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Abstract—The integration of deep learning technologies in 

object detection has significantly enhanced the capabilities of 

wheeled mobile robots, making them more efficient and 

intelligent in navigating complex environments. These 

technologies enable more accurate pattern recognition, 

adaptability to diverse environmental conditions, and improved 

autonomous decision-making capabilities. This study aims to 

explore the evolution and current trends in object detection for 

wheeled mobile robots, with a specific focus on the application 

of deep learning technologies as a foundational driver for system 

advancements. The objectives include analyzing the 

contribution of deep learning to improving object detection 

accuracy, system efficiency, and the robots' adaptability to 

dynamic environments. The methodology employed in this 

study is a Systematic Literature Review (SLR), comprising 

several key steps: formulating research questions, identifying 

relevant research sources, utilizing specific keywords for data 

collection, disseminating the gathered data, and analyzing the 

findings to address the research questions. Data is sourced 

exclusively from the Scopus digital database, focusing on 

publications from 2019 to 2024. The collected data, formatted in 

RIS, is subsequently analyzed and visualized using VOSviewer. 

The outcomes of this research include insights into the growth 

of research publications in recent years, the identification of key 

trends in object detection methodologies for wheeled mobile 

robots, the exploration of interconnections between critical 

concepts in the field, and the mapping of the knowledge network 

based on relevant keywords. Special emphasis is placed on the 

pivotal role of deep learning technologies in driving object 

detection advancements, including accuracy and system 

efficiency enhancements. 

Keywords—Mobile Robots; Object Detection; VOSViewer; 

Review Paper. 

I. INTRODUCTION  

The rapid advancements in artificial intelligence and 

robotics have significantly expanded the capabilities of 

autonomous systems, particularly in object detection for 

wheeled mobile robots. Object detection, a fundamental 

aspect of computer vision, enables machines to identify and 

recognize objects within images or videos [1]. Wheeled 

mobile robots are increasingly utilized across various sectors, 

including logistics, manufacturing, and public services, 

where their ability to accurately detect surrounding objects is 

crucial for operational efficiency and safety [2]. Deep 

learning has emerged as a powerful tool in this domain, 

offering high-accuracy solutions for object detection through 

models such as Convolutional Neural Networks (CNN) and 

their derivatives [3]. 

A recent study [4] proposed an enhancement to the 

YOLOv4 algorithm by replacing CSPDarknet53 with a 

pruned GhostNet and applying depthwise separable 

convolution for improved efficiency. The dataset used was 

The DJI Robomaster Objects in Context (DJI ROCO), which 

features complex scenarios. The algorithm achieved a 

precision of 88.89%, recall of 87.12%, F1-score of 88.00%, 

and an mAP (0.5) of 86.84%, with a model size of 42.5 MB, 

making it lighter than the original YOLOv4. Despite its 

efficiency, the approach requires further optimization for 

real-time detection and seamless integration with robotic 

systems. Additionally, a study [5] presents a CNN-based 

method for detecting and characterizing cabbage and red 

cabbage for robotic fertilization in strip cropping. 

Implemented in ROS, the system integrates image 

acquisition, processing, and robotic trajectory planning. The 

dataset comprises 1,638 images (1280x960 pixels) collected 

from experimental fields, augmented to improve model 

robustness under varying lighting conditions. The trained 

CNN achieved an average accuracy of 90.5% and less than 

3% validation error, outperforming conventional methods 

with an efficiency of 90.5% versus 50.6%. Limitations 

include potential constraints in detecting other plant types 

and applicability to low-power hardware, suggesting further 

research for broader integration. Recent studies  [6] on object 

detection have shown its critical role in enabling autonomous 

systems to perceive and interact with their environment. This 

study leverages monocular vision and deep learning through 

Convolutional Neural Networks (CNNs) for autonomous 

navigation in mobile robots. The proposed model was trained 

on a custom dataset captured using a low-cost RGB-D sensor 

from a Hand-Controlled Mobile Robot (HCMR) in diverse 

indoor settings. The model achieved a mean accuracy of 77%, 

comparable to more expensive systems like Microsoft 

Kinect. While demonstrating effective low-cost navigation, 

limitations include offline training not suited for real-time use 

and discrete decision-making that may not fully address 

continuous state space requirements. Another study [7] 

combined Brain–Computer Interface (BCI) with object 

detection for robotic grasping, utilizing Overlapping Object 

GraspNet (OOGNet) to achieve a mAPg of 80.4%. Despite 

its promising results, the system requires extensive user 
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training and struggles with performance variability in 

unstructured environments. 

