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Abstract—In military defense, critical infrastructure 

protection, and border and maritime surveillance, radar 

detection plays a critical role in neutralizing threats, since slight 

delays in detection can enable hostile UAVs to breach defenses 

and target critical objectives. This research proposes an air 

defense systems, consists of integrated radar and missile system, 

to detect and neutralize aerial threats. The radar detects UAVs, 

tracks their trajectories, and prioritizes threats according to the 

distance of UAVs within its detection range, incorporating 

Poisson-distributed probability to dynamically allocate missile 

resources, allowing the systems to cover broader threat zones, 

which is crucial for the real-time interception of multiple UAVs. 

Each UAV is equipped with a state feedback controller for 

accurate navigation, while the missile system consistently 

enhancing its trajectory to accurately track and intercept 

threats under PPN guidance. Simulated experiments indicate 

that the proposed system intercepted the aerial threats within its 

operational range and time constraints in various battlefield 

scenarios. The system’s effect within its operational radius has 

also been evaluated in an experiment designed to counter a 

swarm of 6 UAVs flies in a predefined formation. In this 

scenario, the air defense system successfully launched a missile 

towards UAV swarms that neutralized 83.33% of total identified 

threats. The proposed system can be an alternative air defense 

systems to confront UAV threats in battlefield situations, with 

potential application in disaster management, search and 

rescue, and early warning system. 

Keywords—Integrated Radar and Missile System; Pure 

Proportional Navigation Guidance; UAV Defense System; UAV 

Swarm Neutralization. 

I. INTRODUCTION 

The increasing complexity of combat scenarios and 

operational constraints has reduced the effectiveness of 

individual Unmanned Aerial Vehicle (UAV) missions [1]–

[5]. Multi-agent systems are used to enhance its efficiency in 

completing various tasks in the field of war environment, 

such as exploration, surveillance, search-and-rescue 

operations, and missions in complex war environments [6]–

[14]. The development of aerial threats and their ability to 

evade detection has increased the demand for highly accurate 

radar systems capable of covering vast distances and rapidly 

identifying threats [15]–[17].  

Radar's capibility of early detection is crucial in detecting 

threats, since a slight delay allow threats to potentially 

causing damage to critical infrastructure or assets [18]–[25]. 

However, accurate detection is often difficult by the small 

size and low radar cross-sections of UAVs, which can fit into 

environmental clutter [26]–[29]. To overcome these issues, 

radar systems have to be equipped with dynamic threats 

management strategies. By prioritizing threats based on real-

time assessments, the system is capable of ensuring that the 

most dangerous threats are intercepted first [30]–[35]. 

Radar prioritizes threat detection using various indicators, 

such as a threat's proximity and severity, through frameworks 

like radar capability-based probability [36]–[40] and other 

probabilistic models that facilitate the efficient management 

of multiple threats simultaneously [41]–[46]. This approach 

ensures optimal utilization of radar resources by monitoring 

less critical targets while prioritizing more immediate threats 

[47]–[49]. However, as radar systems lack offensive 

capabilities, they rely on missile platforms for threat 

neutralization [50]–[53]. Thus, an effective air defense 

system should incorporate a radar for UAV detection, which, 

upon identifying a threat, activates and launches a missile 

targeting the detected position. Effective integration between 

radar and missile systems is crucial, as any communication 

gaps could result in delayed interceptions or missed targets 

[54]–[56]. 

Modeling potential collisions between missiles and 

UAVs based solely on probability may not fully reflect real-

world dynamics, as missiles are designed to follow a 

predefined trajectory [57]–[64]. Extensive research on 

missile interception has explored various guidance laws, 

including proportional navigation (PN) and pure proportional 

navigation (PPN) [65]–[67]. PN-based algorithms adjust the 

missile’s trajectory continuously based on the relative 

movement of the target, ensuring precise tracking even in 

high-speed scenarios [68]–[71]. PPN, specifically adapted for 

intercepting evasive UAVs, enables missiles to maintain a 

stable line of sight by dynamically reducing miss angles [72]–

[74]. Integrated radar-missile communication platforms, 

which distribute real-time tracking data, have shown 

improved interception success rates in recent experiments, 

allowing for accurate engagement of multiple UAVs with 

minimal response times [75]–[78]. 

Although these defense systems provide critical 

protection, UAVs employ advanced tactics to evade 

interception [79]–[81]. Previous research applied controllers 

to each UAV to maintain flight stability and replicate UAV 

movement in the real world [82]–[85]. However, prior 
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researches in the field of air defense systems have not yet 

considered the realistic modeling of UAV movement, and 

often treating them as particles or using simple controllers 

that do not consider UAV dynamics. Their fast-moving 

behaviors complicate radar tracking, requiring continuous 

recalibration of threat assessments to account for real-time 

changes in UAV trajectories [86]–[87]. 

To address these challenges, defense systems require a 

comprehensive strategy that combines precise radar 

detection, efficient prioritization, and PPN-guided 

interception to address the complexities of multi-UAV 

operations [88]-[89]. This study proposes an air defense 

system that utilizes Poisson-distributed prioritization for 

optimized resource allocation while synchronizing radar and 

missile systems to improve interception performance. 

Simulations will evaluate the system’s effectiveness against 

dynamic multi-UAV threats, offering valuable insights into 

how integrated radar and missile systems can sustain 

operational advantage in challenging scenarios. 

This research proposed an integrated radar and missile 

system to detect, prioritize, and intercept threats. This 

approach uses a Poisson distributed prioritization to optimize 

missile resource allocation, and applies PPN guided missiles 

to ensure accurate interception towards fast moving targets. 

