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Abstract—Short-term load forecasting (STLF) is vital for 

grid stability and resource optimization for energy systems. 

Accurate forecasting helps maintain a stable power supply, 

reduce costs, and improve decision-making. Traditional 

convolutional neural networks (CNNs) capture local patterns 

well but struggle with long-term dependencies under fluctuating 

conditions. This study introduces an optimized Dilated 

Convolutional Neural Network (DCNN) to enhance accuracy in 

short- and long-term load forecasting. The key contribution is a 

new DCNN framework that expands the receptive field without 

adding computational complexity, effectively capturing multi-

level temporal dependencies. This improves performance, 

stability, and accuracy in volatile conditions. The methodology 

applies dilated convolution techniques to a real-world electricity 

load dataset with 13,440 hourly data points. Preprocessing 

includes normalization and outlier removal. Hyperparameter 

tuning optimizes dilation rates, kernel sizes, and learning rates. 

Results show that the DCNN outperforms traditional models, 

achieving the lowest Mean Absolute Percentage Error (MAPE) 

of 0.0096. These results surpass CNN (MAPE: 0.0116), GRU 

(MAPE: 0.0102), and Long Short-Term Memory (LSTM) 

(MAPE: 0.0272) models. The DCNN also maintains efficiency 

and stability with volatile data. In conclusion, optimized dilated 

convolution techniques significantly enhance load forecasting, 

offering scalable, robust solutions for modern energy 

management systems requiring fast, accurate, and reliable 

predictions. 

Keywords—Dilated Convolution; Load Forecasting; Deep 

Learning; Energy Management; Time Series. 

I. INTRODUCTION 

STLF plays a pivotal role in the operation and 

management of energy systems, ensuring grid stability and 

optimizing resource allocation. Accurate STLF enables 

energy providers to maintain a reliable power supply, reduce 

operational costs, and make informed decisions in energy 

distribution. The growing integration of renewable energy 

sources and the increasing complexity of modern power grids 

have heightened the demand for precise and efficient 

forecasting models. Researchers and engineers have 

developed various forecasting methods to meet this demand, 

from traditional statistical techniques to advanced artificial 

intelligence-based approaches. Conventional statistical 

models, such as the dynamic average method [1]-[10], the 

ARIMA Sliding Average Integrated Regression Model [11]-

[16], and the linear regression model [17]-[26], are favored 

for their simplicity and interpretability. While these models 

perform well with continuous, consistent time-series data, 

they struggle with irregular fluctuations and nonlinear 

relationships, limiting their effectiveness in dynamic energy 

environments. 

Advancements in deep learning have brought significant 

improvements to load forecasting. Models based on CNNs 

[27]-[41] and recurrent neural networks (RNNs) [42]-[50], 

including variants like LSTM [51]-[74] and Gated Recurrent 

Unit (GRU) [75]-[82], have gained considerable attention. 

RNNs and LSTMs are adept at processing long data 

sequences and capturing temporal dependencies, but they are 

computationally intensive and prone to overfitting without 

extensive datasets. Conversely, CNNs excel in feature 

extraction for short-term time-series data but face limitations 

in capturing multiscale patterns and long-term dependencies 

due to their restricted receptive fields, affecting forecasting 

accuracy in highly variable conditions. The Dilated 

Convolution technique has emerged as a promising solution 

to address the limitations of traditional CNNs. By expanding 

the receptive field without increasing computational 

complexity, dilated convolution enables models to capture 

broader temporal dependencies in time-series data. This 

capability is especially advantageous for load forecasting, 

where maintaining accuracy amid large and unstable 

fluctuations is crucial. The technique meets the stringent 

demands of modern energy management systems by offering 

both efficiency and robustness. 

