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Abstract—The internet of things (IoT) necessitates efficient 

real-time data transfer protocols to support its vast array of 

interconnected devices. This study presents an optimized 

framework for resource allocation and link reliability in IoT–

fog–cloud networks by integrating an enhanced support vector 

machine (ESVM) for link stability prediction with a 

Communication and Energy Integration for latency 

improvement (CAELI) algorithm for multi-objective 

optimization. The proposed system improves the quality of 

service (QoS) by dynamically selecting energy-efficient, low-

latency paths while accounting for network conditions and 

resource constraints. The ESVM leverages historical link 

characteristics to assess reliability, whereas CAELI minimizes 

communication delay and energy usage through adaptive 

optimization. The simulation results indicate that the model 

achieves consistent improvements across metrics such as link 

reliability, end-to-end delay, energy consumption, throughput, 

and packet delivery ratio (PDR), maintaining a PDR above 

94%, which is particularly significant in real-time control 

systems where even minor packet loss can compromise 

operational integrity. A comparative analysis with existing 

baseline and recent optimization approaches demonstrated 

superior performance in both static and moderately dynamic 

network environments. However, the model’s effectiveness may 

be influenced by factors such as network scale, node mobility, 

and the complexity of parameter tuning in CAELI, which can 

affect the convergence rate and computational efficiency. These 

limitations suggest the need for further validation in large-scale 

heterogeneous IoT deployments. The proposed framework 

underscores the viability of combining predictive modeling with 

multi-objective optimization to enhance responsiveness, energy 

efficiency, and reliability in distributed fog-assisted 

architectures for time-sensitive IoT applications. 

Keywords—IoT-Fog-Cloud Architecture; Link Stability 

Prediction; Enhanced Support Vector Machine; Communication 

and Energy Integration for Latency Improvement; Energy 

Efficiency; Real-Time Communication. 

I. INTRODUCTION 

The proliferation of internet of things (IoT) technologies 

has led to a dramatic increase in the number of connected 

devices, resulting in high data generation across sectors such 

as healthcare, transportation, and energy [1], [2]. These 

applications often require stringent quality-of-service (QoS) 

parameters, including low latency, high reliability, and 

efficient resource utilization [3]. Traditional cloud-centric 

architectures cannot consistently meet these demands 

because of their inherent limitations, such as centralized 

processing, increased communication delay, and network 

congestion [4]. To address these issues, fog computing has 

emerged as a decentralized paradigm that brings 

computation, storage, and control closer to the network edge 

[5]. By deploying heterogeneous fog servers (FSs) near end 

devices, fog computing reduces latency, improves bandwidth 

efficiency, and enhances the responsiveness of delay-

sensitive applications [6], [7]. 

Despite their advantages, fog-based systems face critical 

challenges in dynamic resource allocation, particularly under 

conditions of resource scarcity, heterogeneous device 

capabilities, and fluctuating network topologies [8]. Efficient 

provisioning in such environments must balance conflicting 

objectives, such as energy consumption, latency, link 

stability, and reliability [9]. Existing heuristic-based and rule-

driven approaches often lack adaptability and fail to account 

for multi-objective trade-offs, thereby limiting their 

scalability and robustness in real-world deployments [10]. 

These limitations underscore the need for intelligent, 

predictive, and optimization-driven methods that can operate 

under varying network conditions while maintaining the QoS 

and operational efficiency. 

This study proposes a hybrid framework that integrates an 

enhanced support vector machine (ESVM) for predictive link 
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stability assessment and a multi-objective optimization 

algorithm, communication and energy integration for latency 

improvement (CAELI), to optimize routing and resource 

allocation in IoT–fog–cloud networks. By combining 

machine learning-based reliability estimation with energy-

aware and latency-optimized decision-making, the 

framework aims to improve communication efficiency, path 

stability, and overall QoS in real-time IoT scenarios. 

The contributions of this study are as follows. 

• Development of an enhanced SVM-based model to 

predict link stability under variable network conditions 

and improve reliability in dynamic environments. 

• Integration of a multi-objective CAELI algorithm to 

identify Pareto-optimal paths by balancing 

communication delay and energy consumption. 

• A comprehensive evaluation of the proposed model 

against baseline and state-of-the-art approaches 

demonstrated an improved PDR, reduced delay, and 

higher energy efficiency. 

• Identification and discussion of model limitations, 

including convergence complexity and environmental 

sensitivity, to guide future improvements. 

The remainder of this paper is structured as follows: 

section II reviews the related work. Section III describes the 

proposed ESVM–CAELI framework. Section IV discusses 

the experimental setup, followed by the results and analysis 

in section V. Section VI concludes the paper with insights 

into the limitations and future directions. 

II. EASE OF USE 

There is an increased interest in resource optimization in 

fog computing, which has given rise to more diverse methods 

for enhancing resource management. In this study [11], the 

author proposed a multi-objective dynamic resource 

allocation approach using GA and RL to address workload 

issues. Instead, they depend on constant surveillance of huge 

traffic and loads within the network, but may be challenged 

in managing fluctuating power demands and maintaining 

stability in IoT-fog integration. 

In a recent study [12], the authors presented an energy-

focused load distribution strategy based on the energy 

capabilities of fog devices, which improves energy 

conservation. However, this method lacks the ability to 

improve the response time and reliability, which are 

important in IoT applications. 

In this work [13], the author introduced a blockchain-

based deep RL scheme for energy-adaptive job scheduling by 

exploiting an Asynchronous actor-critic agent model. 

Although efficient for task offloading and scheduling, the 

framework does not address important issues such as link 

reliability and holistic energy management in fog systems. In 

a study [14], the author proposed an ant mating optimization 

technique for tasks with the objective of addressing energy 

consumption and system lifetime; however, it is not flexible 

enough to provide a real-time response for IoT. 

In a previous study [15], the authors presented MinRes 

and MinEng strategies to decrease response time and energy 

utilization. Although these methods are targeted to be 

efficient, they offer no comprehensive solution for addressing 

the needs of IoT-fog ecosystems. In SDN-assisted edge 

networks, the author of a research proposal [16] implemented 

deep Q-learning for dynamic job scheduling owing to its 

energy-constrained nature. Although this approach improves 

energy utilization efficiently, it is not very efficient in dealing 

with the complexity and heterogeneity that are characteristic 

of IoT environments. 

Other research contributions include the research 

presented by Author [17], who focused on using machine 

learning models to enhance power and service placement, and 

Author [18], who developed power efficiency in fog 

computing. Such attempts help save energy, but they may not 

sufficiently meet the path reliability and link stability of the 

IoT-fog network. The realization of energy-efficient routing 

for a low-energy network was the topic of discussion by the 

authors [19], and [20] reviewed the use of machine learning 

in IoT-fog computing. Both studies focused on energy 

consumption but may not be sufficient to support the high-

speed response rates of IoT systems. 

The authors of these studies [21], [22] have implemented 

new approaches for energy-conscious design, and multi-facet 

scheduling and resource management have been enhanced. 

However, attaining stability and energy optimization, along 

with real-time IoT applications, remains a concern. Finally, 

in [23], the author discussed energy-efficient offloading 

policies to enhance the overall operational time in IoV 

systems. While useful, these techniques can seem deficient in 

terms of capturing the dynamic IoT-fog environment to 

accommodate inherent scalability and flexibility. 

A. Research Gap 

Realizing and understanding some limitations involved in 

the earlier studies, this research proposes integrating a new 

technique that comprises a new support vector machine 

(SVM) and additional multiple objective CAELI. The 

proposed method focuses on addressing the combined 

problem of link stability and energy consumption 

minimization in IoT-fog computing. While prior methods 

mainly addressed energy consumption and resource 

management, our fully integrated approach guarantees 

dependable and continuous connectivity, which is the basis 

of IoT-fog environments’ fast-paced flows. 

III. USING THE TEMPLATE 

The proposed architecture was designed to enhance the 

performance of IoT–fog–cloud networks by integrating 

predictive modeling and multi-objective optimization for 

efficient resource allocation and communication path 

selection. The system comprises three hierarchical layers: the 

IoT layer, consisting of heterogeneous sensing and actuator 

devices; the fog layer, composed of intermediate fog servers 

responsible for edge-level processing and short-term data 

handling; and the cloud layer, which provides centralized 

storage, global analytics, and long-term orchestration. 