The proposed system is evaluated through several 

experiments which shows its effectiveness in various 

operational scenarios. 

This study advances the fieldof defense systems by 

examining the interplay among radar, missiles, and UAVs in 

intricate environments, specifically:  

1) This research demonstrates the capability of integrated 

radar and missile systems to effectively detect, prioritize, 

and neutralize multiple UAV threats, equipped with real-

world controllers and dynamics. 

2) Through simulation experiments, the study assesses how 

Poisson-based prioritisation, real-time resource 

allocation, and integrated missile under PPN guidance 

responses augment the performance of the defense system 

in scenarios characterised by multiple dynamic threats. 

The paper is organized as follows. Section I examines the 

background of integrated radar and missile systems. Section 

II delineates the problem model, and formulates the detection 

and interception strategy. Section III presents the results and 

comments. Finally, section IV closes the work with 

conclusion and recommendations for future research. 

II. METHOD 

A. Problem Formulation 

A fleet of N UAVs, denoted by UAV-𝑖 where 𝑖 ∈
{1,2, … , 𝑁}. Each UAV-𝑖 maintains a state vector 𝑥𝑡

𝑖 =

[𝑥𝑡
𝑖, 𝑦𝑡

𝑖 , 𝑧𝑡
𝑖 , 𝑥̇𝑡

𝑖 , 𝑦̇𝑡
𝑖 , 𝑧̇𝑡

𝑖 , 𝜙𝑡
𝑖 , 𝜃𝑡

𝑖, 𝜓𝑡
𝑖 , 𝜙̇𝑡

𝑖 , 𝜃̇𝑡
𝑖, 𝜓̇𝑡

𝑖] representing its 

current position (𝑥𝑡
𝑖 , 𝑦𝑡

𝑖 , 𝑧𝑡
𝑖), linear velocity (𝑥̇𝑡

𝑖 , 𝑦̇𝑡
𝑖, 𝑧̇𝑡

𝑖), 

orientation (𝜙𝑡
𝑖 , 𝜃𝑡

𝑖 , 𝜓𝑡
𝑖), and angular velocity (𝜙̇𝑡

𝑖 , 𝜃̇𝑡
𝑖, 𝜓̇𝑡

𝑖) in 

the 3D space environment at time step t. Missiles are 

launched from radar stations upon detection of any UAV 

entering their detection range. Each missile follows a PPN-

guided trajectory aimed at a detected UAV. To be noted, each 

radar can only deploy one missile for the entire simulation. A 

missile's state is denoted by 𝛾𝑘(𝑥) =
[𝑥𝑀𝑘

(𝑥) 𝑦𝑀𝑘
(𝑥) 𝑧𝑀𝑘

(𝑥)], representing its current 

position. 

The problem formulation of this research is establishing 

an effective air defense mechanism and strategy in order to 

detect, track, and intercept an unauthorized threats which 

attempting to navigate through a defended environment. The 

radars are strategically positioned with specific detection 

ranges and altitudes, maximizing the likelihood of UAV 

detection. Radar designed to continuously monitors its 

operational area, and detects incoming threats in its 

operational range. When a UAV threat is detected, the radar 

initiates a response by launching an interceptor missile to the 

current position of the threats. The missile relies on line-of-

sight data to refine its path, ensuring a successful 

interception. 

The objective of the proposed system is to safeguarding 

airspace by preventing unauthorized threats in theoir 

operational zones, and ensuring the UAV threats is 

neutralized before it reaches its targets. To address this issue, 

the air defense system must excel in early detection, accurate 

tracking, and guided missile interception, so that the timely 

deployment of missiles toward the UAV can be achieved. 

This process demands optimized radar coverage and 

precision to ensure rapid interception.  

The simulation in this study was conducted using 

MATLAB to calculate and visualize the results, including 

interception time, success rates, and tracking accuracy. Data 

was collected to evaluate the system's performance against 

UAV threats. Visualization was done through graphs and 

diagrams illustrating UAV flight paths and missile 

interceptions. The Quanser QDrone quadcopter was used as 

the UAV model, providing realistic flight dynamics for 

simulating interactions with the radar and missile systems in 

dynamic environments. 

B. UAV Dynamics Model 

The modeling of quadcopter is in the hybrid-frame, and 

the translational motion is derived from earth-fixed 

coordinates which define the quadcopter's relative position 

and velocity to the earth. Besides, rotational motion is 

modeled in the body fixed coordinates, B-frame, as rotational 

dynamics directly impact the quadcopter's movement. By 

applying Euler’s first axiom and Newton's second law, the 

equation for translational motion is derived. The force 𝐹𝑖 is 

the lifting force produced by each motor propeller which is 

defined as (1)–(2) as in [90]–[91], 

𝐹𝑖 = 𝐾
𝜔

𝑠+𝜔
𝑢𝑖  (1) 

∑ 𝐹𝐸 = ξ̈𝐸𝑚  (2) 

𝐹𝑓
𝐸 + 𝐹𝑔 = ξ̈𝐸𝑚  (3) 

𝐹𝑓
𝐸 = 𝑅ξ

𝐵𝐸𝐹𝑓
𝐵  (4) 
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where the 𝜔 is cutoff frequency, 𝑠 is Laplace variable, 𝑢𝑖 is 

the input signal. ξ̈𝐸  represents translational accelerationo of 

the quadcopter in the E-frame, 𝐹𝑔 represents gravitational 

force, 𝐹𝑓
𝐸 is aerodynamic drag force in the E-frame, and 𝑚 is 

the mass of the quadcopter. The constant 𝐾 is determined by 

flying the quadcopter in a hover state, which is proportional 

to the total lift force generated by the four quadcopter motors 

during hovering. 𝑅ξ
𝐵𝐸  represents rotation matrix to transform 

drag force 𝐹𝑓
𝐵 from the B-frame to E-frame. 

