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Abstract—This paper presents a new path planning method 

(APF-IRRT*-HS), which relies on the optimization process of 

the conventional RRT* algorithm and combined with the APF 

method where the sampling process of the RRT* algorithm is 

improved using the Halton sequence, which is known to be 

deterministic and repeatable and provides more efficient 

coverage than other low discrepancy sequences with the 

modified goal-based method which provides a probabilistic 

approach to decide whether to sample from a point directly at 

the target or to choose a random point from the Halton sequence 

based on the current distance. We implemented the proposed 

method in two cases of mass point and two-link robots. The 

proposed method compares path length with the conventional 

RRT* algorithm and APF-RRT*, as well as time efficiency and 

number of iterations. The technique proves effective in various 

dynamic environments. Specifically, the APF-IRRT*-HS 

algorithm achieved an improvement of approximately 21.88% 

and 7.5% in path length, 79.75% and 49.2% in computation 

time, and 57.39% and 40% in the number of iterations 

compared with the RRT* and RRT*-APF algorithms, 

respectively. We can use this method in everyday applications 

such as robotic arms, drones, self-driving cars, etc. More 

advanced methods, such as multi-link robots and real-time 

constraints, can be used in the future.  

Keywords—Path Planning; Rapid-Exploring Random Tree; 

Artificial Potential Fields; Halton Sequence; Free Cartesian 

Space (FCS). 

I. INTRODUCTION  

In recent years, robotics has developed significantly, 

advancing the field in various possible applications, 

including healthcare, manufacturing, logistics, self-driving 

car technologies, and more industries [1], [2]. In this sense, 

path planning is one of the fundamental challenges in 

robotics. It can be defined as finding the perfect path from a 

starting point to a goal point, avoiding all obstacles in the 

surrounding environment, reducing energy, determining the 

shortest route, and achieving smoothness of the path [3], [4]. 

Path planning helps ensure the robot's mobility and safety 

when moving between complex environments efficiently and 

accurately. It is key for successful applications such as 

moving freely in space and avoiding obstacles when driving 

in vehicles [5], [6]. 

As shown in Fig. 1, researchers classify path-planning 

techniques into grid-based techniques, like Dijkstra [7], D* 

[8], and A* [9] algorithms, representing the environment as a 

grid of cells to find the shortest path using this grid structure. 

Sampling-based techniques, such as rapid random tree 

exploration (RRT) [10] and probabilistic road mapping 

(PRM) [11] methods, select random samples in the robot's 

external space to explore the most efficient paths in complex 

or high-dimensional environments. Artificial intelligence-

based techniques, such as deep reinforcement learning [12] 

and genetic algorithms [13], use AI methods to train the robot 

to adapt to complex environments to find the best paths. 

Mathematical-based methods, such as linear control [14] and 

optimal control [15], determine the optimal route of the robot 

in the environment according to mathematical constraints and 

mathematical equations. Potential field methods, such as 

APF, guide the robot toward a goal while avoiding obstacles 

using attractive and repulsive force fields [16]. Fig. 1 A 

comprehensive overview of popular path-planning 

techniques. 

 

Fig. 1. An overview of commonly used motion planning methods 

LaValle at Lowa State University proposed one of the 

most renowned global motion planning methods, the RRT 

algorithm, in 1998 [17]. RRT values for its effectiveness in 

using incremental sampling to identify global solutions. The 

key concept behind the RRT [18] algorithm is a discovery 

tree formed at the starting point and expanded by drawing 

random samples from the available space. The RRT 

algorithm is straightforward and capable of finding solutions 

in intricate environments, making it widely adopted in mobile 

robot navigation. Nevertheless, reliance on random sampling 

often results in solutions that are not optimal [19], [20].  
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Unlike the RRT, the RRT* [21] enhances state space 

exploration by optimizing the tree through extension 

rewiring, aiming for near-optimal paths [22], [23]. However, 

the algorithm becomes inefficient due to the amplified 

sampling and the iterative process. In addition to the 

difficulty of exploring random samples, this reduces their 

efficiency in narrow corridors and crowded environments. 

The APF can integrated with RRT* [24], which is 

extensively used for path-smoothing control [25]. In 

particular, the APF algorithm employs the effects of 

attractive and repelling forces, controlling the robot's 

trajectory by applying potential fields to accomplish obstacle 

avoidance in changing environments. However, the 

proximity of obstacles to the target can lead to conflicts 

between attractive and repulsive forces, causing the APF 

algorithm in local minima to be trapped, which renders the 

target unattainable [26]. 

    The APF-IRRT*-HS algorithm is proposed in this paper to 

solve the problems of random point selection and the 

difficulty of discovering close paths quickly in the path 

planning process. APF-IRRT-HS involves additional 

modifications to select random points compared to the APF-

RRT* approach. We applied the proposed method in two 

cases: a two-link system and a mass point to demonstrate the 

efficiency of the proposed algorithm in both methods in terms 

of time taken, path length, and the number of iterations used, 

each and compare its results with the rest of the improved 

RRT algorithm. 

    The main contribution of this work is the development of 

the APF-RRT* algorithm, an enhanced version of the RRT 

algorithm. More specifically, the APF-IRRT*-HS method 

improves the search and the selection of random points by 

adding a set of methods; the first approach is the goal-basing 

[27] method, which uses a probabilistic approach to select 

samples toward the goal with adding some modification for 

this technique. In addition to the Halton sequence algorithm 

[28], which selects quasi-random points close to the target to 

reduce the path length, this method depends on the distance 

of the current point to the target to determine the probability 

ratio. The closer the current point is to the target, the greater 

the percentage of sample selection toward the target. The 

further it is from the target, the greater the probability of 

selecting the sample from among the Halton sequence points, 

considering the number of repetitions and generating 

smoother paths compared to other methods. The proposed 

algorithm enables application in many real-world settings, 

such as robotic arms, drones, and all applications that require 

precise and dynamic control and unknown environments that 

consider the length of the path and the time taken. 

     We organize the rest of the paper as follows. Section 2 

provides a summary of the related works. Subsequently, 

Section 3 clarifies the algorithms and the two-link system 

theoretically, supported by equations. Afterward, the fourth 

section showcases the proposed APF-IRRT*-HS method, 

including the construction process and the significance of this 

approach. Section 5 demonstrates the simulation result of the 

mass point and the two-link system with a discussion to 

illustrate the extent of the enhancement that the suggested 

method shows compared with various approaches. Finally, 

the last section demonstrates the percentage of improvement 

and concludes after performing the proposed method. 

II. RELATED WORKS 

Numerous study efforts have focused on enhancing the 

efficiency and performance of the RRT algorithm. In this 

regard, some significant contributions are summarized in this 

area as follows. 

The Informed RRT*-Connect [23] is an improvement 

over the conventional RRT* algorithm, introducing the idea 

of integrating informed sampling with the RRT-connected 

framework. The method focuses the search on an ellipsoid 

subset of the configuration space after finding the first 

solution to improve the efficiency of the resulting path. 

Nevertheless, potential inaccuracies in the ellipsoid 

approximation used for the search space may either miss 

promising areas or be overly restrictive. Moreover, the 

authors in [29] proposed a planning method based on 

integrating artificial potential fields (APF) and RRT*, which 

uses attractive and repulsive forces to attract the robot 

towards the target and help it avoid obstacles. The study first 

analyzed the advantages and disadvantages of three popular 

path-planning algorithms and then presented the extended 

APF-RRT* algorithm. Simulation data showed that the 

improved APF-RRT* algorithm is the most effective 

approach in determining the optimal path and effectively 

solves the problems of slow convergence and low scheduling 

efficiency in complex environments. However, there are 

several problems, such as oscillation, local minima in 

complex environments, and increased collision rates with 

obstacles, which we will discuss how to avoid in our 

proposed method. Huang [30] discussed the RRT algorithm 

combined with the APF algorithm to improve the path-

planning process. This approach proposed the goal-basing 

factor with a gravitational component to speed up the path 

toward the target and reduce randomness. In addition, it 

restricted the search area to a repulsive field. It reduced the 

path length and iterations in this hybrid method of the RRT* 

algorithm. However, owing to the problematic repulsive 

forces from the APF, the resulting paths might still exhibit 

oscillations close to obstacles. This oscillatory attitude can 

lead to jagged paths, especially in cluttered environments. 

