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Abstract—Breast cancer remains one of the most prevalent 

cancers in Indonesia, and early detection plays a vital role in 

improving patient outcomes. Ultrasound imaging is a non-

invasive and accessible technique used to classify breast 

conditions into normal, benign, or malignant categories. The 

advancement of deep learning, particularly Transfer Learning 

with Convolutional Neural Networks (CNNs), has significantly 

enhanced the performance of automated image classification. 

However, the effectiveness of CNNs heavily relies on large, 

balanced datasets—resources that are often limited and 

imbalanced in medical domains. To address this issue, this study 

explores the use of Wasserstein Generative Adversarial 

Networks (WGAN) for synthetic data augmentation. WGAN is 

capable of learning the underlying distribution of real 

ultrasound images and generating high-quality synthetic 

samples. The inclusion of the Wasserstein distance stabilizes 

training, with convergence observed around 2500–3000 epochs 

out of 5000. While synthetic data improves classifier 

performance, there remains a potential risk of overfitting, 

particularly when the synthetic images closely mirror the 

training data. Compared to traditional augmentation 

techniques such as rotation, flipping, and scaling, WGAN-

generated data provides more diverse and realistic 

representations. Among the tested models, VGG16 achieved the 

highest accuracy of 83.33% after WGAN augmentation. 

Nonetheless, computational resource limitations posed 

challenges in training stability and duration. Furthermore, 

issues related to model generalizability, as well as ethical and 

patient privacy considerations in using synthetic medical data, 

must be addressed to ensure responsible deployment in real-

world clinical settings. 

Keywords—Wasserstein GAN; Breast Cancer; Cancer; 

Ultrasound Image; Augmentation; Process Innovation. 

I. INTRODUCTION 

Breast cancer is one of the most common and deadly 

diseases affecting women worldwide [1][2][3]. According to 

the World Health Organization (WHO), about 2.3 million 

women were diagnosed for having breast cancer in 2020, and 

more than 685,000 of them died due to the disease. Despite 

improved survival rates due to early detection and better 

treatment, breast cancer remains a major health threat [4][5]. 

Early detection is crucial for improving the prognosis and 

survival rates of breast cancer patients [6][7]. Routine 

examinations and screening using medical imaging 

technology play a vital role in detecting cancer at an early 

stage when treatment is more effective [8][9]. 

Mammography, ultrasound, and magnetic resonance imaging 

(MRI) are some of the methods available for breast cancer 

detection [10]. Ultrasound, in particular, is a frequently used 

tool in breast examinations because it is non-invasive, 

relatively inexpensive, and easily accessible [11][12]. 

However, ultrasound has limitations in terms of availability 

and class imbalance, which can obscure important details and 

complicate diagnosis. Therefore, enhancing the quality and 

the amount of ultrasound image dataset is a significant focus 

in medical research [13][14][15]. 

Although ultrasound is a highly useful tool for breast 

cancer detection, it faces several significant challenges 

[16][17]. Ultrasound images often suffer from suboptimal 

quality, influenced by noise and artifacts, which can obscure 

critical details and make cancer detection more difficult 

[18][19]. This noise and these artifacts can lead to diagnostic 

er-rors or necessitate unnecessary additional examinations. 

The limited availability of medical data and the high cost of 

annotation often hinder the development of accurate machine 

learning models [20][21][22]. Collecting and annotating 

high-quality and big amount of medical data requires 

significant resources and access to medical facilities 

[23][24][25]. In addition, to be able to interpret ultrasound 

images, there is huge dependency on the expertise and 
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experience of radiologists, which may lead to variability 

between examiners [26][27][28]. This variability can result 

in differences in diagnosis and treatment received by patients 

[29]. Although several automatic detection methods have 

been developed, many still struggle to adequately handle the 

complexity and variability of medical im-ages. Existing 

detection algorithms may not be robust or accurate enough 

for wide-spread clinical application [30][31][32]. 

