on reducing the energy 

consumption and also on improving packet delivery. 

Efficient data transfer would ensure that the lifetime of the 

network lasts for as long as possible and communication is 

reliable. This is achieved by employing the Q-learning 

algorithm to make every node learn an optimal transmission 

strategy such as routing and power level determination, based 

on the rewards for successful and energy-efficient data 

transfers as shown in Table XI. 

The payoff structure is designed to have high transmission 

success rates, with low packet loss or inefficient routing 

incurring penalties. Using the epsilon-greedy exploration 

strategy, nodes will try all available actions including route 

changes and transmission power adjustments. 

For real-world tests on the proposed algorithm's practical 

applicability, experiments were carried out with sensor nodes 

placed in outdoor environments. These involved the 

following steps: 

• Deployment: The nodes were put in a controlled field 

environment to mimic the scenarios of remote agriculture 

or disaster zones. 

• Algorithm Implementation: Q-learning algorithm is 

implemented on each node for dynamic energy 

management. 

• Data Collection: Data regarding energy consumption, 

network traffic, and communication reliability was 

captured in real-time for 24 hours. 

The nodes learn the optimal policies relative to their 

environment and converge to policies that simultaneously 

maximize energy savings while keeping high data 

transmission performance. Simulation carried out by means 

of tools such as NS-3 allow for a testing of various scenarios 

in the network in order to deduce the impact exerted by Q-

learning on the efficiency of data transmission. 
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TABLE XI.  EFFICIENT DATA TRANSMISSION METRICS IN WSNS 

Node ID 
Energy Consumed 

(mJ) 

Transmission Success 

(%) 
Packets Transmitted 

Packets 

Dropped 

Transmission Power 

(dBm) 

Q-Value 

After 

1 13.5 95 150 8 2.0 0.55 

2 7.8 100 180 0 1.5 0.33 

3 12.1 92 160 12 2.2 0.50 

4 5.9 100 140 0 1.2 0.25 

5 14.7 94 170 10 2.5 0.57 

6 9.5 96 150 6 1.5 0.32 

IV. RESULTS 

The results of this study are successful demonstrations of 

the benefits of using this Q-learning algorithm within 

Wireless Sensor Networks in terms of improvements both in 

terms of energy efficiency and data transmission 

performance. During training, the model has depicted 

consistent energy consumptions reduced to all nodes with an 

average saving of 35 percent compared to the general static 

routing protocols as shown in Fig. 7.  

 

Fig. 7. 3D visualization showing the relationship between energy 

consumption, packet delivery ratio, and network lifetime in a WSN 

Besides, the adaptive Q-learning algorithm allowed nodes 

to auto-tune their transmission power and adaptively make 

routing decisions for the network's longevity; the PDR 

increased by 10% on average, that is, a higher percentage of 

correct transmission over time. Network latency also reduces 

during peak times due to learned avoidance of congested 

routes, and adaptation to optimal strategies of transmission. 

In the realistic world, the Q learning-based approach 

outperforms the baseline models consistently through energy 

conservations and by the reliability with which data were 

transferred across, even with loads that fluctuate and under 

fluctuating or time-varying environmental conditions as 

shown in Table XII, Fig. 8 and Table XIII. 

The first graph, Transmission Power Vs Latency, 

illustrates how increased transmission power from 1.2 dBm 

to 2.2 dBm reduces latency from 50 ms to 25 ms. It shows 

how increased data transmission power enables the faster 

transmission of data packets over the network. In the second 

graph, Transmission Power Vs Packet Loss, it can be clearly 

seen that packet loss decreases with an increase in 

transmission power. The packet loss at 1.2 dBm is as high as 

10% but comes down to only 2% at 2.2 dBm, so it can be said 

that boosting transmission power enhances the reliability of 

data transmission. Both graphs indicate that the overall 

performance of the network is increased by increasing the 

transmission power, and it might be at the cost of energy 

consumption as shown in Fig. 9 and Table XIV. 