Furthermore, the authors in [31] presented an improved 

path-planning algorithm for intelligent mobile robots to 

navigate complex environments. This algorithm solves 

problems such as low search efficiency, redundant nodes, and 

uneven paths. It incorporated Target bias sampling and the 

adaptive step size strategy into the RRT framework, which 

aims to optimize path generation while considering robot 

constraints. It used evaluation metrics like search time, path 

length, and number of sampling nodes to assess performance. 

A comparative study involving the proposed algorithm and 

the RRT, RRT-connect, and RRT* algorithms showed 

significant improvements in path length reduction and 

planning time. In another work, the authors in [33] proposed 

a new algorithm known as IRRT-SSA by incorporating the 

salp swarm algorithm (SSA) to enhance the RRT algorithm. 

This algorithm improves efficiency and path-finding 

capabilities by strengthening the inherent issues of the 

traditional RRT. It performed a comparative analysis to 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 495 

 

Mohammed T. Hameed, Enhanced RRT* with APF and Halton Sequence for Robot Path Planning 

assess the performance of the IRRT-SSA compared to the 

RRT, where the results demonstrated that the proposed 

method is effective by approximately 49% in length, 54% in 

the number of nodes, and 54% in the average number of 

iterations. However, this algorithm remains ineffective in 

complex environments and applications that require high 

computational costs. 

On the other hand, F. N. Irzoqe et al.  [32] proposed a 

hybrid approach referred to as the Modified Deep Q-

Network-Artificial Potential Field (MDQN-APF), which 

combines the APF method and a modified version of Deep 

Q-Network that uses a dynamic reward model to improve 

mobility and 25 connected neighbors. Compared to the 

traditional DQN-APF algorithm, the proposed MDQN-APF 

algorithm showed a performance improvement of 42.867%. 

However, this work may have difficulty dealing with rapidly 

changing obstacles, and since it mainly focuses on static 

environments, it limits adaptability. In addition, the increased 

computational complexity may hinder using multiple 

connected neighbors. 

Despite advancements in research on the sampling 

process in the RRT algorithm, it still suffers from the problem 

of random selection of points that delays the planning process 

and reduces its efficiency, in addition to the issue of 

fluctuation in the APF. Therefore, this paper proposes adding 

semi-random sequences in addition to the modified goal-

basing method, where selected samples by applying a 

probabilistic approach based on the distance between the 

current point and the target to determine what points will be 

chosen towards the target or from the points of the Halton 

sequence, which is known to be deterministic and repeatable 

and covers a less random area to help the RRT algorithm 

produce faster and more efficient paths and better path length 

and avoid passing through points far from the target, which 

takes more time. 

III. THEORETICAL FRAMEWORK 

   This section provides theoretical descriptions of the RRT* 

algorithm, the APF algorithm, the Halton sequence 

algorithm, and the proposed algorithm that combines the 

three algorithms. 

A. The RRT Algorithm 

The RRT, or the Rapid-exploring Random Tree, is a 

pervasively adopted probabilistic technique for solving 

motion planning problems. Meanwhile, the RRT* is a version 

that guarantees asymptotic optimality. The fundamental 

process of the RRT consists of iteratively applying the 

following steps: 

− Randomly selecting a node in space. This node is 

called a sampling point 𝑥rand . 

− Selecting 𝑥near , which is the most proximate node in 

the tree to the 𝑥rand . 

− Based on the step size ℎ with 𝑥rand   and 𝑥near , a new 

node is selected as 𝑥new , also referred to as the primary node, 

as shown in Eq. (1): 

𝑥  w = 𝑥     + ℎ ⋅
𝑥     −𝑥     

∥∥𝑥     −𝑥     ∥∥
  (1) 

Eq. (1) indicates how a new point 𝑥new is created near the 

random point 𝑥rand  relies on the nearest point 𝑥near , using the 

step size ℎ, controlling the movement step to expand the path, 

or using the search process in space.   

− If there are no collisions between 𝑥rand and 

𝑥new Then, it inserted the path into the node tree. However, if 

a collision occurs, it will reject the path, and the loop will 

continue [34], [35]. 

An enhancement in the RRT* method over the basic RRT 

incorporates a cumulative cost feature, which adds up the 

lengths of all edges from the initial point to a particular node. 

The strategy involves a revision where the parent node is for 

𝑥new Rather than employing 𝑥near . Next, the nodes within a 

designated radius around 𝑥new  are analyzed, and it picked the 

one with the lowest cost as the preferred parent node. After 

identifying the most suitable parent node, the algorithm 

traverses the remaining tree nodes, determining the path costs 

reaching both. 𝑥new and 𝑥near  from each node. It then rebuilds 

the tree by selecting the path with the least accumulated cost 

[36], [37], [38]. 

B. The Traditional APF 

Path planning methods based on artificial potential fields 

are frequently applied to robotics, autonomous ships, 

uncrewed aerial systems, and various other fields to address 

planning problems [39], [40]. Mainly, the APF method 

constructs a repulsive potential field around obstacles to 

prevent the robot from colliding with them and forms an 

attractive potential field around the target to pull the robot 

towards it. By exploiting the combination of repulsive and 

attractive potential fields, the algorithm maps out a path from 

the initial position to the destination, ensuring safety from 

collisions. Nevertheless, situated in situations where 

obstacles are near the target, the robot might face the issue of 

being unable to reach the target because of the repulsive 

forces [41], [42], [43]. Specifically, 𝑈att , the attractive 

potential field function, and 𝑈rep , the repulsive potential field 

function is specified in Eq. (2) and Eq. (3). 

𝑈    (𝑞) = 0.5𝑘    ∥∥𝑞 − 𝑞𝑔∥∥
2
  (2) 

𝑈    (𝑞) = 0.5𝑘    (
1

∥∥𝑞−𝑞𝑜∥∥
−

1

𝑑0
)

2

  (3) 

Where 𝑘att   and  𝑘rep  represent the gain coefficients for the 

attractive and the repulsive field dynamics, respectively, 𝑞 

marks the position, 𝑞𝑔 is the destination coordinate, and 𝑑0 

determines the obstacle's influence range. 

The combined potential field function 𝑈(𝑞) is formulated 

as the sum of the gravitational and the repulsive potential 

fields, with the resultant force𝐹(𝑞) defined as follows in Eq. 

(4): 

𝐹(𝑞) = 𝐹    (𝑞) + 𝐹    (𝑞) = −𝛻𝑈rep (𝑞) − 𝛻𝑈att (𝑞)

= −∇𝑈(𝑞)

 (4) 

where 𝐹att (𝑞) corresponds to the attractive force, while  

𝐹rep (𝑞) represents the repulsive force. 

Attractive forces are the forces that attract the robot to 

move towards the target. The closer the robot gets to the 
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target, the more these forces increase until it reaches it. The 

forces that work to keep the robot away from obstacles in the 

environment are known as repulsive forces. They increase the 

closer the robot gets to the obstacles so that a collision does 

not occur. [44], [45], [46], [47]. 