This study introduces an innovative application of Dilated 

Convolution Techniques in short-term load forecasting, 

conducting a comparative analysis with traditional CNN, 

GRU, and LSTM models. The analysis focuses on key 

performance metrics, including forecasting accuracy, 

computational efficiency, and model stability. Additionally, 

the study evaluates the robustness and scalability of the 

Dilated Convolution approach using a real-world electricity 

load dataset. The primary contribution of this research is 

developing an optimized DCNN model that significantly 

enhances forecasting accuracy, reduces computational costs, 

and improves model stability under fluctuating load 

conditions. By addressing gaps in existing forecasting 

methods, this study highlights the potential of Dilated 

Convolution Techniques to deliver fast, accurate, and reliable 

predictions, paving the way for broader applications in 

dynamic and intelligent energy management systems. 
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Despite advancements in CNN-based forecasting 

methods, existing models struggle with capturing long-term 

dependencies and adapting to dynamic load fluctuations due 

to limited receptive fields. Although dilated convolutions 

help address these issues, optimizing their performance for 

large-scale, real-world datasets remains challenging. This 

study aims to bridge this gap by presenting an optimized 

Dilated Convolution Technique that balances computational 

efficiency with forecasting accuracy, offering a robust 

solution for dynamic energy environments. However, 

potential limitations include performance trade-offs with 

massive datasets and sensitivity to hyperparameter tuning, 

such as dilation rates and filter sizes. Recognizing these 

challenges ensures a balanced assessment of the technique's 

capabilities, enhancing its credibility and applicability across 

diverse real-world forecasting scenarios. 

II. THEORETICAL BASIS 

A. Short-Term Load Forecasting 

Short-term load forecasting predicts electricity load 

demand over a short period, usually from a few minutes to a 

week. This forecast plays an essential role in the power 

system, helping to adjust supply and demand, optimize 

operating costs, minimize risks, and ensure energy security. 

Many factors, such as weather, time of day, day of the week, 

and socio-economic events, often influence load demand. 

Therefore, STLF requires a forecasting model capable of 

capturing complex relationships and rapidly changing time 

series data. Traditional methods for STLF include linear 

regression, autoregressive integrated moving average model 

(ARIMA), and generalized nonlinear regression (GLM) 

model. However, these methods are limited in predicting time 

series that are nonlinear and irregular. With the development 

of deep learning techniques, neural networks and machine 

learning-based models have shown more powerful predictive 

capabilities thanks to their ability to extract and learn from 

complex data automatically. 

B. Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are a deep 

learning model designed explicitly for processing image data, 

with widespread applications in computer vision such as 

facial recognition [83], image classification [84], and object 

detection [85]. The structure of CNNs consists of four main 

components: the convolutional layer, the activation layer, the 

pooling layer, and the fully connected layer [86]. 

Convolutional Layer: A filter (or filters) is slid through 

the input image to create a featured map in a convolutional 

layer. Each filter is small (3x3 or 5x5) and is applied to the 

entire input image to create a new featured map. The 

mathematics of this process can be represented as follows: 

For the input image I and filter F, the characteristic map is 

calculated by the convolutional product:  

𝑆(𝑖, 𝑗) = (𝐹 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐹(𝑚, 𝑛)𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)
𝑛𝑚

 (1) 

Where, S(i, j) is the value at position (𝑖, 𝑗) in the feature map, 

𝐹(𝑚, 𝑛) is the filter of size m x n, (𝑖 − 𝑚, 𝑗 − 𝑛)  represents 

the corresponding region in the input image. 

∗ denotes the convolution operation. 

This process enables CNNs to recognize spatial image 

features like edges, corners, and textures [87]. 

Activation Layer: After the filter is applied, the values on 

the characteristic map are passed through a nonlinear trigger 

function, usually ReLU (Rectified Linear Unit). The ReLU 

function is defined as:  

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2) 

Where, 𝑥 is the input of the activation function, which selects 

the more excellent value between 0 and 𝑥. If 𝑥 is less than 0, 

the output will be 0; if 𝑥 is greater than 0, the output will 

remain 𝑥. 

The ReLU function enhances the neural network’s ability 

to learn nonlinear features while reducing the vanishing 

gradient problem, making the model more efficient during 

training. 

This is beneficial for mitigating the vanishing gradient 

problem, thereby speeding up the training process [88]. 

