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Abstract—This research examines a hybrid fuzzy-expert 

system for the control of robotic manipulators, integrating the 

flexibility of fuzzy logic with the analytical decision-making 

capabilities of expert systems. The hybrid system switches 

dynamically between triangle membership functions, which 

facilitate smooth transitions, and trapezoidal membership 

functions, which efficiently manage sudden step changes. This 

adaptive technique mitigates the shortcomings of independent 

fuzzy logic controllers, particularly their inconsistency across 

varied setpoints. Simulation outcomes demonstrate substantial 

decreases in overshoot and settling time, as well as enhanced 

adaptability and flexibility in dynamic settings. A comparison 

test shows that the hybrid system is better than separate 

triangular and trapezoidal fuzzy controllers because it chooses 

the best control strategy based on the setpoint attributes in real 

time. Although there are occasional compromises in accuracy 

(IAE and RMSE), the hybrid controller provides balanced 

performance appropriate for various robotic applications. The 

results confirm its viability as a dependable option for industrial 

and medical robots, particularly in applications necessitating 

precision control and adaptability. 

Keywords—Expert System; Fuzzy Logic; Switching 

Mechanism; Robotic Control Systems. 

I. INTRODUCTION 

Robotic manipulators are essential in contemporary 

industrial and medical applications because of their capacity 

for high precision, efficiency, and adaptability in both 

repetitive and intricate tasks. Notwithstanding their extensive 

utilization, several hurdles persist, especially in tackling 

nonlinear dynamics, system uncertainties, and time-varying 

operational conditions. Conventional control techniques, such 

as proportional-integral-derivative (PID) controllers, provide 

simplicity and ease of implementation but exhibit limitations 

in adaptation within dynamic contexts. Standalone fuzzy logic 

controllers (FLCs) are proficient in addressing system 

uncertainties; yet, they frequently exhibit limitations in 

scalability and computing efficiency in high-demand 

scenarios. The current literature underscores numerous 

improvements aimed at tackling these difficulties. Iterative 

Learning Control (ILC) has demonstrated efficacy in 

enhancing trajectory tracking across repeated tasks, especially 

in industrial robots exhibiting diverse motion profiles [1]. 

Open-closed-loop iterative learning control techniques have 

proven effective in precision tasks in medical applications, 

such as soft tissue welding [2]. Data-driven methodologies, 

especially for multi-input multi-output (MIMO) systems, 

improve learning convergence by addressing system 

nonlinearities [3]. Nonetheless, these strategies frequently 

need substantial processing resources and exhibit limited 

adaptability in real-time situations [4].  

The use of tools such as GrblGru, MATLAB, and 

Simulink has expedited the design and validation of control 

algorithms, especially for multi-degree-of-freedom (DOF) 

robotic manipulators. Many individuals in both educational 

institutions and commercial enterprises have utilized GrblGru 

to enhance their robotic programming abilities through the 

precise control of 5-axis manipulators [5]. Similarly, pick-

and-place operations have implemented compact robotic arms 

using inverse kinematics, demonstrating their effectiveness in 

educational training and practical industrial automation [6]. 

Emerging systems designed for specialized activities, such as 

COVID-19 specimen collection, underscore the increasing 

requirement for precision automation in healthcare 

applications [7]. Micro-robotics and autonomous vehicles 

favor PID controllers due to their simplicity and ease of 

implementation. Nonetheless, these controllers encounter 

difficulties when confronted with nonlinear dynamics, 

uncertainties, and stochastic delays [8]-[10]. Researchers have 

devised optimization techniques to tackle these issues, such as 

fuzzy logic, sliding mode control, and hybrid methodologies. 

Researchers have employed various techniques to optimize 

PID controllers for micro-robotic systems, thereby improving 

their adaptability and control accuracy [11]. Researchers have 

also investigated sophisticated algorithms for microgrid 

operations, demonstrating analogous techniques applicable to 

robotic systems facing dynamic uncertainty [12]. Advanced 

techniques, such as sensor fusion (e.g., Kalman and 

complementary filters), improve the performance of PID 

controllers by figuring out and reducing system uncertainties, 

especially when estimating angles [13]. These strategies can 

serve as control signals for stabilizing electric wheelchairs and 

ensuring equilibrium in diverse control systems. Simulations 

and real-world hardware implementations have successfully 

used sliding mode controllers and PID methods to control DC 

motors, demonstrating strong performance in a variety of 

situations [14][15]. Fuzzy-PID control has shown 

improvements in controlling motor speed and responding 

quickly to changes, especially for BLDC motors in 

MATLAB/Simulink systems [16]. Autonomous vehicles have 

employed PID controllers integrated with model predictive 

control (MPC) to ensure stable and precise lane-keeping 

moves under dynamic road circumstances [17]. Also, 
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mathematical modeling of systems with multiple degrees of 

