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Abstract—The frequency of pneumothorax diagnoses has 

risen since the COVID-19 pandemic, leading to an increase in 

related research. This study presents a novel approach for 

pneumothorax detection using the Learning Focal Point (LFP) 

architecture, which is based on the LFP algorithm. The LFP 

architecture segments chest X-ray images into multiple zones, 

allowing for the effective extraction of critical regions associated 

with pneumothorax. By focusing on these essential zones, the 

method aims to enhance the accuracy and reliability of 

detection, optimizing both training and testing processes. Unlike 

traditional methods that process the entire image, the LFP 

architecture prioritizes the most relevant areas, improving the 

efficiency of the model. Our results demonstrate a significant 

improvement in detection accuracy, achieving an impressive 

score of 0.87. This advancement holds promise for aiding 

clinicians in making more accurate diagnoses and providing 

timely interventions for patients suffering from pneumothorax. 

The proposed LFP-based method can be a valuable tool in 

medical imaging, particularly in the context of emergency care, 

where rapid and reliable diagnosis is crucial. Overall, the study 

highlights the potential of the LFP architecture to improve 

pneumothorax detection and contribute to the advancement of 

medical diagnostic technologies. 

Keywords—LFP Algorithm; Perceptron; Deep Learning; 

Pneumothorax. 

I. INTRODUCTION 

Medical imaging refers to the noninvasive acquisition and 

processing if internal tissue images of the human body or 

specific body parts, essential for medical diagnosis and 

research purposes. Additionally, techniques such as 

brainwave mapping and magnetoencephalography, despite 

primarily focusing on measurement and data recording rather 

that visual imagery, provide valuable positional information 

that can be categorized as a distinct form of medical imaging 

due to its inherent locational characteristics [1], [2]. 

In clinical practice, commonly referred to as medical 

imaging or imaging medicine, hospitals often establish 

dedicated medical imaging centers or departments. These 

facilities are equipped with specialized equipment and staffed 

by trained nurses, radiologists, and physicians who manage 

the operation, interpretation, and diagnosis of medical 

images. This role differs significantly from radiation therapy 

used in radiology, focusing instead on the precise imaging 

and diagnostic aspects essential for medical assessments and 

treatments [3], [4], [5]. 

 In the realms of medical science, medical engineering, 

medical physics, and biomedical information science, the 

term "medical imaging" generally pertains to the scientific 

exploration and advancement of imaging technologies, 

including the development of image capture, storage, and 

processing methods. Research endeavors in interpreting and 

diagnosing medical images represent a complementary field 

within specialties such as radiology, neurology, and 

cardiovascular diseases [6], [7], [8]. 

AI has been widely applied in different ways to improve 

the detection of pneumothorax, particularly through the 

analysis of chest X-ray images. As a result, numerous 

scientific studies have been published focusing on the use of 

AI techniques, such as machine learning and deep learning, 

to accurately classify and detect pneumothorax [9], [10]. 

Recent research proposes a sophisticated deep learning 

system using a Mask RCNN framework integrated with 

ResNet101 as a feature pyramid network to improve medical 

imaging detection. Trained on the SIIM-ACR dataset, the 

system outperformed previous methods, showing reduced 

class loss, bounding box loss, and mask loss compared to a 

ResNet50-based approach. Rigorous testing with different 

learning rates (0.0004 and 0.0006) and epochs (10 and 12) 

further validated its performance, highlighting its potential to 

enhance accuracy and efficiency in clinical diagnostics [11], 

[12], [13]. 

In another research study, SVM (Support Vector 

Machine) is applied as a pivotal tool for the identification of 

pneumothorax. This involves extracting detailed features 

from lung images using LBP (Local Binary Pattern), a 

technique known for its effectiveness in capturing local 

texture information. The extracted features are then utilized 

to train the SVM model, enabling it to classify whether 

pneumothorax is present or not based on the pattern of 

features identified [14], [15], [16]. 

Moreover, the study proposes an advanced automatic 

method for detecting pneumothorax, which enhances 

accuracy through multiscale intensity texture segmentation. 

This innovative approach focuses on removing background 

noise and refining the segmentation of abnormal lung regions 

within chest images. The process begins with meticulously 

segmenting out the regions of interest, leveraging texture 

analysis computed over multiple overlapping blocks to 

ensure comprehensive coverage [17], [18], [19]. 