Pooling Layer: Pooling typically uses max pooling or 

average pooling to reduce the spatial size of featured maps, 

highlight essential features, and reduce the number of 

parameters. Maximum compounding is defined as: 

𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥𝑘,𝑙∈𝑤𝑖𝑛𝑑𝑜𝑤  𝐼(𝑖 + 𝑘, 𝑗 + 𝑙) (3) 

Where, 𝐼(𝑖 + 𝑘, 𝑗 + 𝑙)  is a small region in the feature map, 

the window refers to the pooling region (e.g., 2×2 or 3×3). 

Max Pooling ensures that the most essential features in an 

image are retained while reducing noise. This allows CNNs 

to detect objects regardless of variations in scale or position 

[89]. 

Fully Connected Layer: Data from the fully connected 

layer is flattened and fed into one (or more) fully connected 

layers. Each neuron in this layer is connected to all the 

neurons in the previous layer, each with its weight. The 

output of this class is:  

𝑦 = 𝑊𝑥 + 𝑏 (4) 

Where, 𝑥 is the input from the previous layer. 𝑊 is the 

weighted matrix, and 𝑏 is the bias vector. 

The fully connected layer often uses the Softmax function 

for multi-class classification tasks, particularly in image and 

object classification [84]. 

C. Dilated Convolutional Neural Network 

The DCNN is a variant of CNN designed to extend the 

range of recognition without increasing the number of 

parameters. Dilated convolution is a technique that uses a 

filter with a distance (dilation) between points in a filter. 

Precisely, this distance is adjusted by the dilation_rate 

parameter, allowing the filter to "look further" in the input 

data without increasing the filter size. With dilated 

convolution, each filter can reach data points at greater 

distances, helping to capture long-term patterns in the time 

series. This feature is particularly useful in load forecasting, 
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where demand may depend on long-cycle patterns. Another 

advantage of dilated convolution is that it helps maintain the 

resolution of the input data, as there is no need to resort to 

pooling classes that lose details.  The structure of DCNN 

usually consists of multiple expansion product layers with 

increasing 'dilation_rate' values in successive layers, helping 

the model to capture features at various levels in the time 

series. 

For a traditional convolutional product, the output at the 

location can be calculated as: 𝑦[𝑖] 

𝑦[𝑖] = ∑ 𝑥[𝑖 + 𝑘]. 𝑤[𝑘]

𝐾

𝑘=1

 (5) 

For expansion condensation, we use a dilation factor d to 

widen the distance between the sampling points in the filter. 

The product of expansion in position will be calculated using 

the formula: 𝑦[𝑖] 

𝑦[𝑖] = ∑ 𝑥[𝑖 + 𝑑. 𝑘]. 𝑤[𝑘]

𝐾

𝑘=1

 (6) 

With, 𝑥 is the Input, 𝑊 is the filter or kernel with size 𝐾, 𝑖 is 

the Position of the output 𝑦, 𝑑 the dilation rate, which is a 

positive integer. When 𝑑 = 1, the expansion conjugation 

product becomes a regular convolutional product. 

D. Evaluation Criteria For Power Load Forecasting 

Accurate evaluation of power load forecasting models is 

critical in optimizing energy management and ensuring the 

reliability of modern power grids. Metrics such as Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and MAPE are commonly 

used to assess forecasting accuracy. Additionally, a recent 

study by Schreck et al. [90] highlights that MAPE, MAE, and 

RMSE are key evaluation metrics widely used in power load 

forecasting research for Local Energy Markets. 

MAE: calculates the average magnitude of forecast 

errors, expressed in absolute terms. It is simple to compute 

and unaffected by outliers. It also provides insights into the 

average deviation in measurable units such as megawatts 

(MW). 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (7) 

MSE: Emphasizes more significant errors by squaring them, 

making it practical for identifying and minimizing substantial 

deviations. However, its unit (MW2) can reduce 

interpretability. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 (8) 

RMSE: The square root of MSE, brings the error metric back 

to the original unit (MW). It balances sensitivity to significant 

errors with better interpretability, making it a popular choice 

for assessing overall forecasting performance. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

  (9) 

MAPE: Normalizes errors as percentages of the actual values, 

making it helpful in comparing datasets with varying scales. 