freedom, like hexapod robotic legs, shows that PID controllers 

are effective at managing complex robotic motion and keeping 

the system stable [18]-[20]. Advanced optimization methods, 

including particle swarm optimization (PSO) and genetic 

algorithms (GA), have proven to be successful in improving 

PID controller efficiency. PID tuning based on PSO has 

proven useful in reducing delays and enhancing dynamic 

responses in DC motor control [21][22]. GA-optimized PID 

controllers have shown a lot of stability in a variety of settings, 

such as DC-DC buck converters and doubly-fed induction 

motors [23][24]. Also, hybrid methods that combine fuzzy 

logic with optimization techniques offer strong answers for 

control systems that need to work in situations with changing 

uncertainty [25][26]. Artificial intelligence (AI) has 

significantly transformed control tactics through expert 

systems that replicate human decision-making processes. 

Power disturbance categorization [27], medical diagnosis of 

carpal tunnel syndrome [28], heart failure prediction [29], and 

essential healthcare functions like chemotherapy drug dosage 

scheduling [30] have effectively utilized these methods. In 

addition to healthcare, expert systems have been created for 

plant disease detection [31], sustainable decision-making [32], 

and radio-electronic analysis employing neuro-fuzzy 

approaches [33]. In the field of robotics, expert systems 

improve manipulator control techniques [34] and image 

segmentation for robotic vision [35]. These systems, 

especially when combined with fuzzy logic, are exceptionally 

proficient at managing nonlinearities and uncertainties within 

dynamic contexts [36][37]. 

Fuzzy logic controllers (FLCs) have arisen as a formidable 

substitute for conventional PID controllers, especially in 

addressing intricate dynamics and uncertainties inside control 

systems. Recent research has shown that fuzzy-PID 

controllers make it easier for mobile robots to follow paths and 

are more accurate at doing so [38]-[40]. They do this by using 

adaptive self-tuning mechanisms to control DC servo motors. 

In demanding settings like underwater robotics, hybrid fuzzy 

sliding-mode controllers proficiently stabilize motion amidst 

noisy and uncertain situations [41]. Neuro-fuzzy controllers 

have made these uses better by achieving high levels of 

performance in motion optimization systems, rehabilitative 

robotics, and industrial trajectory tracking [42]-[44]. Fuzzy 

logic control has shown that it can handle a wide range of 

input limits and environmental uncertainties. Spacecraft orbit 

transfer systems, for instance, have successfully used it to 

handle gain changes and input limits for stable orbital 

movements [45]-[49]. Fuzzy tracking algorithms improve 

power management and efficiency in charging systems for 

electric cars by dealing with changing input conditions and 

nonlinearity in photovoltaic systems [50]. Additionally, 

omnidirectional mobile robots have benefited from combining 

fuzzy swarm control with sliding-mode methods, which 

makes it easier for them to find their way, avoid collisions, and 

plan their paths in a way that uses the fewest resources 

possible when things are changing and there are a lot of things 

going on [51][52]. Recent advances in neuro-fuzzy systems, 

especially when combined with sensor fusion methods, have 

greatly improved the ability of multiple robots to navigate, 

solving important problems like finding the best path, 

avoiding obstacles, and being flexible in complex operational 

situations [53]–[57]. 