The potential utilization of ultrasound image data with the 

advancement of deep learning technology enables earlier 

detection of breast cancer without the need for invasive 

procedures from the outset [33][34][35]. Deep learning 

technology can learn features from the available data, 

allowing for the classification of breast conditions into 

several categories, namely normal, benign tumor, and cancer 

[36][37]. However, the limited availability of medical data 

and class imbalance in the data often pose obstacles in 

developing accurate deep learning models [38]. The 

collection and annotation of high-quality medical data require 

significant resources, access to medical facilities, and patient 

privacy considerations. One common approach to addressing 

data limitations and class imbalance, which are common 

issues in training CNN models is data augmentation 

[39][40][41]. 

Traditional data augmentation techniques such as 

geometric augmentation, color augmentation, and noise 

augmentation are commonly performed to improve dataset 

variability in medical imaging tasks [42][43][44]. These 

techniques encompass processes such as reflecting images, 

cropping and translating images, and altering the image color 

palette. Although these methods can help expand datasets, 

they have several drawbacks. The transformations applied are 

deterministic and often fail to generate sufficiently realistic 

variations, as they do not reflect the natural complexity and 

diversity of actual medical data [45][46]. To address these 

limitations, Generative Adversarial Networks (GANs) have 

been introduced as an advanced data augmentation approach 

that can generate synthetic data by learning the distribution 

patterns of original datasets [47]. GAN, introduced by 

Goodfellow, uses Jensen-Shannon (JS) divergence in the loss 

function [48][49]. However, the use of JS divergence is 

associated with the vanishing gradient problem, which causes 

unstable training. Additionally, GANs frequently suffer from 

mode collapse, where the generator fails to capture the full 

diversity of the dataset and repeatedly generates similar 

outputs [50][51][52]. 

To overcome the challenges in traditional GANs, a 

variant called Wasserstein Generative Adversarial Network 

(WGAN) was introduced [53][54]. WGAN replaces the JS 

divergence with the Wasserstein distance, a more robust 

metric that enables more stable training and the generation of 

higher-quality, more realistic synthetic images [55][56]. 

Despite these advancements, no prior study has quantified 

how GAN-based augmentation affects the robustness of 

classifiers on truly unseen clinical datasets, nor has it 

addressed the potential risks of synthetic-data-induced bias. 

This study aims to fill that research gap by presenting the first 

systematic evaluation of WGAN-augmented breast 

ultrasound image classification across multi-institutional 

datasets and proposing an ethics-aware data augmentation 

pipeline that safeguards patient privacy. Furthermore, we 

examine ethical concerns related to minority-class 

oversampling, which may introduce bias, and propose 

mitigation strategies using diversity-aware sampling to 

promote fairness and improve generalizability in clinical 

applications. 

In 2021, research by Xiao et al. [57] utilized the 

Wasserstein GAN model for data augmentation to address 

class imbalance issues. This model was applied to three 

RNA-seq cancer patient datasets obtained from the TCGA 

cancer gene expression database: Breast Invasive Carcinoma 

(BRCA), Lung Adenocarcinoma (LUAD), and Stomach 

Adenocarcinoma (STAD). The datasets consisted of two 

classes, normal (N) and tumor (T), which were divided into 

testing and training data. Data augmentation with WGAN 

was performed only on the training data, where the number 

of data in the minority class was expanded in order to match 

the majority class as to reach the class balance. The LUAD 

dataset was expanded from 22 N and 110 T to 110 N and 110 

T, the STAD dataset from 18 N and 223 T to 223 N and 223 

T, and the BRCA dataset from 73 N and 745 T to 745 N and 

745 T. Cancer condition classification was then performed 

using a Support Vector Machine (SVM) model. The results 

showed that, compared to using the original dataset alone, the 

SVM model exhibited significantly improved performance 

with the augmented dataset. The SVM model accuracy 

increased from 50% to 90% on the LUAD dataset, 50% to 

93.33% on the STAD dataset, and 50% to 98.33% on the 

BRCA dataset. Building on the previous research by Xiao et 

al., this study discusses the augmentation of breast ultrasound 

image data using WGAN to generate synthetic images that 

can address class imbalance issues in each class. 