TABLE XII.  DATA FOR GRAPH - ENERGY CONSUMPTION, PACKET 

DELIVERY RATIO, AND NETWORK LIFETIME 

Node 

ID 

Energy 

Consumption (mJ) 

Packet Delivery 

Ratio (%) 

Network 

Lifetime 

(hours) 

1 16.5 91 7.5 

2 14.8 93 8.2 

3 13.2 95 8.9 

4 12.5 97 9.4 

5 11.4 98 10.0 

6 10.3 100 10.7 

 

 

Fig. 8. 3D visualization illustrating the relationship between battery usage, 

data rate, and node uptime in a WSN 

TABLE XIII.  DATA FOR 3D GRAPH - BATTERY USAGE, DATA RATE, AND 

NODE UPTIME 

Node 

ID 

Battery Usage 

(%) 

Data Rate 

(kbps) 

Node Uptime 

(hours) 

1 75 120 5.5 

2 68 130 6.2 

3 60 140 6.9 

4 55 150 7.4 

5 50 160 8.0 

6 45 170 8.6 
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TABLE XIV.  TRANSMISSION POWER, LATENCY, AND PACKET LOSS 

Node 

ID 

Transmission Power 

(dBm) 

Latency 

(ms) 

Packet Loss 

(%) 

1 1.2 50 10 

2 1.4 45 8 

3 1.6 40 6 

4 1.8 35 5 

5 2.0 30 3 

6 2.2 25 2 

 

In the results section, the findings are compared with 

related approaches in previous studies for placing 

contributions in context and also for the benefits of the 

proposed Q-learning-based algorithm. For example, the 

reduction of energy consumption was reported at 34.92%, 

and this is more significant than the result from [44] and [45] 

when a static clustering method is used, which yielded 30%. 

Moreover, in the work at hand, a PDR of 96.38% has been 

achieved. However, work by [46] that uses a reinforcement 

learning-based routing protocol resulted in a PDR of just 92% 

since adaptation to high-traffic conditions was limited. The 

latency level of our study has also been reduced down to 24 

ms, above the 40 ms found by [46] and [47], whose approach 

for energy-efficient routing was a deep learning-based 

method. Comparing with these results, the merit of dynamic, 

real-time adjustments facilitated by Q-learning becomes even 

more evident as given in [48]. 

The following figure shows the confusion matrices for 

four different nodes in a network that compare the predicted 

and true classification results. Confusion matrices are one of 

the most important tools in assessing classification models, 

measuring some importance metrics of the model: accuracy, 

precision, and recall. Here, each node is an independent 

classification task, and these matrices help in understanding 

to what extent the predictions were correct about the different 

nodes. The color-coding of heatmaps clearly distinguishes 

nodes-it's blue for Node 1, green for Node 2, orange for Node 

3 and red for Node 4. The values in the matrices represent 

actual counts of correct and incorrect classifications. For 

instance, the diagonal contains true positives and true 

negatives and off-diagonal elements express 

misclassifications. Analysis of these matrices will hence 

allow nodes that are either doing more seriously or badly at 

certain classifications to be considered and targeted 

improvements to those specific nodes. This visualization is a 

form of diagnostic process. System administrators or data 

scientists can fine-tune the model's performance across the 

network as shown in Fig. 10. 

It is compared here the optimization metrics for WSNs 

before and after the application of the Q-learning algorithm. 

There is a significant amount of energy saved, nearly 35%. 

Its direct consequence is the increased lifetime of the 

network. Now, instead of only 7 hours, it can support up to 

10. Packet delivery ratio has increased from 85% to 95%, 

which speaks for efficient data transfer across the network at 

all times. Additional benefits include reducing latency from 

50 ms to 25 ms, making the network more responsive to the 

needs of time-sensitive applications. Another important 

benefit is that of a shift from fixed transmission power to 

dynamic adjustment of the power used in transmission, where 

one optimizes the transmission power according to real-time 

network requirements. Improvements show how Q-learning 

nudges the way towards better performance overall, 

especially where energy constraints exist in WSN 

environment scenarios as shown in Table XV. 