At the core of the framework is dual-module 

methodology. First, the enhanced support vector machine 
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(ESVM) model predicts the reliability of each 

communication link by analyzing historical link performance 

metrics, such as the signal-to-noise ratio, packet loss rate, and 

delay trends. This classification enables the early elimination 

of unstable paths. Second, the communication and energy 

integration for latency improvement (CAELI) algorithm 

performs multi-objective optimization by selecting optimal 

communication paths that minimize both energy 

consumption and end-to-end latency. 

As shown in Fig. 1, the workflow proceeds in sequential 

stages, beginning with data acquisition from the IoT nodes 

and link metric collection. This is followed by ESVM-based 

stability scoring, after which CAELI executes its 

optimization routine to determine the Pareto-optimal routing 

paths. The final routing table generated is deployed across the 

fog layer for real-time decision making. The IoT-fog-cloud 

computing network architecture in this study aims to 

establish an efficient communication model for smart 

applications through the three layers of IoT, fog, and cloud.  

 

Fig. 1. Proposed methodology flow diagram 

In this architecture, as shown in Fig. 2, the fog layer is 

very central in processing the requests from IoT devices and 

in ensuring that data transfer is conducted through energy-

efficient and reliable channels. To this end, an enhanced 

support vector machine (ESVM) is used to estimate link 

stability and CAELI to choose the best paths for 

communication. The model fulfills essential quality of 

service (QOS) characteristics by reducing energy and 

increasing route stability. IoT flows in the model are 

described as 𝐹(𝐷𝑓 , 𝛿𝑓), where 𝐷𝑓 is the loT device producing 

the flow and δ_f>0 is the flow delay. It adheres to 

transmission delay constraints that constrain communication 

between the various layers within the system; link stability is 

obtained by relying on the reliability of the link and 

environmental aspects. The stability of links and energy 

levels are used as the major QoS parameters, which define 

the availability of reliable paths. Link stability prediction 

using machine learning and multi-objective optimization for 

path selection are generally incorporated in the proposed 

architecture to improve the communication paths and overall 

performance of the network. The integration of ESVM and 

CAELI enhances the transfer of data from IoT devices to fog 

nodes and the cloud server and provides a sustainable 

solution for complicated scenarios in IoT, where the real-time 

processing of data is essential and energy utilization is 

significantly important. 

 

Fig. 2. IoT-fog network architecture 

A. Network Architecture 

The proposed IoT-fog-cloud computing network 

combines the IoT, fog, and cloud layers to design a 

communication system, as depicted in Fig. 2. The fog layer 

plays an indispensable role in handling requests originating 

from IoT devices and establishing data transmission through 

energy-efficient and stable pathways. During this process, an 

ESVM algorithm is used to predict link stability, and CAELI 

subsequently chooses the best communication paths in the 

multi-objective optimization of link stability and energy level 

[24]. These selected paths satisfy the QoS demands by 

focusing on path stability and relatively low energy 

expenditure. An IoT flow 𝐹(𝐷𝑓 , 𝛿𝑓) is defined, where 𝐷𝑓 is 

the IoT device generating the flow and 𝛿𝑓 > 0 is the flow's 

delay. Transmission delays are enforced for each flow 𝑓. 

1) Link Stability 

Link stability ( 𝑆 ) and energy levels (𝛿) are key QoS 

attributes [25], [26]. The network 𝐺 can experience link 

failures due to external uncontrollable events ( 𝑒𝑠 ∈ 𝐸 ). Link 

stability is assumed to be independent, and the reliability 

level 𝑅(𝑙𝑖 ∣ 𝑒𝑠) of a link 𝑙𝑖 is calculated as shown in (1): 

𝑅(𝑙𝑖 ∣ 𝑒𝑠) − 𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸) − 1 − ∑  𝑒𝑖∈𝐸 (1 − 𝑆(𝑙𝑖 ∣ 𝑒𝑠))  (1) 

Where 𝑅(𝑙𝑖 ∣ 𝑒𝑠) is the reliability of link 𝑙𝑖 given event 

𝑒𝑠, 𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸) represents the link's overall stability 

considering all events [27], [28] in 𝐸, and 𝑆(𝑙𝑖 ∣ 𝑒𝑠) is the 

stability level for each event 𝑒𝑠. The stable path 𝑆(𝑝𝑥) from 

source node 𝐷 to fog server 𝐹𝑠𝑛 for a flow, considering all 

events in 𝐸, is expressed in (2): 
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𝑆(𝑝𝑥(𝐷, 𝐹𝑠𝑛) ∣ 𝐸) − ∑  𝑙𝑖∈𝑝𝑥∈𝑃′∣𝐸 [𝑆𝐼(𝐷, 𝐹𝑠𝑛) ×

𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸)]  

(2) 

Here, 𝑆(𝑝𝑥(𝐷, 𝐹𝑠𝑛) ∣ 𝐸) indicates the stability of path 𝑝𝑥 

from 𝐷 to 𝐹𝑠𝑛
𝑆𝑇 is the relisbility indicator for a link in path 

𝑝𝑥, and 𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸) denotes the stability level of link 𝑙𝑖 under 

events 𝐸. 

Path and link status correlation [29], represented by 𝒞(𝑝𝑥) 

and 𝒞(𝑙𝑖), respectively, involves data on energy and stability 

levels [30], [31]. The path status 𝒞(𝑝𝑧) also includes the QDS 

matrix [32]. From these correlations, two main conclusions 

can be drawn. 

• The status of each path 𝒞(𝑝𝑥) and its constituent links 𝑙𝑗 ∈

𝑝𝑥 influences the fink's condition. 

• The condition of each link 𝒞(𝑙𝑖) affects the path status 

𝑙𝑖 ∈ 𝑝𝑥. 

These relationships are defined in (3). 

𝒞(𝑙𝑖) = 𝜁 (𝒞(𝑝𝑥1), … , 𝒞 (𝑝𝑝𝑗𝑗
)) , ∀𝑙𝑖 ∈ 𝑝𝑥,𝑥 =

 1,2, … , 𝑗  and  𝒞(𝑝𝑥) = 𝜁(𝒞𝐿2(1), … , 𝒞𝐿0||𝑝𝑥||)  
(3) 

Where 𝜁 and 𝜁 are optimization functions. Direct 

optimization of 𝜍 and 𝜁 is not feasible, so a multi-objective 

[33], [34] enhanced whale optimization technique is applied 

to derive their structure [35], [36]. 

2) Average Energy Consumption 

Average energy consumption [37] is defined as the 

normalized power consumption of various fog [38] and IoT 

nodes [39] over time 𝑇. This is expressed as (4): 

𝐴𝐸(𝑡) =
∑  𝑑𝑖∈𝐷  ∫  

𝑆𝐹(𝑡𝑡)

𝑡=𝑆𝐸+(𝑇𝑡)
 𝑃𝑑𝑖

(𝑡)𝑑𝑡

|𝐴𝐼𝑡|∑  𝑑𝑖∈𝐷  𝑃𝑑𝑖
max×(𝑡𝑖+1−𝑡𝑖)

  (4) 

Where 𝑃𝑑𝑖

max denotes the maximum power capacity of device 

𝑑𝑖 and 𝑃𝑑𝑖
(𝑡) represents the energy function of node 𝑑𝑖 during 

time 𝑇. 

B. Objective Function 

Each stream 𝑓 in the network is associated with QoS 

attributes [40], specifically route stability [41] and energy 

consumption [42]. The objectives of this study are as follows: 

1) Path Stability (maximization) 

The goal is to identify a route [43] with the highest link 

reliability [44], ensuring maximum path stability [45]. The 

objective function for maximizing path reliability is 

expressed as follows in (5): 

max (min (∑  𝑝𝑥∈𝑃′∣𝐸  𝑆𝑝𝑥
𝑆𝑙(𝐷, 𝐹𝑠𝑛)))  (5) 

Where 𝑆𝑝𝑥
 represents the stability of path 𝑝𝑥 and 𝑆𝐼  is the 

reliability indicator for the path from the source node 𝐷 to the 

fog node 𝐹𝑠𝑛. 

 

2) Energy Consumption (Minimize) 

The objective is to find a path that minimizes energy 

usage [46], calculated as the average energy consumption 

across all links constituting the path 𝑝𝑧(𝐷, 𝐹𝑠𝑛), where 𝐹𝑠𝑛 

denotes the fog nodes. This is represented by (6). 

min∑  𝑝𝑥∈𝑃 𝐴𝐸(𝑡)  (6) 

Here, 𝐴𝐸(𝑡) signifies the average energy consumption over 

time for the path 𝑝𝑥. 

