
Journal of Robotics and Control (JRC) 

Volume 6, Issue 3, 2025 

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i3.25144 1092 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

Heart Disease Prediction Using Ensemble Methods, 

Genetic Algorithms, and Data Augmentation: A 

Preliminary Study 

 Deepali Yewale 1*, Swati Patil 2, Archana Rajesh Date 3, Aziz Nanthaamornphong 4 
1 AISSMS Institute of Information Technology; Pune 411001, India 

 2 Vishwakarma Institute of Technology; Pune, India 
3 HSBPVTS Faculty of Engineering; Ahmednagar, India 

 4 College of Computing, Prince of Songkla University, Phuket Campus, Phuket 83120, Thailand  

Email: 1 deepali_yewale@yahoo.co.in, 2 swati.patil@viit.ac.in, 3 archanadate@gmail.com, 4 aziz.n@phuket.psu.ac.th,  

*Corresponding Author 

 

Abstract—Statistically speaking, heart disease (HD) 

accounted for 1 in 5 fatalities in 2022, demanding affordable 

and accurate diagnosis. Traditional methods of prediction are 

accurate but expensive, creating a demand for sophisticated 

and efficient technologies. One of the most popular methods 

that researchers employ to forecast diseases is machine 

learning (ML). The goal of this effort is to improve HD 

prognosis accuracy through the use of ensemble approaches, 

specifically Random Forest (RF), XGBoost, Voting, and 

Stacking methods, which improve prediction accuracy by 

combining multiple models to capture complex patterns. 

Genetic algorithms (GA) are used to prioritize features. 

Incorporating data balancing, outlier removal techniques, and 

data augmentation, creates a model that delivers performance 

comparable to state-of-the-art research. Methods like random 

oversampling address data imbalance, while an isolation forest 

is employed to identify anomalies. To increase the dataset size 

and improve model performance, random noise is added after 

anomaly removal. Performed the cross-validation and 

robustness checks to assess the model's performance on both 

augmented and non-augmented datasets, ensuring that the 

inclusion of random noise did not excessively affect 

generalizability or result in overfitting. The proposed model’s 

effectiveness is evaluated using various performance metrics. 

Achieving 99.36% accuracy, 98% sensitivity, 100% specificity, 

100% PPV, 97% NPV, 0.99 F-score, and an AUC of 1, the 

methodology shows great promise as a cost-effective, accurate, 

and highly efficient diagnostic tool for heart disease. The 

model's short training time and high performance suggest its 

potential for practical implementation in clinical settings, 

offering a reliable and affordable solution for early heart 

disease detection. 

Keywords—Heart Disease; Ensemble Classifier; Genetic 

Algorithm; Data Balancing; Outlier Removal; Random Noise. 

I. INTRODUCTION  

The WHO reports that cardiovascular diseases (CVD), 

which include coronary artery disease, heart failure, and 

arrhythmias claim millions of lives every year [1]. Early 

detection and prompt treatment are crucial in reducing the 

effects of HD, underscoring the importance of precise and 

reliable diagnostic approaches. Conventional diagnostic 

techniques, although effective, often rely on costly and 

resource-intensive tools such as invasive procedures or 

specialized imaging [2]. As healthcare systems worldwide 

strive for more affordable solutions, there is a growing 

demand for innovative technologies that offer precision 

without the associated high costs [3]. 

With the continuous evolution of medical systems and 

the development of novel treatments, it is increasingly 

difficult for healthcare professionals to keep pace with 

advancements in clinical practice. Providing effective care 

demands a thorough grasp of diagnostic guidelines, patient 

history, and an integrated approach to various therapeutic 

strategies. Yet, clinical decision-making is frequently 

shaped by intuition and past experiences, which can 

sometimes result in errors [4]. Consequently, computer-

aided diagnostic systems have become valuable tools in 

assisting healthcare providers in reaching well-informed 

conclusions. The integration of ML techniques with medical 

expertise has garnered significant interest, as it can enhance 

diagnostic accuracy, prediction, and treatment. Research has 

demonstrated that machine learning algorithms can surpass 

even highly skilled physicians in diagnostic accuracy [5]. 

In the past few years, ML has become a highly regarded 

area for enhancing diagnostic precision in various medical 

applications, including HD prediction. ML algorithms are 

capable of analysing large quantities of patient information, 

identifying intricate patterns, and providing forecasts that 

support clinical decision-making [6]. Despite these 

advancements, challenges remain in terms of data quality, 

imbalance, and computational efficiency, all of which can 

affect model performance. Addressing these issues is 

essential to achieving the desired balance between accuracy, 

speed, and accessibility in real-world clinical environments 

[7]. 

The augmented datasets can help generalize models 

better, especially when dealing with small datasets. If the 

available dataset is limited, adding random noise to the data 

is a simple yet effective way to generate slightly different 

versions of the original data. This simulates new data points, 

effectively enlarging the dataset and making the model more 

robust [8]. GA is a powerful tool for feature optimization in 

machine learning, offering robust search capabilities across 

large feature spaces, especially in complex datasets. By 

iteratively selecting and refining feature subsets, GA helps 
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in improving model performance, reducing overfitting, and 

simplifying models [9][10]. 

This research explores the development of a novel 

ensemble ML model, optimized by GA for feature selection 

(FS), to improve the prognosis of HD. The resulting models 

from genetic algorithms and augmented datasets can be 

highly intricate, posing challenges for clinicians who rely on 

transparent and explainable systems for decision-making. 

Ensuring model interpretability is crucial for gaining the 

trust of healthcare professionals and ensuring patient safety. 