In WGAN, the images generated by the Generator 

originate from the mapping of a random latent vector with 

dimension n. This random vector is transformed by the 

Generator into synthetic images that increasingly resemble 

the real image data. Ac-cording to the original WGAN 

training algorithm, the training process continues until the 

Generator converges [54][55]. However, in practice, the 

WGAN training process defines one of the hyperparameters 

prior to training, namely the number of epochs or training 

iteration steps [58][59][60]. Based on the above explanation, 

this study aims to conduct research on generating synthetic 

images using the WGAN model. It is hoped that this research 

will contribute to the creation of image datasets with the best 

possible quality to address issues of dataset availability or 

imbalanced datasets. 

II. MATERIALS AND METHODS 

This study will use an annotated breast ultrasound image 

dataset to train and test the WGAN model [61]. The training 

process of WGAN will involve two neural networks: a 

generator that produces synthetic ultrasound images and a 

discriminator that assesses the authenticity of these images 

[62]. The generator and discriminator will be trained 

iteratively until the generator is capable of producing images 

that closely resemble the original ones. This research focuses 

on the data augmentation process using WGAN, as illustrated 

in the block diagram in Fig. 1 and flowchart in Fig. 2 
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Fig. 1. Block diagram ultrasound image augmentation using WGAN 

 

Fig. 2. Flowchart ultrasound image augmentation using WGAN 

The study begins with the collection of an annotated 

breast ultrasound image dataset to be used for model training. 

Pre-processing is then conducted, which includes image data 

normalization, resizing, and converting the images to 

grayscale [63]. The training of the Wasserstein GAN, 

involving the generator (a neural network that produces 

synthetic ultrasound images) and the discriminator (a neural 

network that measures the distribution difference between 

original and synthetic ultrasound images), is performed 

iteratively [64]65][66]. Feedback from the discriminator is 

used to enhance the generator's performance. The output from 

the WGAN generator consists of synthetic ultrasound images 

that closely resemble the original images with high quality 

[67][68][69]. These synthetic images are then used for data 

augmentation to increase both the size and variability of the 

dataset which then will be the input data for classification 

process [70][71][72]. 

This study will use an annotated breast ultrasound image 

dataset to train and test the WGAN model. The training 

process of WGAN will involve two neural networks: a 

generator that produces synthetic ultrasound images and a 

discriminator that assesses the authenticity of these images. 

The generator and discriminator will be trained iteratively 

until the generator is capable of producing images that closely 

resemble the original ones. This research focuses on the data 

augmentation process using WGAN, as illustrated in the 

block diagram and flowchart in Fig. 1 and in Fig. 2. 

A. Breast Ultrasound Image Data Acquisition 

The dataset used in this study is derived from research 

conducted by Al-Dhabyani et al. (2020). This dataset 

contains breast ultrasound image data from several 

individuals with varying conditions. There are 437 images 

classified as Benign, 133 images categorized as Normal, and 

210 images classified as Malignant. In this study, the Benign, 

Normal, and Malignant classes will be referred to as classes 

0, 1, and 2, respectively, as shown in Fig. 3. 

 

WGAB Training Original breast ultrasound image 
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Fig. 3. Dataset sample from class 0 (a), 1 (b), and 2 (c) 

Fig. 3 in this document presents sample images from the 

breast ultrasound dataset used in the study. The images are 

categorized into three distinct classes, each representing 

different medical conditions. On the left, there are images 

from Class 0, which consists of images diagnosed as Benign. 