Another study [8] presents an innovative brain-actuated 

robotic arm system designed for autonomous 3D object 

grasping using a Brain–Computer Interface (BCI) based on 

EEG signals, specifically motor imagery and P300 patterns. 

The system integrates a 6-DOF robotic arm with an RGB-D 

camera and employs the Overlapping Object GraspNet 

(OOGNet) for accurate object detection and grasp prediction 

in cluttered environments. A custom Multi-Object Grasping 

Dataset, consisting of 784 annotated images, was developed 

to train the model. The system achieved high performance, 

with EEG classification accuracies of 95.58% (MI) and 

96.3% (P300), and an mAPg of 80.4% for grasp detection, 

outperforming traditional methods. Advantages include 

reduced cognitive load and efficient real-time operation, 

although limitations persist, such as performance challenges 

in diverse environments and the need for user training. 

The next study [9] classification and state recognition of 

agricultural robots using multi-source vibration data. The 

methodology integrates denoised and non-linearly enhanced 

vibration signals, processed via the Mallat wavelet algorithm 

and transformed into images using Gramian Angular 

Summation Fields (GASF). These images serve as input to an 

Attention-fused Residual Convolutional Neural Network 

(ANR-CNN), which utilizes channel and spatial attention 

mechanisms to enhance feature extraction. The model 

achieves a high classification accuracy of 92.35%, 

outperforming existing networks like GoogLeNet and 

ResNet50. While offering efficient real-time performance 

and robust accuracy, the approach's complexity and limited 

testing on diverse terrains highlight areas for further research 

and potential enhancement. These studies highlight the rapid 

progress in object detection for robotic applications while 

also revealing key limitations such as real-time processing 

challenges, adaptability to dynamic environments, and 

computational efficiency.  

However, this systematic review aims to provide a 

comprehensive overview of recent advancements in object 

detection for wheeled mobile robots utilizing deep learning 

techniques. To address these challenges, this systematic 

review aims to provide a comprehensive overview of recent 

advancements in object detection for wheeled mobile robots 

utilizing deep learning techniques. The primary objective is 

to analyze existing research, highlight emerging trends, and 

evaluate the latest methodologies in object detection for 

robotic applications. The research contribution is threefold:  

1. identifying key trends and challenges in recent object 

detection methods for wheeled mobile robots 

2. systematically reviewing state-of-the-art deep learning-

based approaches and their effectiveness,  

3. providing insights and recommendations for future 

improvements in real-time object detection and 

navigation strategies for autonomous robots. 

II. METHODS 

The methodology employed in this research is a 

systematic literature review (SLR) as shown in Fig. 1. SLR is 

a structured approach for locating, assessing, and analyzing 

all existing research pertinent to a specific research question, 

subject matter, or area of interest [10]. The second stage 

involves a search process to identify data that will be used for 

analysis as shown in Fig. 2 which is illustrates the systematic 

process used to search and collect relevant research articles 

from the Scopus digital database. The flowchart begins with 

the selection of a digital database, followed by the definition 

of search keywords to ensure that the retrieved literature 

aligns with the study's objectives. An initial search is then 

conducted, after which the effectiveness of the chosen 

keywords is evaluated. If the keywords are found to be 

ineffective, the process loops back to a refinement step where 

keywords are adjusted to improve search accuracy. If the 

keywords are effective, the relevant search results are 

collected, and the selected articles are extracted and 

downloaded in RIS format for further analysis. The flowchart 

visually represents the structured approach taken to ensure a 

systematic and reproducible literature review process. This 

structured methodology ensures that only high-quality and 

relevant research publications are included in the study, 

providing a solid foundation for analyzing trends in deep 

learning-based object detection for wheeled mobile robots. 

 

Fig. 1. SLR method 

 

Fig. 2. Search data flowchart 
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A. Research Question 

• RQ1: What research has been conducted on the topic of 

object detection for wheeled mobile robots using deep 

learning?  

• RQ2: How has the research on object detection for 

wheeled mobile robots using deep learning evolved over 

time? 

• RQ3: How many studies on object detection for wheeled 

mobile robots using deep learning were identified during 

the search process? 

B. Inclution & Exclution Criteria 

This stage aims to determine the data needed for this 

research, the following criteria were applied: 

● Publication year 2019 – 2024. 