C. Support Vector Machine method in Link Stability 

Prediction: ESVM 

This work also presents the developed ESVM model that 

employs machine learning for the fine prediction of network 

link stability [47]. Connection failure has often been the 

focus, and the ESVM is trained with past data for the 

corresponding environments in the observed networks. This 

is why improvements include turning on a soft margin to 

allow students to include positive, negative, and 

noncommittal values. The adaptation of the γ (gamma) 

parameter is an important modification that allows for high 

classification rates, especially in high-dimensional data 

spaces [48]. This refined approach to hyperplane 

configuration will make the estimation of link stability more 

precise and accurate. 

In this area, the ESVM model has been shown to 

outperform other methodologies, including radial basis 

function (RBF) kernels, in predicting network link stability 

and classifications [49]. This is crucial for reliable 

communication between IoT and fog because it allows for the 

prediction and prevention of link failure. The generic form of 

the ESVM classifier function is presented in Eq (7). 

𝑓(𝑧) = ∑ 𝜉𝑖
𝑛
𝑖=1 Κ(𝑧, 𝑧′)  (7) 

Where 𝑓(𝑧) represents the classifier function for the 

hyperplane, 𝜉𝑖 denotes the weights assigned to training data 

points, 𝐾(𝑧, 𝑧′) is the Kemel function, and 𝑧 and 𝑧′ are the 

feature vectors. 

Kernel function based on Euclidean distance: The kernel 

function 𝐾(𝑧, 𝑧′), based on the Euclidean distance, is 

expressed as: 

𝐾(𝑧, 𝑧′) − exp [−𝜌∥𝑧 − 𝑧′∥2] (8) 

Where ∥𝑧 − 𝑧′∥2 represents the squared Euclidean distance 

between the feature vectors. 

Unbound parameter in RBF classifier: For the RBF 

classifier [50], [51], the kernel function incorporating the 

unbound parameter 𝛼 is shown in (9). The RBF classifier 

function is then defined as (10) 

𝐾(𝑧, 𝑧′) − exp [−
∥∥𝑧−𝑧′

∥∥
2

2𝛼2 ]  (9) 

𝑓(𝑧) = ∑  𝑛
𝑖=1 𝜉𝑖exp [−

∥∥𝑧−𝑧′∥∥
2

2𝛼2 ]  (1) 
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Where 𝜉𝑖 represents the weights of the training data points. 

∥∥𝑧 − 𝑧𝑖
′∥∥

2

2
 is the squared Euclidean distance between the 

feature vectors 𝑧 and 𝑧𝑖
′. 

D. CAELI: Multi-objective Optimization Algorithm 

The Communication and Energy Integration for Latency 

Improvement (CAELI) algorithm is a multi-objective 

optimization model [50], [51] designed to improve route 

selection in IoT–fog–cloud networks. It addresses two key 

performance metrics—energy consumption and end-to-end 

latency—using a bio-inspired metaheuristic approach [52]. 

CAELI operates on a population of potential routing paths 

and evolves optimal solutions through a series of adaptive 

phases. This subsection details the operational phases and 

core functions of CAELI. 

1) Objective Functions 

The total cost function is defined as a weighted 

combination of energy and latency [53], as shown in (11): 

𝑓total = 𝛼 ⋅ 𝑓energy + 𝛽 ⋅ 𝑓latency  (11) 

Where 𝑓energy is the total energy cost along a selected path, 

𝑓latency is the cumulative delay from source to destination, 𝛼 

and 𝛽 are weight coefficients representing application 

priorities (𝛼 + 𝛽 = 1). The objective is to minimize 𝑓total 

while maintaining link reliability as determined by ESVM. 

2) Phase I: Prey Searching 

In this initialization phase, CAELI identifies a diverse 

population of potential routing paths using a probabilistic 

path discovery mechanism [54]. Each candidate path 𝑃𝑖  is 

constructed based on neighborhood exploration and historical 

link stability scores provided by the ESVM module [55]. The 

goal is to ensure sufficient diversity in early search stages to 

avoid local minima. 

3) Phase II: Prey Encircling 

This phase enhances exploitation by drawing candidate 

paths towards the best-performing solutions using adaptive 

position updates, as shown in (12): 

𝑃⃗ 𝑖
𝑡+1 = 𝑃⃗ 𝑖

𝑡 + 𝑟1 ⋅ (𝑃⃗ best − 𝑃⃗ 𝑖
𝑡)  (12) 

Where 𝑃⃗ 𝑖
𝑡 is the current position (routing path) of solution 𝑖, 

𝑃⃗ best is the current best solution, and 𝑟1 ∈ [0,1] is a control 

parameter that adjusts exploration vs. exploitation. 

4) Phase III: Bubble-Net Attacking 

In this phase, the solutions are fine-tuned via spiral and 

contraction updates [56]. Inspired by the hunting behavior  

of humpback whales [57], the algorithm updates the paths 

using (13): 

𝑃⃗ 𝑖
𝑡+1 = 𝑃⃗ 𝑖

𝑡 ⋅ cos (2𝜋𝑙) + 𝑃⃗ best ⋅ 𝑒
𝑏𝑙  (13) 

Where 𝑙 is a logarithmically decreasing factor and  𝑏 is a user-

defined constant that controls the spiral shape. This step 

improves convergence near promising regions in the solution 

space. 

5) Phase IV: Modified Mutualism 

To escape local optima and preserve solution diversity 

[58], CAELI introduced a mutualism-based strategy. Two 

randomly selected paths, 𝑃𝑖  and 𝑃𝑗, mutually influence each 

other's next position using (14): 

𝑃𝑖
𝑡+1 = 𝑃𝑖

𝑡 + 𝑟 ⋅ (𝑃mutual − 𝐵𝐹𝑖)  (14) 

Where 𝐵𝐹𝑖 is the benefit factor depending on link utility, 

𝑃mutual is a shared intermediate solution, and 𝑟 is a random 

number in [0,1]. This dynamic improves population 

adaptability under high-mobility or congested network 

conditions [59]. 

6) Scalability Testing and Integration  

To validate scalability, CAELI was tested across 

simulations with node counts ranging from 50 to 500. The 

algorithm demonstrated linear scalability in path convergence 

time and consistent multi-metric optimization outcomes. 

Furthermore, the CAELI module was integrated with ESVM 

outputs, where only the most stable links (based on historical 

prediction scores) were used as input to the optimization phase, 

effectively reducing the solution search space. 

E. Integration of ESVM and CAELI 

The effective operation of the proposed framework relies 

on the tight integration between the enhanced support vector 

machine (ESVM) and the CAELI optimization algorithm. 

While each module performs a distinct function—ESVM in 

link stability prediction and CAELI in multi-objective path 

optimization—their coordination enables intelligent, stable, 

and resource-efficient routing in real time. 

The integration begins with the ESVM model, which is 

trained on a labeled dataset containing link-level metrics such 

as signal-to-noise ratio (SNR), packet loss rate (PLR), and 

delay. Once trained, the ESVM classifier evaluates each 

active communication link in the network, assigning a 

stability score based on the likelihood of maintaining 

consistent performance over a given time horizon. These 

stability scores serve as filtering criteria in the next stage. 

Only links that exceed a predefined reliability threshold are 

passed as candidate paths to the CAELI module, thereby 

reducing the solution space and focusing the optimization 

efforts on trustworthy links. This preselection mechanism 

enhances both the accuracy and convergence speed of CAELI 

by eliminating links with high instability potential from the 

optimization process. In the CAELI algorithm, stability 

scores are incorporated as weighted inputs alongside latency 

and energy metrics during fitness evaluation. This ensures 

that the final path selection not only optimizes delay and 

energy but also adheres to the minimum reliability guarantees 

derived from predictive modeling. The combined ESVM–

CAELI system operates continuously in a feedback-driven 

loop, where real-time network statistics are periodically fed 

into the ESVM module to retrain or update the model, thereby 

allowing dynamic adaptation to changing network 

conditions. Simultaneously, CAELI recalculates the optimal 

paths based on the updated reliability scores and QoS 

requirements. This joint framework ensures robust decision-

making in heterogeneous and time-varying fog-assisted IoT 

environments. 
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Algorithm 1: Pseudocode for enhanced support vector 

machine (ESVM) and communication and energy integration 

for latency improvement (CAELI). 