Since the force acting is only along the z-axis, the 

resulting force is solely 𝐹𝑧, or the thrust force 𝑈1. The 

orientation angles is represented by roll (𝜙), pitch (𝜃), and 

yaw (𝜓) angle. 

𝐹𝑓
𝐸 = [

𝑈1(sin 𝜓 sin 𝜙 + cos 𝜓 sin 𝜃 cos 𝜙)
U1(− cos 𝜓 sin 𝜙 + sin 𝜓 sin 𝜃 cos 𝜙)

𝑈1(cos 𝜃 cos 𝜙)
]   (5) 

Substituting (3) into (5) yields (6). This results in the 

quadcopter’s translational motion equation as in (7)–(9), 

𝐹𝑓
𝐸 + [

0
0

−𝑚𝑔
] = [

𝑋̈
𝑌̈
𝑍̈

] 𝑚  (6) 

𝑋̈ = (sin 𝜙 sin 𝜓 + cos 𝜙 sin 𝜃 cos 𝜓)
𝑈1

𝑚
  (7) 

𝑌̈ = (− sin 𝜙 cos 𝜓 + cos 𝜙 sin 𝜃 sin 𝜓)
𝑈1

𝑚
  (8) 

𝑍̈ = −𝑔 + (cos 𝜙 cos 𝜃)
𝑈1

𝑚
  (9) 

where [𝑋̈, 𝑌̈, 𝑍̈] represent the acceleration along the 𝑥, 𝑦, and 

𝑧-axis of the E-frame consecutively. 

Based on Euler's second axiom in Newton's second law, 

the rotational motion is described by (10), which is defined in 

E-frame coordinates, and must be transformed into B-frame 

coordinates, resulting to (12). If the derivative of the 

transformation matrix 𝑇𝛩  is 𝑇𝛩𝑆(𝜔𝐵), where 𝑆(𝜔𝐵) is a skew-

symmetric matrix, then (11) can be rewritten as (12).  

𝜏𝐸 = 𝐽Θ̈𝐸 (10) 

𝑇𝛩𝜏𝐵 = 𝐽(𝑇̇𝛩𝜔𝐵 + 𝑇𝛩𝜔̇ 𝐵) (11) 

𝑇𝛩𝜏𝐵 = 𝑇𝛩(𝜔𝐵 × 𝐽𝜔𝐵 + 𝐽𝜔̇ 𝐵) (12) 

𝐽𝜔̇ 𝐵 = −(𝜔𝐵 × 𝐽𝜔𝐵) + 𝜏𝐵 (13) 

Solving (13) results in (14). 

[

𝐽𝑥𝑥𝑝̇
𝐽𝑦𝑦𝑞̇

𝐽𝑧𝑧𝑟̇
] = [

(𝐽𝑦𝑦 − 𝐽𝑧𝑧)𝑞𝑟

(𝐽𝑧𝑧 − 𝐽𝑥𝑥)𝑝𝑟

(𝐽𝑥𝑥 − 𝐽𝑦𝑦)𝑝𝑞

] + [

𝑈2𝑙
𝑈3𝑙
𝑈4𝑑

]   (14) 

Thus, the translational motion equation is obtained as in (15)–

(17). 

𝑝̇ =
𝐽𝑦𝑦−𝐽𝑧𝑧

𝐽𝑥𝑥
𝑞𝑟 +

𝑈2𝑙

𝐽𝑥𝑥
   (15) 

𝑞̇ =
𝐽𝑧𝑧−𝐽𝑥𝑥

𝐽𝑦𝑦
𝑝𝑟 +

𝑈3𝑙

𝐽𝑦𝑦
  (16) 

𝑟̇ =
𝐽𝑥𝑥−𝐽𝑦𝑦

𝐽𝑧𝑧
𝑝𝑞 +

𝑈4𝑑

𝐽𝑧𝑧
  (17) 

The quadcopter dynamics model used in this paper 

defined by (7)–(9) and (15)–(17). The parameters used 

defined in Table I. 

TABLE I.  PARAMETERS OF QUADCOPTER DYNAMICS 

Parameter Values 

m 1 kg 

g 9.81 m/s2 

Jxx 0.03 kg.m2 

Jyy 0.03 kg.m2 

Jzz 0.04 kg.m2 

l 0.2 m 

d 3.13 × 10-5 N 

 

C. State Feedback Controller 

The quadcopter control scheme used as a controller is 

divided into position control as an outer loop and attitude 

control as an inner loop which can be seen in Fig. 1 [90]–[91]. 

In position control, the input is the error value of the reference 

position to the actual quadcopter position [𝑋(𝑡) 𝑌(𝑡) 𝑍(𝑡)]. 
The output of position control is 𝑈1, 𝑠7𝑟𝑒𝑓(𝑡), and 𝑠8𝑟𝑒𝑓(𝑡). 

The quadcopter angular position [𝜙(𝑡) 𝜃(𝑡) 𝜓(𝑡)] become 

input for attitude control which produces outputs 𝑈2, 𝑈3, and 

𝑈4 that consecutively imply roll, pitch, and yaw forces.  

The state feedback controller is used to control the 

altitude (𝑍) and heading (𝜓). The combination of state 

feedback controller and proportional-derivative (PD) 

controller is used to control the positions 𝑋 and 𝑌 and 

attitudes 𝜙 and 𝜃. This control scheme is used for all 

quadcopters, since it is assumed that all quadcopters used in 

this research are identical and homogenous. Overall, the PD 

state feedback controller is used to control the movement of 

the quadcopter starting from the point where the UAV starts 

moving towards the target point according to the trajectory 

that has been generated. 