C. Halton Sequences 

The Halton sequence is the most fundamental low-

discrepancy sequence in numerous dimensions [48]. In 

particular, the Halton sequences rely on assorted prime bases, 

with each dimension correlating to a prime number. It 

frequently chooses These prime numbers individually to 

make it easier to control the distances between sample points 

after combining different dimensions [49]. Classify the 

Halton sequence as an infinite sequence, and it is an upgrade 

upon the Vander sequence [50], imitating it confined when 

the Halton sequence is to one dimension. Halton sequence 

improves the sampling process in the path planning process 

in a way that ensures uniform distribution and low variance 

in an easy and less complex way compared to random 

distribution or second pseudo-random methods, as it converts 

the number 𝑛 based on the base 𝑏  to its representation in a 

specific numerical system. The resulting point is expressed 

through the following mathematical as demonstrated in Eq. 

(5): 

𝑛 = ∑  

𝑏−1

𝑖=0

𝑎i(𝑛)𝑏i 
(5) 

Assume that the function is 𝐻𝑏(𝑛), and the resulting point 

in the sequence is at the number using the base 𝑏 . You can 

show the definition in the formula below in Eq. (6) [51], [52]. 

𝐻b(𝑛) = ∑  

𝑏−1

𝑖=0

𝑎i(𝑛)𝑏i 
(6) 

D. The Two-link Robot Arm Kinematic Model 

A robotic structure includes multiple rigid parts linked by 

joints, and the combined position and orientation of these 

rigid bodies in space are collectively known as a pose. Robot 

kinematics covers the pose, speed, and acceleration of the 

rigid components in the robotic system. In this regard, a 

connection between two elements that enables relative 

motion is called a kinematic joint. The robot's kinematics 

encompasses forward and inverse pose calculations [53]. 

In forward kinematics, we use the joints' variables to find 

the position and orientation of the robot's end-effector [54]. 

Solving this issue is generally straightforward, with the 

derivation of the equation being simple and free of 

complications. 

As shown in Fig. 2, by employing the geometric 

approach, the forward kinematics equations for the 2-DOF 

planar robot can be stated as given below: 

𝑥 = 𝑎1 cos 𝜃1 + 𝑎2 cos(𝜃1 + 𝜃2) (7) 

y = 𝑎1 sin 𝜃1 + 𝑎2 sin(𝜃1 + 𝜃2) (8) 

In Equations (7) and (8), we specified the coordinates 

(position) of the end-effector in the frame attached to the base 

of the robot 𝑂(𝑥0, 𝑦0). 

The rotation angle between the frame and the fixed base 

frame characterizes the end-effector orientation. The angle 𝜃𝐸 

is connected to the actual joint displacements as shown 

below: 

𝜃𝐸 = 𝜃1 + 𝜃2 (9) 

Consequently, the fixed coordinate system attached to the 

robot's base defines the end-effector position and orientation 

in Equations (7) to (9) in terms of 𝜃1 and 𝜃2. 

 

Fig. 2. Forward and inverse kinematics of a 2-link Robot planar manipulator 

On the other hand, in the method that solves the joint 

variables of a given position, we referred to the direction of 

the end-effector as the inverse kinematic method. However, 

this method is difficult, complex, and costly [56]. 

The inverse kinematics problem can be addressed by 

adhering to the parts below (see Fig. 2): 

Part 1: Specification of the length between the end-effector 

and manipulator base as shown in Eq. (10). 

𝑐2 = 𝑥2 + 𝑦2  (10) 

Part 2: it can obtain the elbow joint angle 𝜃2: 

𝐷 = cos 𝜃2 = (
𝑥2+𝑦2−𝑎1

2−𝑎2
2

2𝑎1𝑎2
)  (11) 

can be found 𝜃2 by: 

𝜃2 = tan−1 ±√1−𝐷2

𝐷
  (12) 

Part 3: The angle of the shoulder joint  𝜃1 determined as 

shown: 

𝜃1 = 𝑡𝑎𝑛−1 (
𝑥

𝑦
) + 𝑡𝑎𝑛−1 (

𝑎2 𝑠𝑖𝑛 𝜃2

𝑎1+𝑎2 𝑐𝑜𝑠 𝜃2
)  (13) 

It introduces the 2-DOF planar robot with a 

straightforward design. However, the process of determining 

the inverse kinematics is regarded as quite complex [55], 

[57], [58]. In the proposed method, inverse equations are used 

to analyze and determine the workspace and the angles 

required to locate a point in the free Cartesian space (FCS). 

E. Free Cartesian Space (FCS) 

The results from the inverse kinematics are employed to 

develop and analyze the workspace in this study. The free 

Cartesian space (FCS) outlines the exact positions accessible 

by the end-effector. The form and volume of the FCS within 

an environment with numerous obstacles are influenced by 

the obstacles' number, position, and size, as well as the 

restrictions imposed by the joints. For the path planning and 
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simulation of a two-link robot arm's motion, consult the 

theoretical range of the arm provided in Table I. These 

constraints influence and confine the manipulator's motion, 

further separating the workspace into reachable and 

unreachable areas. 

TABLE I.  THE THEORETICAL RANGE OF THE TWO-LINK ROBOT ARM 

Link No. Ranges 

Joint 1 0 ≤ 𝜃1 ≤ 360 

Joint 2 −150 ≤ 𝜃2 ≤ 150 

 

To compute all possible solutions, the FCS is calculated 

by examining the points in the environment. The obstacle 

center and the diameter are critical to the checking function. 

Furthermore, every point in the environment can exist in one 

of four possible states. The solution in the first case is the 

elbow-up solution, in which the arm takes an upward path to 

reach the target point. In the second state, the elbow-down 

solution, the arm takes a downward path to reach the target 

point. The third state represents a combination, which means 

the arm can reach the target with either the elbow-up or the 

elbow-down configuration. The last state is the no-solution 

scenario, caused by the point being either out of the 

manipulator's range, located on an obstacle, or due to a 

collision of one or both links with an obstacle. The length of 

the arm link is the most influential factor in the Cartesian free 

space [59]. 

F. The Proposed Method, the artificial potential field, and 

the enhanced RRT* based on the Halton sequence(APF--

IRRT*-HS) 

The proposed (APF-IRRT*-HS) method presented in 

Algorithm 1 aims to enhance the performance of the 

traditional APF-RRT* algorithm via generating quasi-

random points better distributed in multi-dimensional spaces 

compared to the conventional randomness (such as rand). 

More specifically, the points generated by the Halton 

sequence tend to cover the space more uniformly than the 

standard APF-RRT* algorithm, producing short paths while 

reducing the number of iterations utilized for optimization. 

In addition, it utilized the developed goal-basing method. 

Instead of relying on sampling random points in the space, 

the algorithm can preferentially sample points closer to the 

goal or in a direction that moves towards the goal. For each 

iteration, the code uses a probabilistic approach to decide 

whether to sample a point directly at the goal or choose a 

random point from the Halton sequence, which increases the 

chance of sampling toward the goal as the algorithm 

progresses. If the random value is less than this probability, 

𝑿rand is set to the goal node itself. Otherwise, it is set to a 

point from the Halton sequence, scaled to fit within the 

bounds of the environment. This approach ensures that the 

tree explores more towards the goal as it gets closer, 

improving the efficiency of finding a feasible path. 

The method does not only improve the selection of 

samples in the RRT* but also uses smoothing to solve the 

problems of oscillation or deviation that occur in the APF 

algorithm because of repulsive forces, where the path is 

modified, unnecessary points are removed, shortcut 

smoothing is used, and then the new path is saved. 

Compared with the standard RRT* algorithm, when 

adding the Halton sequence method with the modified Goal-

basing in addition to smoothing, the proposed method has 

ensured improving the process of selecting random points in 

a more regular manner, which leads to flexibility in the path, 

reducing its length and the time taken, and avoiding selecting 

points far from the goal and not necessary. This leads to 

increased productivity, especially in industrial and logistical 

systems, due to reducing the time that ensures completing 

more tasks in a shorter period, saving energy, improving 

production costs, and system response. 