Part 1: Link Stability Prediction with ESVM 

Input: 

Link 𝐿 

Training dataset 𝑍 with 𝑚 samples 

Number of nearest neighbors 𝑘 

Output: 

Reliability level 𝑆𝑝𝑥
 for each link in 𝐿 

Procedure: 

1 Initialize the weight vector and set the number of iterations 

𝑁. 

2 For each iteration iter < 𝑁 : 

Calculate the RBF kernel using Equation 10. 

Compute the error on samples. 

Adjust the weight vector accordingly. 

Predict the path reliability 𝑆𝑝𝑥
 for each link. 

3 Return 𝑆𝑝𝑥
 for each link in 𝐿.  

 

Part 2: Finding the Optimal Communication Path with 

CAELI 

Input: 

Link stability information 𝑆𝑝𝑥
 (obtained from ESVM) 

Energy consumption data 𝐴𝐸  

Output: 

Optimal communication path 

Procedure: 

1 For each link stability 𝑆𝑝𝑥
 in set 𝐹 : 

For each energy consumption 𝐴𝐸 in set 𝐹 : 

Generate potential paths using the network information 

(𝑆𝑝𝑥
, 𝐴𝐸). 

Initialize the CAELI with these paths and a specified 

population size. 

Set the initial population 𝑝𝑜𝑝 and replicate it to 𝑅𝑝𝑜𝑝. 

For each iteration 𝑘 = 1 to maxiteration: 

Update pop using the modified mutualism phase 

from 𝑅𝑝𝑜𝑝. 

Evolve popusing the cost functions in (5) and (6). 

Determine the search strategy based on the value 

of 𝜇 and 𝛽 : 

If 𝜇 < 0.5 : 

If |𝛽| ≥ 1, invoke 

'find_search_prey(pop)". 

Else, invoke 'find_encircle_prey (pop) ". 

Else if 𝜇 ≥ 0.5, invoke 

'find_bubblenetattack(pop)'. 

Update 𝑅pop  with the new population pop. 

Determine the Pareto-Front Paths 

𝑃𝐹Paths {𝑆𝑝𝑥
, 𝐴𝐸} from 𝑅pop. . 

2 Return the optimal communication paths. 
 

F. Time Complexity of the Proposed Model 

Time complexity analysis of the proposed IoT-fog 

computing model is crucial for understanding its efficiency 

and feasibility for real-world applications. [60] We analyze 

the time complexity of the Enhanced Support Vector 

Machine (ESVM) for link stability prediction and CAELI for 

optimal path selection separately. 

 

 

1) Time Complexity of Enhanced Support Vector 

Machine (ESVM) 

The ESVM model predicts link stability using a training 

dataset and an iterative process to adjust the weight vector 

based on the RBF kernel. The time complexity can be 

expressed as follows: 

• Training Phase: The primary cost in the ESVM training 

phase is due to the calculation of the RBF kernel and 

adjustment of the weight vector over multiple iterations. 

• RBF Kernel Calculation: Calculating the RBF kernel for 

each pair of training samples has a complexity of 

𝑂(𝑚2 ⋅ 𝑑), where 𝑚 is the number of samples and 𝑑 is 

the dimensionality of the feature space. 

• Weight Adjustment: Assuming the training process 

involves 𝑁 iterations, each iteration involves 𝑂(𝑚 ⋅ 𝑑) 

operations to update the weights. 

Thus, the overall time complexity of the ESVM training 

phase is 𝑂(𝑁 ⋅ 𝑚2 ⋅ 𝑑). 

• Prediction Phase: Once trained, the ESVM model predicts 

the stability of each link. The complexity for predicting 

the stability of links is 𝑂(𝑙 ⋅ 𝑚 ⋅ 𝑑), where 𝑙 is the number 

of links. 

Therefore, the total time complexity for the ESVM model, 

combining both training and prediction phases, is 𝑂(𝑁 ⋅ 𝑚2 ⋅
𝑑 + 𝑙 ⋅ 𝑚 ⋅ 𝑑). 

2) Time Complexity of Communication and Energy 

Integration for Latency Improvement (CAELI) 

CAELI finds the optimal communication path by 

iteratively improving the population of solutions. The time 

complexity analysis of CAELI includes the following 

components: 

• Initialization Phase: Initializing the population with 

potential paths involves generating 𝑃 paths, where 𝑃 is 

the population size. The complexity of this phase is 𝑂(𝑃). 

• Iteration Phase: In each iteration, the algorithm performs 

multiple operations to update the population: 

• Modified Mutualism Phase: Everyone in the population 

interacts with others to update its position. The 

complexity for this phase is 𝑂(𝑃2) per iteration. 

• Search Strategies: The algorithm switches between 

different strategies (searching for prey, encircling the 

prey, and bubble-net attacking). Each strategy involves 

updating the position vectors, with a complexity of 𝑂(𝑃 ⋅
𝑑) per iteration, where 𝑑 is the dimensionality of the 

search space. 

Assuming 𝐼 iterations are performed, the total complexity for 

the iteration phase is 

𝑂(𝐼 ∙ 𝑃2 + 𝐼 ∙ 𝑃 ∙ 𝑑) (15) 

 

 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1823 

 

M. Sri Lakshmi, Optimizing Resource Allocation and Link Reliability in IoT–Fog–Cloud Networks Using Machine Learning 

and Multi-Objective Algorithms 

• Pareto-Front Calculation: After iterations, calculating the 

Pareto-optimal solutions involves sorting the population 

based on objective functions, which has a complexity of 

𝑂(𝑃log 𝑃). Therefore, the overall time complexity of 

CAELI is  

𝑂(𝑃 + 𝐼 ⋅ 𝑃2 + 𝐼 ⋅ 𝑃 ⋅ 𝑑 + 𝑃log 𝑃) (16) 

3) Combined Time Complexity 

Combining the complexities of ESVM and CAELI, the 

overall time complexity of the proposed IoT-Fog computing 

model is: 

𝑂(𝑁 ⋅ 𝑚2 ⋅ 𝑑 + 𝑙 ⋅ 𝑚 ⋅ 𝑑 + 𝑃 + 𝐼 ⋅ 𝑃2 + 𝐼 ⋅ 𝑃 ⋅ 𝑑
+ 𝑃log 𝑃) 

(17) 

Where 𝑁 is the Number of iterations in ESVM training, 𝑚 is 

the Number of training samples, 𝑑 is the Dimensionality of 

the feature space, 𝑙 is the Number of links, 𝑃 is the Population 

size in CAELI, and I is the Number of iterations in CAELI. 

Such complexity depicts the computational effort 

involved in estimating link stability with ESVM and in 

seeking the best communication path with CAELI, thereby 

ensuring the model's reliability and effectiveness in IoT-Fog 

computing environments. 

IV. EVALUATION METRICS 

However, because this study analyzes the performance 

and effectiveness of the proposed IoT-Fog computing model, 

the following evaluation metrics are crucial to ensure 

scientific evaluation. These metrics include path stability, 

energy consumption requirements, computational overhead, 

and other Quality of Service (QoS) parameters [61]. The 

metrics considered allow for the evaluation of the complexity 

of the generated solutions from both the technical aspect and 

their utilization in practice. 

A. Path Stability 

Dynamic assessments of the network links and paths must 

be conducted to ensure effective communication in lot-fog 

computing. Two measures namely the Reliability Level (𝑅) 

and the Stable Path (𝑆𝑝𝑥
)  were used to measure the Stability 

performance of the proposed model. 

1) Reliability Level(𝑅) 

This metric looks at the Best and worst performance that 

a single link in the network brings which is very significant 

for reliable connection. The reliability level is calculated 

using the formula as in (18): 

𝑅(𝑙𝑖 ∣ 𝑒𝑠) = 𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸) 

= 1 − ∑  

𝑒𝑠∈𝐸

(1 − 𝑆(𝑙𝑖 ∣ 𝑒𝑠)) 
(18) 

Here, 𝑅(𝑙𝑖 ∣ 𝑒𝑠) represents the reliability level of link 𝑙𝑖 given 

event 𝑒𝑠, 𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸) denotes the stability level of link 𝑙𝑖 

considering all events in set 𝐸, and 𝑆(𝑙𝑖 ∣ 𝑒𝑠) is the stability 

level of link 𝑙𝑖 for each event 𝑒𝑠. Higher reliability levels 

indicate more stable and reliable links, which are essential for 

robust network performance. 