 

Fig. 1.  Block diagram of quadcopter’s attitude and position control using 

state feedback controller [90] (ganti ujung output) 

To control altitude using a state feedback controller, (9) 

must be modified by including air drag forces, resulting in the 

following state equation, 
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𝑍̈ = −𝑔 +
(𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃)𝑈1

𝑚
− 𝑑𝑍̇  (18) 

where 

𝑈1 = 𝑔 + 𝐾1(𝑧𝑟𝑒𝑓 − 𝑧) + 𝐿1(𝑧̇𝑟𝑒𝑓 − 𝑧̇) +

𝑧̈𝑟𝑒𝑓 + 𝑑𝑧̇  
(19) 

by substituting (19) to (18), (20) is obtained.  

𝑈1 = 𝑔 + 𝐾1(𝑧𝑟𝑒𝑓 − 𝑧) + 𝐿1(𝑧̇𝑟𝑒𝑓 − 𝑧̇) +

𝑧̈𝑟𝑒𝑓 + 𝑑𝑧̇  
(20) 

The heading of the quadcopter will be controlled with a 

state feedback controller as a regulator to ensure that 𝜓 → 0. 

𝑈4 =
𝐽𝑧𝑧

𝑑
(−𝐾4𝜓 − 𝐿4𝜓)  (21) 

𝑟̇ =
𝐽𝑥𝑥−𝐽𝑦𝑦

𝐽𝑧𝑧
𝑝𝑞 − 𝐾4𝜓 − 𝐿4𝜓  (22) 

𝑟̇ = −𝐾4𝜓 − 𝐿4𝜓̇  (23) 

When the quadcopter reaches the desired position or 

target, the target acquisition control will become active. A 

proportional-derivative controller is used to manage the 𝑋 

and 𝑌 positions to generate outputs that will serve as 

reference inputs for the attitude control of 𝜙 and 𝜃. Since the 

heading (𝜓) is controlled by the state feedback controller as 

a regulator (𝜓 → 0), (7) can be simplified to (24). 

𝑋̈ = cos 𝜙 sin 𝜃
𝑈1

𝑚
  (24) 

𝑈2 =
𝐽𝑥𝑥

𝑙
(𝐾2𝑠7𝑟𝑒𝑓

− 𝐾2𝑠7 − 𝐿2𝑠̇7𝑟𝑒𝑓
− 𝐿2𝑠̇7

+ 𝑠̈7𝑟𝑒𝑓
) 

(25) 

𝑌̈ = − sin 𝜙
𝑈1

𝑚
  (26) 

𝑈3 =
𝐽𝑦𝑦

𝑙
(𝐾3𝑠8𝑟𝑒𝑓

− 𝐾3𝑠8 − 𝐿3𝑠̇8𝑟𝑒𝑓
− 𝐿3𝑠̇8

+ 𝑠̈8𝑟𝑒𝑓
) 

(27) 

The parameters used in (24)–(27) are listed in the Table II. 

TABLE II.  PARAMETERS OF PROPORTIONAL- DERIVATIVE STATE 

FEEDBACK CONTROLLER 

Parameter Values 

𝐾1 16 

𝐾2 100 

𝐾3 100 

𝐾4 0.09 

𝐿1 9 

𝐿2 21 

𝐿3 21 

𝐿4 0.61 

 

D. Integrated Radar and Missile Model 

A radar can find a UAV in its mission space with a certain 

probability. Factors that affect the probability of radar 

detection generally include the curvature of the earth, 

atmospheric refraction and absorption, ground clutter 

interference, the distance between the UAV and the radar, 

and so on. The radar utilizes electromagnetic waves which 

propagate in a linear trajectory. The energy loss from the 

radar's produced energy wave, upon reflection by a target, is 

inversely proportional to the fourth power of the one-way 

propagation distance of the electromagnetic wave (𝑅4) [93]. 

It is assumed that the probability distribution of the radar 

finding a target uses a Poisson distribution. Assuming the 

maximum range of the radar at a height h is 𝑅ℎ, the target 

detection probability can be estimated as the following 

equation. 

𝑃𝑅 = {

𝑅4

𝑅ℎ
4+𝑅4 ,    𝑅 ≤ 𝑅ℎ

0,             𝑅 > 𝑅ℎ

  (28) 

 Assuming that the radar is able to identify the UAV, the 

missile will be fired in the direction of the current location of 

the UAV, as shown in Fig. 2. The process begins with target 

detection, followed by threat prioritization using Poisson-

based probability and threat evaluation to assess the severity 

of the identified targets. Once the UAV is confirmed, the 

missile is launched toward its estimated position based on 

radar data. The missile, presumed to be a passive seeker, is 

guided under Proportional Navigation (PPN) with an initial 

Line of Sight (LoS) angle defined by azimuth (𝛼𝑀) and 

elevation (𝜀𝑀) to intercept the target accurately [94]. 

