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Abstract—Brushless Direct Current (BLDC) motors are 

widely utilized in industrial applications due to their precision, 

efficiency, and ease of control. This study optimizes BLDC 

motor performance by enhancing the linear quadratic 

regulator (LQR) using the Matlab program's Sand Cat Swarm 

Optimization (SCSO) algorithm. The research evaluates key 

performance metrics, including settling time, overshoot, and 

cost function, to demonstrate the advantages of the proposed 

approach. Additionally, a comparative analysis was conducted 

using the butterfly optimization algorithm (BOA) and 

conventional LQR to validate the superiority of SCSO. 

Simulation results show that the LQR-SCSO method 

significantly improves performance, achieving a 77.2% 

reduction in settling time, a 91% reduction in overshoot, and a 

cost function of 0.3376. In comparison, the BOA method 

achieves reductions of 68.54% in settling time, 67.37% in 

overshoot, and a cost function of 0.8736, while the conventional 

LQR achieves reductions of 68% in settling time, 62.3% in 

overshoot, and a cost function of 1.8393. SCSO has excellent 

convergence and adaptability; however, the implementation is 

explored further in terms of computational cost adopted for 

industrial use in real time. The data are so highly processed 

that better controls are implemented to repeat simulations 

across defined parameters. The proposed LQR-SCSO 

approach is practical and potent in enhancing motor 

performance, which is a significant advancement and can 

applied in various fields in the industry, such as robotics and 

automated systems. However, the proposed method may face 

obstacles related to the higher computational complexity of 

higher-order applications, which can be a subject of future 

studies. 

Keywords—Adaptive Control; Optimization; Brushless DC 

Motor; Sand Cat Swarm Optimization; Butterfly Optimization 

Algorithm. 

I. INTRODUCTION  

Brushless DC (BLDC) motors are essential to 

applications demanding precision and reliability and are 

favored in many industries [1], [2]. Although this type of 

motor has certain advantages, the nonlinear behavior 

parameters and strong constraints on the operating mode are 

significant challenges for motor operation—complex control 

strategies required for optimum performance. One of the 

most widely utilized control approaches is the linear 

Quadratic Regulator for BLDC motors. It ensures stability 

and reduces disturbances by minimizing a quadratic cost 

function [3]. However, the tuning of the Q and R, which are 

the weighting matrices of the LQR controller, affects the 

efficiency of the controller system. These matrices are 

traditionally adjusted using heuristic or conventional 

methods, often resulting in high computational demands and 

suboptimal outcomes [4], [5]. Recently, metaheuristic 

optimization techniques have shown significant potential in 

enhancing BLDC motor controls, such as the Whale 

Optimization Algorithm (WOA,) which has improved 

dynamic performance, including faster settling times and 

better robustness against disturbances [6]. Hybrid systems 

that combine LQR with other techniques, such as PI 

controllers based on backpropagation neural networks 

(BPNN), have improved stability and speed control. 

However, the real-world applicability of these methods is 

limited since they frequently need precise parameter 

adjustment and considerable computing complexity [7]. 

Other optimization techniques, including Particle Swarm 

Optimization (PSO) and Genetic Algorithms (GA), have 

made progress in improving system response and stability 

but face challenges in scalability and implementation due to 

computational overhead [8]. Different optimization 

techniques, such as the Artificial Bee Colony (ABC) 

algorithm, Artificial Neural Networks (ANN), and Newton-

Raphson-based approaches, have been explored to improve 

LQR controllers by reducing overshoot and enhancing 

response times. However, these techniques face scalability 

and computational efficiency challenges, particularly in 

higher-order systems, requiring further validation [9]. The 

Sand Cat Swarm Optimization (SCSO) algorithm, inspired 

by the hunting strategies of sand cats, is designed to address 

complex optimization problems through two primary 

phases: exploration and exploitation [10]. By dynamically 

balancing these phases, SCSO ensures a comprehensive 

search across the solution space while fine-tuning the best 

solutions to avoid being trapped in local optima, making it 

particularly effective for optimizing the weighting matrices 

of the LQR controller, enhancing its capability to enhance 

the performance of the systems such as BLDC motors. 