● Focus on keyword object detection, mobile robot, deep 

learning. 

● Scopus Digital Database. 

● Only journal articles and conference papers were 

considered, while reviews, book chapters, and non-peer-

reviewed materials were excluded. 

C. Extraction Data 

In this stage, the data required to address the Research 

Question is identified. The data used in this study is in RIS 

format, which has been downloaded from the digital database 

Scopus, comprising a total of 327 data. 

D. Analysis Data 

At this stage, analyzing the collected data is essential to 

address the research questions. In this study, the researchers 

utilized VOSViewer software for data analysis. VOSViewer 

was employed for: 

• Keyword co-occurrence analysis to identify research 

trends. 

• Bibliographic coupling to explore relationships between 

studies. 

• Cluster visualization to categorize related topics. 

To ensure transparency and reproducibility, the 

VOSViewer parameters used in this analysis were explicitly 

defined. The threshold for keyword co-occurrence was set at 

a minimum of five occurrences, while the Association 

Strength method was applied for normalization. 

Additionally, the LinLog/modularity clustering algorithm 

was employed to effectively group related research topics, 

facilitating a clearer understanding of the field’s structure. 

By leveraging VOSViewer, this study systematically 

maps the research landscape, identifying existing trends, 

research gaps, and potential future directions. These findings 

contribute to a deeper understanding of the progression of 

object detection methodologies in mobile robotics. Future 

studies may consider integrating qualitative synthesis 

methods or meta-analysis techniques to further enhance the 

robustness and comprehensiveness of bibliometric insights. 

III. RESULTS AND DISCUSSION 

This section will present and discuss the findings related 

to object detection for wheeled mobile robots using deep 

learning, as outlined in the research questions for this 

systematic review. 

A. RQ1: Research Conducted to the Topic Object Detection 

for Mobile Robot Using Deep Learning 

Based on Fig. 3, Fig. 4, and Fig. 5, illustrate the research 

landscape on object detection for wheeled mobile robots 

using deep learning. The keyword analysis reveals a strong 

correlation between object detection, object recognition, 

mobile robots, and deep learning, as indicated by the larger 

circles in the visualizations. Additionally, related topics such 

as CNN, semantics, image processing, machine learning, 

intelligent robots, navigation, and autonomous mobile robots 

are identified as emerging subfields.  

These findings highlight the interdisciplinary nature of 

object detection in mobile robotics, demonstrating its 

relevance in various applications, including robotic vision, 

intelligent navigation, and autonomous decision-making. 

However, while deep learning has significantly improved 

object detection performance, challenges such as real-time 

processing constraints, dataset limitations, and model 

generalizability in dynamic environments remain critical 

concerns for researchers. 

 

Fig. 3. VOSViewer visualization of keyword "Object Detection" 

 

Fig. 4. VOSViewer visualization of keyword "Mobile Robots" 
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Fig. 5. VOSViewer visualization of keyword "Deep Learning" 

B. RQ2: Research on Object Detection for Wheeled Mobile 

Robots Using Deep Learning has Significantly Evolved 

Over Time 

Based on Fig. 6, Fig. 7, and Fig. 8, there is a yellow circle 

(yellow color gradient) indicating that the topic of Object 

Detection for Mobile Robots Using Deep Learning in 2022 is 

expected to continue evolving. The focus of this development 

will be on several key aspects, including visual simultaneous 

localization (SLAM) for real-time environment mapping, 

robot vision for enhancing scene understanding and 

perception, obstacle avoidance to improve autonomous 

navigation in dynamic environments, robot operating systems 

or seamless integration of deep learning models, semantic 

segmentation for object classification and contextual 

awareness, optical radar for depth perception and enhanced 

spatial understanding, object recognition and detection 

models to improve classification accuracy, and real-time 

processing for efficient deployment in edge devices. In other 

words, these topics will receive more attention in the context 

of changes and advancements in these fields from 2022 

onward. 

 

Fig. 6. Overlay visualization of keyword "Object Detection" 

 

Fig. 7. Overlay visualization of keyword "Mobile Robots" 

 

Fig. 8. Overlay visualization of keyword "Deep Learning" 

As outlined in Table I, various deep learning-based 

methods have been employed to enhance object detection 

performance in wheeled mobile robots. The application of 

algorithms such as YOLO, CNN, and EfficientNet has been 

observed across different contexts, including indoor service 

robots, agricultural automation, and security surveillance. 