The model integrates several advanced techniques, such as 

data balancing and outlier detection, to ensure robust 

performance on diverse datasets. By employing strategies 

like random oversampling to manage imbalanced data and 

using isolation forests for outlier detection, the study aims to 

overcome common limitations in current machine learning 

approaches. Furthermore, by adding random noise to double 

the dataset, the study seeks to improve model accuracy 

while maintaining computational efficiency. The addition of 

random noise during data augmentation can introduce 

artificial variability, which may not accurately reflect real-

world clinical scenarios and could lead to overfitting. To 

mitigate this, we carefully monitored model performance 

across multiple validation sets to ensure that the 

augmentation process did not negatively impact the model's 

ability to generalize. The aim of this study is to develop a 

diagnostic instrument that not only matches cutting-edge 

performance but also offers an affordable, efficient solution 

for heart disease prediction in clinical settings. Here’s a 

bullet-point summary of the study's main contributions: 

● Data Standardization: The research incorporates multiple 

data pre-processing techniques, including 

standardization, data balancing, and anomaly removal, to 

standardize the dataset. 

● Feature Optimization: It utilizes a genetic algorithm to 

identify and prioritize the most valuable features, further 

enhancing diagnostic accuracy. 

● Enhancement of Diagnosis: The study seeks to enhance 

the precision in diagnosing heart disease by employing 

an ensemble classifier in conjunction with data 

augmentation techniques. 

● Comparative Analysis: The suggested approach is 

evaluated against current methods to highlight its 

superiority and performance in diagnostic accuracy. 

The structure of the paper is as follows: An overview of 

pertinent material is provided in Section 2. Section 3 

outlines the suggested approach, and Section 4 presents the 

results of the experiment. The conclusions are finally 

summed up in Section 5. 

II. LITERATURE REVIEW 

To investigate HD prediction, a range of data mining 

techniques have been employed, incorporating data 

augmentation and feature engineering strategies. This 

section provides a review and analysis of several key studies 

in this area. 

Many researchers explored various ML methods, 

including base classifiers, ensemble classifiers, and hybrid 

methods for heart disease prognosis [11]-[14]. In the study 

[15], the researcher applied ensemble modelling techniques 

such as bagging, boosting, and stacking, comparing their 

performance against individual base classifiers. A 

comparative analysis was conducted to assess the 

effectiveness of ensemble methods in improving the 

prediction accuracy of coronary heart disease. Bagged 

models demonstrated higher accuracy compared to their 

traditional counterparts, while boosted models achieved an 

improvement in average accuracy. The stacked model, 

however, outperformed both, delivering the highest 

accuracy among all techniques. Additionally, the models’ 

performance was assessed through data analysis techniques 

and K-Fold cross-validation to ensure robustness. 

Authors in the research paper [16], [17], suggested the 

method to effectively predict HD by developing a 

homogeneous ensemble model, specifically leveraging an 

accuracy-based weighted aging classifier. This approach 

obtained a classification accuracy of 93%, demonstrating its 

efficacy in predicting HD risk.  The suggested method 

consistently outperformed other ML algorithms and recent 

methodologies, showcasing its superior predictive 

capability. This work sets a benchmark for using ensemble 

techniques in predictive healthcare systems. 

Similarly, the study in [17], combined the effectiveness 

of ensemble learning, optimized through Bayesian 

hyperparameter tuning, with explainability through SHAP 

(Shapley Additive Explanations). The research evaluated 

three popular ensemble algorithms: AdaBoost, Random 

Forest, and XGBoost. XGBoost emerged as the best-

performing algorithm, owing to its robust handling of 

structured datasets and computational efficiency. The 

combination of high specificity and sensitivity highlights the 

model’s reliability in accurately distinguishing between 

patients with and without HD. This study highlights how 

ensemble learning and examinability methods can be 

combined to achieve state-of-the-art disease prediction 

performance while maintaining model transparency. 

CVDs account for a significant portion of global 

deaths, and their prevalence has escalated during the 

COVID-19 pandemic, due to the compounded effects of 

socio-economic challenges and lifestyle changes. The 

necessity for precise and timely diagnosis has become 

paramount in reducing the burden of heart disease. The 

research in [18], focused on using ensemble ML methods to 

predict HD, with FS, emphasizing the critical role in 

enhancing model performance. The results demonstrated 

that ensemble models, when optimized with selected 

features, achieved high accuracy with fewer input variables.  

Due to the large volume of patient data, accurately 

predicting heart diseases remains challenging. Individual 

classification algorithms have been found insufficient for 

creating reliable technique for HD prediction. To address 

this, ensemble learning approaches (ELA) have been applied 

in [19], combining multiple algorithms to enhance 

predictive accuracy. The study utilized three datasets with 

diverse patient data for evaluating model generalizability. 
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The research underscores the importance of ensemble 

methods in creating robust and accurate predictive models 

for HD. This suggested approach demonstrated highest 

precision when evaluated using the Z-Alizadeh Sani dataset, 

outperforming its performance on the other datasets. 

Researchers in [20],  investigated the efficacy of several 

ML methods and their combination on benchmark dataset in 

cardiovascular research to enhance prediction accuracy. 

GridSearchCV with five-fold cross-validation 

systematically explored parameter combinations to 

maximize model performance. LR and AdaBoost algorithms 

were combined into a soft voting ensemble classifier, 

resulted in higher accuracies, reaching 93.44% and 95%, 

outperforming previous approaches for the said two 

datasets. This research establishes a strong case for 

integrating machine learning algorithms into ensemble 

frameworks, showcasing their ability to handle diverse 

datasets and accomplish cutting-edge results. 

Researchers in [21], emphasized on data pre-processing 

techniques, and the use of ensemble learning algorithms in 

HD management. To produce a complete dataset for 

analysis, the study combined many Kaggle datasets with 

comparable properties, and employed GridSearchCV to tune 

the hyperparameters systematically. By applying the Extra 

Tree Classifier, this approach achieved a high prediction 

accuracy of 98.15%. The findings emphasize the value of 

thorough pre-processing as well as the competency of ML 

models to enhance healthcare early detection. 

In the study [22], researchers implemented a stacked 

ensemble classifier to improve the precision of disease 

prediction diagnosis, leveraging various ML approaches and 

FS methods. Chi-square was applied for feature 

optimization to identify the most statistically significant 

features, reducing dimensionality and improving 

computational performance. This research emphasizes the 

importance of integrating FS and advanced ensemble 

techniques to build robust models, offering valuable insights 

for practical healthcare applications. 