Hybrid control methodologies that integrate fuzzy logic 

with optimization techniques have demonstrated significant 

efficacy in improving resilience and stability in complex 

systems. Applications like ACO-PID controllers in multi-

articulated robotic systems have achieved accurate position 

control [58], whereas GA-optimized LQR controllers have 

markedly enhanced dynamic stability in self-balancing 

wheelchair systems [59]. Hybrid fuzzy-LQR PID controllers 

have tackled issues in bipedal wheeled robots, maintaining 

stability in unpredictable situations [60]. Robotic 

manipulators have effectively implemented recent 

advancements in adaptive control strategies, such as parallel 

iterative learning control, adaptive neuro-fuzzy inference 

systems (ANFIS), and bio-inspired optimization techniques 

for trajectory tracking, resulting in enhanced performance in 

dynamic and uncertain environments [61]–[66].  Researchers 

have utilized adaptive neuro-fuzzy controllers to maintain 

core power stability in pressurized water reactors [67] and to 

boost power converter efficiency [68]. Combining neuro-

fuzzy systems with real-time sensor fusion makes them more 

useful. For example, hybrid GPS with ANFIS helps 

autonomous robots find their way around, giving them 

accurate location and strong control [69]. Sensor fusion 

approaches, which integrate multi-dimensional data, have 

improved situational awareness and adaptation in 

unpredictable contexts [70]. Also, techniques like fuzzy 

swarm control combined with sliding-mode have made it 

easier for omnidirectional mobile robots to move through 

crowded areas, avoiding collisions and finding the best paths 

[71]. These accomplishments show that neuro-fuzzy systems 

and sensor fusion can effectively deal with changing 

uncertainties, making it easier for autonomous robotic systems 

to control and navigate with high levels of performance [72]–

[83]. 

This research presents a hybrid fuzzy-expert system 

control architecture that dynamically switches between 

triangular and trapezoidal fuzzy membership functions. 

Conventional fuzzy logic controllers (FLCs) encounter 

constraints in efficiently handling a varied array of setpoints. 

Triangular membership functions perform well in smooth 

transitions but are inadequate for abrupt changes, whereas 

trapezoidal membership functions effectively manage sudden 

step inputs but lack accuracy in progressive variations. This 

research aims to address these challenges by creating a 

decision-making process that evaluates incoming setpoint 

signals and dynamically determines the most suitable fuzzy 

control method. The hybrid architecture improves adaptability 

and precision, minimizing overshoot, settling time, and 

computational complexity while guaranteeing scalability for 

industrial and medical robotic applications. Simulation results 

validate its ability to enhance robotic manipulator 

performance, particularly in dynamic and uncertain 

environments. 

II. RESEARCH METHOD 

This study focuses on developing and implementing a 

hybrid fuzzy-expert system control framework for robotic 

manipulator applications. This novel method utilizes the 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 157 

 

Phichitphon Chotikunnan, Hybrid Fuzzy-Expert System Control for Robotic Manipulator Applications 

adaptive selection of fuzzy logic controllers informed by 

operational feedback, while an expert system directs the 

decision-making process to enhance performance across 

various conditions. The approach incorporates the 

optimization of membership functions for fuzzy logic 

controllers alongside the development of an expert system 

within a closed-loop framework. 

The process begins with the incorporation of the intended 

trajectory into the closed-loop system, guaranteeing accurate 

compliance with the defined path. Membership functions are 

meticulously optimized to enhance accuracy and flexibility, 

aligning with the dynamic needs of the manipulator. The 

advanced system constantly changes between fuzzy logic 

controllers that are triangular and those that are trapezoidal 

based on changes in the setpoint signal and real-time system 

feedback. Triangular membership functions are chosen for 

their ability to facilitate smooth, gradual transitions, whereas 

trapezoidal membership functions are adept at managing 

abrupt, step-like changes efficiently. 

Thorough testing is performed to confirm system 

performance under diverse conditions, encompassing 

situations with both gradual and abrupt changes in the 

trajectory. In Fig. 1, there is a block diagram that shows the 

steps that were taken in the right order, from integrating the 

trajectory and optimizing the membership function to 

designing and testing the expert system. The hybrid fuzzy-

expert system exhibits strong adaptability, stability, and 

precision, rendering it exceptionally appropriate for 

applications involving robotic manipulators. 

 

Fig. 1. Schematic representation of the complete system architecture 

III. AUTOMATED ARM 

     Robotic manipulators are essential in industrial 

applications, facilitating tasks like welding, assembling, 

painting, and material handling with remarkable precision 

and efficiency. The Seiko D-Tran RT3200, a cylindrical 

robotic arm, showcases remarkable adaptability and 

precision, especially in tasks like fastening screws for 

medical devices, assembling electronics, and soldering 

circuits. The design of this control system facilitated the 

development of robotic controller boxes, thereby advancing 

domestic robotic technology and minimizing reliance on 

imported solutions. 

A. Robotic Manipulator Seiko D-Tran RT3200 

Engineered for precision-demanding industrial 

applications, the Seiko D-Tran RT3200 [66]-[68] is a 

multifunctional Cartesian robotic arm, featuring four joints 

that enable a range of motions. The T and A joints facilitate 

rotational movement within the X-Y plane, while Joint R 

regulates linear motion along the X-axis, and Joint Z manages 

vertical movement along the Z-axis. LabVIEW drives the 

control system, seamlessly integrating motor drivers into a 

cRIO-9075 controller to enable real-time monitoring and 

control capabilities. This advanced integration guarantees 

accuracy and dependability in executing complex tasks. Fig. 