YOLO has been widely adopted for real-time object detection 

due to its high inference speed, with some studies reporting 

accuracy rates of up to 99%. However, its performance is 

highly dependent on dataset availability and may degrade in 

complex environments with varying illumination conditions. 

Meanwhile, lightweight models such as MobileNet and 

EfficientNet offer a balance between accuracy and 

computational efficiency, making them suitable for mobile 

robotic platforms with limited processing power. Recent 

research has also explored hybrid approaches that integrate 

multiple deep learning techniques, including the combination 

of CNN with transformer-based architectures, to improve 

robustness against occlusions and environmental variations. 

Despite these improvements, ongoing challenges remain in 

ensuring model generalization, handling occlusions, and 

adapting to diverse environmental conditions. Addressing 

these issues is essential for further advancing the practical 

deployment of object detection models in mobile robotics. 
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C. RQ3: A Total of Studies on Object Detection for 

Wheeled Mobile Robots Using Deep Learning were 

Identified During the Search Process 

The density visualization shown in Fig. 9 presents a 

density visualization of research trends in object detection for 

wheeled mobile robots, highlighting the most frequently 

occurring keywords and their relationships. The bright 

yellow areas represent central research themes, including 

object detection, object recognition, deep learning, and 

mobile robots, which continue to be the primary focus of 

studies in this field. The green areas indicate moderate 

keyword density, where terms such as robot vision, learning 

systems, and intelligent robots remain relevant but receive 

comparatively less attention. In contrast, the dark blue 

regions signify less-explored topics with weaker connections, 

suggesting potential opportunities for future research. 

This analysis provides valuable insights into the evolution 

of research trends and identifies areas that warrant further 

exploration. One promising direction is the integration of 

transformer-based architectures, which have demonstrated 

superior performance in feature extraction and contextual 

understanding. Additionally, multimodal learning 

approaches that combine visual data with other sensory 

inputs, such as LiDAR and infrared, could enhance object 

detection capabilities in complex environments. Another 

critical area of interest is the development of adaptive 

learning models that can adjust to new environments with 

minimal retraining, thereby improving the robustness of 

object detection systems. Furthermore, optimizing deep 

learning models for real-time processing on embedded 

systems remains a significant challenge, requiring novel 

techniques to reduce computational overhead while 

maintaining high detection accuracy. By analyzing term co-

occurrence patterns and emerging research trends, this study 

highlights key advancements in the field while providing a 

foundation for future studies to explore new methodologies 

and technological innovations in object detection for wheeled 

mobile robots. 

 

Fig. 9. VOSViewer density visualization

TABLE I.  RESEARCH COMPARISON 

Author Methods Performance 

Ammar, et al [11] 
 

Object detection and localization mobile robots. 
Kernel Density Estimation (KDE) Method 

achieve a detection rate of 40.7 FPS 

Min-Fan, et al[12] 
Security robot using Three CNN models, (AlexNet, 

VGGNet, and GoogleNet) 

The experiment showed accuracy of the three CNN models is 0.95, 

0.95, and 0.6 

Medrano, et al[13] 

Robot navigation 

Five classification methods: GB, XGB, LGBM, KNN, 
SVM 

GB = 0.7297 
XGB = 0.7253 

LGBM = 0.7208 
KNN = 0.6754 

SVM =0.7297 

Zijing Song, et 
al[14] 

Mobile robot using YF-SLAM Method 

RMSE YF-SLAM= 0.01 

RMSE DYNA-SLAM= 0.02 
RMSE DS-SLAM= 0.03 

RMSE ORB-SLAM2= 0.7 

Caixia He, et al[15] 
Mobile robot using SVM algorithm, SSD, improve 

algorithm 

SVM algorithm= 96.65% 
SSD= 96.78% 

Improve algorithm= 98.8% 

Li Y, et al[16] Mobile robot using PID algorithm 

Acquisition rate= 0.81 

Tracked target position= 0.46 
Angle smoothness= 1.02 

Yuichi Sasaki, et 

al[17] 
Robot DANIEL using YOLO 

α= No display of object recognition 

β= display only one object recognition result 
γ= display 80 kinds of object recognition 

Li Z., et al[18] Mobile robot using YOLOV8 Mean Absolute Percentage Error of 0.77 