Mathematically, the random point represented the 

conditional statement as follows: 

𝑥rand = {
𝑿goal                             𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑃

 𝑝(𝑖𝑡𝑒𝑟)                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 

The equation below outlines the probability formula: 

𝑃 = 𝑎 × (1 − 
𝐷current 

𝐷total 
)  (14) 

Where 𝑎 is the coefficient that controls the likelihood of 

selecting the goal node. 

𝐷current =  norm(𝑿goal  − 𝑥new ) 

It is the Euclidean distance between the goal node and the 

current last node of the tree. 

𝐷total =  norm(𝑿goal  − 𝑿init ) 

It is the Euclidean distance between the goal node and the 

start node. 

Eq. (11) represents the process of selecting points in this 

method, where a probabilistic approach is applied to this 

selection process. The closer the current point is to the target, 

the greater the percentage of oil selection coming towards the 

target 𝑿goal . If it is not, it is selected from the semi-random 

points selected from the Halton sequence 𝐻(𝑖𝑡𝑒𝑟). 

The flowchart in Fig. 3 illustrates the methodology of the 

proposed algorithm. 

Algorithm I: APF-IRRT*-HS 

𝟏 −   𝑺𝒆𝒕𝒖𝒑 𝑨𝑷𝑭 − 𝑰𝑹𝑹𝑻 ∗ −𝑯𝑺 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔: 
Input: 𝑿init , 𝑿goal , 𝑿, 𝑛, 𝑘att,𝑘rep,𝑑0, 𝛿, 𝑎 

Output: 𝑮 = (𝑽, 𝑬) 
𝑉 ←  {𝑿init }, 𝐸 ←  ∅, 𝐺 ←  (𝑉, 𝐸)                 
𝐻 ←  𝐻𝑎𝑙𝑡𝑜𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑛) 
𝑖𝑡𝑒𝑟 ←  1, 𝑔𝑜𝑎𝑙𝑅𝑒𝑎𝑐ℎ𝑒𝑑 ←  𝐹𝑎𝑙𝑠𝑒 

𝟐 −   𝑹𝒂𝒏𝒅𝒐𝒎 𝒑𝒐𝒊𝒏𝒕 𝒔𝒆𝒍𝒆𝒄𝒕𝒊𝒐𝒏: 
𝑓𝑜𝑟 𝑖𝑡𝑒𝑟 ←  1 𝑡𝑜 𝑛 𝑑𝑜 
𝑖𝑓 𝑟𝑎𝑛𝑑()  <  𝑎 ∗  (1 − 𝑿goal  − 𝑿near /𝑛𝑜𝑟𝑚( 𝑿goal − 𝑿init ) 

𝑿rand ← 𝑿goal  

𝑒𝑙𝑠𝑒 
𝑿rand ←  𝐻(𝑖𝑡𝑒𝑟)  ∗ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 

𝟑 − 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒏𝒆𝒂𝒓𝒆𝒔𝒕 𝒑𝒐𝒊𝒏𝒕: 
𝑿nearest   ←  𝑁𝑒𝑎𝑟𝑒𝑠𝑡(𝑉, 𝑿rand) 

𝟒 − 𝒔𝒕𝒆𝒆𝒓 𝒕𝒉𝒆 𝒕𝒓𝒆𝒆 𝒕𝒐𝒘𝒂𝒓𝒅𝒔 𝒕𝒉𝒆 𝒏𝒆𝒘 𝒑𝒐𝒊𝒏𝒕: 
𝛼 ←  (𝑿rand − 𝑿nearest  ) /𝑛𝑜𝑟𝑚( 𝑿rand  − 𝑿nearest ) 
𝛽 ←  𝑈𝑎𝑡𝑡 +  𝑈𝑟𝑒𝑝 
𝜃 ←  𝛼 + 𝛽 / 𝑛𝑜𝑟𝑚(𝛽) 
𝑿new  ← 𝑺𝒕𝒆𝒆𝒓(𝑿nearest  , 𝛿 , 𝜃) 

𝟓 − 𝑶𝒃𝒔𝒕𝒂𝒄𝒍𝒆 𝒄𝒉𝒆𝒄𝒌𝒊𝒏𝒈 𝒑𝒓𝒐𝒄𝒆𝒔𝒔: 
𝑖𝑓 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑿nearest , 𝑿new) 𝑡ℎ𝑒𝑛 
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𝑿near  ←  𝑁𝑒𝑎𝑟(𝑉, 𝑿new, 2 ∗  𝛿) 
𝑿𝑝𝑎𝑟𝑒𝑛𝑡  ←  𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑒𝑛𝑡(𝑿near, 𝑿new, 𝑿nearest ) 

𝑉 ←  𝑉 ∪  {𝑿new} 
𝐸 ←  𝐸 ∪  {( 𝑿𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑿new)}  

𝑡ℎ𝑒𝑛 

𝟔 − 𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑜𝑎𝑙 𝑅𝑒𝑎𝑐ℎ𝑒𝑑: 
𝑖𝑓 𝑿new  −  𝑔𝑜𝑎𝑙𝑁𝑜𝑑𝑒 <  𝛿 ∗  10   𝑡ℎ𝑒𝑛 
𝑔𝑜𝑎𝑙𝑅𝑒𝑎𝑐ℎ𝑒𝑑 ←  𝑇𝑟𝑢𝑒 

𝑉 ←  𝑉 ∪  {𝑿goal } 

𝑇𝑟𝑎𝑐𝑒𝐵𝑎𝑐𝑘(𝑿goal ) 

𝑏𝑟𝑒𝑎𝑘 
𝑒𝑛𝑑 𝑓𝑜𝑟 

𝟕 −  𝑷𝒂𝒕𝒉 𝒔𝒎𝒐𝒐𝒕𝒉𝒊𝒏𝒈 𝒑𝒓𝒐𝒄𝒆𝒔𝒔:  
if 𝑑(𝑋𝑖 , 𝑋𝑖+2) > 𝜖 ⇒ 𝑑𝑒𝑙𝑒𝑡 𝑋𝑖+1  
Smoothing(𝑋1, 𝑋2, … , 𝑋𝑛) 
PathSafe ←  True 
     f     ← 𝑋        
𝑟𝑒𝑡𝑢𝑟𝑛 𝐺 =  (𝑉, 𝐸) 

IV. RESULTS AND DECISIONS 

This section will discuss the simulation results and 

compare the performance of the RRT*, the APF-RRT*, and 

the proposed method, the APF-IRRT*-HS, utilizing two 

cases, including the mass point and the two-link motion. In 

this regard, the quality of the path length, the number of 

search attempts, and the computation time are the 

performance measures of the three methods. These methods 

were implemented on a computer with a core i5-12450H CPU 

and 8Gb RAM using MATLAB R2023a. The above 

specifications enhance the performance of algorithms by 

accelerating parallel processing and improving the handling 

of extensive data. The multi-core processor speeds up parallel 

calculations while sufficient memory provides space to 

execute tasks without slowing down. The 8 GB RAM also 

provides enough capacity to store data and temporary paths 

without affecting performance, which contributes to 

accelerating the path planning calculation process in the 

MATLAB R2023a environment. 

A. Mass Point (MP) Simulation Results and Decisions             

The first case in which the proposed approach will be 

implemented is the Masa Point, which has four different 

environments. Three of these test environments contain 

several known or fixed obstacles of varying complexity. In 

contrast, the fourth environment is a dynamic environment 

consisting of a fixed maze with two moving obstacles. In 

these four environments, an 80 by 80 boundary was used. 