These images depict lesions or changes that do not show signs 

of cancer, providing an overview of relatively safe 

conditions. In the centre, there are images from Class 1, 

representing Normal conditions. These images show healthy 

breast tissue without any detected abnormalities. This class 

serves as a reference for distinguishing between normal and 

abnormal conditions. On the right, there are images from 

Class 2, which depict Malignant conditions. These images 

indicate the presence of abnormalities that may be cancerous, 

making them crucial for further diagnosis and management. 

By presenting these three classes side by side, Fig. 3 offers a 

clear visualization of the characteristic differences between 

benign, normal, and malignant conditions. This is particularly 

important in the context of research, as it aids researchers and 

medical practitioners in understanding and developing better 

detection methods for various breast conditions. 

B. Pre-processing 

Pre-processing in the augmentation of breast cancer 

ultrasound images involves a series of steps to prepare the 

data before using it to train the model [73][73]. The two main 

aspects of pre-processing are normalization and image 

resizing. Below is the process undertaken for pre-processing 

the breast ultrasound image dataset using WGAN. 

1. Normalization is the process of adjusting the pixel 

intensity range in an image to achieve a uniform 

distribution. This helps improve the convergence of the 

optimization algorithm and reduces scale differences that 

can affect the model's performance [74]. In this study, 

image normalization was performed using OpenCV 

version 4.5, where each pixel value was scaled using the 

formula equation (1), resulting in a range of [−1,1]. This 

normalization approach ensures that the data are centered 

around zero, which is beneficial for stabilizing the training 

process of deep neural network. 

𝑃𝑖𝑥𝑒𝑙𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑃𝑖𝑥𝑒𝑙𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

127.5
− 1 (1) 

Where: 

• Pixel_original refers to the pixel intensity value in the 

original image. 

• The value 127.5 is derived from the maximum pixel 

intensity in the original image, which is 255, divided 

by 2. 

2. Image resizing is the process of changing the image size to 

a predefined uniform size. In this study, each image is 

resized to 128×128 pixels. This resizing process ensures 

that all image data will be compatible with the WGAN 

Generator and Discriminator networks [75][76]. 

3. Conversion to grayscale is carried out to ensure that breast 

ultrasound images do not contain any colors originating 

from external factors such as ultrasound equipment, which 

are not part of the breast tissue ultrasound. The images 

should be in grayscale format. 

The template is used to format your paper and style the 

text. All margins, column widths, line spaces, and text fonts 

are prescribed; please do not alter them. You may note 

peculiarities. For example, the head margin in this template 

measures proportionately more than is customary. This 

measurement and others are deliberate, using specifications 

that anticipate your paper as one part of the entire 

proceedings, and not as an independent document. Please do 

not revise any of the current designations. 

C. Wasserstein GAN Training  

The WGAN training process begins with initializing the 

parameters [77][78]. It then proceeds in a main loop that 

continues until the generator's parameters converge. Each 

iteration of the main loop involves several updates to the 

Critic or Discriminator. In each Discriminator iteration, a 

batch of real data is first sampled from the original data 

distribution. Then, a batch of data is sampled from random 

noise or the latent space. The Discriminator's gradient is 

computed to update its parameters, followed by a process of 

weight clipping. After several Discriminator updates, the 

Generator's parameters are updated. A batch of data from the 

latent space is sampled again, and the generator's gradient is 

computed to update the Generator's parameters. While the 

original algorithm repeats this process continuously until the 

generator's parameters converge, in this study, the iterations 

in the main loop are limited by the number of epochs or steps. 

The training configuration used in this work includes a 

learning rate of 0.00005, a batch size of 128, five 

Discriminator updates for each Generator update (n_critic = 

5), and a weight clipping value of 0.01. To identify the 

optimal settings, hyperparameter tuning was performed using 

a grid search over several learning rate and clipping value 

combinations. To mitigate the common problem of mode 
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collapse where the Generator produces repetitive outputs 

with limited variability, we applied early stopping during 

training. In addition, preliminary experiments were 

conducted using gradient penalty as an alternative to weight 

clipping, aiming to enhance training stability and encourage 

the generation of more diverse and realistic synthetic images. 