Dimitrij, et al[19] Autonomous forklifts using YOLOV7 

MAPE SYNTH Model = 0.096 

MAPE LOCO SYNTH Model = 0.740 
MAPE TOMIE SYNTH Model = 0.005 

Marta, et al[20] Indoor service robot using Efficient Net Accuracy = 0.97 

Kaur, et al[21] Robot Operating System-based mobile robot using CNN Accuracy87.73% 

Alajami, et al[22] Distributed multi-robot localization strategy using CNN 
The results show that this proposed method is robust and accurate 

while maintaining a degree of simplicity and efficiency in costs 

Homayun, et al[23] 
Multi Robotic System 

Simultaneous Localization and Mapping (SLAM) 
Accuracy 93.4% 

Adel, et al[24] Robot Vision using YOLOv5 Accuracy 0.98 

Feiyu, et al[25] Mobile robot using YOLOv7 Accuracy 95% 

Stefan, et al[26] 
Mobile Robots in Logistic Environments 

using CNN 
Accuracy of 99% 

Kanta, et al[27] Domestic service robots (DSRs) using MRR Accuracy 80% 

https://www.sciencedirect.com/topics/computer-science/simultaneous-localization-and-mapping
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Petar, et al[28] 
Autonomous robots for vineyard maintenance using 

YOLOV5 
Accuracy 81% 

Lesia, et al[29] Mobile robot using YOLOV5 Accuracy 95% 

Dinda Pramanta[30] EV3-Robot, Mobile robot YOLO Latency below 1,000 𝑚𝑠. 
Duy, et al[31] Robot navigation using CNN Accuracy 97.17% 

Ali, et al[32] Mobile robot using YOLOv3 Accuracy 99% 

Pel An, et al[33] Mobile robot using PSPL-3D methods Accuracy 71,63% 

Divya, et al[34] Mobile robot using MobileNet with Vision Transformer Accuracy 94,3% 

Yangqing, et al[35] Home Service Robots using YOLO Accuracy 90.72% 

Yin Jia, et al[36] Autonomous mobile robot using RCNN Resnet 50 Accuracy 82,33% 

Zhang, et al[37] Service robot using CNN Accuracy 98,1% 

Alif, et al[38] Robot navigation MobileNetv3 Accuracy 83,7% 

Salman, et al[39] Robot motion planning Siamese using Neural Network Accuracy 96,87% 

Yadav, et al[40] Mobile robot PicoDet model Mean Average Precision (mAP) = 92.38% 

Siddhant, et al[41] 
Mobile robotic platforms 

DNN 
Mean Average Precision (mAP)= 90.51% 

Zhang, et al[42] Mobile robot navigation GC YOLOv3 IoU = 6,35% 

Peng Ding, et al[43] Mobile robots in security scenes YOLOv4 mAP = 34,51% 

Weifeng, et al[44] Mobile robots YOLOv5 Accuracy 99.9% 

Jesse, et al[45] Mobile robots Deep Object Pose Estimation Accuracy 64,8% 

Myo, et al[46] Mobile robots YOLOv4 Accuracy 97% 

Jeonghoon, et al[47] Mobile robots Siamese Network Accuracy 93,95% 

Sneha, et al[48] Mobile robots YOLOv4 Accuracy 90% 

Lim Kim, et al[49] Mobile robots AFAM–EfficientDet network Accuracy 90% 

Sudeep, et al[50] 
Robot System With autonomy Semantic segmentation 

method 
Accuracy 98,2% 

Donghun, et al[51] Autonomous Mobile robots YOLOv5 Accuracy 97,5% 

Raihan, et al[52] Mobile robots MobileNet Accuracy 98% 

Zhengxue, et al[53] Mobile robots PV-RCNN Accuracy 92% 

Rodrigo, et al[54] Mobile robots using U-Net Accuracy 90% 

Hwang, et al[55] Mobile robots CNN Accuracy 99% 

Wu, et al[56] Mobile robots YOLO-SLAM Accuracy 98,13% 

Zhaohui, et al[57] Mobile robots YOLOv5-AH Accuracy 92% 

Mouna, et al[58] Indoor robots EfficientDet Accuracy 89% 

Sonay, et al[59] Mobile robots Regression models Accuracy 98% 

Shabnam, et al[60] Mobile robots using CNN Accuracy 88,4% 

Griffin, et al[61] 
Task‐Focused Few‐Shot Object Detection (TFOD) & 

Detection‐Based Manipulation 
Speed pick‐and‐place: 124,6 pick/hour; Gain visual‐servo control 

+16,7%; Gain depth estimation +25,0% 

Lei, X, et al[62] YOLOv8-R (pruned + TensorRT) mAP 0.5 = 97,3%; mAP 0.5:0.95 = 82,1%; jetson nano 639,8 FPS 

Xu, Z, et al[63] Ensemble Lightweight DODT (RGB-D) 
Position error = 0,11 m; Velocity error = 0,23 m/s (real-time 

onboard) 

Xu, et al[64] Multi-branch Faster R-CNN + Latency SLA scheduler 
52 % Latency Reduced & 11.1 % Accuracy gain then YOLOv3 in 

Benchmark Video. 