Utilizing iterative testing, Table II shows the selected values 

for the attraction coefficients determine how to force the path 

attracted toward the target, the repulsion coefficients show 

how strongly the path is pushed away from obstacles, and the 

effect of the range of barriers warns it when the path reaches 

a certain distance between it and the obstacle. The control 

coefficient determines how to combine the repulsive and 

attractive forces and tries to balance them, 𝑁max, which is 

the maximum number of iterations the robot allows to engage 

the target, and the step size represents the number of steps in 

each iteration. These values were elected for each type of test 

environment. The starting point is depicted as a green star, 

while the target point is shown as a black plus sign. The 

purple circles indicate obstacles, and the blue branches 

represent the tree. Finally, the path is displayed in red. These 

settings remain consistent across all the test environments. 

The black maze and the red moving circles represent the 

dynamic environment. 

 

Fig. 3. Flowchart APF-IRRT*-HS 

TABLE II.  THE PARAMETERS EMPLOYED IN EACH TEST ENVIRONMENT 

Parameter Value 

𝑘att  10 

𝑘rep  2 

𝑑0 10 

h 0.45 

𝛼 0.4 

𝑁max  8 ∗ 104 
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1) Simulation Results of the RRT* 

Here, the RRT* method is applied across different test 

environments, and the planning results for implementing the 

RRT* algorithm are shown in Fig. 4. Specifically, In the first 

environment, the obstacles are in the form of fixed circles, the 

starting point is (1,69), and the target point is (20,3), as shown 

in (Fig. 4a). After 10 test simulations, the mean path length 

was to reach the target 117.46m, 2767 iterations, and 3.8735 

seconds. The second environment has static obstacles that 

produce a path starting from point (5,75) to the goal (75,5) as 

depicted in (Fig. 4b) with a mean path length of 122.5366m, 

3025 iterations, and 5.5841 seconds. The third static 

environment produces a path from the start point (0,0) to 

(79,79) is illustrated in (Fig. 4c), in which the mean path 

length is 132.5263m with 9266 iterations and took 8.6537 

seconds to accomplish the target. Finally, the RRT* 

algorithm was applied in the dynamic maze environment 

where two moving circles were in the maze, as shown in 

green. The path planning process in this environment 

produced a path from the starting point (12,12) to (68,68), as 

can be seen in (Fig. 4d). The results depicted that the path 

length values, number of iterations, and time taken were 

93.87m, 2468, and 17.0561seconds, respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) N=1113 

 
(d) N=1467 

 
(d) N=2177 
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(d) N=2468 

Fig. 4. Evaluation and Performance Analysis of the RRT* Method in 
Complex Environments with static obstacles and dynamic environment: (a) 

the first environment, which shows the circles obstacles with purple color, 

start point in green star, goal point in black plus sign, and the final path in 
red color. (b) the second environment shows the circles' obstacles with purple 

color, the start point in green star, the goal point in a black plus sign, and the 

final path in red color. (c) the third environment. which shows the circles 
obstacles with purple color, the start point in green star, the goal point in a 

black plus sign, and the final path in red color, and (d) the fourth 

environment, which is the black maze obstacles with two dynamic circle 

obstacles in green color. 

2) Simulation Results of the RRT* based on the APF Method 

This section presents the results of applying the APF-

RRT*algorithm using the same four previous environments. 

The planning results of implementing the APF-RRT* 

algorithm are shown in Fig. 5. In the first environment and 

after the simulation of 10 training iterations, the mean path 

length is 96.25m with 1920 iterations and took 1.5155 

seconds, as depicted in Fig. 5(a). which shows an 

improvement compared to the previous algorithm by 18.05% 

in terms of length,60.78% in computation time, and 30.58% 

in terms of the number of iterations. The second environment 

results indicate that the average path length after ten 

simulations is 112.41m with 2556 iterations and 1.327 

seconds, as shown in Fig. 5(b), which exhibits 8.26% 

enhancement over the RRT* algorithm in terms of the path 

length,76.04% in the time and 15.46% in the number of 

search attempts. The third environment results show an 

improvement of 4.133%,70.5%, and 51.57 % in the length, 

computation time, and expansion steps, as shown in Fig. 5 

(c). The mean lengths resulting from ten simulations are 

127.048m with 4487 iterations and a computation time of 

2.7554 seconds. The last dynamic environment produced a 

path with an average length, number of iterations used, and 

time taken of about 89.387m, 1053, and 10.8121 seconds, 

respectively. This method showed an improvement of 4.4%, 

12.8%, and 39.4% in each path length, number of searches, 

and computation time. 

 
(a) 

 
(b) 

 
(c) 
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(d) N=534 

 
(d) N=957 

 
(d) N=1152 

Fig. 5. Evaluation and Performance Analysis of the APF-RRT* Method in 

Complex Environments with static obstacles and dynamic environment: (a) 

the first environment, which shows the circles obstacles with purple color, 
the start point in green star, goal point in a black plus sign, and the final path 

in red color, (b) the second environment, shows the circles' obstacles with 

purple color, the start point in green star, the goal point in a black plus sign, 
and the final path in red color, (c) the third environment. which shows the 

circles obstacles with purple color, the start point in green star, the goal point 

in a black plus sign, and the final path in red color, and (d) the fourth 
environment, which is the black maze obstacles with two dynamic circle 

obstacles in green color 

3) Simulation Results of the IRRT* based on APF with the 

Halton Sequence Method 

a) Initial Path Generation (Non-Smoothed Path)  

The results of the proposed process are shown in this 

section for the same previous test environments to illustrate 

the efficiency of the suggested algorithm, which can be seen 

in all planning results of APF-RRT*-HS in Fig. 6. Fig. 6(a) 

shows the mean final value after 10 simulations of the path in 

the first test environment utilizing the APF-IRRT*-HS 

algorithm regarding the path length and the number of search 

attempts. Specifically, the results indicate that the final length 

is 92.36m, which is 21.36% better than that of the RRT* 

method and 3.76% better than that of the APF-RRT* method. 

At the same time, the search average number reaches 1628 

iterations and took 0.97 seconds to reach the target, which 

refines search numbers at the rates of 55.61% and 36.04% 

compared to the RRT* and the APF-RRT* algorithms, 

respectively, the computation time average address reach 

80.49% and 50.33% compared with previous methods. As 

illustrated in Fig. 6(b), which presents the final path length in 

the second test environment, the outcome of the path length 

showed that the final length value is 109.7m, which is 

considered an improvement of 10.4% compared to the RRT* 

method and 2.4% compared to the APF-RRT* algorithm. 

On the other hand, the results of the iterations show 1428 

iterations and took 0.71785 seconds, which is 52.79% 

superior to the RRT* algorithm and 44.13% superior to the 

APF-RRT* algorithm in the numbers of iterations and 

87.14%,46.74% for the percentage of enhancement in time. 

The results of the final path, when tested in the third test 

environment, are shown in Fig. 6(c), which shows that the 

path length value is 123.086m with 2975 iterations and took 

1.0665 seconds. This outcome means that the length has 

differed by 7.321% and 3.11% compared to the RRT* and the 

APF-RRT* methods, respectively. The percentage of 

difference in the number of iterations considering the 

proposed algorithm is 67.89% compared to the RRT* 

approach and 33.69% compared to the APF-RRT* approach. 

The improvement rate in elapsed time is 87.64% and 

61.28%compared to the previous methods. Finally, as shown 

in (Fig. 6(d)), the proposed algorithm is implemented in the 

dynamic environment, and the results show that the path 

length, elapsed time, and the number of iterations were 

85.5827 meters, 5.474 seconds, and 636 iterations, 

respectively. These results show that the algorithm has 

improved by 36.9% and 7.8% compared to RRT and APF in 

path length. It has been enhanced by 63.73% and 40.16% in 

elapsed time. Finally, the number of search iterations 

improved by 53.3% and 46.48% compared to the same 

methods. 