In previous studies, ensemble learning systems were 

employed for HD risk prediction by exploring multiple 

machine learning models. The stack-based ensemble 

approach in [23] combined weak learners to predict early 

HD symptoms. A meta-classifier, specifically LR, was used 

to integrate the predictions from these models. SMOTE was 

applied to address disparity in class for UCI dataset. The 

method attained an AUC score of 0.922, and performance 

was further evaluated using confusion matrix and 

classification reports. This research illustrates the 

effectiveness of stack-based ensembles and preprocessing 

techniques like SMOTE in advancing predictive accuracy 

and fairness in HD risk assessment. 

In the study [24], researchers implemented an ensemble 

ML approach for CVD detection, leveraging a voting 

mechanism to combine the strengths of multiple classifiers. 

Chi-square was applied to reduce the feature set, improving 

both accuracy and reducing computational complexity. The 

ensemble method showed superior performance, attaining a 

noteworthy accuracy of 92.11%, demonstrating 

improvement over any single classifiers. This research 

showcases the potential of ensemble learning in advancing 

diagnostic tools, emphasizing the synergy between FS and 

model combination to achieve superior performance. 

In previous studies, various ML techniques have been 

applied to predict HD using clinical datasets. FS methods, 

including Pearson, PCA, Chi-2, and RFE, have been 

employed to identify the most significant clinical attributes, 

followed by an ensemble approach to further refine the 

feature set. A number of machine learning classifiers have 

had their performance assessed, including artificial neural 

networks, ensemble (bagging and boosting), and 

conventional classifiers. The results underscore the potential 

of boosting algorithms like XGBoost in clinical 

applications, providing a trustworthy and effective 

instrument for early diagnosis and management [25]. This 

study emphasizes the synergy between effective FS and 

ensemble learning in developing robust, high-performing 

models for healthcare management. 

The researchers in [26], focused on evaluating the effect 

of FS techniques on the efficiency of various ML models for 

heart risk assessment.The study underscored that the effect 

of FS varies across algorithms, emphasizing the need to 

tailor FS techniques to specific models. This study 

emphasizes how important FS is for improving the 

functionality of specific models, while also demonstrating 

its potential drawbacks for others. The findings provide 

valuable insights for selecting appropriate FS methods based 

on the model and dataset characteristics. The study 

emphasizes the nuanced relationship between FS and model 

performance, advocating for a careful, model-specific 

approach in predictive modeling for HD. 

The study [27] performed an experimental evaluation of 

HDAll things considered, this study  underscores  how 

crucial it is to integrate advanced ML strategies to address 

healthcare challenges prediction models, focusing on the 

interplay between FS techniques and classification 

algorithms. A total of ten FS methods, were assessed 

alongside six classification approaches for the UCI dataset. 

The results indicated that the backward FS technique 

produced the best-performing feature subset, yielding 

improved model accuracy and computational efficiency. 

This comprehensive analysis contributed to the 

understanding of data-driven methodologies in predicting 

HD. 

The authors in [28], explored the difficulties associated 

with detecting anomalies in time-series data, which often 

suffers from issues like data imbalance, temporal 

dependence, and noise. They proposed a fault detection 

model that utilized data augmentation through the addition 

of Gaussian noise, set at a level of 0.002, to enhance the 

model's generalization performance. Their evaluation 

indicated high F1-scores and accuracy when time series data 

was processed, thereby providing a foundation for further 

research in anomaly detection. 

The study referenced in [29], proposed a innovative 

methodology that combines reinforcement learning and data 

augmentation techniques to increase the prediction accuracy 

of heart illness. This approach tackled the inherent 

challenges in cardiac data, such as its complexity and 
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variability, which often hinder the performance of 

conventional ML models.  The combination of these two 

approaches resulted in a synergistic effect, improving the 

model's capacity to accurately forecast outcomes and 

capture intricate data linkagesAll things considered, this 

study underscores how crucial it is to integrate advanced 

ML strategies to address healthcare challenges and sets a 

benchmark for future research in cardiac disease prediction. 

Our approach stands out by emphasizing both high 

accuracy and computational efficiency in predicting heart 

disease using an ensemble classifier with feature 

optimization. The dataset undergoes data balancing and 

outlier removal to ensure better quality, and data 

augmentation techniques are applied by introducing random 

noise during training to enhance model robustness and 

performance in binary classification. 

III. MATERIALS AND METHODS 

A. Dataset 

For the experimentation in this research, the  dataset is 

sourced from the UCI Machine Learning Repository [30]. It 

includes 303 entries and initially contains 76 features; 

however, only fourteen of these biological characteristic are 

commonly used in prediction of heart risk [31]. Of these, 

thirteen represent input features related to various health 

parameters, regarded as risk factors for HD. With values of 

0 or 1, the binary target output indicates if heart risk is 

present or not. Table I provides a description of the dataset's 

biological Characteristics. 

TABLE I.  BIOLOGICAL CHARACTERISTICS DESCRIPTION OF THE DATASET 

Feature Data Type Description 

age Numerical Age in years 

sex Categorical Male: 0; Female: 1 

cp Categorical Type of chest pain 

trestbps Numerical Resting blood pressure 

chol Numerical Serum cholesterol 

fbs Categorical Fasting blood sugar 

restecg Categorical Resting ECG result 

thalach Numerical Maximum value of heart rate 

exang Categorical Exercise induced angina 

oldpeak Numerical ST depression induced by exercise 

slope Categorical The slope of the peak ST segment 

ca Numerical Number of major vessels colored by fluroscopy 

thal Categorical Thalasemia 

target Categorical Diagnosis of heart disease 

B. Data Pre-processing 

To guarantee the integrity of the dataset and its 

compliance with the ML model, the data pre-processing 

stage is essential. Initially, the process involves identifying 

and handling missing values, which can undermine the 

statistical reliability and accuracy of the model's predictions 

[32]. We identified no missing values in the dataset, 

eliminating the need for imputation or exclusion methods. 