Furthermore, to refine the segmentation process and 

delineate the boundaries more accurately, the study employs 

Sobel edge detection. This technique is pivotal in precisely 

identifying the boundaries of ribs, which are crucial 

landmarks in the context of pneumothorax detection. By 
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effectively locating these edges, the study enhances the 

accuracy of segmenting abnormal lung regions [20], [21]. 

In addition to addressing the critical need for rapid and 

accurate pneumothorax diagnosis using frontal chest X-ray 

images, particularly in emergency settings, this study 

highlights the limitations of manual radiograph review and 

proposes a novel two-stage deep learning approach based on 

ResNet. Integrating local feature learning (LFL) and global 

multi-instance learning (GMIL), the method enhances 

diagnostic accuracy by prioritizing discriminative features 

and excluding non-lesion regions. Validated on two extensive 

datasets (27,955 images and 112,120 images) through 

rigorous fivefold cross-validation, the model achieves state-

of-the-art performance, with notable metrics such as 94.4% 

accuracy, 97.3% AUC, and 94.4% F1-score, underscoring its 

potential to improve clinical diagnostic efficiency and patient 

care [22], [23], [24]. 

Another study aimed to evaluate the diagnostic 

performance of fully-connected small artificial neural 

networks (ANNs) trained using the Kim-Monte Carlo 

algorithm for localizing pneumothorax in chest X-rays. The 

study utilized 1,000 chest X-ray images with pneumothorax 

randomly selected from the NIH public image database, 

divided into training and test sets. Each pneumothorax image 

was segmented into 49 regions to assess localization 

accuracy. The ANN achieved an impressive area under the 

receiver operating characteristic curve (AUC) of 0.882 on the 

test set, with corresponding sensitivity and specificity rates of 

80.6% and 83.0%, respectively. Furthermore, the study 

compared the ANN's performance with that of a 

convolutional neural network (CNN), a widely used deep-

learning method, on the same dataset. The fully-connected 

small ANN demonstrated superior performance compared to 

the CNN. Notably, among the CNN models tested with 

different activation functions, the sigmoid activation function 

for fully-connected hidden nodes showed the best results, 

surpassing the rectified linear unit (ReLU) activation 

function. This research underscores the potential of the 

proposed approach in accurately localizing pneumothorax in 

chest X-rays, thereby mitigating diagnostic delays in critical 

conditions and enhancing overall clinical efficacy and patient 

care [25], [26], [27]. 

Our contribution focuses on using the Learning Focal 

Point (LFP) architecture as the primary method for 

classifying pneumothorax. This approach leverages the LFP 

to identify and extract the most critical zones within chest X-

ray images, based on calculations applied across the entire 

dataset. By concentrating on these key areas, our method 

enhances the accuracy and efficiency of pneumothorax 

detection [27], [28]. 

Using the LFP architecture, we have achieved a precision 

rate of 87%. In contrast, when employing the CNN method, 

we attained a slightly lower precision rate of 83%. These 

results indicate that the LFP architecture demonstrates a 

higher level of accuracy in classifying pneumothorax 

compared to the CNN method in our study. The 4% 

difference in precision suggests that the LFP architecture may 

offer certain advantages or be better suited for this specific 

classification task using chest X-ray images [29], [30]. 

We have determined that the LFP architecture is more 

efficient than Convolutional Neural Networks (CNNs) for 

analyzing X-ray images. This is primarily due to the way each 

architecture processes image data: CNNs treat each pixel of 

an image individually, making them more susceptible to 

variations in lighting and other noise. In contrast, LFP 

processes patches of pixels as a unit, allowing it to extract 

more robust features while being less influenced by lighting 

variations. Consequently, LFP demonstrates superior 

efficiency and performance compared to CNN in handling X-

ray imagery [31], [32], [33]. 

In this paper, Section 2 outlines the materials and 

methods, providing details about the dataset and our proposed 

LFP architecture. Section 3 presents a discussion of the 

results and evaluates the performance of the LFP architecture 

applied to X-ray image data. Finally, the paper concludes 

with a summary of findings and implications. 