 
(a) 
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(b) 

 
(c) 

 
(d) N=254 

 
(d) N=478 

 
(d) N=636 

Fig. 6. Evaluation and Performance Analysis of the APF-IRRT*-HS with 
smoothing Method in Complex Environments with static obstacles and 

dynamic environment : (a) the first environment, which shows the circles 

obstacles with purple color, the start point in green star, goal point in a black 
plus sign, and the final path in red color, (b) the second environment, shows 

the circles' obstacles with purple color, the start point in green star, the goal 

point in a black plus sign, and the final path in red color, (c) the third 
environment. which shows the circles obstacles with purple color, the start 

point in green star, the goal point in a black plus sign, and the final path in 

red color, and (d) the fourth environment, which is the black maze obstacles 

with two dynamic circle obstacles in green color. 

b) Path Smoothing (Smoothed Path) 

After creating the path using the proposed APF-IRRT*-

HS method, a smoothing stage was added to solve problems 

that may negatively affect the system performance, such as 

sharp corner challenges or sudden changes in successive 

points. We used the spline smoothing method, which 

removes unnecessary points in the path, making the path 

smoother and more efficient. 

The results of using the smoothing path on the path are 

shown in Fig. 7. As you can see, the smooth path was applied 

to the previous four environments and is compared with the 

path before the smoothing process. The two paths are 

displayed together to show the size of the differences. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 7. Comparison of the APF-IRRT*-HS path before and after Smoothing: 
(a) the first environment, which shows the circles obstacles with purple color, 

the start point in green star, goal point in black plus sign, and the final path 

in red color. (b) the second environment shows the circles' obstacles with 
purple color, the start point in green star, the goal point in a black plus sign, 

and the final path in red color. (c) the third environment. which shows the 

circles obstacles with purple color, the start point in green star, the goal point 
in a black plus sign, and the final path in red color, and (d) the fourth 

environment, which is the black maze obstacles with two dynamic circle 

obstacles in red color. 

 

4) Discussion of Results 

In all test environments, the path length  ،computation 

time, and the number of search attempts were calculated, and 

the proposed method produced the shortest path and had the 

least number of iterations compared with the RRT* and the 

APF-RRT*. Table III shows the path planning results for the 

three algorithms for path length, computation time, and 

number of iterations.  

TABLE III.  THE PATH LENGTH IN METERS, COMPUTATION TIME IN 

SECONDS, AND THE SEARCH ATTEMPTS (N) COMPARISON 

Environment Methods 

Path 

Length 

(meters) 

Time 

(seconds) 

search 

attempts 

 

 
E1 

RRT* 117.46m 3.8735s 2767 

APF-

RRT* 
96.25m 1.5155s 1920 

APF-

IRRT*-

HS 

89.7376m 0.7557s 1228 

 

E2 

RRT* 122.5366m 5.5841s 3025 

APF-

RRT* 
112.41m 1.327s 2556 

APF-
IRRT*-

HS 

104.264m 0.71785s 1428 

 

E3 

RRT* 132.5263m 8.6537s 9266 

APF-
RRT* 

127.048m 2.7554s 4487 

APF-

IRRT*-

HS 

116.4933m 1.347s 2975 

 

E4 

RRT* 92.98m 17.834s 1468 

APF-

RRT* 
88.81m 10.8121s 1280 

APF-
IRRT*-

HS 

81.903m 6.474s 685 

 

The improvement percentages in the path length, the 

number of iterations, and time elapsed in Tables 4 and 5 

illustrate the improved path when applying the proposed 

method, namely, the APF-IRRT*-HS. Moreover, the average 

enhancement percentages between the RRT* method and the 

APF-IRRT*-HS method are about 21.88%,79.75%, and 

57.39 % in the path length, computation time, and the number 

of iterations, respectively. 

The average improvement percentages in the path length, 

computation time, and the number of iterations are about 

7.5%, 49.2%, and 40.085%, respectively, between the APF-

RRT* method and the APF-IRRT*-HS method. This 

improvement could be significant in various applications that 

demand low search and length ratios in the path-planning 

process. 

TABLE IV.  THE REFINEMENT PERCENTAGE IN THE PATH LENGTH (L) AND 

THE SEARCH ATTEMPTS (N) 

Environment 

APF-RRT* 

VS RRT* 

APF-IRRT*-

HS 

VS RRT* 

APF-IRRT*-HS 

VS APF-RRT* 

L 

(%) 

N 

(%) 

L 

(%) 

N 

(%) 
L (%) N (%) 

E1 18.05 30.58 21.36 33.74 3.76 4.54 

E2 8.26 15.46 10.4 45.77 2.4 35.855 

E3 4.133 51.57 7.123 71.07 3.11 40.26 

E4 4.4 12.8 36.9 53.3 7.8 46.48 
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TABLE V.  THE REFINEMENT PERCENTAGE IN COMPUTATION TIME (T) 

Environment 

APF-RRT* 

VS RRT* 

APF-IRRT*-

HS VS RRT 

APF-IRRT*-HS 

VS APF-RRT* 

T T T 

E1 60.78% 80.49% 50.33% 

E2 76.04% 87.14% 46.74% 

E3 70.5% 87.64% 61.28% 

E4 39.4% 63.73% 40.16% 

 

Finally, the effect of adding smoothing to the proposed 

algorithm is explained in both Table VI and Table VII, where 

the results show an improvement in path length of up to about 

5%, in the number of iterations to a percentage of up to about 

20%, and in the time taken to a rate of up to 15%. These 

improvements are considered an additional advantage of the 

proposed method. They can be used in several daily robotics 

applications, especially in applications that depend on short 

path lengths to avoid delays and passing through unimportant 

paths. 

TABLE VI.  COMPARISON OF SMOOTHED AND NON-SMOOTHED PATHS IN 

TERMS OF THE PATH LENGTH IN METERS, COMPUTATION TIME IN 

SECONDS, AND THE SEARCH ATTEMPTS (N) COMPARISON 

Environment Methods 
Path 

length (L) 

Number 

of 

iteration 

Time 

(S) 

E1 

Non-

Smoothed 

Path 

92.36m 1833 0.923s 

Smoothed 

Path 
89.7376m 1228 0.7557s 

E2 

Non-

Smoothed 

Path 

109.7m 1640 0.837s 

Smoothed 

Path 
104.264m 1428 0.7178s 

E3 

Non-

Smoothed 

Path 
123.086m 3146 1.347s 

Smoothed 

Path 
116.4933m 2975 1.0665s 

E4 

Non-

Smoothed 

Path 

85.5827m 636 6.574s 

Smoothed 

Path 
81.9035m 456 5.474s 

TABLE VII.  THE REFINEMENT PERCENTAGE IN THE PATH LENGTH (L), 

THE SEARCH ATTEMPTS (N), AND TIME (T) 

 

Environment 

Non-Smoothed Path Vs Smoothed Path 

L N T 

E1 2.84 % 33% 18.12 % 

E2 4.96% 12.92% 11.92% 

E3 5.359% 5.43% 20.82% 

E4 7.8% 28.3% 16.73% 

 

B. The Two-Link Robot Simulation Results and Discussions 

Like the mass point simulation, a two-joint robot will 

utilize the previous three techniques. The algorithms will be 

applied in three environments to test the efficiency of the 

proposed algorithm. Specifically, each link has a length of 40 

meters, which is half the total size of the environment, and 

the robot is capable of full 360-degree rotation. 