However, a further inspection identified disparities in the 

magnitude of certain attribute values. The chosen method, 

standardization, transforms the values of each attribute to 

have a mean of 0 and a standard deviation of 1 [33]. This 

ensures that all attributes contribute equally to the model 

during training. Each feature's data point's mean is deducted 

during standardization, and the result is divided by the 

standard deviation. The standardization process is 

mathematically represented using (1) to (3), 

𝑥′ =
𝑥−𝜇

𝜎
  (1) 

Where, 𝑥 is the data point in the feature, 𝜇 the mean, and 𝜎 

is the standard deviation. 

Here, mean is computed as: 

𝜇 =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
  (2) 

In the context of a dataset, 𝑁 is the total number 

of instances being scaled, and 𝑥𝑖 represents each individual 

data point in the feature. 

The standard scalar is calculated as: 

𝜎 =  √
1

𝑁
 ∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1   (3) 

C. Random Oversampling 

As seen in Fig. 1, the Cleveland dataset has 165 

individuals diagnosed with HD, whereas 138 individuals do 

not have the disease. For instance, in medical diagnostics, 

the minority class might represent a rare but critical disease 

that requires detection. Understanding and addressing 

imbalance is essential because standard machine learning 

algorithms can become biased in favor of the dominant 

class, resulting in subpar minority class prediction 

performance [34]. So, the dataset is balanced by the use of 

random oversampling. In order to balance the minority class 

with the majority class, RandomOverSampler duplicates 

samples from the minority class [35]. Fig. 2 represents the 

class distribution after resampling. Total Number of 

instances after random oversampling is 330. 

 

Fig. 1. Target class distribution of cleveland dataset 

 

Fig. 2. Target class distribution of cleveland dataset 
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D. Isoaltion Forest 

Isolation Forest is a specialized technique for detecting 

anomalies in data [36]. It identifies anomalies by isolating 

observations, where "isolating" means separating a data 

point from the rest. Isolation Forest uses decision trees to 

partition data [37]. The algorithm builds these trees through 

a process of randomization, where it: 

● Randomly selects a feature from the dataset. 

● Randomly chooses a split value within the range defined 

by the minimum and maximum values of the selected 

feature. 

This process is repeated recursively to construct 

individual decision trees  The algorithm builds an ensemble 

of these random partitioning trees and averages the 

"isolation path length" across the trees [38]. Short paths 

indicate anomalies, while longer paths indicate normal 

points.  

When the Isolation Forest model (iForest) is fitted to a 

dataset, it creates 50 trees (based on n_estimators=50), each 

randomly partitioning the data. After training, each data 

point is scored based on how many splits are needed to 

isolate it across all trees. Points with a shorter average path 

length are classified as outliers, while those with longer path 

lengths are classified as normal [39]. With 

contamination=0.05, the model will attempt to label 5% of 

the data as anomalies. 

The designed code fits the Isolation Forest model on a 

resampled dataset and then makes predictions, where it 

assigns -1 to anomalies and 1 to normal points. 

Cleaned dataset with 313 instances after removal of 

outliers is further processed for data augmentation. 

E. Data Augmentation 

To further expand the diversity and size of the dataset, 

random noise is added to the instances, effectively doubling 

the data available for training [40]. This augmentation 

technique introduces variability in the input features, 

enhancing the model’s robustness and generalization 

capabilities [41]. As the available dataset is limited, adding 

random noise to the data is a simple yet effective way to 

generate slightly different versions of the original data. This 

simulates new data points, effectively enlarging the dataset 

and making the model more robust. 

np.random.normal() function generates random numbers 

from a normal (Gaussian) distribution. After generating the 

random values, they are added element-wise to the old_data. 

This effectively adds a small amount of noise (with a 

standard deviation of 0.1 and a mean of 0) to the existing 

old_data. This level of noise is chosen to introduce a 

moderate amount of variability without significantly altering 

the characteristics of the original data. The shape of the 

random noise matches the shape of X, and the element-wise 

addition adjusts each value in old_data. Some models 

exhibit sensitivity to small fluctuation in the input data. 

Adding noise makes the training process less sensitive to 

small fluctuations, promoting stability in predictions [42]. 

Cross validation is performed to ensure the integrity in the 

original data pattern. Compared the model performance with 

and without noise augmentation using a validation set, as 

well as implemented robust validation techniques to 

evaluate generalizability across different dataset size to 

ensure that the augmentation process did not negatively 

impact the model's ability to generalize. Total numbers of 

available instances after data augmentation is 626. 

F. Feature Optimization using Genetic Algorithm 

Genetic Algorithms (GA) are popular for feature 

optimization in machine learning because of their ability to 

efficiently search large, complex spaces [43]. They 

prioritize the most fit individuals for reproduction in order 

to produce the next generation, simulating the process of 

natural selection. this concept is applied to optimize the 

selection of features that improve model performance [44]. 

Genetic algorithm in Feature optimization [45]: 

● Initialization: A population of chromosomes (each 

representing a feature subset) is initialized.  Each 

chromosome is represented as a binary vector, where a 

feature is considered included if its value is 1, and 

excluded if its value is 0. 

● Fitness Function: By training an ML model with the 

relevant subset of characteristics and assessing its 

performance, the fitness of each chromosome is 

assessed.  

● Selection: Chromosomes with higher fitness scores are 

selected to produce offspring for the next generation. 

Techniques like roulette wheel selection or tournament 

selection are often used. 

● Crossover: To create offspring’s, pairs of chromosomes 

are joined, usually by switching some of their feature 

subsets (e.g., via single-point or multi-point crossover). 

This mimics biological reproduction and encourages the 

exchange of useful feature combinations. 

● Mutation: Random changes are introduced to the 

offspring by flipping a small number of bits in their 

chromosome. Random modifications are applied to 

certain individuals, promoting diversity and preventing 

the algorithm from becoming stuck in local optima. 

● Termination: The process repeats for several generations 

until a stopping criterion is reached, such as a maximum 

number of generations or no improvement in fitness over 

time. 