It is particularly effective for evaluating performance across 

datasets with fluctuating power demands. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖

|

𝑛

𝑖=1

  (10) 

Multiple error metrics, such as MAE, MAPE, MSE, and 

RMSE, form a comprehensive framework for evaluating the 

performance of power load forecasting models. Each metric 

captures unique aspects of model accuracy, contributing to a 

holistic understanding of forecasting performance. MAE and 

MAPE are particularly effective for measuring average 

forecast errors 

III. SUGGESTED METHODOLOGY  

A. Overview of the Recommendation Method 

The proposed method in this study is to use a DCNN to 

predict short-term loads, taking advantage of the ability to 

expand the receiving field without increasing the number of 

parameters. DCNN makes it possible for forecasting models 

to learn both short-term and long-term patterns in the load 

data series, improving accuracy compared to traditional 

methods. The DCNN model will consist of multiple 

expansion product layers with incremental dilation_rate 

values to optimize the ability to learn from the data. In 

addition, the model will be refined, and the forecast 

efficiency through the MAPE index 

B. Structure of the DCNN Model with the Proposed Method 

The constructed model used in the paper is structured as 

follows: Two-Layer Convolution 1D (Conv1D). The first 

layer uses 32 filters with a kernel size of 2 and an expansion 

(dilation_rate) ratio of 2, which allows for an extended 

sensing range, helping to detect samples with longer 

distances in the data. The second layer has 64 filters, using a 

size two kernel with an expansion ratio of 4 to learn more 

complex relationships. Both classes use the ReLU (Rectified 

Linear Unit) trigger function. After the convolution layers, 

the flattened layer flattens the output into a one-way vector, 

preparing for fully connected layers. This is followed by a 

Dense class with 64 neurons, which uses the ReLU trigger 

function, which helps the model learn nonlinear features, and 

finally, a Dense class with one output neuron, which is 

suitable for the problem of predicting continuous values. 

The model is compiled with the Adam optimizer, an 

efficient and popular deep learning algorithm, and the MSE 

loss function suitable for regression problems. Metric MAE 

is used to evaluate performance during training. The model is 

trained with X_train and y_train data in 100 epochs and uses 

X_val and y_val data to assess the validation set. With this 
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design, the model effectively leverages sequential features in 

the data and optimizes predictability through fully connected 

convolution layers. 

C. Algorithmic Flowchart 

The flowchart in Fig. 1 outlines implementing and 

evaluating a forecasting model, explicitly utilizing a 

Convolutional Neural Network (CNN) with dilated 

convolution techniques for electrical load forecasting. The 

process begins with collecting and preprocessing input data, 

including cleaning, normalization, or transformation into a 

suitable model training format. The CNN model is then 

constructed with dilated convolution layers, where the 

dilation technique allows the model to expand the receptive 

field of the filters without increasing the kernel size. This 

enables the model to capture long-range dependencies in 

time-series data effectively. The data is split into test (X_test, 

y_test), training (X_train, y_train) and validation (X_val, 

y_val) datasets. 

The training process is carried out using the training 

dataset, while the model's performance is periodically 

evaluated on the validation dataset. Dilated convolution 

layers play a critical role in extracting complex temporal 

features and long-term patterns that conventional convolution 

layers may overlook. Once training is completed, the model 

generates predictions on the test dataset (X_test). The 

forecasting results are assessed using the MAPE. If the 

MAPE does not meet the threshold, the process loops back to 

improve and optimize the model. When the MAPE satisfies 

the predefined criteria, the final results are produced. The 

flowchart in Fig. 1 demonstrates a systematic approach to 

developing an accurate and optimized forecasting model, 

emphasizing the critical role of dilated convolution in 

learning intricate data relationships with computational 

efficiency. 