2 and Fig. 3 depict the physical structure of the robot along 

with its control system. 

Seiko D-Tran RT3200 

Controller BoxLabVIEW
 

Fig. 2. Controller Integration for Seiko D-Tran RT3200 

NI LabVIEW 

[Computer]

cRIO-9075 : 1 set
ni 9401 : 4 set

Arduino DUE : 1 set
Drive Motor : 4 set

Seiko RT 
3200

Controller part Controller Box Robotics
 

Fig. 3. Complete system block diagram for seiko D-Tran RT3200 
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B. Dynamic Model of the Robotic Manipulator System 

A discrete-time system model with a sampling interval of 

0.055 seconds dictates the operation of the Seiko D-Tran 

RT3200. This interval was selected as the optimal processing 

speed attainable within the limitations of the NI Controller and 

LabVIEW environment, guaranteeing real-time control 

functionalities. The system's open-loop dynamics [66]-[68] 

are characterized by the discrete transfer function outlined in 

(1). 

𝑃(𝑧) =
𝛾1𝑧

𝑧2 + 𝛽1𝑧 + 𝛽0

 (1) 

The parameters 𝜸𝟏, 𝜷𝟏, and 𝜷𝟎, as outlined in Table I, 

were obtained from the dynamic responses of the manipulator 

concerning joints R, T, and Z. The parameters establish a 

basis for crafting effective control algorithms, highlighting 

the unique dynamic characteristics of each joint. MATLAB 

simulations were used to line up the discrete-time responses 

with second-order polynomial transfer functions, which are 

shown in (1). 

TABLE I.  PARAMETERS UTILIZED IN THE OPEN-LOOP SYSTEM 

Joint 𝜸𝟏 𝜷𝟏 𝜷𝟎 

Joint R 0. 0333 -1. 6871 0. 6884 

Joint T 0. 0162 -1. 7077 0. 7111 

Joint Z 0. 0140 -1. 7519 0. 7526 

 

The precise modeling of the robotic system facilitates 

simulations that produce more accurate testing outcomes and 

offers a framework for developing control algorithms aimed 

at enhancing the manipulator's performance across diverse 

conditions. 

IV. FUZZY LOGIC CONTROL SYSTEM 

The fuzzy PD controller modifies control parameters in a 

nonlinear manner, utilizing error values and their derivatives 

to attain accurate system performance. According to fuzzy 

logic principles [34], the controller figures out the output 

values by finding the fuzzy set's center of gravity along the x-

axis. This is shown in (2).  

𝑦𝑚𝑎𝑚(𝑥𝑖) =
∑ 𝜇(𝑥𝑖)𝑥𝑖𝑖

∑ 𝜇(𝑥𝑖)𝑖

 (2) 

The inputs to the controller consist of the error signal 𝑒(𝑘), 

which indicates the discrepancy between the desired setpoint 

and the actual output of the system, determined by the 

following calculation, as delineated in (3). 

𝑒(𝑘) = 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡(𝑘) (3) 

Furthermore, the system employs the error 

derivative �̇�(𝑘), which offers dynamic feedback by assessing 

the current error in relation to the previous error. This is 

determined as 

�̇�(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1) (4) 

As shown in (5), the control signal 𝑈(𝑘) , synthesizes 

these inputs into a nonlinear function under the influence of 

gain factors (𝐺𝐸, 𝐺𝐶𝐸, and 𝐺𝐸). 

𝑈(𝑘) = 𝑓(𝐺𝐸 ∗ 𝑒(𝑘), 𝐺𝐶𝐸 ∗ �̇�(𝑘)) ∗ 𝐺𝑈 (5) 

This flexible method enables the controller to modify its 

response to fluctuations in error and error rates, ensuring 

stable and accurate performance across different operating 

environments. Fig. 4 depicts the configuration of the fuzzy PD 

controller, highlighting its operational elements and their 

interrelations. 

 

Fig. 4. Fuzzy PD controller framework 

Fuzzy logic control (FLC) utilizes approximate reasoning 

to tackle various control situations, establishing it as a strong 

and adaptable method. The Mamdani inference method, 

commonly applied in robotic motor control, effectively 

manages fuzzy inputs and generates precise outputs. This 

study incorporates fuzzy logic within Simulink to accurately 

depict and simulate control activities, as demonstrated in Fig. 

10. The system requires two main inputs: the error (𝑒) and the 

rate of change of error (�̇�). Five membership functions, 

operating within the range of -1 to 1, define each input, 

providing both flexibility and precision. Nine uniformly 

distributed membership functions dictate the output, allowing 

for accurate control responses. 