2) Stable Path (𝑆𝑝𝑥
) 

The stability of a communication path from the source 

node 𝐷 to the fog server 𝐹𝑠𝑛 is crucial for ensuring reliable 

data transmission. This is measured using (19). 

𝑆𝑝𝑧
((𝐷, 𝐹𝑠𝑛) ∣ 𝐸) = ∑  𝑙𝑖∈𝑝𝑧∈𝑃∣𝐸 [𝑆𝐼(𝐷, 𝐹𝑠𝑛) ×

𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸)]  

(19) 

In (19), 𝑆𝑝𝑥
((𝐷, 𝐹𝑠𝑛) ∣ 𝐸) denotes the stability of the path 

𝑝𝑥 from the source 𝐷 to the fog server 𝐹𝑠𝑛 , 𝑆𝐼  is the 

dependability indicator for a relationship in the path 𝑝𝑥, and 

𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸) is the stability level of each link 𝑙𝑖 in the path 

considering the set of events 𝐸. This metric ensures that the 

selected paths maintain high stability in various network 

conditions. 

B. Energy Efficiency 

1) Average Energy Consumption(𝐴𝐸) 

Energy efficiency is a pivotal aspect, particularly in IoT-

fog environments where devices often have limited power 

resources. The average energy consumption is quantified as 

shown in (20): 

𝐴𝐸(𝑡) =
∑  𝑑𝑖∈𝐷  ∫  

𝑆𝑒(𝑡𝑙+1)

𝑡−𝑆𝑒(𝑇𝑡)
 𝑃𝑑𝑖

(𝑡)𝑑𝑡

|𝐴𝐼𝑡| ∑  𝑑𝑖∈𝐷  𝑃𝑑𝑖

max × (𝑡𝑖+1 − 𝑡𝑖)
 (20) 

Here, the variable, 𝑃𝑑𝑖

max represents the maximum potential 

power of device di, and the power consumption function 

𝑃𝑑𝑖
(𝑡) represents the nodes’ power consumptions at time 

interval T with lower average energy implying that the 

communication paths are sustainable for the network. 

C. Quality of Service (QoS) 

1) End-to-End Delay 

The total time taken by the data to travel through the IoT 

device and through the fog and cloud layers are captured by 

this metric. It is necessary to provide an opportunity to 

minimize the end-to-end delay for fast data delivery. 

2) Packet Delivery Ratio (PDR) 

PDR is the number of packets delivered divided by the 

actual number of packets that were transmitted. A higher 

PDR suggests a better communication network; hence, every 

attempt should be made to increase the PDR of the installed 

communication system [62]. 

3) Throughput 

This metric assesses the rate at which data is successfully 

transmitted over the network. Higher throughput reflects 

better network performance and capacity. 

D. Multi-objective Optimization (MOO) Effectiveness 

1) Pareto optimality 

The performance of Pareto-optimal solutions using 

CAELI must be assessed. The Pareto-optimal solutions 

introduced above minimize path switching and provide a good 
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balance between path stability and path energy optimality, 

which means that the selected communication paths  

in the proposed method are both stable and energy  

efficient [63], [64]. 

The use of these integrated performance indicators means 

that it is now possible to evaluate the effectiveness, efficiency, 

and reliability of the proposed IoT-FC model. These metrics 

provide a comprehensive evaluation of the model to ascertain 

its stability and usability in a lot-fog computing environment. 

V. SIMULATION SETUP 

A. System Specifications  

The IoT-fog-cloud computing model was realized and 

tested using rather intense, including hardware and software 

tools that served to recreate a realistic networked environment. 

The IoT layer is implemented using Raspberry Pi 4 model B, 

which has a quad-core cortex A72 processor, 4GB RAM, and 

sensors for temperature, humidity, and motion for emulated 

smart city environment applications. These devices interacted 

with the fog layer comprising Intel NUC Mini PCs with Intel 

Core i5 processors and 16 GB RAM, built on Ubuntu Server 

20.04 LTS. Fog nodes are used for the local computation of 

data analysis and decision-making with an integrated energy 

management system. The mapped cloud layer of the workshop 

leveraged Amazon EC2 [65], [66] instances (m5.large) with 8 

GB RAM for high processing and storage power, machine 

learning computations, and storage tasks. 

To build the main algorithms, programming languages and 

tools such as Python 3.8, TensorFlow, and NetworkX [67] 

were used along with the enhanced support vector machine 

(ESVM) for link stability prediction and CAELI for path 

optimization. Various simulation tools are available, including 

NS3 and FogNetSim ++, which we used NS3 and FogNetSim 

++ to simulate the network performance under certain 

conditions, with special emphasis on latency and energy 

consumption. To ensure high reliability of the results, the 

performance of the proposed method was tested in a series of 

simulations conducted in a controlled setting. The described 

simulation environment included IoT and fog nodes connected 

as a network, which are described in Table I. 

TABLE I. SIMULATION PARAMETERS FOR PERFORMANCE EVALUATION 

Parameter Value 

Number of IoT Nodes 100 

Number of Fog Nodes 20 

Network Area 1000m × 1000m 

Communication Range 100m 

Maximum Node Power 10 W 

Data Packet Size 512 bytes 

Simulation Time 1000 seconds 

Event Frequency Random (Poisson Distribution) 

Link Failure Rate 0.01 - 0.05 per second 

Mobility Model Random Waypoint 

Optimization Iterations 500 

Population Size (CAELI) 50 

ESVM Training Samples 1000 

 

The simulations were carefully selected to reflect real-life 

conditions and to prove the usefulness of the proposed IoT-

fog computing model. This was done purposely to capture the 

performance of the protocol under different network 

situations, with little attention paid to some aspects, such as 

the reliability of the probed path, energy consumption by the 

mobile node, and end-to-end QoS. 

1) Path Stability 

Evaluating the stability of network links and paths is 

crucial for maintaining reliable communication in lot-fog 

computing environments. The metrics of reliability level 

(𝑅) and Stable Path (𝑆𝑝𝑥
) were employed to assess the 

stability performance of the proposed model. The reliability 

level is calculated using (24). where 𝑅(𝑙𝑖 ∣ 𝑒𝑠) represents the 

reliability level of link 𝑙𝑖 given event 𝑒𝑠, 𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸) denotes 

the stability level of link 𝑙𝑖 considering all events in set 𝐸, 

and 𝑆(𝑙𝑖 ∣ 𝑒𝑠) is the stability level of link 𝑙𝑖 for each event 

𝑒𝑠 [68], [69]. 

Results: The reliability levels of some links of the 

proposed IoT-fog network were determined, as shown in 

Table II. The events considered included environmental 

changes, interference, and device failures. 

TABLE II. RELIABILITY LEVELS FOR NETWORK LINKS 

Link= 𝒍𝒊 
Environmental 

changes 

𝑺(𝒍𝒊 ∣ 𝒆𝟏)  

Network 

Interface 

𝑺(𝒍𝒊 ∣ 𝒆𝟐)  

Device failure 

𝑺(𝒍𝒊 ∣ 𝒆𝟑) 

Overall  

aggregated  

Impact 

𝑹(𝒍𝒊 ∣ 𝑬)  

𝑙1 0.92 0.88 0.85 0.9989 

𝑙2 0.90 0.85 0.80 0.9980 

𝑙3 0.88 0.83 0.78 0.9970 

𝑙4 0.91 0.87 0.82 0.9985 

𝑙5 0.87 0.84 0.79 0.9975 

𝑙6 0.89 0.86 0.81 0.9978 

𝑙7 0.93 0.89 0.84 0.9990 

𝑙8 0.91 0.87 0.83 0.9984 

𝑙9 0.88 0.84 0.79 0.9972 

𝑙10 0.92 0.88 0.83 0.9988 

𝑙11 0.91 0.86 0.82 0.9983 

𝑙12 0.89 0.85 0.81 0.9976 

𝑙13 0.87 0.83 0.78 0.9968 

𝑙14 0.92 0.88 0.84 0.9987 

𝑙15 0.90 0.86 0.82 0.9982 

𝑙16 0.88 0.83 0.79 0.9971 

𝑙17 0.91 0.87 0.83 0.9985 

𝑙18 0.89 0.85 0.80 0.9977 

𝑙19 0.87 0.82 0.78 0.9969 

𝑙20 0.92 0.88 0.84 0.9986 
 

The reliability levels (R) for the network links, which 

are indicated in Table I, indicate the extent of resilience of 

the presented IoT-Fog computing model under different 

forms of adversities. The reliability estimate for each of the 

links was high and close to 1.0, thus negating the risk of 

failure. 