SCSO's computational efficiency in dynamic system 

conditions makes it a reliable and robust tool for 

optimization tasks [11]. This research introduced a novel 

approach to optimizing the LQR controller for BLDC motor 

systems using the Sand Cat Swarm Optimization (SCSO) 
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algorithm to enhance the performance of BLDC motors. The 

proposed design was implemented using the Matlab 

program, and critical performance metrics such as settling 

time, overshoot, and cost function were evaluated to assess 

its robustness and efficiency. A compensation analysis with 

the Butterfly Optimization Algorithm (BOA) highlights the 

SCSO-LQR system's stability and time response speed 

superiority. By combining the strength of the LQR 

controller with the innovative features of the SCSO 

algorithm, this study presented a robust system for 

advancing BLDC motor control strategies. 

II. BRUSHLESS DC MOTOR MATHEMATICAL MODEL 

DESCRIPTION  

BLDC motors have stator windings embedded in slots 

on laminated steel cores, with a rotor containing permanent 

magnets. The latter interacts with the stator's rotating 

magnetic field, providing motion through electronic 

commutation. This is enabled either by position sensors or 

sensorless techniques to detect rotor position [12], [13]. 

BLDC motors can be designed as in-runner motors, with 

magnets placed inside the rotor, or out-runner motors 

optimized for higher torque at lower speeds [14][15]. One of 

the significant advantages of BLDC motors is that they are 

brushless, meaning there are no mechanical commutators, 

resulting in reduced wear and maintenance. Hence, this 

increases their operation life and reliability. Second, BLDC 

motors are more efficient and controllable than induction 

motors. Induction motors may suffer from noise levels, 

smooth operation, and speed range limitations [16]-[18].  

For analyzing dynamic behavior in BLDC motors, one 

second-order transfer function can be derived based on the 

motor's electrical and mechanical properties. Electrical 

dynamics are the first to be considered in this derivation of a 

model, expressed in (1): 

𝑉 = 𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅 + 𝑒𝑏 (1) 

Where the applied voltage is, the stator inductance is the 

current; the stator resistance is the back electromotive. The 

back-EMF is proportional to the rotor's angular velocity 𝜔, 

given by 𝜔, where is the back-EMF constant. The BLDC 

motor is defined mechanically in (2): 

𝑇 = 𝐽
𝑑𝜔

𝑑𝑡
+ 𝐵𝜔 + 𝑇𝐿 (2) 

Here, the generated torque is the moment of inertia of 

the rotor, the damping coefficient is the load torque, and the 

generated torque is proportional to the current, expressed as 

=, where is the torque constant. Combining these two 

equations, the electrical current 𝐼 from the first equation is 

substituted into the second to establish a relationship 

between the input voltage 𝑉 and the rotor's angular velocity 

𝜔 of the rotor [19]. Linearization of the system around a 

nominal operating point, followed by applying the Laplace 

transform, yields the transfer function: 

𝐺(𝑠) =
𝐾

𝑠2 + (𝑅𝐽 + 𝐿𝐵)𝑠 + 𝑅𝐵𝐿𝐽
 (3) 

 

Where 𝐾=
𝐾𝑡

𝐾𝑒
 represents the motor gain. Substituting specific 

parameters in the simplifier transfer function [20]:  

G(s)= 
57.142857

5.1s2+4.9s+1
 (4) 

III. LINEAR QUADRATIC REGULATOR 

In the field of control theory, which is essential in 

systems, the linear quadratic regulator (LQR) is a prominent 

concept in control theory and is particularly relevant to 

system engineering [21][22]. This methodology is an 

optimal control approach to determine control inputs that 

minimize a specific cost function. The main objective of the 

LQR is to enhance system performance by minimizing a 

quadratic cost function that optimally balances state 

variables and control efforts [23][24]. It is heavily 

dependent on the proper weighting of the variables involved 

because this directly affects the optimum operation of the 

system under dynamic conditions [25]-[26].  