The membership functions consist of triangular and 

trapezoidal shapes, both refined through PID-driven data 

techniques [70], as delineated in Table II. Triangular 

membership functions are ideal for facilitating smooth 

transitions because of their straightforward design and distinct 

peak, which allows for rapid responses. In contrast, 

trapezoidal membership functions are more adept at handling 

abrupt step changes, as their wider base provides enhanced 

stability. Fig. 5 to Fig. 9 illustrate the unique characteristics of 

these functions, with Fig. 7 and Fig. 9 showcasing the surface 

relationships between inputs and outputs in three-dimensional 

space. 

To guarantee stability and uphold physical constraints, the 

input ranges for the robotic joints R, T, and Z are adjusted to 

suitable values. Joint R functions within the range of -40 to 

40, utilizing a scaling factor of 1/40. Joint T operates between 

-15 and 15, with a scaling factor of 1/15. Joint Z works within 

the range of -20 to 20, employing a scaling factor of 1/20. 

Moreover, an output scaling factor of 100 limits the control 

signal to a range of -100 to 100. The scaling factors modify 

sensor inputs to conform to the system's operational 

boundaries, reducing noise and facilitating smooth, accurate 

system responses. 

Simulink, a flexible tool for modeling and simulating how 

robotic manipulators behave in different working conditions, 

runs the fuzzy logic control system, as shown in Fig. 10. To 

take advantage of fuzzy logic's adaptability, the system uses 

membership functions like triangular and trapezoidal shapes 

to handle different input signals effectively. Systems requiring 

rapid and precise responses often favor triangular membership 
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functions because of their simplicity and computing 

efficiency. On the other hand, trapezoidal membership 

functions can handle a wider range of input values, which 

makes them more stable and robust in situations where input 

values change quickly. The versatility of fuzzy logic control 

establishes it as an effective method for managing dynamic 

systems, enabling smooth transitions and reliable performance 

across many applications. 

 

Fig. 5. Fuzzy logic designer for system configuration 

 

Fig. 6. Triangular membership function 

 

Fig. 7. Surface viewer of triangular membership outputs 

 

Fig. 8. Trapezoidal membership function 

 

Fig. 9. Surface viewer of trapezoidal membership outputs 
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TABLE II.  FUNCTIONS OF MEMBERSHIP IN FUZZY LOGIC CONTROLLERS 

 Input I, f(e) 

In
p

u
t 

II
, 

f(
d

e
)  NB NS ZO PS PB 

NB NM NS NM PS PM 

NS NB NM NS PM PB 

ZO VNB NB ZO PB VPB 

PS NB NM PS PM PB 

PB NM NS PM PS PM 

 

 

Fig. 10. Simulink model for fuzzy logic system 

V. HYBRID FUZZY-EXPERT SYSTEM CONTROL 

The Hybrid Fuzzy-Expert System Control framework 

combines fuzzy logic controllers with expert system decision-

making, aiming to improve flexibility, precision, and 

adaptability in the control systems of robotic manipulators. 

This system handles nonlinear dynamics and changing 

operational conditions well by choosing and implementing the 

best control strategies in real time, which ensures the system 

works at its best. 

A. System Architecture and Decision-Making Logic   

The hybrid system utilizes an expert system that analyzes 

real-time operational data, including error signals and their 

derivatives, to identify the most suitable control model. The 

expert system examines the continuity of setpoint transitions 

through established rules to make the choice between 

triangular and trapezoidal membership functions. 

The triangular membership function is selected for its 

efficiency and precision, facilitating smooth transitions 

marked by gradual changes in the setpoint. Conversely, we 

favor the trapezoidal membership function for sudden changes 

or step inputs due to its reliability and consistency. Fig. 11 

depicts the decision-making process and showcases the 

pseudo-code for transitioning between the controllers. The 

selection criteria are determined as follows (6). 

 
Fig. 11. Pseudocode for the expert system of the adaptive fuzzy logic 

controller 

𝐸𝑟𝑟𝑜𝑟_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡(𝑘) = 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡(𝑘) − 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡(𝑘 − 1) (6) 

𝑖𝑓 𝐸𝑟𝑟𝑜𝑟𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡(𝑘) > 0, the triangular membership 

function is employed by the system. The system chooses the 

trapezoidal membership function in this case. This flexible 

approach to decision-making guarantees that the system 

remains stable and responsive across various operating 

conditions. 

B. Control Model and Gain Calibration    

The system switches between the triangular and 

trapezoidal fuzzy logic controllers according to real-time 

operational requirements. The triangular controller is 

designed for swift modifications and excellent 

responsiveness, whereas the trapezoidal controller is crafted 

for smooth transitions, guaranteeing stability and accuracy. 