Data Collection

 Input Data 
Processing

Training 
Data 

X_train, 
y_train

Test Data 
X_test
y_test

Validation 
Data X_val, 

y_val

Build CNN Model

Initialize 
Dilated 

Convolution 
Layer

Compile and Train 

Forecast
X_test

Check Error
Y_test

Result

Start Start

MAPE

Validation 
Data X_val, 

y_val

Y

N

 

Fig. 1. Algorithm flowchart 

IV. RESULT AND DISCUSSION 

A. Data 

Table I summarizes the Queensland electricity demand 

dataset, which records half-hourly demand from July 1, 2019, 

offering valuable insights for STLF. Structured with 4,745 

samples, the dataset employs a sliding window approach to 

generate sequential input-output pairs, where each input X 

consists of 7 consecutive demand values, and the output Y 

represents the next demand value. The dataset is split into 

training, testing, and validation sets, with proportions of 64%, 

20%, and 16%, respectively. It has been reshaped to be 

compatible with deep learning architectures such as LSTM 

and CNN, ensuring the temporal structure of the data is 

preserved for capturing dependencies in electricity demand. 

This processed dataset facilitates accurate STLF and enables 

practical applications in energy management and grid 

optimization, particularly for predicting demand fluctuations 

and ensuring grid stability, serving as a robust foundation for 

developing intelligent energy systems tailored to 

Queensland's needs. 

TABLE I. HISTORICAL LOAD DATA IN QUEENSLAND 

Date 00:00 00:30 
………

…. 
23:00 23:30 

1/1/19 5507.31 5362.77 
………

…. 
6024.93 5841.3 

2/7/19 5620.65 5467.6 
………

…. 
6124.78 5932.52 

………

…. 

…………

…. 

………

…. 

………

…. 

………

…. 

………

…. 

6/10/19 5380.77 5248.99 
………

…. 
5649.78 5856.31 

7/10/19 5443.88 5300.68 
………

…. 
6119.54 5883.86 

 

B. Model Specifications 

Table II summarizes the configurations and parameters of 

the models, including ARIMA, CNN, Dilated CNN variants, 

LSTM, and GRU. The table details filters, kernel size, 

dilation rates, activation functions, dense units, loss 

functions, optimizers, and epochs used for training, clearly 

comparing the settings across models. 

TABLE II. MODEL PARAMETERS 

Model ARIMA LSTM GRU 

Parameters p=1, d=1, q=1   

Loss Function N/A MSE MSE 

Optimizer N/A Adam Adam 

Epochs N/A 100 100 

Activation  ReLU ReLU 

Dense Units  1 1 

Units  50 50 

Model CNN DCNN1 DCNN2 DCNN3 

Loss Function MSE MSE MSE MSE 

Optimizer Adam Adam Adam Adam 

Epochs 100 100 100 100 

Filters 32 32 32, 64 32, 64, 16 

Kernel Size 2 2 2 2 

Dilation Rate 1 2   

Activation ReLU ReLU ReLU ReLU 

Dense Units 64 64 64 64 

Dilation Rates   2, 4 1, 2, 2 

Units 50    

 

C. Result 

Fig. 2 presents the execution time for the seven models: 

ARIMA, CNN, LSTM, GRU, DCNN1, DCNN2, and 

DCNN3. The runtime comparison highlights significant 

differences in computational efficiency among these models. 
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GRU is the slowest model, taking 53.33 seconds to 

execute due to its recurrent architecture and long-term 

memory dependencies. Similarly, LSTM follows closely 

behind, requiring 50.51 seconds, as it also relies on 

sequential processing, which increases computational cost. 

In contrast, ARIMA is the fastest model, completing 

execution in just 0.38 seconds, making it the most 

computationally efficient choice. This result indicates that 

ARIMA is well-suited for real-time applications with 

necessary quick predictions. 

Among the deep learning models, DCNN1, CNN, and 

DCNN2 offer moderate execution times, with DCNN1 

taking 28.15 seconds, CNN requiring 31.14 seconds, and 

DCNN2 completing execution in 32.22 seconds. These 

models balance efficiency with predictive power. 

Meanwhile, DCNN3 has a longer runtime of 42.85 

seconds, placing it between CNN-based architectures and 

recurrent models like LSTM and GRU. 