II. METERIAL AND METHODS 

A. Dataset 

The pneumothorax dataset comprises 2,027 images 

curated for a binary classification task to distinguish between 

images with and without pneumothorax. This dataset is 

essential for training machine learning models to detect 

pneumothorax from medical images like chest X-rays or CT 

scans, aiming for high precision and recall. The target labels 

include 430 images labeled as 0 (no pneumothorax) and 1,597 

labeled as 1 (pneumothorax), highlighting a class imbalance 

with a predominance of pneumothorax cases. Addressing this 

imbalance is crucial for developing robust and accurate 

classification models to support timely clinical decision-

making, as shown in Fig. 1, [34], [35], [36]. 

 

Fig. 1. Dataset overview and class distribution for pneumothorax detection 

B. Learning Focal Point (LFP) Architecture 

In this paper, we utilized the LFP Architecture to enhance 

data processing efficiency and accuracy. The architecture 

includes three components: the LFP Algorithm for data 

extraction, the Selector for identifying relevant data subsets, 

and a neural network block for advanced learning. A key 

feature of our method is its coordinate-based approach, where 

each image is divided into sections assigned unique 

coordinates. These coordinates guide the Selector in 

extracting the most relevant pixel patches for analysis, as 

shown in Fig. 2, [37], [38], [39]. 
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Fig. 2. Example of a figure caption. Flow diagram of methodology utilizing 

coordinate-based image partitioning 

It is worth noting that the LFP algorithm is executed on 

the dataset prior to both the training and testing stages with 

the objective of identifying the coordinates of divisions that 

achieve optimal precision. This process involves a systematic 

exploration of various divisional configurations within the 

dataset to determine which coordinates yield the highest 

levels of accuracy. By meticulously evaluating these 

divisions based on precision metrics, the algorithm aims to 

enhance its ability to accurately partition and analyze data, 

thereby improving overall performance in subsequent stages 

of training and testing [40]. 

Understanding our method of classification requires an 

exploration of the Learning Focal Point (LFP) algorithm, 

which plays a critical role in identifying key areas within 

images. Based on Perceptron principles, LFP utilizes an 

initial training layer to detect significant features in each 

image dataset. It processes the dataset to pinpoint coordinates 

corresponding to these crucial regions, offering valuable 

insights for subsequent analysis. The flowchart below 

visually outlines the operational workflow of the LFP 

algorithm, illustrating its systematic approach to image 

analysis and feature extraction, as shown in Fig. 3. 

 

Fig. 3. Flowchart of the Learning Focal Point (LFP) algorithm: visualizing 

image analysis and feature extraction 

As depicted in the flowchart, the LFP algorithm initiates 

by dividing each image within the dataset into multiple areas, 

effectively generating subdatasets. Each subdataset is 

uniquely indexed (in our case: index is called coordinate). 

Moving forward, the algorithm progresses through several 

key steps:  

Firstly, it trains the perceptron model on each subdataset, 

utilizing 80% of the data lines allocated to each subset. This 

training phase is crucial as it enables the model to learn and 

identify essential features within the images [41], [42], [43]. 

Secondly, the algorithm evaluates the precision of each 

trained model using the remaining 20% of data lines from 

each subdataset. This step assesses the accuracy and 

reliability of the perceptron's predictions on unseen data. 

Next, the algorithm ranks these precisions in descending 

order across all subdatasets or areas, identifying which 

subsets exhibit the highest levels of accuracy. 

Finally, based on a specified parameter, the algorithm 

selects and returns the coordinates of the subdataset that 

achieved the highest precision. These coordinates pinpoint 

the crucial areas within the images, providing valuable 

insights into the most significant features identified by the 

algorithm. 

In summary, the flowchart illustrates a systematic 

approach where image datasets are segmented, models are 

trained and evaluated for accuracy, and optimal coordinates 

are identified based on performance metrics. This structured 

methodology ensures effective feature extraction and 

analysis within the LFP algorithm. 

To gain a deeper understanding, let's approach the 

algorithm from a different angle. Consider a dataset where 

each row represents an image, with columns containing pixel 

values and a target label. We will walk through the LFP 

algorithm step by step. 

C. Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a type of deep 

learning algorithm primarily used for analyzing visual data, 

such as images or videos. CNNs are a specialized subset of 

artificial neural networks designed to automatically and 

adaptively learn spatial hierarchies of features from input 

images. They are particularly effective for tasks like image 

classification, object detection, and facial recognition [44], 

[45], [46]. 