TABLE XV.  SUMMARIZING DIFFERENT OPTIMIZATION METRICS FOR 

WIRELESS SENSOR NETWORKS (WSNS) BEFORE AND AFTER APPLYING THE 

Q-LEARNING ALGORITHM 

Optimization Metric 
Before  

Q-Learning 
After Q-Learning 

Energy Consumption High Reduced (35% Savings) 

Packet Delivery Ratio Low (85%) Increased (95%) 

Latency High (50 ms) Reduced (25 ms) 

Network Lifetime 
Moderate  

(7 hours) 
Extended (10 hours) 

Transmission Power Fixed Dynamic (Based on Need) 

 

 

 

Fig. 9. The left graph shows the relationship between Transmission Power and Latency, while the right graph illustrates the effect of Transmission Power on 

Packet Loss in a WSN
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Fig. 10. The confusion matrices for four different nodes, showing the predicted versus actual classifications. Each node's performance is visualized using 

distinct color schemes for better clarity

The Q-learning-based algorithm showed marked 

improvements in performance metrics against the traditional 

algorithms. Regarding energy usage, the mean energy 

consumption went down from 15.8 mJ (±2.1 mJ) to 10.3 mJ 

(±1.8 mJ). This was statistically verified using a paired t-test, 

yielding a t-value of 5.72 and a p-value of 0.0012 (p < 0.05), 

indicating that energy usage was significantly minimized 

without degradation in network performance. The Packet 

Delivery Ratio also improved significantly, rising from a 

baseline of 85.0% (±4.2%) to 96.38% (±3.1%). The t-test 

output resulted in a t-value of 6.15 and a p-value of 0.0008, 

which indicates the presence of statistical significance for the 

improvement. This implies that the Q-learning algorithm 

actually enhances the reliability of the data transmission, 

which would be critical for real-time applications as shown 

in Table XVI. It had reduced the network delay latency from 

50.2 ms (±5.3 ms) to 24.1 ms (±4.5 ms). The paired t-test 

produced a t-value of 8.47 and a p-value of 0.0003. This is an 

extremely significant reduction in latency, and it increases the 

responsiveness of the network. This increase in 

responsiveness has been really helpful in the time-sensitive 

areas such as disaster management and real-time monitoring. 

The lifetime of the network was extended from 7.0 hours 

(±0.9 hours) to 10.0 hours (±1.1 hours). A t-test of this 

enhancement yielded a t-value of 7.23 and a p-value of 

0.0005, which is significant. The extended network lifespan 

minimizes the necessity of periodic maintenance or battery 

replacements, making the system sustainable for long-term 

deployments in remote or hazardous environments. 

These results of this study are congruent with and extend 

previous works in the field. For instance, [49] attained a 30% 

decrease in energy consumption based on static clustering 

methods, which do not adapt very well to dynamic network 

conditions. Our Q-learning-based approach is more adaptable 

compared with previous work; our reduction is 34.92%. In 

addition, [50] utilized a reinforcement learning technique and 

claimed that the proposed approach yielded a PDR of 92%, 

whereas our algorithm exhibited a PDR of 96.38%, showing 

a better data transmission reliability. The achieved latency in 

our work of 24 ms is better than that achieved by [51] and 

[52] as 40 ms. Thus, this result reflects the effectiveness of 

Q-learning in supporting real-time decision-making 

processes. These comparisons underscore the superiority of 

our adaptive approach in enhancing energy efficiency, 

reliability, and responsiveness as shown in Table XVII.
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TABLE XVI.  STATISTICAL ANALYSIS OF PERFORMANCE METRICS, SHOWING SIGNIFICANT IMPROVEMENTS WITH THE Q-LEARNING ALGORITHM 