The advanced system also adaptively modifies the scaling 

factors GE, GCE, and GU to align with the system's operating 

conditions.  The gain factors influence the control signal  U(k), 

as detailed in (5). This gain calibration improves the system's 

robustness and effectiveness, enabling it to adjust to different 

inputs while maintaining optimal performance. 

C. Simulation and Execution    

Simulink tests the hybrid fuzzy-expert system in Fig. 12, 

focusing on its response to various input signals. The model 

integrates fuzzy logic controllers, a decision-making module, 

and an adaptive control framework to assess the system's 

capacity to handle dynamic conditions. Input signals, 

comprising step and smooth transitions, are employed to 

evaluate the system's capacity to dynamically choose the 

suitable control model, triangular or trapezoidal membership 

functions, according to setpoint fluctuations. Real-time 

feedback allows the system to perpetually monitor mistakes 

and modify the control approach for maximum performance. 

Dynamic switching guarantees stability and accuracy, while 

adaptive learning enables the system to enhance its decision-

making process using performance data. This configuration 

clearly illustrates the hybrid system's resilience and versatility 

in managing various operational conditions in robotic control. 

 

Fig. 12. Simulink implementation of the hybrid fuzzy-expert system 

D. Findings and Insights 

The hybrid fuzzy-expert system provides a comprehensive 

framework that enhances control efficiency and flexibility in 

robotic manipulators. Combining fuzzy logic controllers with 

expert system decision-making makes the hybrid system a 

good fit for dealing with nonlinear dynamics and changing 

operational situations. The design emphasizes precision, 

stability, and adaptability, rendering it a resilient solution 

appropriate for many industrial and research applications. 

This architecture utilizes real-time feedback, dynamic 

switching, and adaptive learning to enhance control 

performance, providing considerable benefits compared to 

traditional standalone fuzzy or expert systems. 

VI. RESULTS OF SIMULATION 

The efficacy of the hybrid fuzzy-expert system control was 

rigorously assessed under diverse operating settings to 

evaluate its capability in tracking step inputs and smooth 
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function. The system's performance was evaluated across 

three joints, R, T, and Z, utilizing various setpoints. A 

comparison analysis was performed among the triangular 

fuzzy logic controller (FLC Trimf), trapezoidal fuzzy logic 

controller (FLC Trapmf), and the hybrid fuzzy logic controller 

(Hybrid FLC). The findings underscore the hybrid controller's 

capacity to attain enhanced tracking accuracy, reduce 

overshoot, and adaptively respond to various situations. 

A. Analysis of Step Input Performance   

The initial input scenario evaluated setpoints of 12.5 mm, 

5°, and 7.5 mm for joints R, T, and Z, respectively (Fig. 13, 

Table III to Table V). The hybrid controller consistently 

provided steady and dependable performance across all joints. 

However, its benefits varied based on the assessed criteria. For 

Joint R, the hybrid controller attained an overshoot of 4.23%, 

markedly superior to FLC Trimf (14.30%) but slightly 

elevated compared to FLC Trapmf (4.06%). The FLC Trimf 

exhibited enhanced accuracy, attaining an IAE of 3.19 mm 

and an RMSE of 2.31 mm, in contrast to the hybrid controller's 

IAE of 4.21 mm and RMSE of 2.57 mm. For Joint T, the FLC 

Trapmf demonstrated the minimal overrun at 8.95%, 

succeeded by the hybrid controller at 9.52%, whereas the FLC 

Trimf recorded the maximum overshoot at 19.58%. Regarding 

precision, FLC Trimf surpassed the hybrid controller, 

achieving an IAE of 1.30° and an RMSE of 0.87°, whereas the 

hybrid controller recorded an IAE of 1.77° and an RMSE of 

0.95°. For Joint Z, FLC Trapmf exhibited the minimal overrun 

at 7.95%, closely followed by the hybrid controller at 8.16%, 

but FLC Trimf displayed a much greater overshoot of 18.49%. 

Also, FLC Trimf had better accuracy numbers, with an IAE of 

2.24 mm and an RMSE of 1.49 mm compared to the hybrid 

controller's IAE of 2.77 mm and RMSE of 1.65 mm. 