In WGAN, the Wasserstein distance is implemented in 

the Discriminator's loss function as shown in equation (2), 

calculated by averaging the scores for real and fake images 

[79][80][81]. The difference between the average scores of 

fake and real images is used as the loss, which the 

discriminator tries to maximize to effectively distinguish 

between real and fake images. For the Generator, the loss 

function is calculated by taking the negative of the average 

score the Discriminator assigns to the fake images. This 

encourages the generator to create images that receive high 

scores from the discriminator, indicating that the images 

appear more realistic. 

𝑊(𝑃𝑟 , 𝑃𝑟) = 𝑖𝑛𝑓
𝛾∈∏(𝑃𝑟,𝑃𝑔)

𝐸(𝑥,𝑦)~𝛾[‖𝑥 − 𝑦‖] 
(2) 

Table I shows the details of the algorithm of WGAN 

training according to the original WGAN research by 

Arjovsky. 

TABLE I.  WASSERSTEIN GAN ALGORITHM 

WGAN Algorithm 

Parameters: 𝛼 = learning rate, 𝑐 = parameter clipping, m 

= batch size, ncritic = Critic iteration for each Generator 

iteration 
While θ has not converged do 

       For t = 0, …, ncritic do 

             Sample {𝑥(𝑖)}
𝑖=1

𝑚
~𝑃𝑟 a batch from the real data 

             Sample {𝑧(𝑖)}
𝑖=1

𝑚
~𝑝(𝑧) a batch of prior samples 

             𝑔𝑤 ← 𝛻𝑤 [
1

𝑚
∑ 𝑓𝑤(𝑥(𝑖))

𝑚

𝑖̇=1
−

1

𝑚
∑ 𝑓𝑤 (𝑔𝜃(𝑧(𝑖)))

𝑚

𝑖=1
]  

             w ← 𝑤 +  𝛼 ⋅ 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝑤, 𝑔𝑤) 

             w ← clip(𝑤, −𝑐, 𝑐) 

       End for 

       Sample {𝑧(𝑖)}
𝑖=1

𝑚
~𝑝(𝑧) a batch of prior samples. 

       𝑔𝜃 ← −𝛻𝜃
1

𝑚
∑ 𝑓𝑤 (𝑔𝜃(𝑧(𝑖)))

𝑚

𝑖=1
 

       θ ← 𝜃 −  𝛼 ⋅ 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝜃, 𝑔𝜃) 

End while 

D. Evaluating the Effectiveness of WGAN-based 

Augmentation 

The original preprocessed image dataset will be going 

through two different processes. Firstly, the complete 

preprocessed dataset will be used for WGAN training. On the 

other hand, the preprocessed dataset is split into training and 

test set. The training set which will be combined with the 

synthetic images generated by WGAN generator will be the 

expanded dataset. The original training set and expanded 

dataset then will be the input of CNN Classifiers during the 

training. Then, the trained classifiers will be tested by the test 

set as to measure the performance difference of the classifiers 

with different datasets. The performance is measured by four 

metrics, namely accuracy, precision, recall, and F1-score. In 

this work, we are using transfer learning classifiers, which are 

VGG16, ResNet50, MobileNetV2, and YOLOv8. 

III. RESULTS AND DISCUSSION 

A. Results of WGAN Training 

Each of the generator and discriminator models of the 

WGAN in this study is constructed using convolutional 

neural networks with layer architectures as shown in Fig. 4. 

For the training process, several hyperparameters are defined 

by the researchers to adapt the WGAN model to the existing 

dataset, ensuring that the WGAN model can generate 

synthetic data of good quality and consistent with the dataset 

used. Table II displays the hyperparameters involved in the 

WGAN training process and their values. 