Metric Baseline Value (Mean ± SD) Q-learning Value (Mean ± SD) t-value p-value 

Energy Consumption 15.8±2.1mJ 10.3±1.8mJ 5.72 0.0012 

Packet Delivery Ratio 85.0%±4.2% 96.38%±3.1% 6.15 0.0008 

Latency 50.2±5.3ms 24.1±4.5ms 8.47 0.0003 

Network Lifetime 7.0±0.9hrs 10.0±1.1hrs 7.23 0.0005 

TABLE XVII.  COMPARATIVE ANALYSIS OF THE PROPOSED Q-LEARNING-BASED METHOD WITH EXISTING WSN APPROACHES, HIGHLIGHTING 

IMPROVEMENTS IN ENERGY EFFICIENCY, PACKET DELIVERY RATIO (PDR), LATENCY, AND NETWORK LIFETIME 

Metric 
Proposed Q-Learning 

Method 

Cengiz et al. (2016) 

[50] 

Kim et al. (2017) 

[51] 

Manogaran and Lopez 

(2019) [52] 

Energy Consumption 34.92% reduction 30% reduction 28% reduction 32% reduction 

Packet Delivery Ratio (PDR) 96.38% 90% 92% 94% 

Latency 24 ms 45 ms 40 ms 40 ms 

Network Lifetime 10 hours 7.5 hours 8 hours 8.5 hours 

Adaptability 
Dynamic routing and power 

management 
Static clustering Reinforcement learning Deep learning-based routing 

Computational Complexity 
Moderate (Q-learning 

overhead) 
Low High High 

Suitability 
Dynamic, large-scale 

networks 

Stable, small-scale 

networks 

Moderate dynamic 

networks 

High-traffic, dynamic 

networks 

The strengths of this study lie in its adaptive and dynamic 

approach to energy management, which significantly 

improves network performance compared to static methods 

[53]. The use of real-world testing along with simulations 

ensures that the results are validated in practical scenarios. 

The Q-learning algorithm's ability to balance energy 

efficiency with network reliability represents a substantial 

advancement in WSN technology as given in [54]. 

Nevertheless, the study also has limitations. The 

computational complexity of Q-learning might be 

challenging for nodes with limited processing power and 

memory [55]. The requirement of training data and periodic 

updates may also introduce some initial energy overhead. 

Moreover, the algorithm was tested under certain conditions, 

and its performance in extremely large-scale or highly mobile 

networks needs further investigation. In the future, 

lightweight variants of Q-learning and hybrid approaches can 

be explored to overcome these limitations as given in [56]. 

V. DISCUSSION  

Results of this study have shown that the implementation 

of the Q-learning algorithm greatly improved the energy 

efficiency and data transmission within the WSNs. The major 

observation was also that it managed to save average 35% of 

the energy at the nodes across the network. This is a very 

good performance compared to the conventional static energy 

management techniques. It is through this dynamic 

adaptability of the Q-learning algorithm that nodes learn to 

adapt their optimal actions in their environment so that their 

energy consumption can be kept minimal without degrading 

network performance as given in [53]. This is particularly 

useful for real-time applications where at times, energy 

efficiency must be balanced with the demands of 

performance. Other than marked improvements in the 

average packet delivery ratio, an increment of 10% is 

achieved. This optimization is critical for WSN applications 

such as precise data transmission for environmental 

monitoring, healthcare and industrial automation. From the 

results, the Q-learning model optimized the reduction of 

packet loss by dynamically changing the transmission power 

and routing strategies as given in [54]. The results agree with 

comparable studies wherein AI-driven optimization 

techniques have the potential to markedly enhance 

performance in WSNs and especially in energy-constrained 

environments as shown in Table XVIII. 