● Result: The best-performing chromosome represents the 

optimized feature subset, which can be used to train the 

final ML model. 

In HD prediction, a genetic algorithm could optimize the 

feature set by selecting relevant clinical parameters (like 

cholesterol, age, blood pressure) that maximize model 

accuracy while excluding redundant or irrelevant features. 

The stopping criteria in a genetic algorithm dictate when 

the algorithm should halt its execution. This is usually based 

on factors such as the maximum number of generations, 

achieving a satisfactory fitness level, or convergence of the 

population. When setting the parameters like stopping 
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criteria, population initialization, and mutation/crossover 

rates, it’s important to consider both the size and complexity 

of the dataset. In this case, using a population of 80 

(size=80) and setting the mutation rate to 0.20 is intended 

to maintain a balance between exploration and exploitation, 

ensuring the algorithm explores a diverse set of potential 

solutions without excessive randomness. Furthermore, as 

the algorithm is run for only one generation (n_gen=1), 

these parameters are likely selected to quickly evaluate the 

impact of the GA with minimal computational cost. 

In this example, the Genetic Algorithm runs for one 

generation with a population of 80 individuals, 64 parents 

selected for crossover, a mutation rate of 20%, and uses the 

provided training and testing datasets. The choice of 

parameters ensures a balance between diversity in the 

population (via random initialization and mutation) and 

convergence toward better solutions (via crossover). 

Evaluated the model performance using both training and 

validation sets, ensuring that the final feature set are not 

overfitted to the training data. 

G. Model Training with Ensemble Techniques  

The optimized feature set is then used to train an 

ensemble model, combining multiple base learners to 

improve predictive accuracy and reduce variance [46]. The 

fundamental idea behind ensemble learning is to harness the 

collective strength of various individual models, thereby 

creating a predictive system that is more accurate and 

reliable [47]. In this research work, several ensemble 

techniques were employed, including bagging with RF, 

ETC, boosting with XGBoost and AdaBoost, voting using 

both hard and soft voting methods, and stacking by 

combining RF with SVM.  

The ensemble technique includes [48]: 

● Bagging: Models are trained on different subsets of data 

with replacement, enhancing model stability and 

reducing variance. 

● Boosting: Sequentially corrects the errors of previous 

models, emphasizing misclassified instances, thereby 

increasing overall accuracy. 

● Voting: Each base model to "vote" on the outcome for a 

given input, with the ensemble model deciding based on 

these votes. 

● Stacking: Combines predictions from multiple base 

models, using a meta-learner to enhance performance by 

leveraging the strengths of different algorithms. 

1) Bagging- Random Forest 

Random Forest, a robust ensemble learning method with 

the Bagging approach, constructs numerous decision trees 

as shown in Fig. 3. Each decision tree in the ensemble is 

trained independently on its respective subset, which is 

formed through bootstrapping. Each subset may include 

duplicate samples, ensuring diversity in the training data 

provided to individual trees. This randomization leads to a 

more generalized model by reducing correlation among 

trees. The bagging process is repeated multiple times, 

resulting in a collection of decision trees forming the forest. 

Once the independent decision trees are created, the random 

forest can perform a majority vote for classification tasks 

[49]. 

 

Fig. 3. Illustration of Random Forest [50] 

2) Bagging- Extra Tree Classifier 

It is an extension of Random Forest and shares some 

similarities with it. Using bootstrapping, Extra Trees creates 

several decision trees, each trained on a different subset of 

the original dataset as depicted in Fig. 4. Random Forest 

employs the optimal splitting to select the best feature from 

the random subset at each node while Extra Trees randomly 

selects features and thresholds for splitting without 

considering the optimal split.The final prediction is obtained 

by aggregating individual tree outputs through majority 

voting for classification tasks [51]. During training, the 

ensemble also evaluates performance using out-of-bag 

samples, and hyperparameter tuning can be used to optimize 

model performance.  

 

Fig. 4. Illustration of Extra Tree Classifier [52] 

3) Boosting- XGBoost 

Extreme Gradient Boosting, or XGBoost, is a well-

known and highly regarded gradient boosting technique. A 

sequence of weak learners is trained in this manner, with 

each succeeding learner concentrating on fixing the errors of 

its predecessors [53] as represented in Fig. 5. Misclassified 

samples are given additional weight during training so that 

poor learners can improve their ability to recognize intricate 

patterns in the data. The outputs of all weak learners are 

combined to provide the final prediction, where the weights 

are determined by the individual performance of the 

learners. XGBoost employs a greedy algorithm to determine 

the best possible split. An essential aspect of XGBoost is 

that each new classifier considers the areas where the 

previous classifiers struggled to perform well [54].  
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Fig. 5. Schematic representation of  XGBoost [55] 

4) Boosting- AdaBoost 

AdaBoost is a potent machine learning technique that 

uses weighted linear combinations to combine several weak 

learners in order to produce a strong classifier. The weights 

of the training data instances are iteratively changed 

according to the classification accuracy of the data. Initially, 

all instances have equal weight. With each iteration, 

misclassified examples receive higher weights, while 

correctly classified ones receive lower weights. The base 

classifier is then applied to the updated data with fresh 

weights in each round [56]. All of the models created over 

the iterations are combined to create the final categorization 

model as illustrated in Fig. 6.  

 

Fig. 6. Illustration of AdaBoost [57] 

5) Voting Classifier 

The Voting Classifier is a technique in ensemble 

learning that integrates several individual classifiers to 

generate predictions for a specific dataset. The initial step in 

constructing a Voting Classifier involves the careful 

selection of a group of base classifiers.  These classifiers can 

be different machine learning algorithms or distinct 

instantiations of the same algorithm with varying 

hyperparameters. Once the base classifiers are chosen, they 

undergo training using the identical dataset and the same 

input features. After training the Voting Classifier, it can be 

used to predict outcomes on fresh and previously unseen 

data. The input data is passed through each base classifier, 

and their individual predictions are combined using either 

hard or soft voting strategy to generate the final prediction 

[58]. Hard voting uses a straightforward majority voting 

method, with the class with the most votes becoming the 

predicted result as shown in Fig. 7(a). Each classifier's class 

probabilities are averaged during soft voting, and the 

projected class is chosen based on the class with the highest 

average probability, as illustrated in Fig. 7(b). For hard 

voting, the ensemble of base models in the proposed work 

consists of LR, NB, DT, SVM, and KNN; for soft voting, it 

consists of LR, NB, DT, and KNN. 