The Generator network (Fig. 4, left) starts by 

transforming a 128-dimensional latent vector through a dense 

layer into a 3D tensor, then progressively upsamples it using 

Conv2DTranspose layers with batch normalization and 

LeakyReLU activations to produce realistic 128×128 

grayscale ultrasound images. The Discriminator network 

(Fig. 4, right) processes 128×128 input images through 

successive Conv2D layers with LeakyReLU and Dropout, 

reducing spatial dimensions while increasing feature depth, 

before flattening and outputting a single value estimating the 

Wasserstein distance. Together, these architectures enable 

smooth image generation and effective discrimination by 

capturing both structural and semantic features. 

 

Fig. 4. WGAN Architecture; Generator (left) and Critic (right) 

 

 

 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1967 

 

I Gede Susrama Mas Diyasa, Improving Classification Accuracy of Breast Ultrasound Images Using Wasserstein GAN for 

Synthetic Data Augmentation 

TABLE II.  HYPERPARAMETERS 

Hyperparameters Value 

Epoch 5000 

Weight clipping value 0.01 

Optimizer RMSProp 

Learning rate optimizer 5e-5 

Batch size 128 

Number of discriminator iteration for each generator 

iteration 
5 

 

During the training process over 5000 epochs for each 

dataset class, the loss of the generator and discriminator is 

recorded. Fig. 5, Fig. 6, and Fig. 7 present the loss graphs for 

each WGAN training process. Fig. 5, Fig. 6, and Fig. 7 

display the loss of each Generator and Discriminator model 

during the training process using image data from classes 0, 

1, and 2. The loss of the Wasserstein GAN (WGAN) training 

process using three different datasets reveals several 

important aspects regarding model convergence and stability. 

Unlike traditional GANs, WGAN's Discriminator or Critic 

does not perform an evaluation by classifying input data as 

real or fake but rather computes the Wasserstein distance 

between two distributions, namely the real data distribution 

and the synthetic data distribution generated by the 

Generator. 

An evaluation of the loss graphs in Fig. 5, Fig. 6, and Fig. 

7 indicates that the stabilization of the discriminator loss 

occurs more rapidly compared to the generator loss. The 

graphs show that in the early epochs of training, there are 

marked fluctuations in the loss values. This phenomenon 

indicates that the WGAN model makes significant initial 

adjustments in model weights in response to different data 

distributions. The synthetic images produced by the 

Generator in the early stages of training are still poor, 

resulting in a significant difference between the distributions 

of real image data and the synthetic images generated by the 

Generator. As the training progresses, the WGAN Generator 

model improves in producing synthetic images. 

 

Fig. 5. Training loss WGAN class 0 

Based on the analysis of the loss patterns, the model for 

class 0 (Fig. 5) begins to show stability after approximately 

3000 epochs, with minimal fluctuations thereafter. If training 

continues without an epoch limit, the model will likely 

remain stable with slight improvements in the quality of 

synthetic images. The model for class 1 (Fig. 6) shows 

stabilization after 2500 epochs, but with significant variation 

still present. The loss pattern indicates that the model for class 

1 requires more epochs to achieve the level of stability 

reached by the model for class 0. Compared to the model for 

class 1, the model for class 2 (Fig. 7) shows a loss pattern 

similar to the model for class 0 and achieves stability more 

quickly, around 3000 epochs. Adding more epochs to the 

training process can further minimize loss and enhance 

stability, though the improvement in synthetic data quality 

may not be very significant. 

 

Fig. 6. Training loss WGAN class 1 

 

Fig. 7. Training loss WGAN class 2 

Thus, the stability evaluation of the WGAN training 

shows that the models for classes 0 and 2 achieve stability 

faster than class 1, which requires more epochs to reach 

stability. The increasingly stable loss patterns at the end of 

training indicate that the models have successfully 

approximated the real data distribution, signifying good 

convergence. The differing behaviors of each model relate to 

the complexity and variability of the data in each class. The 

training dataset size for class 1 is the smallest, which, based 

on its loss graph, requires more time to reach the stability 

level achieved by the models for classes 0 and 2. This 

evaluation provides a clearer picture of the stability and 

convergence of the WGAN models used and shows how the 

models can be further improved with additional training if 

necessary. The implementation of Wasserstein distance in the 

discriminator loss provides an indicator of training progress, 

enabling researchers to monitor and adjust the model as 

needed. With achieved stabilization, the WGAN model can 

reliably generate high-quality synthetic images, which is 

crucial in addressing data limitations in the medical field, 

especially in breast ultrasound image data. 