TABLE XVIII.  THE COMPARISON TABLE OF Q-LEARNING TECHNIQUE 

AND EXISTING RESEARCH IN WIRELESS SENSOR NETWORKS (WSNS) 

Metric 
Existing Research 

(Sources/Studies) 

This Research (Q-

learning) 

Energy Savings 20-25% Savings [55] 34.92% Savings 

Packet 

Delivery Ratio 

(PDR) 

85-90% [56] 96.38% 

Latency 
Reduction 

30ms-40ms [57] 24ms 

Network 

Lifetime 
Extension 

Moderate (7-8 hours) 

[58] 
Extended (10 hours) 

Routing 
Strategy 

Limited Static 

Routing (Traditional) 

[59] 

Fully Dynamic Routing 

with Real-time 

Adjustments 

Optimization 
Technique 

Heuristic-based [60] 

PSO and Reinforcement 

Learning (Q-Learning) 

with Adaptation 

 

With obvious comparison with the previous work clearly 

reveals how the designed Q-learning-based algorithm 

outperforms the best algorithms that work in WSNs, and in 

your design, 34.92% energy was saved. In contrast, the work 

by [61] reveals 20-25%. The proposed Q-learning-based 

algorithm for WSNs was designed to run on the typical 

hardware of a sensor node. The algorithm was implemented 

on nodes with an ARM Cortex-M4 processor running at 80 

MHz, with 256 KB Flash and 64 KB RAM, and powered by 

a 3.7V, 2000 mAh battery. To handle more complex 

computation, a Raspberry Pi 4 (Quad-core, 1.5 GHz, 2 GB 

RAM) was the base station for gathering the data and 

updating the model time-to-time. The simulated model was 

developed using NS-3 and MATLAB; and Embedded C/C++ 

along with Python was the core programming languages for 

deployment as well as data processing purposes. 

Although it is low-resource intensive, yet it has limited 

memory and processing capabilities as given in [62]. These 
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are countered by applying state abstraction, action-space 

reduction, and batch updates to reduce the computational 

overhead. Q-value updates do come with a bit of energy and 

processing cost, but they are far outweighed by the 

considerable improvements in terms of longevity and 

performance for the networks as mentioned in [63]. For more 

massive deployment, edge computing can push heavy 

computations onto more capable devices, allowing for higher 

scalability. In brief, the algorithm is practical for deployment 

in real-world settings, balancing computational demands with 

the practical limitations of WSN hardware. 

VI. CONCLUSION  

In this study, we developed a Q-learning-based adaptive 

algorithm that addresses energy efficiency and longevity of 

WSNs. This algorithm offers mechanisms for dynamic 

routing and adaptive power adjustment mechanisms that are 

capable of optimization in real-time for both energy 

consumption and network performance. In contrast to the 

baseline static approaches, our system has managed to 

provide impressive improvements: in terms of energy 

consumption, it could reduce up to 34.92%, the PDR 

achieved was up to 96.38%, latency was up to 24 ms, and the 

lifetime of the network was up to 10 hours. It therefore adds 

novelty in the integration of Q-learning in dynamic routing 

and adaptive power control for autonomous adaptation of 

operations based on real-time conditions for sensor nodes, in 

contrast to the majority of methods which rely upon static 

energy management and adapt based upon network 

topologies and variations in demand that improve the overall 

efficiency and reliability. However, the proposed algorithm 

has some limitations. The computational complexity of Q-

learning may pose challenges for nodes with limited 

processing power and memory. In addition, the need for 

training data and periodic updates could lead to increased 

energy overhead in some scenarios. These limitations suggest 

the need for more lightweight models or hybrid solutions that 

balance on-device learning with edge-assisted processing. 

Future work includes the implementation of other AI 

techniques, such as DRL for further improvement in 

performance [64]. Testing the algorithm in other complex 

environments, such as large-scale industrial deployment and 

urban IoT networks, will help in validating robustness. 

Security and privacy considerations and concerns, especially 

for applications in healthcare and disaster management, will 

also be addressed. The full impact of this study will be 

extremely more profound. Energy efficiency and network 

longevity will add to the repute of sustainability missions due 

to less frequent maintenance needs, decreasing electronic 

waste as mentioned [65]. The adaptive nature of the algorithm 

in question is suitable not just for WSNs, but for other sensor-

based systems and IoT applications, which include 

environmental monitoring, smart agriculture, industrial 

automation, and more. 
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