 

Fig. 2.  Algorithm of 3-D simulation of the movement of missile under PPN 

guidance launched from radar position towards single UAV’s target position 

In order to intercept UAV threats in real time, the 

Algorithm 1 delineates the process of incorporating radar 

detection with missile deployment. Radar stations incessantly 

monitor UAVs, determining the distance from each UAV to 

the radar station to evaluate if the UAV falls within a 

specified detection range. The critical metric, Rh, 

dynamically modifies the detection threshold in accordance 

with the UAV's height. Upon a UAV entering the radar's 

detection range, the system calculates a detection probability, 

𝑃𝑅, to assess the priority for missile deployment. If the 

probability rises beyond a predetermined threshold, the 

missile will be launched. 
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Algorithm 1 Radar System 

1: Initialize environment with N UAVs anad M targets 

2: Initialize radar stations and missile systems 

3: Initialize UAV positions and set their goals 

4: for each time step t = 1 to T do: 

5:       for each radar station r do: 

6:             for each UAV j do: 

7:             Compute distance between UAV and radar: 

                 𝒅𝒓(𝒖𝒊) = √(𝒙𝒊 − 𝒙𝒓)𝟐 + (𝒚𝒊 − 𝒚𝒓)𝟐  
8:               Compute 𝑹𝒉: 

                 𝑹𝒉 = 𝑹𝒎𝒂𝒙 −
𝑹𝒎𝒂𝒙+𝑹𝒎𝒊𝒏

𝟐
|𝒛𝒊 −

𝒉𝒎𝒂𝒙

𝟐
| 

9:                   if 𝒅𝒓 ≤ 𝑹𝒉: 

10:                    Compute 𝑷𝑹(𝒖𝒊) =
𝒅𝒓(𝒖𝒊)𝟒

𝑹𝒉
𝟒+𝒅𝒓(𝒖𝒊)𝟒 

11:                       if PR > max_prob: 

12:                           launch missile as Algorithm 1 

13:                       end if 

14:                  end if 

15:            end for 

16:      end for 

17: end for 

 

PPN maintains a proportional relationship between the 

rate of closure and lateral acceleration. Missile continuously 

adjusts its acceleration perpendicular to its velocity vector to 

ensure alignment with the target by reacting to the angular 

rate of the LoS between the missile and the target. This 

guidance method minimizes the need for detailed information 

about the target's speed or trajectory, relying instead on 

angle-only measurements from passive sensors, such as 

azimuth and elevation rates, thereby reducing computational 

demands. PPN guidance typically separates missile flight into 

a high-acceleration boost phase and a sustained lower-

acceleration phase. In these phases, a fixed navigation 

constant controls the proportional adjustment rate in response 

to shifts in Line of Sight (LoS) angles. By prioritizing angle-

based corrections, the PPN model facilitates efficient, real-

time targeting adjustments, which are vital for dynamic 

interception scenarios. This makes PPN an effective strategy 

in scenarios requiring rapid response and minimal 

computational complexity, such as missile defense and close-

range threat engagement systems. The equation for missile’s 

PPN guidance law are as in [94]. 

Upon launch, the missile possesses an initial velocity 𝑣𝑀0
 

and a boost acceleration 𝑎𝑀𝑏
 aligned with the missile's 

velocity vector. Subsequent to a designated duration 𝜉𝑏, the 

missile transitions into the sustain phase characterized by a 

reduced acceleration 𝑎𝑀𝑠
. The acceleration vector is 

orthogonal to the missile's velocity vector. The horizontal and 

vertical components of missile acceleration, 𝑎𝑀𝛼
 and 𝑎𝑀𝜀

, are 

orthogonal to both the missile velocity and the line of sight 

angular velocity, their magnitudes defined as in (29)–(30), 

𝑎𝑀𝛼𝑘
= 𝑐𝑣𝑀𝑘

𝛼̇𝑀𝑘
 (29) 

𝑎𝑀𝜀𝑘
= 𝑐𝑣𝑀𝑘

𝜀𝑀̇𝑘
 (30) 

where 𝑐 is the navigation constant, 𝛼̇𝑀𝑘
 and 𝜀𝑀̇𝑘

 are the LoS 

azimuth and elevation velocities of the missile towards the 

target, and k denotes discrete time. 

 Given (29)–(30), the magnitudes of the angular rates of 

rotation from the velocity of the missile, |𝜔𝑎𝑘
| and |𝜔𝜀𝑘

|, 

defined as (31)–(32). 

|𝜔𝑎𝑘
| = |

𝑎𝑀𝛼𝑘

𝑣𝑀𝑘

| = |𝑐𝛼̇𝑀𝑘
|  (31) 

|𝜔𝜀𝑘
| = |

𝑎𝑀𝜀𝑘

𝑣𝑀𝑘

| = |𝑐𝜀𝑀̇𝑘
|  (32) 

In order to enhance the realism of the model used in this 

research, the maximum turning speed of the azimuth angle 

𝛺𝛼 and elevation angle 𝛺𝜀 is used in the evolution of the LoS 

angle, so that the updated azimuth and elevation equation 

defined in (33)–(34),  

𝛼𝑀𝑘+1
= {

𝛼𝑀𝑘
+ 𝑐𝛼̇𝑀𝑘

𝑇,                     |𝜔𝛼𝑘
| ≤ Ω𝛼

𝛼𝑀𝑘
+ 𝑠𝑖𝑔𝑛[𝑐𝛼̇𝑀𝑘

]Ω𝛼𝑇,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (33) 

𝜀𝑀𝑘+1
= {

𝜀𝑀𝑘
+ 𝑐𝜀𝑀̇𝑘

𝑇,                         |𝜔𝜀𝑘
| ≤ Ω𝜀

𝜀𝑀𝑘
+ 𝑠𝑖𝑔𝑛[𝑐𝜀𝑀̇𝑘

]Ω𝜀𝑇,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (34) 

where 𝑇 represents the sample interval, 𝜔𝛼𝑘
 and 𝜔𝜀𝑘

 

consecutively represent angular velocity of azimuth and 

elevation LoS. 