 

 

1) Simulation Results of the RRT* 

The RRT* path's free space in environment one is 

represented in Fig. 8, highlighting the elbow-up posture in 

(a), the elbow-down posture in (b), both configurations in (c), 

and the arm's motion in (d). The free space of this 

environment displays only the elbow-up configuration that 

can solve this task, the situation in which the arm takes an 

upward path to reach the target point known. When applied 

to more extensive and complex environments, the RRT* 

algorithm results in the robot failing to achieve the goal, 

becoming trapped in a local minimum, as illustrated in Fig. 9 

the second environment (a) the first solution elbow-up (b) 

elbow-down solution (c) elbow-up and elbow-down solution, 

and finally (d) showing the two-link motion. The third 

environment is shown in Fig. 10, (a) showing the first 

solution elbow-up (b) elbow-down solution (c) elbow-up and 

elbow-down, and finally (d) showing the two-link motion. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 8. Applying RRT* in the first environment (a) Workspace analysis with 
various obstacle shapes relied on the elbow-up solution (b) Workspace 

analysis with various obstacle shapes relied on the elbow-down solution (c) 

Workspace analysis with various obstacle shapes relied on elbow-up and 

elbow-down solution (c) two-link motion. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Applying RRT*in the second environment (a) Workspace analysis 
with various obstacle shapes relied on the elbow-up solution (b) Workspace 

analysis with various obstacle shapes relied on the elbow-down solution (c) 

Workspace analysis with various obstacle shapes relied on elbow-up and 

elbow-down solution (c) two-link motion 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 10. Applying RRT* in the third environment (a) Workspace analysis 
with various obstacle shapes relied on the elbow-up solution (b) Workspace 

analysis with various obstacle shapes relied on the elbow-down solution (c) 

Workspace analysis with various obstacle shapes relied on elbow-up and 

elbow-down solution (c) two-link motion 

2) Simulation Results of the RRT* based on the APF Method 

The APF-RRT* algorithm was applied in the same 

previous environments. It is noted that the algorithm 

successfully reached the target in all test environments, with 

all environments executed using the elbow-up method only. 

The results of applying the APF-RRT* algorithm in the first 

environment are shown in Fig. 11, (a) showing the first 

solution elbow-up, (b) elbow-down solution, (c) elbow-up 

and elbow down, and finally (d) showing the two-link 

motion. The second environment is shown in Fig. 12, (a) 

showing the first solution elbow-up, (b) elbow-down solution 

(c) elbow-up and elbow-down, and finally, (d) showing the 

two-link motion), and the third environment is shown in Fig 

13, (a) showing the first solution elbow-up, (b) elbow-down 

solution, (c) elbow-up and elbow-down, and finally (d) 

showing the two-link motion. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Applying APF-RRT* in the first environment (a) Workspace 

analysis with various obstacle shapes relied on the elbow-up solution (b) 

Workspace analysis with various obstacle shapes relied on the elbow-down 
solution (c) Workspace analysis with various obstacle shapes relied on 

elbow-up and elbow-down solution (c) two-link motion 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. Applying APF-RRT* in the second environment (a) Workspace 

analysis with various obstacle shapes relied on the elbow-up solution (b) 
Workspace analysis with various obstacle shapes relied on the elbow-down 

solution (c) Workspace analysis with various obstacle shapes relied on 

elbow-up and elbow-down solution (c) two-link motion 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13. Applying APF-RRT* in the third environment (a) Workspace 

analysis with various obstacle shapes relied on the elbow-up solution (b) 
Workspace analysis with various obstacle shapes relied on the elbow-down 

solution (c) Workspace analysis with various obstacle shapes relied on 

elbow-up and elbow-down solution (c) two-link motion 
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3) Simulation Results of the IRRT* based on APF with the 

Halton Sequence Method 

Here, the two-link robot simulation is presented using the 

proposed APF-IRRT*-HS method in the same three 

environments used for the previous algorithms. As with the 

previous algorithm, all paths successfully reached the target. 

However, this time, the paths were shorter and were executed 

faster. The free space indicates that the algorithm operates 

solely in the elbow-up area in all environments. The results 

of applying the APF-IRRT*-HS algorithm in the first 

environment are presented in Fig. 14, (a) elbow-up solution, 

(b) elbow-down solution, (c) elbow-up and elbow-down 

solution, and finally (d) showing the two-link motion. The 

second environment is shown in Fig. 15, (a) showing the first 

solution elbow-up, (b) elbow-down solution, (c) elbow-up 

and elbow-down, and finally (d) showing the two-link 

motion), and the third environment is shown in Fig. 16, (a) 

showing the first solution elbow-up, (b) elbow-down 

solution, (c) elbow-up and elbow-down, and finally (d) 

showing the two-link motion. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. Applying APF-RRT*-HS in the first environment (a) Workspace 

analysis with various obstacle shapes relied on the elbow-up solution (b) 

Workspace analysis with various obstacle shapes relied on the elbow-down 
solution (c) Workspace analysis with various obstacle shapes relied on 

elbow-up and elbow-down solution (c) two-link motion 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 15. Applying APF-RRT*-HS in the first environment (a) Workspace 
analysis with various obstacle shapes relied on the elbow-up solution (b) 

Workspace analysis with various obstacle shapes relied on the elbow-down 

solution (c) Workspace analysis with various obstacle shapes relied on 

elbow-up and elbow-down solution (c) two-link motion 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 16. Applying APF-RRT*-HS in the third environment (a) Workspace 
analysis with various obstacle shapes relied on the elbow-up solution (b) 

Workspace analysis with various obstacle shapes relied on the elbow-down 

solution (c) Workspace analysis with various obstacle shapes relied on 

elbow-up and elbow-down solution (c) two-link motion 

Table VIII and Table IX present the path length (L), 

number of iterations (N), and time elapsed (T) comparison 

between the RRT*, APF-RRT*, and proposed approach 

APF-IRRT*-HS in the three test environments (E). The 

percentage of improvement in. path length (L), search 

attempts (T), and time elapsed (T) can be observed in Table 

X and Table XI. 

In this part, the RRT* algorithm and the RRT*-APF 

algorithm are applied in addition to the proposed APF-

IRRT*-HS algorithm in the two-link motion process. The 

outcomes are demonstrated and contrasted to show the 

enhancement demonstrated by the proposed method. The 

comparison considers the path length and the number of 

iterations. In particular, the results revealed an improvement 

in the proposed algorithm by percentages of up to 69.5% and 

94.4% in terms of the length and the number of iterations, 

respectively, compared to the RRT* algorithm. Moreover, 

the results show a decrease in the path length and the number 

of iterations by approximately 5.6% and 82.5%, respectively, 

compared to the RRT*-APF algorithm. Finally, suggesting 

areas for future research, such as integrating learning-based 

techniques (e.g., reinforcement learning) or multi-robot 

systems, could offer opportunities for further improvement 

and broader algorithm applicability. 