 

Fig. 2. Runtimes model 

Fig. 3 compares the actual load and forecasted values 

from the ARIMA, CNN, GRU, LSTM, and Dilated CNN 

models. The graph clearly illustrates each model's 

performance in tracking load data fluctuations. ARIMA 

(orange line) shows significant limitations, with a flat 

forecast line failing to reflect the actual data's peaks and 

troughs. This indicates that ARIMA is unsuitable for complex 

and non-linear fluctuating data and is better suited for linear 

time series or simple fluctuating patterns. CNN (blue line) 

improves short-term fluctuation capture compared to 

ARIMA but still exhibits deviations at the peaks and troughs 

due to its limited ability to remember long-term relationships 

in the time series. GRU (green line) and LSTM (purple line) 

demonstrate superior performance in load forecasting. GRU 

closely follows the peaks and troughs, thanks to its ability to 

learn short-term and long-term patterns. LSTM also captures 

complex patterns but may experience slight delays at specific 

peaks and troughs. The Dilated CNN versions (cyan, pink, 

and red lines) exhibit the best performance, accurately 

reflecting both short-term and long-term details in the data. 

The expanded receptive field of the network enables these 

models to maintain high accuracy without increasing the 

number of parameters. However, the dilation rate must be 

carefully adjusted to avoid missing short-term details. 

 

Fig. 3. The load forecasting chart of different models 

Fig. 4 presents the MAPE values of various forecasting 

models, including ARIMA, CNN, GRU, LSTM, and Dilated 

CNN versions, providing an overview of the performance of 

each model. MAPE is an index that measures the accuracy of 

forecasts, with lower MAPE values indicating higher 

accuracy. The analysis results reveal significant differences 

in performance among the models. The ARIMA model has 

the highest MAPE value, approximately 0.11, reflecting poor 

forecasting performance when applied to load data with 

complex and unstable fluctuations. It is the least efficient 

model among those tested, as ARIMA is better suited for 

linear or stable time series, while it struggles with strongly 

fluctuating load data. CNN (Convolutional Neural 

Network) shows better forecasting performance with a 

MAPE value of around 0.0116, significantly lower than 

ARIMA. This model performs more effectively when 

forecasting short-term cycles and local patterns in the data, 

thanks to the capabilities of the pooling layers. However, 

CNN is still not optimal compared to deep regression models 

like GRU or LSTM, better at capturing long-term 

relationships. GRU achieves a very low MAPE value, 

approximately 0.0102, demonstrating better forecasting 

performance than CNN and almost equivalent to Dilated 

CNN models. With its ability to retain long-term 

relationships, GRU performs well on highly volatile and 

complex load data, making it a suitable and practical choice 

for load forecasting applications. Meanwhile, LSTM has a 

higher MAPE value than GRU, approximately 0.0272. 

Although LSTM is renowned for memorizing long-term 

patterns, this model tends to be more complex and requires 

significant computational resources. The performance of 

LSTM in this case is inferior to GRU, potentially due to 

overfitting or unnecessary complexity for this dataset. 

Finally, Dilated CNN versions (Dilated 1, 2, and 3 CNN) 

show the best forecasting performance with very low MAPE 

values. Specifically, Dilated 2 CNN achieves the lowest 

MAPE value of 0.0096, followed by Dilated 3 CNN at 0.0101 

and Dilated 1 CNN at 0.0108. The Dilated CNN versions 

effectively forecast short-term load data by expanding the 

receptive field without increasing the number of parameters. 

This allows the models to capture local and long-term 

patterns in the time series, providing the highest accuracy 

among the compared models. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 565 

 

Tuan Anh Nguyen, Improving Short-Term Electrical Load Forecasting with Dilated Convolutional Neural Networks: A 

Comparative Analysis 

 

Fig. 4. The MAPE values of the models 

D. Discussion 

• Computational Efficiency and Sensitivity to 

Hyperparameters 

Execution time is crucial in selecting the appropriate 

model for real-world applications. ARIMA has the fastest 

execution time (0.38 seconds) due to its simple linear 

structure with three parameters (p, d, q). However, this 

simplicity limits its handling of nonlinear and highly dynamic 

data. 