In the other hand, the missile velocity defined as (35), 

𝑣𝑀𝑘+1
= 𝑣𝑀𝑘

+ 𝑎𝑀||𝑘𝑇 (35) 

𝑎𝑀|| =
𝑇𝑝−𝐷𝑝

𝑀𝑝
  (36) 

where 𝑎𝑀||  denoting the acceleration component of the 

missile velocity vector. In the boost phase, 𝑎𝑀|| is replaced 

by 𝑎𝑀𝑏
 and 𝑎𝑀𝑠

 in the sustain phase. 𝑇𝑝, 𝐷𝑝, and 𝑀𝑝 denote 

the thrust, drag, and mass of the missile, respectively. For 

estimation purposes, a constant net-specific thrust is 

presumed, as drag escalates with velocity and mass 

diminishes during each phase. Consequently, 𝑎𝑀𝑏
 and 𝑎𝑀𝑠

 

are presumed to be constant during each phase. 

The discrete time state equation of the missile movement 

is shown by (37)–(39) [94]. 

𝑥𝑀𝑘+1
= 𝑥𝑀𝑘

+ 𝑣𝑀𝑘
cos 𝜀𝑀𝑘

cos 𝛼𝑀𝑘
𝑇 (37) 

𝑦𝑀𝑘+1
= 𝑦𝑀𝑘

+ 𝑣𝑀𝑘
cos 𝜀𝑀𝑘

sin 𝛼𝑀𝑘
𝑇 (38) 

𝑧𝑀𝑘+1
= 𝑧𝑀𝑘

+ 𝑣𝑀𝑘
sin 𝜀𝑀𝑘

𝑇 (39) 

The missile trajectory is then obtained through the PPN 

guidance law. The vector 𝛾𝑘(𝑥) is a vector consisting of the 

missile position components at time 𝑘. 
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𝛾𝑘(𝑥) = [𝑥𝑀𝑘
(𝑥) 𝑦𝑀𝑘

(𝑥) 𝑧𝑀𝑘
(𝑥)]′ (40) 

Algorithm 2 below outlines the state update of the missile. 

Algorithm 2 Missile System 

1: Initialize missile_state, parameters, azimuth and 

elevation angle  

2: for each time step t = 1 to T do: 

3:      Compute euclidean distance rel_dist to target 

4:      if rel_dist < 2 meters: 

5:          set intercepted = true 

6:      end if 

7:      Compute missile acceleration as (29)–(30)  

8:      Update LoS angular rates as (31)–(32) 

9:      Update missile LoS angles as (33)–(34) 

10:    if elapsed_time ≤ boost_time: 

11:        a_parallel = (Tp_boost - Dp) / Mp  

12:    else: 

13:        a_parallel = (Tp_sustain- Dp) / Mp 

14:    end if 

15:    Compute velocity and acceleration as (35)–(36) 

16:    Update missile position as (37)–(39) 

17: end for 

 

III. RESULTS AND DISCUSSION 

A. Setup 

In this research, the missile system employs pure 

proportional navigation (PPN) guidance, which allows the 

missile to adjust its trajectory dynamically to intercept the 

target accurately. Meanwhile, the UAV utilizes a state 

feedback controller to navigate, simulating the behavior and 

response patterns of real-world UAVs. Throughout the 

missile’s flight, the missile system continuously updates the 

UAV’s position towards its LoS angle, refining the missile’s 

trajectory in real time to counter UAV evasive maneuvers. If 

another UAV enters the radar’s detection zone with a higher 

threat level, the system reallocates resources accordingly, 

ensuring that the most immediate threat is prioritized. 

These experiments adopt several limitations to make the 

simulation as close to realistic applications as possible, which 

in turn brings out the relevance and practicality of the study 

better. One of the basic conditions is that if the minimum 

distance between a UAV and a missile is less than 2 meters, 

the missile is already considered to have intercepted the UAV 

successfully. From its launch, the missile system must 

intercept the UAV within 5 seconds. If this time limit is 

surpassed, the missile will be intercepted at its current 

position, regardless of whether it has reached the UAV or not. 

The interaction among radar, missiles, and UAVs evolves 

dynamically at each time step, with the system continuously 

recalculating detection probabilities and interception paths 

based on UAV behavior. This study involves three 

experiments, each aimed at simulating different levels of 

complexity in the environment and the target. The real-time 

interaction between radar and missile systems highlights the 

critical role of air defense strategies in managing multiple, 

high-risk UAV threats simultaneously. 

B. Experiments on Single UAV 

This experiment demonstrates a missile interception 

scenario where a UAV is detected and neutralized within a 

predefined radar detection zone. The radar cone serves as the 

detection boundary, ensuring that the UAV's movement can 

be continuously monitored. It is assumed that UAV do not 

know the detection range of the radar. As the UAV moves 

along its trajectory, the missile is guided towards it based on 

real-time tracking data. The plotted trajectories for both the 

UAV and the missile confirm the system's ability to maintain 

precise paths, converging at the interception point.  

The first experiment involved a single UAV and a radar 

that is assumed can deploy only one missile for the whole 

simulation. As in Fig. 3, the final interception occurred at 

[829.179, 829.502, 99.3031] with a minimum separation 

between missile and UAV of 1.5662 meters. The distance 

between UAV threat and missile showed in Fig. 4. This 

minimal distance at the point of interception is within the 

minimum treshold 2 meter, suggests the missile’s guidance 

mechanism successfully intercept the threat in this 

experiments. 