B. Image Synthetic Augmented by WGAN 

The size of the expanded ultrasound image dataset, as 

shown in Table III, compares the sizes of the original image 

dataset and the dataset after the augmentation process. 
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TABLE III.  SIZE OF DATASET 

Dataset/Metrics Accuracy Precision Recall F1-score 

Original data 0.8030 0.8000 0.8121 0.8005 

Expanded data 0.8133 0.8150 0.8012 0.8175 

 

 Fig. 8, Fig. 9, and Fig. 10 display 5 synthetic image 

samples for each class generated by the WGAN Generator 

during the second augmentation process, which was 

previously trained using image data from the corresponding 

classes. Fig. 8 shows synthetic image samples for class 0 

generated by the generator trained on class 0 data. Fig. 9 

shows synthetic image samples for class 1 (Normal category) 

generated by the WGAN model generator trained on class 1 

data. Fig. 10 shows synthetic image samples for class 2 

(Malignant/Cancer category) generated by the WGAN model 

generator trained on class 2 image data. 

 

Fig. 8. Synthetic image class 0 

 

Fig. 9. Synthetic image class 1 

 

Fig. 10. Synthetic image class 2 

C. Prediction Using CNN Classifiers 

After expanding the original dataset, the classifiers 

performance utilizing different datasets is examined based on 

evaluation metrics. The performance of the classifiers with 

each dataset is presented in Table IV, Table V, Table VI and 

Table VII. 

TABLE IV.  EVALUATION METRICS OF VGG16 

Dataset/Metrics Accuracy Precision Recall F1-score 

Original data 0.7628 0.7380 0.7496 0.7433 

Expanded data 0.8333 0.8490 0.8021 0.8219 

TABLE V.  EVALUATION METRICS OF RESNET50 

Dataset/Metrics Accuracy Precision Recall F1-score 

Original data 0.6795 0.7000 0.6400 0.6395 

Expanded data 0.7308 0.7100 0.6976 0.6945 

TABLE VI.  EVALUATION METRICS OF MOBILENETV2 

Dataset/Class 
Class 

0 - Benign 1 - Normal 2 - Malignant 

Original 437 133 210 

Expand 437 + 50 133 + 354 = 487 210 + 277 = 487 

TABLE VII.  EVALUATION METRICS OF YOLOV8 

Dataset/Metrics Accuracy Precision Recall F1-score 

Original data 0.8077 0.7929 0.7951 0.7939 

Expanded data 0.8205 0.8243 0.8151 0.8094 

We compared multiple pretrained models that have been 

known best for the classification, including VGG16, 

ResNet50, and MobileNetV2. In addition, we also 

incorporated YOLOv8, a pretrained model known for object 

detection but can also be utilized for classification task to our 

experiment. Each model was evaluated based on accuracy, 

precision, recall, and F1-score. Based on the results from 

Table IV, Table V, Table VI and Table VII, all models exhibit 

similar performance behaviors in their prediction capabilities 

according to the evaluation metrics scores. All evaluation 

metrics indicate that the three models improve in prediction 

accuracy when the dataset is augmented compared to the 

original dataset. 