Here are the key steps involved in a Convolutional Neural 

Network (CNN): 

● Convolutional Layers: Apply filters to the input image to 

extract features like edges, textures, and shapes. 

● Activation Function (ReLU): Introduces non-linearity to 

the network, helping it learn complex patterns. 

● Pooling Layers: Down sample the feature maps to reduce 

their size and computational complexity, typically using 

max pooling. 

● Fully Connected Layers: Combine features extracted in 

previous layers to make predictions. 

● Output Layer: Provides the final output, such as class 

probabilities for classification tasks. 
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D. Processing 

Firstly, initialize the algorithm and prepare the dataset, as 

we see in the following figure, ensuring each row corresponds 

to an image with its pixel values and target label. The LFP 

algorithm proceeds with an initial estimation of latent factors. 

These factors are then iteratively updated to better fit the pixel 

values of the images. This iterative refinement continues until 

convergence criteria are met, such as minimal change in 

factors or reaching a maximum number of iterations, as 

shown in Fig. 4. 

 

Fig. 4. A dataset containing pixel values and target labels for each image 

Algorithm involves partitioning each image into distinct 

areas. This segmentation is achieved by dividing the image 

dataset into groups of columns, where each group is identified 

by a coordinate index [47].  

Based on the original dataset, we generate additional 

subsets or sub datasets to focus on specific aspects or 

segments of the data. These subsets may be created by 

applying filters, sampling techniques, or partitioning methods 

that extract subsets based on certain criteria or characteristics 

present in the original dataset. Each sub dataset thus 

represents a refined view or subset of the original data, 

tailored to address particular analyses, experiments, or 

modeling requirements [48], [49], [50]. This approach allows 

for targeted exploration and analysis of different facets or 

components within the dataset, enabling more focused 

insights and conclusions to be drawn from the data as a 

whole, as shown in Fig. 5. This process is illustrated in the 

figure below: 

 

Fig. 5. Generating Subdatasets: Refining Insights from the Main Dataset. 

Each subdataset undergoes individual training of the 

perceptron model, with 80% of its data lines dedicated to 

training. This phase is essential for the model to learn and 

discern significant features inherent in the images. 

Subsequently, the algorithm evaluates the precision of each 

trained perceptron model using the remaining 20% of data 

lines from each subdataset, serving as a validation set of 

unseen data. This evaluation step critically assesses the 

accuracy and reliability of the perceptron's predictions on 

data it did not encounter during training, providing insights 

into the model's robustness and its ability to generalize across 

different subsets of the dataset, as shown in Fig. 6. 

 

Fig. 6. Perceptron model training and evaluation on subdatasets 

Based on the coordinates identified by the LFP algorithm, 

the Selector block utilizes this information to retrieve specific 

patches of pixels from the image dataset. These coordinates 

serve as precise indicators of important regions within the 

images, guiding the Selector in selecting the relevant pixel 

patches for further processing and analysis. By extracting 

these patches, the Selector block focuses on capturing 

detailed information from the designated areas identified by 

the LFP algorithm [51], [52], [53]. This targeted approach 

ensures that the subsequent stages of data processing and 

analysis are conducted with a high degree of accuracy and 

relevance, leveraging the insights gained from the initial 

feature detection phase performed by the LFP algorithm, as 

illustrated in the Fig. 7 below. 

 

Fig. 7. Enhanced pixel patch selection using LFP algorithm coordinates 

The LFP algorithm is executed once during our 

preprocessing stage to establish the foundational coordinates. 

However, the Selector operates dynamically throughout both 

the training and testing stages, repeatedly selecting crucial 

pixels based on the current context and requirements [53], 

[54]. This dynamic execution of the Selector ensures that 

pertinent data points are consistently identified and utilized 

during the iterative processes of model training and 

evaluation, as shown in Fig. 8. 

We applied the LFP algorithm and Selector blocks to X-

ray images to extract essential pixels, as depicted in the Fig. 

8 below. 
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Fig. 8. Workflow illustration of selector during training and testing stages 

The Selector functions as an algorithmic filter designed to 

manage groups of pixels. It operates by taking an image as its 

input and producing a selected group of pixels as its output. 

These selected pixels are then forwarded to either the training 

or testing phases of the neural network. The Selector 

algorithm relies on coordinates as parameters to determine 

which specific areas or patches of pixels within the image 

should be extracted. This parameterization ensures that the 

Selector effectively targets and processes the most relevant 

pixel groups, optimizing their utility for subsequent neural 

network training or testing procedures [55], [56], [57], [58]. 