 
 

(a) (b) 

Fig. 7. Illustration of (a) hard voting (b) soft voting [59]                                                      

6) Stacking 

Stacking, also referred to as "Stacked Generalization," is 

an ensemble learning technique that enhances predictive 

performance by combining the outputs of multiple base 

models, also known as first-level models. This approach 

involves training several base models on the same training 

dataset and then using their predictions as input for a higher-

level model, called a meta-model or second-level model, to 

generate the final prediction [60] as explained in Fig. 8. The 

core idea of stacking is to leverage the strengths of diverse 

base models to achieve superior predictive accuracy 

compared to using any single model. To ensure this 

diversity, the base models are either trained using different 

algorithms or by applying the same algorithm with distinct 

sets of hyperparameters. After training the base models on 

the training dataset, they are used to make predictions on the 

validation set. These predictions from the base models are 

then utilized as input features for the meta-model. The meta-

model, trained on these features, learns to optimally 

combine the outputs of the base models to make the final 

prediction. Once trained, the meta-model is used to generate 

predictions on the test dataset [61]. In this research, RF is 

employed as a baseline model, while SVM is used as the 

meta-classifier to aggregate the predictions from the base 

models effectively. 

 

Fig. 8. Illustration of Stacking Approach [62] 

H. Proposed Prediciton Model 

The proposed research leverages ensemble learning 

techniques combined with various supporting algorithms for 

more precise heart disease detection. Given the medical 

disease prediction context, a large and complex dataset is 

involved. Machine learning models often face challenges 

like outlier detection and data imbalance. To address data 
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imbalance, random oversampling is applied, while outliers 

are managed using the Isolation Forest algorithm. For 

feature optimization, a Genetic Algorithm (GA) is employed 

to prioritize the most relevant features. We also tested 

additional feature selection technique, such as RFE, but 

found that their inclusion did not significantly improve 

model performance over the GA alone. Data augmentation, 

in the form of random noise addition, is used to increase the 

dataset size while maintaining computational efficiency. 

The study employs ensemble classifiers, including bagging, 

boosting, voting, and stacking, to enhance predictive 

accuracy. The performance of these ensemble models is 

thoroughly compared. The ensemble learning framework 

combines multiple classifiers, including Random Forest 

(RF), XGBoost, Voting, and Stacking, with exploration of 

other ensemble techniques such as AdaBoost and Gradient 

Boosting. However, the performance of these alternative 

methods did not substantially outperform the existing 

approach, suggesting that the current ensemble setup offers 

a robust solution for heart disease prediction. Fig. 9 provides 

a visual representation of model's components, illustrating 

its structure and workflow. Subsequent sections delve into 

the study's methodology, covering dataset description, pre-

processing methods, ensemble strategies aimed at boosting 

diagnostic accuracy, and feature optimization techniques to 

improve classifier performance. 

The proposed methodology is outlined in detail in the 

following algorithm. 

Algorithm: Proposed Approach 

Step 1: Data Pre-processing 

1. Load Dataset: Import the heart disease dataset  

2. Data Cleaning: 

o Handle missing values by imputing or 

removing them based on the dataset's quality 

and the impact on feature importance. 

3. Data Balancing: 

o Apply Random Over-Sampling to handle 

imbalanced classes. 

4. Outlier Detection and Removal: 

o Use Isolation Forest to identify and 

eliminate outliers that may impact model 

performance. 

 Step 2: Data Augmentation 

1. Instance Doubling with Noise: 

o To enhance data diversity, add small random 

noise to existing instances and duplicate 

them to double the dataset size. 

 Step 3: Feature optimization Using GA  

1. Initialize Population: 

o Generate a population of feature subsets, 

with each subset representing a unique 

combination of features.  

2. Fitness Function: 

o  Establish a fitness function to assess feature 

subsets according to the model's sensitivity, 

specificity, and accuracy. 

3. Genetic Operators: 

o Apply Selection, Crossover, and Mutation 

to create new feature subsets for subsequent 

generations 

o Continue until convergence or maximum 

generations are reached. 

4. Select Optimal Features: 

o Select the feature subset that achieves the 

highest fitness score. 

 Step 4: Model Development and Ensemble Technique 

1. Split Data: 

o Divide the dataset into training and testing 

sets in a 75:25 ratio. 

o Apply 10-fold cross validation for validating 

the training set. 

2. Model Selection and Ensemble: 

o Develop an ensemble of machine learning 

models  

o Train each model on the train set utilizing 

the chosen features. 

 Step 5: Model Evaluation 

1. Prediction on Test Set: 

o Use the ensemble model to predict heart 

disease on the test set. 

2. Performance Metrics Calculation: 

o Assess the model's performance using 

various metrics for comparison. 

 Step 6: Result Interpretation 

 

After training and validating the models across various 

evaluation metrics, the model achieving the highest 

accuracy is selected as the optimal one. The flowchart is 

designed to provide a better visual understanding of the 

methodology as shown in Fig. 10. This transparency is 

especially valuable in clinical environments, as it helps 

healthcare practitioners grasp the model’s decision-making 

process, fostering both trust and practical insights. 

 

Fig. 9. Proposed Heart disease Prediction Model 
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Fig. 10. Flowchart representation of the proposed methodology 

IV. RESULTS AND DISCUSSION 

Here, we examine the performance outcomes of 

proposed ensemble classifiers. Using the Cleveland dataset, 

we assessed these classifiers both before and after applying 

data augmentation and feature optimization with a genetic 

algorithm. The dataset was partitioned into train and test 

sets with a 75:25 split, ensuring that the test set was 

reserved exclusively for assessing the performance of the 

implemented ensemble classifiers. This separation helps 

mitigate overfitting risks associated with combining FS and 

ensemble methods. Python 3 and Jupyter notebook running 

on an i5- 9000H laptop with 8GB RAM are used to simulate 

the model. 