VGG16 consistently achieved the highest results, with an 

accuracy of 83.33%, outperforming the other models in all 

metrics. ResNet50 and MobileNetV2 also exhibited notable 

improvements, particularly when augmented data generated 

by WGAN was used. The results achieved by YOLOv8 only 

differs by 2 percent compared to that of VGG16. Even though 

YOLOv8’s strong performance in object detection tasks, its 

evaluation metrics in this classification context did not 

surpass those of VGG16. It is indicating that its architecture, 

while powerful for object detection, might not be as well-

suited for direct image classification tasks compared to 

models like VGG16. This suggests that while YOLOv8 may 

be effective for other types of image-based tasks, more 

specialized models like VGG16 may offer better results for 

ultrasound image classification. 

Overall, the best accuracy, precision, and F1-score were 

achieved by the VGG16 model, with scores of 83.33%, 

84.90%, and 82.19%, respectively. In contrast, the best recall 

was obtained by the MobileNetV2 model, with a score of 

81.51%. The combination of the VGG16 model with the 

expanded dataset proved to be the most effective, showing 

the most significant improvements across all evaluation 

metrics, including accuracy, precision, recall, and F1-score. 

This improvement suggests that the model can leverage 

additional data to learn more complex and accurate features, 

which is crucial in medical applications such as breast cancer 

detection. The increase in precision and F1-score particularly 

indicates that the model becomes more reliable in correctly 

predicting positive cases, thereby reducing misclassification 

errors, which can have serious consequences in a clinical 

context. 

To further evaluate the classifier’s discriminative 

performance across different breast condition categories, the 

VGG16 model was assessed using the Receiver Operating 

Characteristic (ROC) curve, as illustrated in Fig. 11. The 

ROC curve provides a visual representation of the trade-off 

between sensitivity (true positive rate) and false positive rate 

for each class. Based on the simulation results, Class 2 

(Malignant) achieved the highest AUC value of 0.79, 

suggesting that the model is highly effective in distinguishing 

malignant cases, which is essential in early and accurate 

clinical diagnosis. Class 0 (Benign) followed with an AUC of 

0.75, while Class 1 (Normal) had the lowest AUC of 0.63-

likely due to the limited number of normal class samples in 

the original dataset prior to augmentation. These findings 

reinforce the importance of balanced and representative data 
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in optimizing classifier performance across all diagnostic 

categories. 

 

Fig. 11. ROC curve of VGG16 

IV. CONCLUSIONS 

The potential of WGAN for data augmentation in the 

medical imaging field is very promising. This study 

demonstrates how the implementation of Wasserstein GAN 

on limited breast ultrasound medical data can be conducted 

with stable training processes, resulting in synthetic image 

data that closely resemble original breast ultrasound images. 

The stability of the WGAN training process is related to the 

implementation of the Wasserstein distance as the loss 

function in the Discriminator. This implementation also 

facilitates monitoring and interpreting model performance by 

researchers. The differences in stability among the WGAN 

models for each class are influenced by the dataset size of 

each class. Overall, the issue of limited medical data, which 

often hinders research, can be addressed through data 

augmentation by WGAN. The effectiveness of utilizing 

WGAN in data augmentation is apparent in the classifier’s 

performances, where all of the evaluation metrics of each 

classifier is increasing, with the best accuracy score is 

achieved by VGG16 model with 83.33% accuracy. This 

comprehensive analysis underscores the importance of data 

augmentation in enhancing model performance, especially in 

critical domains where accuracy and reliability are 

paramount. 

From a practical standpoint, the augmented dataset 

produced using WGAN has the potential to support the 

development of computer-aided diagnostic (CAD) tools in 

clinical settings, thereby assisting radiologists and clinicians 

in making more accurate and timely diagnoses. However, this 

study also acknowledges certain limitations, such as the 

potential lack of diversity in the generated images and risks 

of overfitting if synthetic data dominate the training process. 

These aspects warrant careful consideration in future 

implementations. Researchers recommend that in future 

studies, each model be trained with a different number of 

epochs based on the needs of each model. Additionally, the 

application of weight clipping in WGAN in this study could 

be replaced with an alternative such as the implementation of 

gradient penalty, providing smoother weight constraints in 

the model and resulting in more stable training performance 

and better synthetic images. 
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