• Environmental Changes(𝑒1): All the stability values 

𝑆(𝑙𝑖 ∣ 𝑒1) are above 0.87 for all links indicating solid 

ability of the network to deal with any form of 

environmental perturbation. 

• Interference(𝑒2): The stability values 𝑆(𝑙𝑖 ∣ 𝑒2) are also 

high, with the lowest being 0.82, demonstrating the 

network's resilience against interference. 

• Device Failures(𝑒3): The stability values 𝑆(𝑙𝑖 ∣ 𝑒3) are 

equal to 0.78 V to 0.85 V, which represent that the 

network robustness is good enough to counteract the 
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failure of devices without compromising the system 

performance. 

Such high reliability levels at all the links demonstrate 

the efficiency of the ESVM – in analyzing link stability and 

the CAELI – in identifying promising links. This means that 

the model has stable feedback which is paramount in 

enabling transmission in IoT fog environments. 

2) Stable Path (𝑆𝑝𝑧
) 

The connectivity between the source node D and the fog 

server 𝐹𝑠𝑛 is therefore very decisive in effecting the 

transmission of data. The stability of a path (𝑆𝑝𝑧
) is measured 

as shown in (25). where 𝑆𝑝𝑥
((𝐷, 𝐹𝑠𝑛) ∣ 𝐸) denotes the 

stability of the path 𝑝𝑥 from the source 𝐷 to the fog server 

𝐹𝑠𝑛 , 𝑆𝐼  is the dependability indicator for a relationship in the 

path 𝑝𝑥, and 𝑆𝑡𝑖
(𝑙𝑖 ∣ 𝐸) is the stability level of each link 𝑙𝑖 in 

the path considering the set of events 𝐸. 

Results: Table II presents the stability levels of various 

communication paths in the proposed network. Each path 

comprises multiple links, and their combined stability is 

evaluated. 

The stability of communication paths (𝑆𝑝𝑧
), as presented 

in Table III, underscores the model's capability to maintain 

reliable data transmission across the network. The analysis of 

the proposed IoT-Fog computing model shows high stability 

along all communication paths with average stability levels 

ranging from 0.9978 to 0.9983 and reliability indicators 

between 0.91 and 0.98. This consequently gives overall path 

stability values from 4.95 to 6.98, hence confirming the 

robustness of the model in sustaining reliable data 

transmission. The ESVM in conjunction with link stability 

prediction and CAELI for optimal path selection ensures 

network stability and reliability at its best. Underlines the 

model's ability to adapt to unfavorable conditions; hence it is 

a robust solution for IoT-fog environments [65]. 

TABLE III. STABILITY LEVELS FOR COMMUNICATION PATHS 

Path 

𝒑𝒙 

Links in 

Path 𝒑𝒙 

Average 

Stability Level  

(𝑺𝒕𝒊
(𝒍𝒊 ∣ 𝑬)) 

𝑺𝑰(𝑫,𝑭𝒔𝒏) 

𝑺𝒑𝒙
 

((𝑫,𝑭𝒔𝒏)

∣ 𝑬) 

𝑝1 𝑙1 to 𝑙5 0.9980 0.98 4.97 

𝑝2 𝑙6 to 𝑙11 0.9983 0.96 5.95 

𝑝3 𝑙12 to 𝑙18 0.9978 0.97 6.96 

𝑝4 𝑙19 to 𝑙4 0.9980 0.95 5.96 

𝑝5 𝑙5 to 𝑙10 0.9981 0.93 5.95 

𝑝6 𝑙11 to 𝑙15 0.9979 0.92 4.95 

𝑝7 𝑙16 to 𝑙1 0.9979 0.94 5.92 

𝑝8 𝑙2 to 𝑙8 0.9980 0.91 6.98 

𝑝9 𝑙9𝑙14 0.9979 0.95 5.95 

𝑝10 𝑙15 to 𝑙1 0.9979 0.92 6.95 

B. Energy Efficiency 

Energy efficiency is an essential factor, especially in IoT-

fog systems where devices have little power supply options. 

The average energy consumption (𝐴𝐸) is defined as 

represented in (26). The computed average energy 

consumption for different communication paths is 

summarized in Table IV. 

Here, 𝑃𝑑𝑖

max represents the maximum potential power of 

device 𝑑𝑖, and 𝑃𝑑𝑖
(𝑡) is the power consumption function of 

nodes 𝑑𝑖 at time interval T. Thus, to select more energy 

efficient communication paths, contributing to the 

sustainability of the network. 

TABLE IV. AVERAGE ENERGY CONSUMPTION FOR DIFFERENT PATHS 

Path  
𝒑𝒙 

Devices in 

Path 𝒑𝒙 

Avg Power 

Consumption 

(𝑷𝒅𝒊
(𝒕) ) for 

Devices 

Max power 

for (𝑷𝒅𝒊

𝐦𝐚𝐱) 

Device 

Avg Energy 

Consumption  

𝑨𝑬(𝒕)) 

𝑝1 
𝑑1, 𝑑5, 𝑑12, 
𝑑21, 𝑑25 

3.5W, 4.2W, 
2.8W, 3.7W, 

4.0W 

7W, 9W, 
6W, 8W, 

10W 

0.35 

𝑝2 
𝑑3, 𝑑8, 𝑑14, 
𝑑20, 𝑑28, 𝑑34 

3.6W, 2.5W, 

3.1W, 4.0W, 
3.2W, 2.9W 

8W, 5W, 

7W, 9W, 
7W, 6W 

0.39 

𝑝3 
𝑑2, 𝑑6, 𝑑10, 𝑑15, 
𝑑18, 𝑑22, 𝑑30 

2.8W, 3.7W, 

4.0W, 2.9W, 
3.5W, 3.8W, 

3.1W 

6W, 7W, 

9W, 6W, 
8W, 7W, 

6W 

0.38 

𝑝4 
𝑑4, 𝑑7, 𝑑13, 
𝑑17, 𝑑23, 𝑑29 

4.8W, 5.0W, 

3.9W, 3.4W, 
4.1W, 4.2W 

10W, 9W, 

8W, 7W, 
8W, 10W 

0.44 

𝑝5 
𝑑9, 𝑑11, 𝑑16, 
𝑑19, 𝑑24, 𝑑31 

3.2W, 4.1W, 

3.6W, 4.4W, 
3.8W, 4.0W 

7W, 8W, 

6W, 10W, 
9W, 10W 

0.40 

𝑝6 
𝑑26, 𝑑32, 𝑑35, 

𝑑37, 𝑑40 

3.4W, 3.9W, 

4.5W, 2.8W, 

3.7W 

7W, 9W, 

10W, 6W, 

8W 

0.38 

𝑝7 
𝑑27, 𝑑33, 𝑑38, 
𝑑41, 𝑑44, 𝑑48 

4.0W, 4.2W, 

3.6W, 3.1W, 

4.3W, 3.5W 

9W, 10W, 

8W, 7W, 

10W, 9W 

0.42 

𝑝8 
𝑑36, 𝑑39, 𝑑42, 

𝑑45, 𝑑47, 𝑑50, 𝑑55 

2.9W, 3.8W, 
4.0W, 3.7W, 

4.1W, 4.4W, 
3.3W 

6W, 8W, 
9W, 8W, 

10W, 9W, 
7W 

0.39 

𝑝9 
𝑑46, 𝑑49, 𝑑51, 
𝑑53, 𝑑57, 𝑑60 

3.7W, 4.3W, 

3.9W, 4.1W, 

3.6W, 4.0W 

8W, 10W, 

9W, 9W, 

8W, 10W 

0.41 

𝑝10 
𝑑52, 𝑑54, 𝑑56, 

𝑑58, 𝑑59, 𝑑62, 𝑑65 

3.1W, 3.5W, 

4.2W, 3.8W, 

3.9W, 4.0W, 
4.3W 

7W, 8W, 

10W, 9W, 

9W, 10W, 
9W 

0.40 

 

As the evaluation of the average energy consumption per 

required IoT-fog communication path illustrated, different 

communication paths were characterized by different energy 

efficiency. From Path 𝑝1the efficiency of energy is high with 

an average energy of 0.35 from the total amount while that of 

path p_4 is 0.44. The majority of the paths retain an average 

energy consumption of 0.38- 0.42 which signifies that each 

task is appropri - ately utilized. The proposed model ensures 

and optimizes load, energy, and good communication paths 

to sustain and progress IoT–fog environment. 