The effective feedback structure design is crucial for 

developing a state feedback controller, especially for 

systems such as Brushless DC (BLDC) motors, where 

stability is a significant challenge. The LQR framework 

utilizes a state-feedback control law, expressed as U=KXU, 

where K represents the gain matrix; this relationship allows 

the controller to regulate the motor's speed using the 

measured state variables [27]-[28]. Fig. 1 displayed a 

detailed model description of the LQR control system, 

highlighting its integration of state variables, control inputs, 

and feedback mechanisms for optimal performance and 

dynamic stability Abbreviations and Acronyms. 

 

Fig. 1. The LQR control system's model [29] 

The dynamics of the LQR-controlled system are 

described by the four matrices A, B, C, and D. These 

matrices dictate the system's behavior in the following sense 

:( A: Captures the relationships between state variables over 

time, B: Connects the control inputs to changes in the state 

variables, C: Converts the state variables into measurable 

system outputs and D: Accounts for the direct feedthrough 

effects between input and output). The system dynamics are 

represented by (5) and (6) [30]-[36]: 

X.=AX+BU  (5) 

Y.=CX+DU (6) 

The LQR framework minimizes a quadratic cost function, as 

defined in (7): 

J=∫ XT
∞

0

QX+UTRU dt  (7) 
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The optimal gain matrix 𝐾 is evaluated using the 

Algebraic Ricatti Equation (ARE) solution, which assigns 

relative importance to state variables and control inputs as 

represented in (8): 

ATP+PA-PBR-1BT P+Q=0 (8) 

The gain matrix 𝐾, which determines the feedback 

control law, is derived as follows: 

K=R-1BTP  (9) 

IV. SAND CAT SWARM OPTIMIZATION ALGORITHM 

SCSO derives inspiration from the natural hunting 

strategies of sand cats; this allows it to attain a dynamic 

balance between exploring new solutions and exploiting 

promising ones. This adaptability makes the algorithm less 

vulnerable to getting trapped in a local optimum and 

enhances its efficiency in navigating complex solution 

spaces [37]-[42]. During the exploration phase, the 

algorithm goes through an exhaustive search in the solution 

space, necessary for maintaining diversity in potential 

solutions and avoiding an early convergence problem [43]-

[46]. 

The sensitivity range (rG⃗⃗  ⃗) decreases linearly in each run, 

taking the search process towards more focused refinement. 

The mathematical model expressed during this phase is used 

[47]-[55] in (10), (11), (12) and (13): 

rG⃗⃗  ⃗=SM-(
2×SM×Iter

IterMax
) (10) 

R=2×rG⃗⃗  ⃗×rand-rG⃗⃗  ⃗ (11) 

r =rG⃗⃗  ⃗×rand (12) 

pos⃗⃗⃗⃗ ⃗⃗ (t+1)=r  pos
c

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (t) -pos
bc

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(t) (13) 

Where rG⃗⃗  ⃗ represents sensitivity range decreases linearly, 

focusing the search over time. SM represents the random 

value representing the auditory traits of sand cats ranging 

between 0 and 1. pos
bc

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the position of the best candidate 

solution. pos
c

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the current position of the sand cat and r is a 

randomized sensitivity factor. The exploration phase 

generates new solutions, whereas the exploitation phase 

refines them by focusing the search on the most promising 

areas. This is a converging phase toward an optimal 

solution [56]-[59] as explained in (14). 

pos
rnd

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗=|rand pos⃗⃗⃗⃗⃗⃗ 
b
(t)-pos⃗⃗⃗⃗⃗⃗ 

c
(t)| pos⃗⃗⃗⃗⃗⃗ (t+1)=pos⃗⃗⃗⃗⃗⃗ 

b
(t)-r   pos

rnd
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   cos θ (14) 

Where (𝜃 is A random angle representing the direction of 

movement, varying between 0 and 360 degrees, pos
rnd ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is a 

randomly adjusted position vector based on the best 

candidate and current position and r   represents the 

sensitivity parameter that adjusts positional changes during 

this phase). 

The sensitivity range, 𝑅, effectively controls the 

transition between exploration and exploitation. While |𝑅| > 

1 represents the phase of exploration-namely, spread search 

over the solution space undertaken by the algorithm for |𝑅| ≤ 

1, the algorithm moves to the exploitation phase where the 

finest prospects are surrounded by more detailed procedures. 

The sum of these may be used to represent the overall 

dynamics as [52]-[55]. 