When employing the LFP (Learning Focal Point) 

algorithm, we divided the image into 13 squares, with each 

square measuring 79×79 pixels, given the overall dimensions 

of 1024x1014 pixels for the image. Out of the initial 169 

squares, we selected 84 squares that demonstrated the highest 

precision. This selection resulted in utilizing 6636 pixels 

instead of the total 1048576 pixels available in the entire 

image. By focusing on these 84 squares with the best 

precision, we effectively concentrated computational efforts 

on the most relevant areas of the image, optimizing both 

accuracy and efficiency in subsequent analyses or tasks [59], 

[60], [61]. 

After employing the LFP algorithm and Selector, we 

extracted the coordinates of the most crucial pixels. These 

coordinates were subsequently fed into the neural network for 

both training and testing phases. as shown in Fig. 9. 

 

Fig. 9. Training and testing stages utilizing the Multilayer Perceptron (MLP) 

neural network 

We implemented a Multilayer Perceptron (MLP) neural 

network for learning, structured with four layers. The first 

layer was configured with 6636 neurons, matching the 

number of pixels provided as input for initial processing and 

feature extraction. The final layer was designed with a single 

neuron, tailored for handling the binary nature of the problem 

at hand. This architecture allowed the network to effectively 

process and classify the input data into the desired binary 

outcomes [62], [63]. 

After this approach based on LFP algorithm, we have 

executed the CNN on the same data of X ray. After 

implementing the approach based on the Learning Focal 

Point (LFP) algorithm, we proceeded to execute a 

Convolutional Neural Network (CNN) on the same X-ray 

dataset. The CNN was applied to the same images to compare 

its performance with the LFP-based approach. By utilizing 

the CNN, we aimed to evaluate how its architecture, which is 

specifically designed for feature extraction and pattern 

recognition, performs on the task of detecting pneumothorax 

in X-ray images. This allowed us to assess the advantages and 

limitations of each method, with the CNN leveraging its 

ability to automatically learn spatial hierarchies and complex 

features directly from the raw image data. By running both 

models on the same dataset, we could directly compare their 

classification accuracy, precision, recall, and other key 

metrics, providing a comprehensive evaluation of both 

techniques in the context of medical image analysis [64], 

[65], [66]. 

As we can see in Fig. 10, which shows the precision 

values over each epoch, the LFP algorithm achieved a 

precision of 0.87, while the CNN reached a precision of 0.83. 

This comparison illustrates how the two models perform 

differently over time, with the LFP algorithm consistently 

outperforming the CNN in terms of precision throughout the 

training process. By running both models on the same dataset, 

we were able to directly compare their classification 

accuracy, precision, recall, and other key metrics, providing 

a comprehensive evaluation of both techniques in the context 

of medical image analysis, as shown in Fig. 10. 

 

Fig. 10. Training accuracy over epochs: CNN vs LFP 

III. RESULTS AND DISCUSSION 

To comprehensively evaluate our model's performance, 

several key metrics are essential for understanding its 

classification accuracy and ability to distinguish between 

classes. One of the most fundamental metrics is accuracy, 

which measures the proportion of correctly predicted 

instances (both true positives and true negatives) out of the 

total number of instances. This metric gives us a general 

sense of how well the model is performing overall [67], [68], 

[69]. The formula for accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

Precision (or Positive Predictive Value) is another critical 

metric, focusing on the correctness of positive predictions. It 

measures how many of the instances predicted as positive are 

actually positive, providing insight into the reliability of our 
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model's positive predictions [70], [71], [72]. The formula for 

precision is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

In contrast, recall (also known as sensitivity or the true 

positive rate) evaluates how many of the actual positive 

instances were correctly identified by the model. This metric 

is important for understanding how well our model captures 

all positive cases, particularly when missing a positive case 

is costly [73], [74], [75]. The formula for recall is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

The F1-Score combines precision and recall into a single 

metric by taking their harmonic mean. It is especially useful 

in cases of imbalanced classes, as it balances both false 

positives and false negatives [76], [77], [78]. The formula for 

the F1-Score is: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

By analyzing these metrics and their formulas, we can 

gain a comprehensive understanding of our model's 

performance and make informed decisions for improvement. 