The experiments involved two distinct methodologies. In 

the first approach, the process was carried out up to the 

outlier removal stage, after which the ensemble classifiers 

were trained individually and evaluated based on thirteen 

selected features.  

The results for this approach 1 are shown in Table II. 

Among the ensemble classifiers, XGBoost, Soft Voting, and 

Stacking achieved outstanding performance, with an 

accuracy of 98.73%. We further assessed the classifiers 

using metrics such as sensitivity, specificity, PPV, NPV, 

and F1-score. Sensitivity reflects the classifier's ability to 

identify all positive cases, which is crucial for recognizing 

the majority of heart disease patients and reducing 

misdiagnoses. However, in medical situations, where a high 

false-positive rate might cause needless worry, expenses, 

and additional tests for individuals, specificity is crucial. In 

a heart disease prediction model, high specificity means that 

fewer healthy people are mistakenly labeled as having the 

disease. PPV indicates the classifier's accuracy in 

identifying true positives from predicted positives. In heart 

disease prediction, higher PPV means a lower false-positive 

rate, reducing unnecessary worry or medical testing for 

patients. High NPV allows negative test results to be 

trusted; for example, in a heart disease prediction model, a 

high NPV suggests that people predicted as disease-free 

likely do not have the disease, minimizing the need for 

additional testing. Finally, the F1-score is an excellent 

measure of classifier performance when recall and precision 

are balanced. 

According to Table II, RF, ETC, and AdaBoost each had 

a 97.47% accuracy rate, 95% sensitivity, 100% specificity, 

100% PPV, 95% NPV, and a 97% F1-score. The 

corresponding AUC values were, in order, 0.998, 0.982, and 

0.995. Similarly, 98.73% accuracy was attained via 

XGBoost, hard voting, soft voting, and stacking, with 98% 

sensitivity, 100% specificity, 100% PPV, 97% NPV, and 

99% F1-score. The corresponding AUC values for 

XGBoost, soft voting, and stacking were 0.995, 1, and 0.98. 

However, the stacking Ensemble classifier managed to 

acquire a better AUC of 1 with less computational time of 

0.011 sec. 

In the second approach, the dataset processed through 

outlier removal in the first approach underwent data 

augmentation, effectively doubling the number of instances. 

Following this, a genetic algorithm was applied for feature 

optimization. A genetic algorithm (GA) optimizes features 

in the Cleveland Heart Disease dataset by iteratively 

selecting and refining subsets of features that make up the 

majority of the model's predictive ability. The same 

ensemble classifiers used in the first approach were then 

trained on this newly optimized dataset and evaluated across 

various performance metrics. A GA runs through multiple 

generations to gradually improve the feature set. Each 

generation involves evaluating multiple feature subsets 

(chromosomes), and for each chromosome, the model is 

trained and tested to calculate a fitness score. This iterative 

process can significantly increase computational load. 
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TABLE II.  PERFORMANCE EVALUATION FOR CLEVELAND DATASET USING APPROACH 1 

Metric RF ETC XGBoost AdaBoost Hard Voting Soft Voting Stacking 

Accuracy 97.47 97.47 98.73 97.47 98.73 98.73 98.73 

Sensitivity 95 95 98 95 98 98 98 

Specificity 100 100 100 100 100 100 100 

PPV 100 100 100 100 100 100 100 

NPV 95 95 97 95 97 97 97 

F1-Score 0.97 0.97 0.99 0.97 0.99 0.99 0.99 

AUC 0.998 0.982 0.995 0.995 - 1 0.980 

Computational Time in sec. 0.054 0.062 0.144 0.114 0.016 0.011 0.631 

 

The performance results for this approach are presented 

in Table III. The findings demonstrate that feature 

optimization and data augmentation enhanced performance 

as compared to approach 1, but had increased the 

computational load. 

Table III showed that all the optimized models managed 

to attain higher accuracy as compared to approach 1. In 

approach 2, RF has attained accuracy 99.36% with 

sensitivity 98%, specificity 100%, PPV 100%, NPV 97%, 

F1-score 99%, and AUC 0.998 with less computational time 

0.071 sec. ETC has attained accuracy 98.09% with 

sensitivity 97%, specificity 100%, PPV 100%, NPV 96%, 

F1-score 99%, and AUC 0.997 with computational time 

0.0937 sec. XGBoost has attained accuracy 99.36% with 

sensitivity 99%, specificity 99%, PPV 99%, NPV 99%, F1-

score 99%, and AUC 0.998 with computational time 0.172 

sec. AdaBoost has attained accuracy 98.73% with sensitivity 

98%, specificity 100%, PPV 100%, NPV 97%, F1-score 

99%, and AUC 0.992 with computational time 0.130 sec. 

Hard voting has attained accuracy 98.73% with sensitivity 

98%, specificity 100%, PPV 100%, NPV 97%, F1-score 

99%, with computational time 0.643 sec. Soft voting has 

attained accuracy 99.36% with sensitivity 98%, specificity 

100%, PPV 100%, NPV 97%, F1-score 99%, and AUC 1 

with computational time 0.652 sec. Stacking has attained 

accuracy 99.36% with sensitivity 97%, specificity 100%, 

PPV 100%, NPV 96%, F1-score 99%, and AUC 0.986 with 

computational time 1.096 sec. 

The models trained with augmented data still perform 

well on the independent validation sets, making sure the 

augmentation didn't just memorably fit the training data. 

Implemented cross-validation (k-fold) to assess model 

performance with approach 1 and 2. Reexamined the AUC 

values, and after applying regularization techniques, we 

observed that the scores are now more consistent and 

realistic. 

We have validated our models on the non_augmented 

Cleveland dataset in approach 1. The results on this dataset 

indicate that our models are generalizing well and are not 

overfitting to the augmented _Cleveland dataset in approach 

2. 