X⃗⃗ (t+1) = {
(pos⃗⃗⃗⃗⃗⃗  

b
(t)-pos⃗⃗⃗⃗⃗⃗  

rnd
(t)|R|≤1;Explotation

r (pos⃗⃗⃗⃗⃗⃗  
bc
(t)-rand pos⃗⃗⃗⃗⃗⃗  

c
(t)|R|>1;Exploration  

} (15) 

This system makes sure that the focus on refining 

existing solutions and exploring new areas is dynamically 

balanced [56]. Fig. 2 illustrates the algorithm's dual-phase 

structure by showing the change from exploration (∣𝑅∣>1) to 

exploitation (∣𝑅∣≤1) [57].  

 

Fig. 2. Exploration and exploitation phase in SCSO [60] 

The SCSO algorithm was implemented in MATLAB to 

optimize the Q and R parameters of the LQR controller. 

MATLAB provides a reliable platform for simulating the 

algorithm's performance, allowing precise evaluation of how 

optimized parameters bettered the control system of the 

BLDC motor. It enhanced system efficiency through 

stability without falling into any local optima.  

The integration of the Sand Cat Swarm Optimization 

(SCSO) algorithm with the Linear Quadratic Regulator 

(LQR) controller is illustrated in Fig. 3. The SCSO 

optimizes the Q and R matrices by iterating through the 

exploration and exploitation phases. The optimized 

parameters are fed into the LQR controller, which adjusts 

the system's input to enhance stability and performance; it 

also integrates the optimized result to give effective control 

of the BLDC motor with minimal error and fast dynamic 

response. The whole process, from optimization up to 

implementation in the motor control system, is shown in a 

flowchart. 

V. BUTTERFLY OPTIMIZATION ALGORITHM 

Butterfly Optimization Algorithm (BFO) is a bio-

inspired algorithm based on the foraging behavior of 

butterflies through sensory stimuli to navigate to the optimal 

solution. This technique balances the exploration-

exploitation dilemma in solving complex optimization 

problems with a tradeoff between broad search and focused 

refinement. It mimics the butterflies' sensory modalities, 

guiding their movement through the search space toward the 

global best solution [61]-[67]. BOA consists of two main 

phases: global search and local search, alternating based on 

a switching probability (𝑝). In the global search phase, 

butterflies are attracted to the globally best solution, 

ensuring the exploration of broader solution spaces [68]-

[70]. The governs the position update using (16). 
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Fig. 3. Integrated LQR with SCSO flowchart 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟(𝑔∗ − 𝑥𝑖
𝑡)𝑓𝑖  (16) 

Where 𝑥𝑖
𝑡+1 is the new position, 𝑥𝑖

𝑡 is the current position,  

𝑔∗  is the global best, 𝑓 is the fragrance of the ith butterfly, 

and 𝑟 is a random number between 0, 1. During the local 

search. The local search refines solutions by moving 

butterflies toward randomly selected positions within the 

population [71][75]. The position update is expressed as 

follows: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡)𝑓𝑖  (17) 

Where 𝑥𝑗
𝑡,𝑥𝑘

𝑡  are positions of randomly selected butterflies. 

A switch probability 𝑝 determines whether each butterfly 

performs global or local searching. A switching probability 

(𝑃) determines whether a butterfly engages in global or 

local searching, enabling a dynamic balance between the 

two phases. 

𝑓 = 𝑐𝐼α (18) 

Where 𝑓 represents an attribute of the system, likely 

associated with the attractor or objective in the algorithm, 𝑐 

refers to how sensory input is processed or perceived, 𝐼 

denote the strength or fitness of the stimuli involved in the 

algorithm and 𝛼 is the sensitivity or response intensity of the 

butterfly (or system) to external stimuli [76]-[80]. This 

equation ensures that butterflies with higher fitness values 

exert stronger attraction, guiding the search for optimal 

solutions. The diagram in Fig. 4 illustrates the 

implementation of the Butterfly Optimization Algorithm 

(BOA) to optimize the Linear Quadratic Regulator (LQR) 

parameters for controlling a Brushless DC (BLDC) motor. 