 

Fig. 3.  The 3-D simulation of the movement of missile under PPN guidance 

launched from radar position towards single UAV’s target position 

 

Fig. 4.  Distance between UAV and missile from simulation on Fig. 2. The 

x-axes imply the iterations while the y-axes imply the distance 

As in Fig. 5, we experiments the system’s capability if 

there are two UAVs entering the same radar sequentially. The 

green points show the initial position of each UAV, and the 

red points show the goal poistion of each UAV. The center of 

the radar defined at [1000, 1000, 0], within the maximum 

radius 500 meters. It is shown that the first UAV entering the 

radar will be the target of missile interception, while another 

UAV still reach their goal.  
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Fig. 5.  The simulation of 2 UAVs entering a radar sequentially. Missile 

launched towards the first UAV entering radar. All axes is represented in 

meter 

However, if there are two UAVs entering the same radar 

in the same time, a missile will be launched towards the UAV 

with highest probability defined in (28). As in Fig. 6 and Fig. 

7, radar checking those two UAVs in the same time with 

detection probability 0.1201 and 0.3598, consecutively for 

UAV 1 and 2. Therefore, missile intercepted UAV 2 at 

position [1198.78, 1000, 49.82], with minimum distance 

between missile and UAV is 1.23 meters, showed in Fig. 8. 

The minimal distance at the point of interception is within the 

minimum treshold 1 meter, shows that missile successfully 

intercepted the UAV threat, especially the one with highest 

Poisson-distributed probability. 

 

Fig. 6.  The simulation of 2 UAVs entering a radar. Missile launched towards 

UAV with higher probability based on (38) 

 

Fig. 7.  Look up point of view of Fig. 6 

 

Fig. 8.  Distance between UAV and missile from simulation on Fig. 5 

C. Experiments on Multiple Radars and UAVs 

In this simulation, the defense system is operated within 

a circumscribed 3D environment, with limits established at 

[0, 5000] meters along the x and y axes and a height of 100 

meters. The threats’ initial position are defined in Table III 

and Table IV. Four radar stations are strategically located to 

oversee airspace for UAV activities. These stations 

perpetually monitor for UAVs entering their detection zones, 

calculating distances between each UAV and the radar to 

ascertain whether the UAV is within range. The detection 

threshold, denoted as 𝑅ℎ, adapts dynamically according to the 

UAV's altitude in relation to the radar's height restriction, 

accounting for both horizontal and vertical constraints. Each 

radar has a predefined maximum range 800 m and minimum 

range 200 m, along with a height limit 100 m. The 

environment showed in Fig. 9. 

TABLE III.  MULTI-UAVS INITIAL POSITION 

UAV- Position [x, y, z] 

1 [0, 1720.63, 42.62] 

2 [0, 3524.44, 81.8] 

3 [0, 3673.34, 19.8] 

4 [0, 3636.47, 26.18] 

5 [3113.6, 0, 73.43] 

6 [2535.55, 0, 84.19] 

7 [4068.63, 0, 19.4] 

TABLE IV.  RADAR POSITION 

Radar- Position [x, y, z] 

1 [1500, 3750, 0] 

2 [1000, 1250, 0] 

3 [3000, 1250, 0] 

4 [3500, 3650, 0] 

 

 

Fig. 9.  The 3-D simulation environment on multi-UAVs 
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In Fig. 10 and Fig. 11, it is shown that radar 2 detects 

UAV 1, and radar 4 detects UAV 3. Each of them 

successfully launches a missile towards UAV’s current 

position. The interception occurred at position [639.69, 

1065.61, 45.88] and [3070.04, 3827.07, 49.87]. The detailed 

plot of distance between missile and their respective targets 

over time can be seen in Fig. 12. The continuous distance 

tracking shows the precision of missile guidance systems and 

their ability to maintain a decreasing trajectory towards the 

target until interception. 

 

Fig. 10.  The 3-D simulation environment, including multi-UAVs, multi-   

target, and the radar vizualisation 

 

Fig. 11.  The 3-D simulation environment, including multi-UAVs, multi-   

target, and the radar vizualisation 

 

Fig. 12.  Distance between UAV 1 and 3 towards missile 

To be noted, the radar cone expands from a smaller radius 

at the base to a larger radius as it extends upwards. In Fig. 11, 

some UAVs appear to be moving inside the radar cone but 

are not intercepted by the missile. Upon closer inspection, 

UAV 3 does not move inside radar 3, UAV 4 does not move 

inside radar 2, and UAV 5 does not move inside radar 3. To 

provide clarity, Fig. 13 to Fig. 15 offers a different 

perspective that validates our earlier statement. 

 

Fig. 13.  Closer inspection of experiment in Fig. 9 that shows UAV 3 does 

not move inside radar 3 

 

Fig. 14.  Closer inspection of experiment in Fig. 9 that shows UAV 4 does 

not move inside radar 2 

 

Fig. 15.  Closer inspection of experiment in Fig. 9 that shows UAV 5 does 

not move inside radar 3 

D. Experiments on UAV Swarm 

In this experiment, a formation of UAVs maneuvers 

strategically towards a common aim. The environment 

features a radar system designed to identify possible UAV 

threats, consistently monitoring their movement. This radar 

is considered to possess more capabilities relative to earlier 

experimental configurations, as it can launch a missile with 

precise targeting, capable of neutralizing threats within a 5-

meter radius from the interception point. The main objective 

of this experiment is to assess the possible damage caused by 

the missile within its operational range. Evaluating this 

damage radius is crucial, as practical applications prefer 

missiles capable of incapacitating many UAVs concurrently, 

so that the defense system can operate efficiently. 