TABLE VIII.  THE PATH LENGTH (L) AND THE SEARCH ATTEMPTS (N) 

COMPARISON 

Environment 
RRT* APF-RRT* 

APF-IRRT*-

HS 

L (m) N L (m) N  L (m) N 

E1 129.33 1074 126.42 776 118.08 180 

E2 No Path 
No 

Path 

 

143.678 
1118 135.08 194 

E3 No Path 
No 

Path 
146.06 1675 139.619 198 

TABLE IX.  THE COMPUTATION TIME IN SECONDS (T) 

Environment 
RRT* APF-RRT* APF-IRRT*-HS 

T T T 

E1 2.4376s 0.75188s 0.1263s 

E2 No path 2.0156s 0.16071s 

E3 No Path 9.6143s 0.1866s 
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TABLE X.  THE ENHANCEMENT PERCENTAGE IN THE PATH LENGTH (L) 

AND THE SEARCH ATTEMPTS (N) 

Environment 

APF-RRT* 

VS RRT* 

APF-IRRT*-

HS VS RRT 

APF-IRRT*-

HS VS APF-

RRT* 

L 

(%) 
N (%) 

L 

(%) 
N (%) 

L 

(%) 
N (%) 

E1 2.2 27.74 8.7 83.24 6.59 76.8 

E2 100 100 100 100 5.9 82.64 

E3 100 100 100 100 4.4 88.17 

TABLE XI.  THE ENHANCEMENT PERCENTAGE IN THE COMPUTATION 

TIME (T) 

Environment 

APF-

RRT* 

VS RRT* 

APF-IRRT*-

HS VS RRT 

APF-IRRT*-

HS VS APF-

RRT* 

T T T 

E1 69.15% 94.48% 83.2% 

E2 100% 100% 92.4% 

E3 100% 100% 98% 
 

V. COMPARISON WITH RELATED METHODS 

The proposed APF-IRRT*-HS method is compared with 

the Reduce-Judge RRT (RJ-RRT) [60], a Halton Biased 

Rapidly exploring Random Tree HB-RRT [48], and the APF-

IRRT*[19], to ensure greater efficiency. RJ-RRT reduces 

configuration space and redundant nodes using 

environmental judgment techniques and reducing the 

sampling space. However, it faces problems such as 

expanded size and additional complexity. The HB-RRT 

algorithm is based on sampling using the Halton sequence 

algorithm and enhances it using the (Goal-Oriented Strategy). 

However, it suffers from difficulty in detection in dense 

obstacle environments. The APF-IRRT* algorithm combines 

the APF and the RTT* algorithm to guide the robot towards 

the goal and avoid obstacles. However, it suffers from 

oscillation and local minima problems. 

As presented in Fig. 17, the proposed algorithm achieved 

the shortest path length in less time among all algorithms. The 

red path illustrates the proposed algorithm in both 

environments, while the blue path illustrates the other 

methods. 

Table XII, Tabel XIII, and Table XIV present the path 

length (L), the number of iterations (N), and time elapsed (T) 

comparison between the three methods and the proposed 

approach APF-IRRT*-Hs in the two validation environments 

(E). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

Fig. 17. Comparing the path results in two testing environments: (a)E.1 RJ-

RRT X APF-IRRT*-HS, (b)E.2 RJ-RRT X APF-IRRT*-HS (c)E.1 HB-RRT 
X APF-IRRT*-HS, (d)E.2 HB-RRT APF-IRRT*-HS (e)E.1 APF-IRRT* X 

APF-IRRT*-HS, (e)E.2 APF-IRRT* X APF-IRRT*-HS 

TABLE XII.  COMPARISON OF THE PATH LENGTH IN METERS 

Environment Methods Path length 

E1 
RJ-RRT 92.30m 

APF-IRRT*-HS 78.924m 

E2 
RJ-RRT 132.50m 

APF-IRRT*- HS 116.0183m 

E1 
HB-RRT 86.8566m 

APF-IRRT*-HS 78.924m 

E2 
HB-RRT 125.7952m 

APF-IRRT*-HS 116.0183m 

E1 
APF-IRRT* 81.4172m 

APF-IRRT*-HS 78.924m 

E2 
APF-IRRT* 118.9797m 

APF-IRRT*-HS 116.0183m 

TABLE XIII.  REFINEMENT NUMBER OF SEARCH ATTEMPTS IN 

ITERATIONS 

Environment Methods 
Number of 

iterations 

 

E1 

RJ-RRT 13145 

APF-IRRT*-HS 1995 

 

E2 

RJ-RRT 24128 

APF-IRRT*-      HS 3092 

 
E1 

HB-RRT 11473 

APF-IRRT*-HS 1995 

 

E2 

HB-RRT 21435 

APF-IRRT*-HS 3092 

 

E1 

APF-IRRT* 2130 

APF-IRRT*-HS 1995 

 
E2 

APF-IRRT* 3453 

APF-IRRT*-HS 3092 

TABLE XIV.  TIME ELAPSED IN SECONDS 

Environment Methods Time(s) 

E1 
RJ-RRT 1.768s 

APF-IRRT*-HS 0.453s 

E2 
RJ-RRT 2.8169s 

APF-IRRT*- HS 0.813s 

E1 
HB-RRT 1.532s 

APF-IRRT*-HS 0.453s 

E2 
HB-RRT 2.481s 

APF-IRRT*-HS 0.813s 

E1 
APF-IRRT* 0.5812s 

APF-IRRT*-HS 0.453s 

E2 
APF-IRRT* 0.989s 

APF-IRRT*-HS 0.813s 

 

The proposed APF-IRRT*-HS method has established its 

effectiveness in all test environments and achieved 

satisfactory results. Remarkably, it accomplished the target 

with shorter lengths and significantly reduced iterations 

compared to RRT* and the APF-RRT* algorithms in 

complex environments. Moreover, the proposed method was 

compared with RJ-RRT, HB-RRT, and APF-IRRT* 

methods, and it constructed better paths than those of these 

approaches. The enhancement percentage in path length (L) 

and search attempts (N) is shown in Table XV. The time 

elapsed (T) percentage computation can be seen in Table 

XVI. 

The robot needs to choose the shortest path and shortest 

time to save resources while moving between points, 

especially in applications of mobile robots, maps, vehicles, 

and drones. 

TABLE XV.  COMPARISON PERCENTAGE ENHANCEMENT IN THE PATH 

LENGTH (L) AND THE NUMBER OF ITERATIONS (N) 

 

Environme

nt 

APF-IRRT*-

HS 

Vs RJ-RRT 

APF-IRRT*-

HS 

Vs HB-RRT 

APF-IRRT*-

HS 

VS APF-

IRRT* 

L N L N L N 

E1 
14.48

% 

84.81

% 

9.12

% 

82.61

% 

3.05

% 
6.34% 

E2 
12.44

% 
87.18

% 
7.7% 

85.57
% 

2.48
% 

10.44
% 

TABLE XVI.  COMPARISON PERCENTAGE ENHANCEMENT IN THE 

COMPUTATION TIME(T) 

Environment 

APF-IRRT*-

HS 

Vs RJ-RRT 

APF-IRRT*-

HS 

Vs HB-RRT 

APF-IRRT*-

HS 

VS APF-

IRRT* 

T T T 

E1 74.54% 70.43% 22.1% 

E2 71.73% 67.57% 17.7% 

VI. CONCLUSION 

In this work, the RRT* algorithm was developed by 

proposing an APF-IRRT*-HS algorithm that uses both the 

improved target rule and the Halton sequence to enhance the 

sampling process and reduce randomness, consequently 

establishing a short final path and exploring it quickly. The 

outcomes supported the potency of the proposed algorithm 

compared to the RRT*, the APF-RRT*, the RJ-RRT, HB-

RRT, and the APF-IRRT* algorithms. This method has been 

implemented in two cases of mass point and two link robots 

in different dynamic environments. The proposed algorithm 

has shown decreased path length and the number of iterations, 

producing optimal paths in less time than other traditional 

methods. The results of the proposed APF-IRRT*-HS 

showed an improvement of approximately 13% and 4% in 

path length, 50.2% and 40% in elapsed time, and 5% and 7% 

in many iterations compared to RRT* and APF-RRT* 

algorithms, respectively. The proposed method balances 

finding and discovering new points that may lead to finding 

more efficient paths (exploration) and exploiting and 

improving previously discovered points (exploitation). The 

method can be used to improve the accuracy of obstacle 

avoidance in drones and autonomous vehicles. Navigation 

systems can be enhanced by improving the accuracy of maps 
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and updating them continuously to interact with the 

environment better. As a future direction, the proposed 

method can be applied in more complex dynamic moving 

environments and may be combined with improved 

integration with reinforcement learning techniques. 
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