The process begins by initializing a population of solutions, 

where each solution represents a candidate set of Q and R 

matrices for the LQR. The intensity of each solution is 

evaluated, and the perceived magnitude of its attractiveness 

is calculated based on specific parameters (𝑐, 𝑝, 𝛼) using 

equation (18). The algorithm then identifies the best-

performing solution (best butterfly). It balances exploration 

and exploitation by renewing the positions of additional 

solutions randomly using equation (17) or by approaching 

the best butterfly using equation (16). The ideal Q and R-

values are produced when the procedure has completed the 

maximum number of repetitions. The LQR controller 

governs the operation of the BLDC motor, which is made to 

operate by key parameters for efficiency, responsiveness, 

and stability. It takes these inputs and alters the performance 

of the motor to provide smoother operations with quicker 

reaction times. The diagram shows that a feedback loop 

system continuously monitors and refines the entire process. 

 

Fig. 4. Integrated LQR with BOA flowchart 

VI. SIMULATION AND RESULTS 

The system's responses were evaluated using MATLAB 

software. Fig. 5 and Table I illustrates the performance 

characteristics of the BLDC motor operating without a 

controller. 

The motor has a high overshoot and long settling time, 

indicating instability and heavy oscillations. Overshoot 

means the motor response goes well beyond the set value, 

which causes mechanical stress on the parts, accelerating 

wear and reducing the system's life. It is undesirable in 

applications that require great precision, such as robotic 

arms or computer numerical control machines, where 

precise positioning is needed. Additionally, the more the 

settling time increases, the more these are aggravated since 

the longer the time taken for a system to reach its steady 

state involves slower responses, increased energy use, and 

even vibration that can deteriorate the performance. 

Combining all these factors renders such a motor unsuitable 
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in systems needing fast and accurate control—for instance, 

drones, electric vehicles, and high-speed industrial plants. 

To overcome these limitations, there is a need for a robust 

control strategy that will assure stability, provide minimum 

overshoot, and be highly efficient for demanding 

applications. 

 

Fig. 5. The response of BLDC motor without controller 

TABLE I.  RESPONSE PARAMETERS OF BLDC MOTOR WITHOUT    

CONTROLLER 

Parameters Value 

Rise time (sec) 0.3459 

Settling time(sec) 7.7440 

Overshoot 63.6296 

 

Given instability, an LQR was designed to improve the 

response of the BLDC motor. The performance of the LQR 

controller is vastly dependent upon the proper tuning of 

matrices Q and R. Tuning is a compromise between the 

minimization of state deviation and the limitation of control 

effort. Tuning was performed in MATLAB using the 

iterative method to refine the values for the better response 

of the BLDC motor. The final parameters used in the design 

were:               Q=[
10 0
0 1

]    and R=1.4583 

The corresponding gains derived from these matrices 

were: 

K1=1.8393 and K2=0.0300. 

Fig. 6 depicts the impact of incorporating the LQR 

controller, which significantly enhances the motor’s 

response.  

 

Fig. 6.  Step response of LQR controller with BLDC motor 

The LQR controller reduced the overshoot from 63.6296 

when no controller was used down to 23.9479, an 

improvement of 62.3%. That will limit the mechanical stress 

on the motor and improve its reliability, extending its 

lifetime. The LQR controller reduced the settling time from 

7.7440 seconds without control to 2.4857 seconds, which is 

a good improvement of 68% in the settling time. The 

system's efficiency is increased with faster stabilization, 

which is quite helpful for high-speed applications such as 

robotics and automated processes. The integrated overshoot 

and settling time improvement alone recorded notable gains 

in the system's control precision and stability. The response 

will be much smoother and more reliable in motor functions 

that fit application requirements, needing consistent and 

robust performance. Overall, the results have pointed 

towards the effectiveness of the LQR controller in 

optimizing the dynamics of a BLDC motor. While 

substantial improvements are found, the approaches for 

advanced optimization-employing metaheuristic algorithms 

such as SCSO can achieve better performance gains to 

satisfy even more stringent application requirements. Table 

II summarizes the key metrics achieved with the LQR 

controller. 