Wu, et al[65] SSD300 & YOLOv3 model-parallelism 
Increase in FPS up to 1.8× on heterogeneous edge devices without 

significant loss of accuracy. 

Cabrera, et al[66] CNN global descriptor for omnidirectional images 
Outperform traditional methods in recall accuracy and runtime < 

100 ms per image. 

Patruno, et al[67] CNN for feature detection & visual odometry Avg. localization error 0.02 m at 1 Hz frame rate 

Zhang, et al[68] YOLOv3 + SVM classifier mAP = 0.92; 45 FPS in indoor scenarios 

Protasov, et al[69] CNN + YOLOv3 on six 360° cameras 30 FPS; detection accuracy = 0.87 

Li, et al[70] HSV + background subtraction + CNN 95 % catch success (3–6 m); 120 ms latency 

Hu, et al[71] YOLOv3 + ROS navigation Detection accuracy = 89.2 %; 25 FPS on Jetson Nano 

He, et al[72] LiDAR + USB camera + Faster R-CNN Accuracy = 0.91%; 150 ms inference 

Wang, et al[73] LiDAR + YOLOv3-tiny Detection accuracy = 0.87; mapping error 0.15 m 

Ruchanovsky et 
al[74] 

NAV-YOLO (YOLO variant) + ROS 100 % obstacle avoidance; 28 FPS on TurtleBot3 

Yamamoto et al[75] Weight-quantized SqueezeNet Accuracy = 93 %; model footprint = 0.8 MB 

Tahara, et al[76] Data augmentation + adaptive feature fusion (DETR) +12 % small-object detection accuracy on OmniCam 

Patruno, et al[77] Visual odometry + CNN Avg. position error 0.03 m 

Liu, et al[78] DETR + 3D convolution mAP3D = 85.2 % (KITTI); 22 FPS 

Manglani, et al[79] YOLOv4-tiny + A* path planning 100 % collision-free navigation; 30 FPS 

Zeng, et al[80] 

IBN-YOLOv5s (YOLOv5s enhanced with Spatial 

Pyramid Pooling and Instance-Batch Norm) running on 

ROS 

Intersection over Union (IoU): 0.96 

 

IV.   CONCLUSION 

Based on the results and discussion of the research 

findings related to object detection for wheeled mobile robots 

using deep learning, as analyzed through VOSviewer, it can 

be concluded that research trends in this area are actively 

evolving and expanding. This growth is closely associated 

with key topics such as robot vision, obstacle avoidance, 

visual simultaneous localization, and advancements in deep 

learning models. The integration of these themes highlights a 

growing focus on enhancing the capabilities of mobile robots 

for autonomous navigation and real-time decision-making in 

dynamic environments. 
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Despite these advancements, several challenges remain, 

including the need for more efficient deep learning models 

that balance accuracy and computational efficiency, as well 

as the integration of multimodal sensor data for improved 

robustness. Future research should explore the application of 

emerging techniques such as transformer-based architectures, 

edge computing, and self-supervised learning to further 

optimize object detection performance. Addressing these 

challenges will be crucial in positioning wheeled mobile 

robots as intelligent, adaptable systems capable of operating 

effectively across diverse and complex scenarios 

Future research should explore the application of 

emerging techniques such as transformer-based architectures, 

edge computing, and self-supervised learning to further 

optimize object detection performance. In addition, 

addressing key research gaps—such as developing 

lightweight deep learning models with lower computational 

overhead, integrating multi-sensor fusion techniques (e.g., 

LiDAR, thermal imaging, and depth sensors), and improving 

adaptive learning mechanisms—will be essential for 

enhancing the robustness of object detection systems. These 

advancements will be crucial in positioning wheeled mobile 

robots as intelligent, adaptable systems capable of operating 

effectively across diverse and complex scenarios. 
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