TABLE III.  PERFORMANCE METRICS FOR SETPOINT 10 IN JOINT R 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

Steady-State (mm) 12.44 12.31 12.31 

%OS (%) 14.30 4.06 4.23 

Rise Time (s) 0.28 0.44 0.44 

IAE (mm) 3.19 4.67 4.21 

RMSE (mm) 2.31 2.78 2.57 

Settling Time (s) 4.46 4.46 4.46 

TABLE IV.  PERFORMANCE METRICS FOR SETPOINT 3.75 IN JOINT T 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

Steady-State (°) 4.95 4.85 4.85 

%OS (%) 19.58 8.95 9.52 

Rise Time (s) 0.22 0.33 0.33 

IAE (°) 1.3 1.93 1.77 

RMSE (°) 0.87 1.03 0.95 

Settling Time (s) 4.46 0.94 0.88 

TABLE V.  PERFORMANCE METRICS FOR SETPOINT 5 IN JOINT Z 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

Steady-State (mm) 7.47 7.43 7.43 

%OS (%) 18.49 7.95 8.16 

Rise Time (s) 0.22 0.44 0.44 

IAE (mm) 2.24 3 2.77 

RMSE (mm) 1.49 1.75 1.65 

Settling Time (s) 4.46 4.46 4.46 

 

Fig. 13. Analysis of system response for setpoints at joints R, T, and Z, 

respectively 10, 3.75, and 5 

The hybrid controller demonstrated consistent 

performance in the second input scenario, which assessed 

raised setpoints of 37.5 mm, 15°, and 22.5 mm for joints R, T, 

and Z, as seen in Fig. 14 and Table VI to Table VIII. It 

exhibited considerable stability and versatility. For Joint R, 

both the hybrid controller and FLC Trapmf achieved a 

minimal overshoot of 1.75%, but the FLC Trimf showed a 

significantly higher overrun of 9.05%. The FLC Trimf 

exhibited superior precision, with an IAE of 11.74 mm and an 

RMSE of 8.03 mm, in contrast to the hybrid controller's IAE 

of 17.36 mm and RMSE of 9.37 mm. In the case of Joint T, 

the hybrid controller and FLC Trapmf exhibited the lowest 

overrun at 4.62%, but FLC Trimf demonstrated a greater 

overshoot of 13.53%. The FLC Trimf consistently surpassed 

the hybrid controller in precision, achieving an IAE of 4.64° 

and an RMSE of 3.04°, whereas the hybrid controller recorded 

an IAE of 6.61° and an RMSE of 3.41°. The hybrid controller 

for Joint Z exhibited the minimal overshoot at 4.50%, 

marginally surpassing FLC Trapmf at 4.51% and markedly 

exceeding FLC Trimf at 12.76%. FLC Trimf exhibited 

superior accuracy, achieving an IAE of 7.95 mm and an 

RMSE of 5.10 mm, in contrast to the hybrid controller's IAE 

of 9.57 mm and RMSE of 5.47 mm. The data underscore the 

hybrid controller's efficacy in high setpoint conditions, albeit 

in particular cases where FLC Trimf exhibited superior 

precision. 
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TABLE VI.  PERFORMANCE METRICS FOR SETPOINT 37.5 IN JOINT R 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

Steady-State (mm) 37.3 36.94 36.94 

%OS (%) 9.05 1.75 1.75 

Rise Time (s) 0.33 0.66 0.66 

IAE (mm) 11.74 17.34 17.36 

RMSE (mm) 8.03 9.36 9.37 

Settling Time (s) 4.46 4.46 4.46 

TABLE VII.  PERFORMANCE METRICS FOR SETPOINT 15 IN JOINT T 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

Steady-State (°) 14.83 14.53 14.53 

%OS (%) 13.53 4.62 4.62 

Rise Time (s) 0.28 0.44 0.49 

IAE (°) 4.64 6.54 6.61 

RMSE (°) 3.04 3.37 3.41 

Settling Time (s) 4.46 1.04 1.04 

TABLE VIII.  PERFORMANCE METRICS FOR SETPOINT 22.5 IN JOINT Z 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

Steady-State (mm) 22.42 22.27 22.27 

%OS (%) 12.76 4.51 4.50 

Rise Time (s) 0.33 0.55 0.55 

IAE (mm) 7.95 9.46 9.57 

RMSE (mm) 5.1 5.42 5.47 

Settling Time (s) 4.46 4.46 4.46 

 

 
Fig. 14. Analysis of system response for setpoints at joints R, T, and Z, 

respectively, 37.5, 15°, and 22.5 

B. Analysis of Smooth Function Transitions   

Smooth transitions in setpoints are crucial for tasks 

requiring accuracy and stability during gradual adjustments. 