TABLE II.  RESPONSE PARAMETERS OF LQR CONTROLLER 

Parameters Value 

Rise time(sec) 0.4403 

Settling time(sec) 2.4857 

Overshoot 23.9479 

Cost function 1.8393 

 

As illustrated in Fig. 7, integrating SCSO with LQR 

significantly enhanced the motor's response metrics. The 

LQR controller, optimized by applying the SCSO algorithm, 

greatly enhances BLDC motor performance. Within the 

LQR framework, Q and R matrices were fine-tuned to reach 

the optimal balance between the state deviations and control 

effort using the SCSO algorithm. Initial populations are 

designed, and each solution represents the candidate values 

of Q and R matrices. It further sets the SCSO parameters: 

population size 20, maximum iteration 50, and search range 

from 0 to 360° as settings for guiding the optimization in a 

proper way. Each candidate solution is measured with 

respect to a cost function, which incorporates relevant 

performance metrics, such as overshoot, settling time, and 

control effort. Candidate positions are updated in the 

algorithm, balancing the exploration for new solutions and 

refinement in existing solutions. This iterative process 

continues to either reach the maximum iterations or an 

acceptable cost function value as specified by the 

termination condition. The values of Q and R that are 

obtained as a result of this procedure are then used to set the 

gains of the LQR controller. The integration of the SCSO 

algorithm with the LQR controller, which highly optimizes 

Q and R matrices, gave a considerably high-performance 

improvement to BLDC motor performance. The he 

following optimized derived gains: K1 = 3.6388 and K2 = 

0.2843 with optimal value of Q=[
9.8322 0.0347

 0.03180 3.2817
] , and 

R=0.5. This led to the reduction of overshoot from 23.947 to 

5.7441, an improvement of 91% over the uncontrolled 

system. Again, the settling time decreased from 2.4857 
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seconds to 1.7582 seconds, hence an improvement of 

77.2%, while the cost function dropped to 0.3376; hence, a 

very efficient control system.  

  

Fig. 7. Step response of tuned LQR controller using the SCSO  

These improvements make the LQR-SCSO method 

suitable for precision and stability applications, including 

robotics and electric vehicles. The parameter response of the 

optimal control system detailed in Table III. 

TABLE III.  RESPONSE PARAMETERS OF LQR CONTROLLER WITH SCSO 

ALGORITHM 

Parameters Value 

Rise time(sec) 0.5988 

Settling time(sec) 1.7582 

Overshoot 5.7441 

Cost function 0.3376 

 

The LQR controller improved with the BOA 

optimization algorithm, significantly enhancing the 

performance of the BLDC motor. In the framework of LQR, 

Q and R matrices were optimized using the Butterfly 

Optimization Algorithm to achieve an optimal tradeoff 

between state deviations and control effort. The 

optimization process began with initializing a population of 

solutions where each candidate represents the potential 

values for the Q and R matrices. BOA parameters will be 

set, including the population size of 20, the maximum 

number of iterations of 50, and control parameters 

concerning attraction and navigation. 

A cost function has been developed for each solution, 

which envelops all the important measures: overshoot, 

settling time, and control effort. The BOA algorithm is a 

nature-inspired technique that models the foraging behavior 

of butterflies and strikes a balance between local and global 

searches in refining the solutions iteratively. It updates 

candidates' positions based on attraction and fitness values 

until an optimal solution is obtained. Once the termination 

criterion—minimal cost or maximum iterations—is 

satisfied, the LQR controller is configured using the 

optimum Q and R matrices: The integration of BOA with 

LQR brought significant enhancements to the motor's 

response metrics, as illustrated in Fig. 8. 

 

Fig. 8. Step response of tuned LQR controller using the BOA  

This demonstrates that with the BOA in combination 

with the LQR controller, the overshoot has been notably 

reduced to 8.3% compared to the very high value of 

23.9479% for only LQR and shows a marked improvement. 

Similarly, the settling time, which is reduced from 2.4857 

seconds in the case of an LQR controller, goes down to 1.92 

seconds, demonstrating much improvement in stability and 

response for the system. Besides these, the cost function is 

minimized to 0.4500, proving how efficiently the BOA will 

work in optimizing the control strategy—the optimized 

response parameters by using the control systems techniques 

explained in Table IV and Fig. 9. 