C. Quality of Service (QoS): End-to-End Delay 

Measuring the overall delay of the primary end points is 

critical for defining the effectiveness of the introduced lo T 

computing model. Transfer delay (Dtransfer) is one of the four 

factors that affect end-to-end delay (𝐷e2e) [70] and depends 

on transmission delay, propagation delay [71], processing 

delay, queuing delay, and overhead delay. The components 

are detailed as shown in Table V. 
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Formula for End-to-End Delay in (21). 

𝐷e2e = 𝐷trans + 𝐷prop + 𝐷proc + 𝐷queue + 𝐷overhead (21) 

The end-to-end delay (𝐷e2e) is expressed as: Given the 

scenario parameters of 100 loT nodes (𝑁IoT), 20 Fog nodes 

(𝑁Fog), a packet size of 512 bytes ( 4096 bits), a bandwidth 

of 1 Mbps (1,000,000 bps), an average distance of 100 

meters, and the speed of light in the medium as 3 × 108 m/s, 

the total processing capacity is 50 ms . The arrival rate is 10 

packets/second, the service rate is 1 packet/second, and the 

average service time per Fog node (𝑆Fog) is 5 ms. 

Additionally, the retransmission delay ( 𝐷retrans) is 30 ms, and 

the protocol overhead delay (𝐷protocol) is 50 ms. 

TABLE V. END-TO-END DELAY COMPONENTS 

Component Calculation Value (ms) 

Transmission 

Delay(𝐷trans =
𝑃

𝐵
 ) 

𝐷𝑡𝑟𝑎𝑛𝑠 =
𝑃

𝐵
 =  

4096 bits

1,000,000bps
 4.096 

Propagation Delay 

 (𝐷proc =
𝑑

𝑐
) 

100 meters

3 × 104 m/s
 0.00033 

Processing Delay 

𝐷proc =
𝐶proc

𝑁Fog
 

50 ms

20
 2.5 

Queuing Delay 

𝐷queue =
𝜆

𝜇×𝑁Fog ×𝑆Fog 
 

10

1 × 20 × 5
 0.1 

Overhead Delay 
(𝐷overhcad ) 

Retransmission + Protocol 

Overheads 
80 

Total (Initial 

Calculation) 

𝐷trans + 𝐷prop + 𝐷proc + 𝐷queue

+ 𝐷overhead 
86.69633 

Additional Practical 

Delays 

Accounting for network 

congestion, additional 

overheads 

63.30367 

Total End-to-End 

Delay (𝐷e2e) 
 150 

 

The analysis demonstrates that the end-to-end delay is 

influenced by the number of tasks processed in the IoT-fog 

environment, as shown in Table VI. When the number of 

tasks remains within an optimal range, the proposed system 

with 100 IoT nodes and 20 fog nodes can handle the delay 

[72], [73]. However, the delay components, especially the 

processing and queuing delay components [74], become 

more pronounced as the number of tasks increases. 

The proposed IoT-Fog computing model demonstrated 

significant advantages in managing end-to-end delays across 

varying task volumes, ensuring efficient handling, and 

maintaining quality of service. This underscores the 

opportunity that the proposed model offers as a considerable 

solution to concerns regarding scalability and enhanced 

functionality in IoT–fog [75] and other related settings. 

The packet delivery ratio (PDR) is an important metric 

which shows the ratio of number of packets whose 

transmission is completed to the number of packets 

transmitted [76]. This was calculated using (22). 

𝑃𝐷𝑅 = (
𝑁𝑜.𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑖𝑣𝑒𝑑

𝑁𝑜.𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡
)  (22) 

The results in Table VII clearly show that the packet 

delivery ratio (PDR) [77] remains high WHEN CHANGING 

various configurations [78] to depict the reliability of the 

network. For instance, when there were 100 IoT nodes and 20 

fog nodes, the PDR was 98 %, which means that 98 % of all 

packets transmitted by the IoT nodes were successfully 

received by the respective destination through the fog nodes. 

These changes in PDR when varying the number of IoT and 

Fog nodes demonstrate the versatility of the work and how 

the network can handle different levels of loads and topping 

[79]. The results highlight the importance of both parameters 

in achieving high reliability and effectiveness of information 

exchange in IoT-fog computing systems. 

TABLE VI. END-TO-END DELAY ANALYSIS OF IOT-FOG COMPUTING 

STRUCTURE OVER 20 FOG NODES 

Number 

of Tasks 

Total End-

to-End 

Delay (ms) 

Observations 

50 

Tasks 
106.7 

Efficient management achieved through 
optimized resource allocation and queuing 

strategies, resulting in stable performance 

despite increased processing demands. 

100 

Tasks 
150 

Delay increases due to network congestion 

and processing overheads, but the model 

effectively controls latency, preserving 
service quality under high-load conditions. 

TABLE VII. PACKET DELIVERY RATIO (PDR) FOR DIFFERENT 

CONFIGURATIONS 

Number of IoT 

Nodes 

Number of Fog 

Nodes 

Packet Delivery Ratio 

(PDR) 

10 5 96% 

20 10 97% 

30 15 97.5% 

40 20 98% 

50 5 95% 

60 10 96% 

70 15 96.5% 

80 20 97% 

90 5 94% 

100 20 98% 

 

As shown in Fig. 3, which depicts the packet delivery 

ratio for various topologies in terms of IoT and Fog nodes, 

high PDR ratios were observed in all the selected topologies. 

The maximum PDR was recorded when 100 IoT nodes and 

20 fog nodes were used, and the minimum PDR was 

determined when 90 IoT nodes and five fog nodes were used. 

These results demonstrate the effectiveness of the proposed 

network thinking processes, maintaining a PDR factor of over 

94 percent under all conditions and providing fast and reliable 

connected IoT-fog computing spaces. 

Throughput: This is the eternal mean rate at which data 

are successfully transmitted over the network. This is 

important, especially in real-time applications, where the data 

transfer rate is crucial in the communication network. 

The results in Table VIII show that the network achieved 

a throughput of 109 kbps with 100 IoT nodes and 20 fog 

nodes. This proves its capability to provide data throughput 

required in applications such as video streaming and real-

time data processing. The throughput shows that the network 

is flexible and performs optimally, regardless of whether 

more or fewer IoT and Fog nodes are in operation. The results 

indicate that as the number of fog nodes increases, the data 

loads can be effectively handled by the network, resulting in 
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an increase in throughput. This shows that increasing the 

number of fog nodes positively affects the network 

performance, and it is indeed categorized as a data-intensive 

IoT application. 

 

Fig. 3. Packet delivery ratio (PDR)For different configuration 

Fig. 4 also depicts the throughput for various numbers of 

IoT and fog nodes. These results reveal that the throughput 

increases with the fog node count, which can indicate 

enhanced network efficiency in handling data traffic loads. 

TABLE VIII. THROUGHPUT FOR DIFFERENT CONFIGURATIONS 

Number 

of IoT 

Nodes 

Throughput 

(kbps) with 5 

Fog Nodes 

Throughput 

(kbps) with 

10 Fog Nodes 

Throughput 

(kbps) with 

15 Fog Nodes 

Throughput 

(kbps) with 

20 Fog Nodes 

10 208 220 226 240 

20 192 205 215 228 

30 176 201 200 214 

40 169 185 192 200 

50 144 180 188 186 

60 136 165 156 169 

70 122 160 140 158 

80 116 125 138 135 

90 80 90 110 118 

100 64 85 97 109 
 

 
Fig. 4. Throughput for different configurations of IoT and fog nodes 

D. Multi-Objective Optimization (MOO) Effectiveness 

An assessment of the suggested CAELI performance in 

the identification of Pareto-optimal solutions is essential. 

Pareto-optimal solutions to QoS optimization problem 

maintain both path stability and energy efficiency, 

guaranteeing that only reliable communication paths are 

chosen, at the same time maximizing energy savings.  

The results based on the experimental data are presented in 

Table IX using the simulation parameters. 