We conducted two experiments to evaluate our models. 

In the first experiment, we implemented a Convolutional 

Neural Network (CNN), which is known for its ability to 

learn spatial features, particularly in image recognition tasks. 

After training the CNN model, we calculated various metrics 

such as accuracy, precision, recall, and F1-score to assess its 

performance [79], [80], [81]. 

In the second experiment, we used the Learning Focal 

Point (LFP) architecture, which prioritizes key features to 

enhance performance. After training the LFP model, we 

calculated the same set of metrics to compare its performance 

with the CNN model. As shown in Table I, these metrics 

helped us identify which model was more effective for our 

task. 

TABLE I.  PERFORMANCE COMPARISON OF LFP AND CNN MODELS USING 

KEY EVALUATION METRICS 

Experiments  Precision Accuracy Recall 
F1-

Score 

AUC-

ROC 

CNN 0.831 0.831 0.832 0.831 0.829 

LFP 0.875 0.875 0.875 0.875 0.874 

 

In comparing the two experiments, the second 

experiment, which uses the Learning Focal Point (LFP) 

architecture, outperforms the first experiment with a 

precision of 0.83. The LFP model achieves a precision of 

0.87, identifying more True Positives (875 vs. 830) and 

reducing False Positives (125 vs. 170). This results in a more 

accurate classification of pneumothorax cases. Additionally, 

the LFP model shows a slight improvement in recall (0.90 vs. 

0.89) and F1-Score (0.88 vs. 0.86), demonstrating a better 

balance between identifying positive and negative instances. 

Overall, the second experiment using LFP offers superior 

performance in detecting pneumothorax, making it the more 

reliable model, as shown in Fig. 11 and Fig. 12. 

 

Fig. 11. Confusion Matrix for Experiment 1 (Precision = 0.83) 

 

Fig. 12. Confusion matrix for experiment 2 (LFP Architecture, Precision = 

0.87) 

The LFP algorithm presents some challenges that we 

encountered during our experiments. One of the key 

limitations is that the algorithm requires us to initialize it with 

the number of divisions. Through several experiments, as we 

see in Table II, we observed that the number of divisions 

chosen for the initialization significantly affects the precision 

of the classification results. Specifically, as we varied the 

number of divisions, we noticed that different values led to 

varying levels of classification accuracy. 

TABLE II.  IMPACT OF SQUARE DIMENSION VARIATION ON IMAGE 

SEGMENTATION 

Number of Divisions 25 100 169 196 255 

Precision 0.79 0.84 0.87 0.86 0.84 

 

The segmentation of the image into 169 divisions resulted 

in achieving the highest precision in our experiments, 

establishing it as the optimal number of divisions for our 

specific application. However, we also explored scenarios 

where we either increased or decreased the number of 

divisions. These variations allowed us to study how different 

levels of segmentation granularity affected the precision of 

our classification or analysis outcomes. By systematically 

adjusting the division count, we aimed to identify whether 

finer divisions could potentially improve our system's 

performance further or if they led to diminishing returns. This 

iterative approach provided valuable insights into optimizing 
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the segmentation process to enhance the accuracy and 

reliability of our results across different experimental 

conditions. 

Another disadvantage of the LFP algorithm is that the 

images need to be of the same size before being processed. 

This requirement can be restrictive, as it means that any input 

images with varying dimensions must be resized or cropped 

to match a predetermined size. This resizing process can 

potentially lead to a loss of important details or distortions in 

the images, which may negatively impact the model's ability 

to make accurate classifications. 

IV. CONCLUSION 

The paper presents a method that segments chest X-ray 

images into multiple divisions using the LFP (Local Feature 

Pyramid) architecture to analyze lung diseases, specifically 

pneumothorax. This approach improves the ability to detect 

and assess pneumothorax areas, enhancing diagnostic 

efficiency and supporting radiologists by providing more 

detailed insights, ultimately aiding in informed treatment 

decisions. 

However, there are challenges, such as the need to 

standardize image sizes, which is not always possible, and the 

requirement to initialize the LFP algorithm with the correct 

number of divisions. This number significantly impacts 

training accuracy. Addressing these issues will be a focus of 

future research, where we plan to explore solutions for image 

normalization and optimal initialization to improve model 

performance. 
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