TABLE IV.  RESPONSE PARAMETERS OF LQR CONTROLLER WITH SCSO 

ALGORITHM 

Parameters BLDC LQR LQR-BOA LQR-SCSO 

Rise time(sec) 0.3954 0.4403 0.4503 0.5988 

Settling time(sec) 7.7440 2.4857 2.4361 1.7582 

Overshoot 63.6296 23.9479 20.76 5.7441 

Cost function --- 1.8393 0.8736 0.3376 

 

Comparing the performance of LQR-BOA to that of 

LQR-SCSO, it goes without saying that the LQR optimized 

through SCSO outweighs BOA on those significant metrics. 

In summary, the SCSO-based design ensured a better 

overshoot reduction of 5.7441 as opposed to the 8.3 

achieved by BOA and thus has an edge over the 

minimization of transient deviations. Similarly, the settling 

time achieved with SCSO was 1.7582 seconds, notably 

faster than the 1.92 seconds recorded with BOA, 

emphasizing quicker stabilization and responsiveness. 

Although BOA achieved a slightly higher cost function 

value of 0.4500 compared to 0.3376 with SCSO, the overall 

system performance with SCSO is more balanced and better 

suited for precision-demanding applications. LQR-SCSO 

emerges as the superior optimization strategy, particularly 

when prioritizing overshoot and settling time as key factors 

in system performance, positioning it as the optimal 

approach for dynamic, high-speed tasks. The results confirm 

that LQR-SCSO outperforms other optimization strategies 

when reducing overshoot and settling time, validating its 

superior performance in dynamic and high-performance 

scenarios. 
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Such improvements emphasize the robustness and 

efficiency of LQR-BOA, making it a promising method for 

control optimization tasks that demand precision and fast 

stabilization, including but not limited to autonomous 

systems and industrial automation. Nevertheless, the 

efficiency of the algorithm could also be influenced by 

different scenarios such as the starting configuration and the 

dynamic behavior of the environment, which may require 

additional investigations and tuning of the parameters to 

calibrate it for various operating conditions shown in Table 

IV. 

 

Fig. 9. Step response of BLDC motor, and the optimize control systems 

responses 

VII. CONCLUSION 

In the present study, this research proposes a control 

system for the BLDC motor that incorporates the SCSO 

algorithm with modifications of LQR. Further, the results 

distinctly show the improvement in settling time response 

preprocessing through the use of SCSO—that is, faster 

stabilization and finer precision when compared to a 

traditional LQR controller. Optimized controllers reduced 

settling time by 77.2% and reduced cost function to 0.3376, 

while overshoot was reduced by 91%. These improvements 

underline the practical benefits of the proposed approach 

and make it a transformative solution for everything from 

consumer to industrial applications, given its simplicity and 

efficiency. 

A comparative analysis with the Butterfly Optimization 

Algorithm (BOA) further highlights SCSO's advantages. 

The SCSO-based LQR achieved a lower overshoot of 

5.7441%, compared to 8.3% with BOA, and demonstrated a 

faster settling time at 1.7582 seconds versus 1.92 seconds 

for BOA. Although BOA exhibited a slightly higher cost 

function efficiency (0.4500 compared to 0.3376 for SCSO), 

the overall performance metrics favor SCSO for 

applications requiring high precision and rapid response. 

The novelty in this work is the integration of SCSO 

algorithms with LQR for the control of BLDC motors, with 

significant advances compared to conventional methods and 

other optimization techniques. These results show the 

broader impact of improved performance and energy 

efficiency in advanced robotics, electric vehicles, and 

automated systems applications. The study does mention 

some limitations of this study that might give warrant to 

other potential future research involving the SCSO 

algorithm computation cost and initial sensitivity, not 

mentioning robustness for all varieties of environmental or 

operational conditions regarding the controller in 

perspective. These will ensure the reliability and 

adaptability of the method in real situations. 

Future research should also focus on the quest for 

adaptive optimization techniques, such as reinforcement 

learning or neural networks, in order to render controllers 

more flexible and fault-hard. Besides, the proposed system 

needs implementation and testing under real-time conditions 

in applications like grid-connected systems for the 

realization of proper implementation features. The research 

work can be invaluable for further advancements in control 

system technologies and power system management. 
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