The initial position of each UAV illustrated in Fig. 16, 

and detailed in Table V. The UAV swarm moves along 

towards their common goal at [1800, 1800, 75]. The 

environment equipped with radar at [2500, 2500, 0] with 

maximum range 2000 meters and maximum altitude 150 

meters. As in Fig. 17 and Fig. 18, the radar successfully 

detected and engaged UAVs within its operational range. It 

is shown that the missile intercepted UAVs at [1523.95, 
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1520.65, 75.74] at 262.02 seconds. This interception 

highlights the accuracy and responsiveness of the proposed 

air defense system, effectively neutralizing the detected 

threats with minimal deviation from the intended interception 

point. 

TABLE V.  MULTI-UAVS INITIAL POSITION 

UAV- Position [x, y, z] 

1 [0, 0, 75] 

2 [3, 0, 75] 

3 [6, 0, 75] 

4 [1.5, 2.598, 75] 

5 [4.5, 2.598, 75] 

6 [3, 5.196, 75] 

 

 

Fig. 16.  Initial position for multi-UAVs threats in triangle shape formation 

consists of 6 UAVs. All axes represented in meters 

 

Fig. 17.  The experiments on UAV swarm. The UAV swarm moves from its 

initial formation towards their common goal 

 

Fig. 18.  The look up view for the experiment on UAV swarm 

Missile successfully intercepted five out of six UAVs. 

Throughout the experiment, only UAV 6 survived the missile 

interception, since its distance from the missile was 5.46 

meters, exceeding the threshold of 5 meters. The detailed 

distance between missile and UAV swarm at interception 

point listed in Table VI and Fig. 19 and Fig. 20. This 

experiment shows that within its specified radius, the 

designed air defense system is able to accurately neutralize 

grouped targets while within range. 

 

Fig. 19.  The distance between missile and UAVs in experiments on UAV 

swarm 

 

Fig. 20.  The distance between missile and UAVs in experiments on UAV 

swarm at interception point 

TABLE VI.  DISTANCE BETWEEN UAVS AND MISSILE AT INTERCEPTION 

POINT 

UAV- Minimum Distance 

1 5.46415 

2 4.58667 

3 3.71567 

4 2.91339 

5 2.06238 

6 1.97922 

 

Missile successfully intercepted five out of six UAVs. 

Throughout the experiment, only UAV 6 survived the missile 

interception, since its distance from the missile was 5.46 

meters, exceeding the threshold of 5 meters. The detailed 

distance between missile and UAV swarm at interception 

point listed in Table VI and Fig. 19 and Fig. 20. This 
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experiment shows that within its specified radius, the 

designed air defense system is able to accurately neutralize 

grouped targets while within range. 

Table VII provides a detailed comparison of the overall 

experimental configurations used to evaluate the 

performance of the proposed UAV detection and interception 

system. In the simplest configuration, involving one radar 

and one UAV, the system successfully detected and 

intercepted the UAV with a minimum distance of 1.5662 

meters and an interception time of 0.9 seconds. For the 

configuration with one radar and two UAVs, the system 

detected two UAVs and successfully intercepted one, 

achieving a minimum interception distance of 1.23 meters 

with a reduced interception time of 0.65 seconds. 

In a more complex configuration involving four radars 

and seven UAVs, the system detected and intercepted two 

UAVs. The minimum interception distances ranged between 

1.87 and 1.37 meters, with interception times varying from 

1.6 to 2.3 seconds. Finally, in the configuration involving one 

radar and six UAVs, the system demonstrated its scalability 

by detecting all six UAVs and successfully intercepting five. 

The minimum interception distances in this scenario varied 

from 1.98 meters to 5.46 meters, with an overall interception 

time of 3.72 seconds. 

These results show the system's capability to handle 

increasingly complex scenarios, demonstrating reliable 

functionality in both single-UAV and multi-UAV 

environments. The variation in minimum distances and 

interception times across configurations highlights the 

system’s effectiveness in addressing dynamic UAV threats. 

TABLE VII.  COMPARISON BETWEEN OVERALL EXPERIMENTS 

Experiment 
Configuration 

Detected 
UAV 

Intercepted 
UAV 

Minimum 

Distance 

(m) 

Interception 
Time (s) 

1 Radar and 1 
UAV 

1 1 1.5662 0.9 

1 Radar and 2 

UAVs 
2 1 1.23 0.65 

4 Radar and 7 
UAVs 

2 2 
[1.87, 
1.37] 

[1.6, 2.3] 

1 Radar and 6 

UAVs 
6 5 

[1.98, 

2.06, 
2.91, 

3.72, 

4.59, 
5.46] 

3.72 

IV. CONCLUSION 

The proposed air defense system, integrating radar and 

missile components, effectively countered UAV threats 

across various scenarios. In the 1 radar and 1 UAV setup, the 

system intercepted the UAV within 1.5662 meters in 0.9 

seconds. For 1 radar and 2 UAVs, it intercepted one UAV at 

1.23 meters in 0.65 seconds. In the 4 radar and 7 UAVs 

scenario, it intercepted two UAVs with distances of 1.87 and 

1.37 meters in 1.6 to 2.3 seconds. For 1 radar and 6 UAVs, 

five UAVs were intercepted with distances ranging from 1.98 

to 5.46 meters in 3.72 seconds. These results confirm the 

system’s capability to detect, track, and neutralize UAV 

threats in both simple and complex environments. 

The future work could focus on enhancing capability of 

the system to more complex scenarios involving the 

heterogenous targets, higher numbers of UAVs, and complex 

dynamic threats incorporating advanced machine learning 

algorithms. The real-world implementation also can be 

considered, such as weather conditions, radar jamming, or 

signal interference. Enhancing the system's performance by 

incorporating energy efficiency and time-critical decision-

making strategies could further strengthen its application in 

real-world air defense systems. The system also can be used 

for broader implications, such as disaster management. 
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