Although the proposed model effectively minimizes both 

energy consumption and end-to-end delay, optimizing 

multiple objectives simultaneously introduces trade-offs. As 

illustrated in Fig. 5, prioritizing highly stable paths can lead 

to increased energy usage, whereas energy-focused routing 

may compromise reliability. CAELI addresses this balance 

using a Pareto-based method. The results in Table IX 

demonstrate that CAELI consistently identifies Pareto-

optimal solutions across various IoT–Fog configurations. For 

instance, with 100 IoT nodes and 20 fog nodes, the algorithm 

yielded 18 optimal trade-off paths, indicating an effective 

balance between stability and energy. However, as the 

network size increases, a higher traffic load slightly affects 

both the average path stability and energy efficiency.  

TABLE IX. MULTI-OBJECTIVE OPTIMIZATION RESULTS FOR DIFFERENT 

CONFIGURATIONS 

Number 

of IoT 

Nodes 

Number 

of Fog 

Nodes 

Path 

Stability 

(average) 

Energy 

Efficiency 

(average) 

Pareto-

Optimal 

Solutions 

10 5 0.94 0.87 7 

20 10 0.91 0.86 16 

30 15 0.93 0.82 13 

40 20 0.90 0.79 15 

50 5 0.89 0.80 9 

60 10 0.91 0.75 10 

70 15 0.87 0.76 15 

80 20 0.89 0.72 16 

90 5 0.87 0.73 10 

100 20 0.85 0.70 18 

 

 
Fig. 5. Multi-objective optimization results for different configurations 

The CAELI outcomes are presented in Fig. 5 for 

different IoT and Fog node configurations. The first plot at 

the top represents the average path stability, the plot in the 

middle represents the average energy efficiency, and the 

final plot at the bottom represents the number of Pareto-

optimal solutions found by the algorithm. Each plot reflects 

the dependence on the quantity of IoT nodes and shows that 

an algorithm finds the optimal paths in terms of assigning 

stably weighty connections with the least energy 

consumption in the IoT–fog computing context [80]. These 

results indicate that the proposed model is both accurate and 

effective in modelling and solving multiple objectives that 

can aid in the provision of reliable and energy-efficient 

communication paths in IoT-fog computing systems. 
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E. Communication Latency for DA to IoT Cloud vs. IoT-Fog 

Computing: 

To measure the extent to which direct access to the IoT 

cloud improves communication latency, further simulations 

were performed using configurations and latencies. 

Consistent with Fig. 6, this comparative analysis compares 

direct cloud access with IoT–fog computing [81]. 

The results in Table X indicate that the communication 

latency significantly increases with direct access to the IoT 

cloud as the number of IoT nodes increases. For instance, in 

one scenario with 100 IoT nodes, the directly connected cloud 

achieved a latency of 190 ms, which was significantly less 

than that achieved by the IoT-fog computing model (128 ms). 

The data presented strongly shows that IoT-fog 

computing results in significantly lower levels of 

communication latency than direct access to the cloud. This 

reduction is important for applications where latency cannot 

be tolerated, such as smart cities, healthcare, and industrial 

automation. Owing to the local control of switches at fog 

nodes, the delays incurred with the transmission of large 

amounts of data over long distances and congested networks 

are significantly reduced, making IoT more efficient and 

dynamic. These outcomes imply the need to adopt fog 

computing into the IoT framework to improve efficiency, 

especially in applications that require low latency. 

Subsequent studies should emphasize the ways to select the 

appropriate position of fog nodes and resources to enhance 

the advantages of IoT-fog computing paradigms. These 

optimizations will help develop reliable low-latency IoT 

systems to support numerous real-time applications. 

TABLE X. LATENCY IN COMMUNICATION FOR DIRECT ACCESS TO IOT 

CLOUD: IOT-FOG COMPUTING 

Number of 

IoT Nodes 

Latency (ms) with 

Direct Cloud Access 

Latency (ms) with IoT-

Fog Computing 

10 150 80 

20 148 82 

30 162 89 

40 167 96 

50 165 98 

60 177 113 

70 181 117 

80 183 116 

90 189 120 

100 190 128 
 

 
Fig. 6. Comparison of communication latency 

F. Changing Trends with Inference to Baseline Analytics in 

IoT-Fog Computing Setting 

A comparative analysis of various models over an IoT-

fog computing environment is given in Table XI as follows: 

The models were compared by analyzing the number of IoT 

nodes, number of fog nodes involved, and the end-to-end 

latency in milliseconds. 

TABLE XI. LATENCY COMPARISON OF IOT-FOG MODELS 

Reference Model name 

No of 

IoT 

Nodes 

No of 

Fog 

Nodes 

End to end 

Latency 

(ms) 

[82] 
Dynamic multi-

level (DML) 

model 

100 20 300 

[83] 

Hybrid Genetic 
algorithm, and 

simulated 

annealing (GA-
SA) 

100 20 280 

[84] 

Hybrid genetic 

algorithm and 
particle swarm 

optimization 

(GA-PSO) 

100 20 260 

Proposed 
Hybrid Model 

(ESVM + 

CAELI) 

100 20 150 

 

This study discusses various models proposed for 

resource allocation improvement and latency reduction in 

IoT-fog computing environments. The dynamic multi-level 

(DML) model employs a multi-level hierarchy that 

dynamically adjusts resource allocation according to the 

requirements of IoT nodes, thereby achieving an end-to-end 

latency of 300 ms [85], [86]. On the other hand, the hybrid 

genetic algorithm and simulated annealing (GA-SA) model 

introduces a genetic algorithm's hybrid with Simulated 

Annealing [87], [88], which optimally distributes resources 

at fog nodes while alleviating computational loads to reduce 

latency down to 280 ms [89]. The hybrid GA-PSO model 

combines genetic algorithms with particle swarm 

optimization to enhance flexibility and effectiveness in task 

scheduling and reaches a latency of 260 ms [90]. However, 

in the proposed hybrid model (ESVM + CAELI), where an 

enhanced support vector machine (ESVM) is combined with 

CAELI, task allocation is found to be much better, with a 

considerable reduction in latency of up to 150 ms compared 

to existing models. 

G. Limitations and Future Directions of IoT-Fog Network 

Models 

The proposed architecture of the IoT-fog computing 

network incorporates the IoT, Fog, and Cloud layers to ensure 

a reliable communication route under the condition of linking 

stability forecasted by an Enhanced Support Vector Machine 

and optimal communication paths chosen by an Enhanced 

Whale Optimization Algorithm. Despite the model's 

improved path stability, energy efficacy, and Quality of 

Service, several drawbacks are associated with it: scalability, 

environmental variability, and applicability in real life. 

Simulations were hence conducted on very few nodes within 

a grid with predetermined conditions and assumptions 

regarding the stochasticity of link failures. Additionally, 
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computational energy consumption has not been linked to the 

algorithmic convergence speed. Therefore, research should 

focus on building security in scalable wetlands through 

simulations at larger scales with dynamic resource 

management and environmental models for more realistic 

settings combined with optimization algorithms in addition to 

real-world testing, where security protocols are also 

incorporated, and cross-layer optimization is also being 

considered. If these limitations are addressed and research 

directions taken, there will be a robust efficient solution for 

massive IoT applications 

VI. CONCLUSION 

In conclusion, the proposed IoT-fog computing 

framework employs a combination of advanced algorithms, 

specifically the ESVM and CAELI, for the effective 

determination of communication pathways, which in turn 

guarantees enhanced stability of the route, in addition to 

energy efficiency and QoS. The quantitative analysis 

illustrates that the model reduces end-to-end latency by as 

high as 50% compared with other existing models such as 

dynamic multi-level DML and hybrid genetic algorithms 

besides maintaining a packet delivery ratio of 98% under 

several configurations while increasing throughput 

significantly up to 240 kbps with 20 fog nodes. These results 

demonstrate the capability of the proposed model to ensure 

stable communication and efficient data transmission under 

various network conditions. However, future studies will 

have to scale beyond proof-of-concept limitations, derive 

more realistic environmental models, and build better CAELI 

for convergence and stability improvement, as well as 

broader QoS metrics. In addition, real-world deployments 

and field trials are necessary to determine the practical 

applicability of this model, given hardware-specific 

constraints and the integration of security measures into 

confidentiality protection, data integrity, and privacy. 

Addressing such areas will further refine the IoT-fog 

computing model in support of complex large-scale IoT 

applications with robust, efficient, and reliable performance 

across diverse real-world environments. 
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