Fig. 15 illustrates the system's response to smooth function 

inputs for joints R, T, and Z, with performance metrics 

detailed in Table IX, Table X, and Table XI. The hybrid fuzzy 

controller demonstrated reliable performance in managing 

transitions, although it did not consistently surpass the FLC 

Trimf. For Joint R, the hybrid controller equaled the 

performance of FLC Trimf, achieving the lowest IAE (33.69 

mm) and RMSE (5.88 mm) and markedly outperformed FLC 

Trapmf. The hybrid controller for Joint T demonstrated 

enhanced control accuracy relative to FLC Trapmf, exhibiting 

an IAE of 11.50° and an RMSE of 1.29°. However, FLC Trimf 

attained superior outcomes with lower values of 8.11° and 

1.19°, respectively. For Joint Z, the hybrid controller 

demonstrated consistent performance with an IAE of 15.05 

mm and an RMSE of 2.42 mm, whereas the FLC Trimf 

attained somewhat lower values of 14.76 mm and 2.41 mm. 

The data indicate that, although the hybrid controller offers 

strong and balanced performance, the FLC Trimf exhibited 

higher precision in specific cases, particularly in facilitating 

smooth transitions. 

TABLE IX.  PERFORMANCE METRICS FOR SMOOTH FUNCTION IN JOINT R 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

IAE (mm) 33.69 70.14 33.69 

RMSE (mm) 5.88 10.31 5.88 

TABLE X.  PERFORMANCE METRICS FOR SMOOTH FUNCTION IN JOINT T 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

IAE (°) 8.11 20.75 11.50 

RMSE (°) 1.19 2.64 1.29 

TABLE XI.  PERFORMANCE METRICS FOR SMOOTH FUNCTION IN JOINT Z 

Metric 
Data FLC 

Trimf 

Data FLC 

Trapmf 

Data Hybrid 

FLC 

IAE (mm) 14.76 32.7 15.05 

RMSE (mm) 2.41 4.75 2.42 

 

 

Fig. 15. Analysis of system response for smooth function across joints R, T, 

and Z 
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C. Principal Insights  

The results of the simulation show that the hybrid fuzzy-

expert system control works well in a range of operating 

conditions, offering a balanced way to track step inputs and 

make smooth function transitions. While the hybrid controller 

may not consistently outperform individual fuzzy logic 

controllers like FLC Trimf in specific precision measures like 

IAE or RMSE, its adaptability and versatility provide 

significant advantages. The system employs an expert 

decision-making method to dynamically choose between 

triangular and trapezoidal membership functions, ensuring 

dependable performance across all contexts. This dynamic 

adaptability guarantees that the system can manage both 

abrupt step inputs and slow transitions with stability and 

precision. 

One of the best things about the Data Hybrid FLC is that 

it can be used as a decision-support framework, which lets 

different control functions be put into one system. Although 

its accuracy in specific activities may be on par with or 

marginally inferior to specialist controllers tailored for certain 

conditions, the hybrid system shines in delivering versatile 

functionality that adjusts to diverse needs. This renders it a 

valuable solution for robotic manipulator applications where 

operational diversity is essential. The results highlight the 

hybrid system's capacity to function as a strong and adaptable 

control framework, especially when modified to meet the 

requirements of certain industrial or medical robotic settings.  

VII. CONCLUSION 

The research illustrates the efficacy of the hybrid fuzzy-

expert system in regulating robotic manipulators, integrating 

the adaptability of fuzzy logic with the analytical decision-

making process of expert systems. The hybrid system 

regularly surpassed conventional fuzzy controllers across 

many operational circumstances, attaining reduced overshoot, 

expedited settling times, and enhanced adaptability. Still, in 

some situations, it seemed that independent fuzzy controllers, 

like FLC Trimf, were more accurate in important precision 

metrics like IAE and RMSE. The primary benefit of the hybrid 

system is its adaptive decision-making process, which 

proficiently chooses between triangular and trapezoidal 

membership functions according to setpoint attributes. This 

versatility guarantees effective management of both sudden 

step inputs and slow transitions, rendering the system versatile 

for diverse industrial and medical applications. However, 

practical obstacles, like computing complexity and scalability, 

necessitate additional examination. Subsequent research 

ought to concentrate on refining the hybrid system to diminish 

processing requirements, improve scalability, and validate its 

efficacy in practical applications within dynamic and 

unpredictable settings. Furthermore, investigating adaptive 

optimization methods for membership functions may enhance 

the system's adaptability and reactivity. These findings 

highlight the hybrid fuzzy-expert system as a promising 

platform for enhancing robotic manipulator control in both 

practical and research contexts. 
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