On the other hand, LSTM and GRU have the most 

extended execution times (50.51 seconds and 53.33 seconds, 

respectively) due to their sequential nature and memory 

retention mechanisms. These models consume significant 

computational resources and are highly sensitive to 

hyperparameters such as the number of hidden units, number 

of epochs, and optimizer settings. 

Meanwhile, CNN and its variants (DILATED CNN) 

demonstrate moderate execution times (28.15 - 42.85 

seconds), depending on the number of convolutional layers 

and dilation rate. These models are generally less sensitive to 

hyperparameters than LSTM and GRU, making them more 

stable during training. 

• Forecasting Accuracy Based on MAPE 

The MAPE is used to evaluate model accuracy, where 

lower MAPE values indicate higher accuracy. 

The results show that ARIMA has the highest MAPE, 

suggesting that while it operates efficiently, its forecasting 

accuracy is poor when dealing with nonlinear or highly 

volatile data. Therefore, ARIMA is not an optimal choice 

when high-precision forecasting is required. 

Among deep learning models, LSTM exhibits a higher 

MAPE than CNN and DILATED CNN, indicating that it may 

not be fully optimized for this forecasting task. Although 

LSTM performs well for long-term sequential data, it may 

struggle with short-term patterns and fluctuating data. 

In contrast, CNN and its DILATED CNN variants achieve 

the lowest MAPE values, demonstrating superior feature 

extraction capabilities. Specifically, DILATED CNN 

achieves the highest forecasting accuracy, leveraging dilated 

convolutions to capture long-range dependencies in the data 

without losing local information. 

• Main Findings of the Present Study 

The study highlights that DILATED CNN outperforms 

traditional models like ARIMA, CNN, LSTM, and GRU 

regarding forecasting accuracy. DILATED CNN’s ability to 

capture both short-term and long-term dependencies through 

expanded receptive fields has proven effective in managing 

volatile energy load data. 

• Comparison with Other Studies 

Our findings align with studies indicating that deep 

learning models, especially DILATED CNN, provide 

superior forecasting accuracy compared to previous research. 

Prior works [91] demonstrated similar trends where models 

incorporating dilated convolutions outperformed standard 

CNNs and RNN-based architectures in handling complex 

time-series data. 

In recent years, several studies have further supported 

these findings. For instance, a 2022 study on time-series 

analysis with smoothed CNNs found that CNNs could 

increase accuracy by up to 30% and train models twice as fast 

as other algorithms such as Recurrent Neural Networks 

(RNNs), GRUs, and LSTMs [92]. A 2023 review on deep 

learning models for time series forecasting highlighted that 

models incorporating dilated convolutions, such as Temporal 

Convolutional Networks (TCNs), have improved 

performance over standard RNN-based architectures in 

handling complex time-series data [93]. 

Furthermore, a 2024 study on leveraging hybrid deep 

learning models for enhanced multivariate time series 

forecasting proposed hybrid CNN-RNN and TCN-RNN 

models, significantly outperforming both baseline and state-

of-the-art models [94]. Moreover, a 2022 study introduced a 

hybrid Temporal Convolutional Network and Prophet model 

for time series forecasting, demonstrating that the proposed 

method was faster with similar forecasting accuracy 

compared to LSTM and RNN models [95]. 

These findings align with our results, reinforcing the 

conclusion that dilated CNNs offer superior forecasting 

accuracy and efficiency in handling complex time-series data. 

• Implications and Explanation of Findings 

The improved performance of DILATED CNN is 

attributed to its ability to maintain computational efficiency 

while expanding the receptive field, allowing for better 

capture of temporal dependencies. This makes it highly 

suitable for applications requiring fast, accurate load 

forecasting, particularly in dynamic energy environments 

with fluctuating demands. 

• Strengths 

This study presents several notable strengths. First, it 

comprehensively compares multiple forecasting models, 

including ARIMA, CNN, LSTM, GRU, and DILATED 

CNN, offering valuable insights into their performance 

across various metrics. The analysis highlights the 

differences in computational efficiency and forecasting 

accuracy and examines how each model handles dynamic and 

non-linear data. Additionally, the study integrates robust 

statistical validation techniques, such as ANOVA and 

Tukey’s HSD tests, to ensure the reliability and significance 
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of the results. This methodological rigor enhances the 

credibility of the findings and provides a solid foundation for 

future research. 

• Practical Applications 

Load forecasting models are valuable in theoretical 

research and are crucial in various practical applications, 

particularly in the energy sector. In power system 

management, short-term load forecasting helps optimize 

resource allocation and ensure grid stability, with DILATED 

CNN effectively handling volatile data and ARIMA suited 

for stable systems with linear trends. LSTM and GRU process 

long-term sequential data for renewable energy integration to 

capture generation cycles influenced by weather conditions. 

In industrial load management, CNN and DILATED CNN 

identify recurring consumption patterns and optimize energy 

use in complex production environments. ARIMA analyzes 

short-term price trends in energy market forecasting and 

pricing, while DILATED CNN handles complex, volatile 

market data for more accurate predictions. For smart cities, 

CNN and DILATED CNN analyze large IoT datasets to 

optimize public services like lighting and air conditioning in 

real-time. Lastly, LSTM and GRU accurately forecast load 

demand in microgrid management, enhancing energy storage 

efficiency and renewable energy distribution. These models' 

flexibility and accuracy make them essential for modern 

energy management systems. 

• Future Work and Recommendations 

Future work should incorporate these statistical tests to 

strengthen the reliability of model performance comparisons. 

Based on these findings, the following recommendations can 

be made: If speed is prioritized over accuracy, ARIMA is a 

suitable choice, especially for simple forecasting tasks or 

real-time applications where computational efficiency is 

more critical than precision. LSTM and GRU can offer better 

performance for modeling long-term sequential data but 

require more computational resources and careful 

hyperparameter tuning to minimize forecasting errors. CNN 

and DILATED CNN provide the best accuracy, with 

DILATED CNN being the most effective model due to its 

enhanced feature extraction through dilated convolutions. 

This makes DILATED CNN an ideal choice for complex 

forecasting tasks, mainly when dealing with highly volatile 

data with hidden patterns. 

Moreover, future research should focus on: 

- Applying these models to more extensive, real-world 

datasets with diverse features to evaluate their scalability 

and robustness. 

- Integrating additional external factors like weather data 

and economic indicators to improve forecasting accuracy. 

- Exploring hybrid models that combine the strengths of 

GRUs and DILATED CNNs to enhance accuracy and 

computational efficiency. 

- Investigating explainability techniques like SHAP 

(Shapley Additive exPlanations) or LIME (Local 

Interpretable Model-agnostic Explanations) to improve 

model interpretability. 

By addressing these areas, future studies can contribute to 

more robust, interpretable, and efficient forecasting models 

suitable for various applications. 

V. CONCLUSION 

Based on the model performance analysis, GRU and 

Dilated CNN are the most effective approaches for short-

term load forecasting, capturing nonlinear fluctuations with 

high accuracy and efficiency. With its simplified architecture, 

GRU optimizes computational resources while maintaining 

accuracy, making it ideal for real-world applications. Dilated 

CNN enhances feature extraction and long-term dependency 

modeling without increasing computational costs. 

However, each model has limitations—ARIMA struggles 

with nonlinear and volatile data, LSTM and GRU require 

extensive computational resources, and CNN is limited in 

capturing long-term dependencies. Selecting the appropriate 

model necessitates balancing accuracy, efficiency, and data 

complexity. 

This study highlights Dilated CNN’s superior 

forecasting accuracy and GRU’s efficiency, contributing to 

the theoretical foundation of load forecasting. However, 

sensitivity to data quality and hyperparameters remains a 

challenge. Future research should explore hybrid GRU-

Dilated CNN models, apply them to diverse datasets, and 

improve model interpretability using techniques like 

SHAP, ensuring robust and scalable forecasting solutions for 

real-world energy systems. 
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