The graphical display of all the performance parameters 

of the suggested methodology, including all of the ensemble 

techniques used, is examined in Fig. 11. It shows that when 

applied to the Cleveland dataset with feature optimization 

via GA, all of the ensemble approaches perform 

exceptionally well. 

 

Fig. 11. Performance metrics of the suggested model  

The proposed approach is further evaluated through 

ROC-AUC analysis. The ROC curve demonstrates the 

connection between the true positive rate and the false 

positive rate, effectively representing the balance between 

sensitivity and specificity. An AUC score between 0.9 and 1 

is generally considered to indicate outstanding performance. 

Fig. 12 displays the ROC-AUC curves for different 

ensemble methods used in the experiments. For binary 

classification tasks, accuracy and AUC are crucial metrics. 

According to the ROC curve results, all methods achieved 

impressive AUC values, indicating excellent model 

performance. 

TABLE III.  PERFORMANCE EVALUATION FOR CLEVELAND DATASET USING APPROACH 2 

Metric RF ETC XGBoost AdaBoost Hard Voting Soft Voting Stacking 

Accuracy 99.36 98.09 99.36 98.73 98.73 99.36 99.36 

Sensitivity 98 97 99 98 98 98 97 

Specificity 100 100 99 100 100 100 100 

PPV 100 100 99 100 100 100 100 

NPV 97 96 99 97 97 97 96 

F1-Score 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

AUC 0.998 0.997 0.998 0.992 - 1 0.986 

Computational Time in sec. 0.071 0.0937 0.172 0.130 0.643 0.652 1.096 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 12. ROC Curve analysis with Corresponding AUC Values 

RF and Soft Voting attained the highest accuracy, 

reaching 99.36%, with respective AUC scores of 0.998 and 

1. However, RF requires significantly less computational 

power than Soft Voting, making it the most efficient among 

all ensemble methods tested in this research. We evaluated 

the inclusion of additional feature selection method RFE on 

the ensemble techniques and found that did not lead to 

significant improvements in accuracy or model performance 

as shown in the Table IV.  

To validate the robustness of the proposed approach, a 

comparative performance analysis with several state-of-the-

art methods is presented in Table V. Our ensemble classifier 

outperformed the competing methods, achieving an 

accuracy of 99.36%. 

TABLE IV.  COMPARATIVE ANALYSIS FOR ADDITIONAL RFE FEATURE 

SELECTION METHOD  

ML Model Accuracy with RFE Accuracy with GA 

RF 97.47 99.36 

ETC 97.47 98.09 

XGBoost 98.33 99.36 

AdaBoost 97.47 98.73 

Hard Voting 98.33 98.73 

Soft voting 98.33 99.36 

Stacking 98.23 99.36 
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TABLE V.  COMPARATIVE ANALYSIS WITH STATE OF THE ART RESEARCH  

Ref 
Ensemble 
Methods 

Preprocessing 
Technique 

Dataset 
Accuracy 

in % 

[63] 

Ensemble 

voting              
Ensemble 

Averaging 

Data splitting 
UCI 

Cleveland 

Voting: 

96.10                                
Averaging: 

96.46 

[24] 
Ensemble 

Voting 
Chi- square FS 

UCI 

Cleveland 

Voting: 

92.11 

[64] 

Bagging, 

Boosting, 

Voting, 
Stacking, 

Standardization, 

Random 

oversampling, 
Isolation Forest 

UCI 

Cleveland 

XGBoost, 

Voting, 

Stacking: 
98.73 

[16] 

Weighted 
aging 

classifier 

ensemble 

Randomization 
UCI 

Cleveland 

Weighted 

aging 

classifier 
ensemble 

93 

[20] 
Soft 

voting 
Grid search 

UCI 
Cleveland 

93.44 

[22] 
Stacking 

Ensemble 
Chi- square FS 

UCI 

Cleveland 
90.8 

[25] XGBoost 
Min_max scaling, 

FS 
UCI 

Cleveland 
94.1 

Proposed 

Method 

Bagging, 
Boosting, 

Voting, 

Stacking, 

Standardization, 

Random 
oversampling, 

Isolation Forest, 

Data 
Augmentation, 

Feature 

optimization 
using GA 

UCI 

Cleveland 

RF, 

XGBoost, 
Soft 

voting, 

Stacking: 
99.36 

 

In this study, we evaluated the performance of several 

ensemble classifiers on the Cleveland heart disease dataset, 

demonstrating significant improvements in predictive 

accuracy, sensitivity, specificity, and AUC through the use 

of data augmentation and genetic algorithm-based feature 

optimization. The models achieved impressive performance 

metrics, showcasing their potential for improving diagnostic 

accuracy in medical settings. 

To further assess the practical applicability of these 

methods, we conducted an analysis of their computational 

efficiency. The results showed that while models like 

Random Forest (RF) and XGBoost achieved high accuracy, 

they also required substantial processing time. Stacking, in 

particular, demonstrated higher computational demands 

compared to simpler methods like Voting, which offers a 

more balanced trade-off between accuracy and 

computational efficiency. The processing times were 

measured and are detailed in Table 3, which provides a clear 

comparison of the resource requirements for each ensemble 

method. These findings are particularly important for real-

time clinical applications, where rapid and efficient 

diagnosis is essential. 

V. CONCLUSION 

The proposed methodology demonstrates promising 

performance in heart disease prediction, achieving an 

accuracy of 99.36% and an AUC of 1.0 under controlled 

conditions. However, these results should be interpreted 

with caution, as such perfect scores are rarely observed in 

real-world datasets characterized by noise and variability. 

Further external validation on independent datasets is 

essential to assess the model’s generalizability and 

robustness. Additionally, while the model shows improved 

efficiency, the use of data augmentation and genetic 

algorithms introduces significant computational complexity, 

which may limit its applicability in resource-constrained 

environments. A balanced approach that considers the trade-

offs between model complexity, computational efficiency, 

and predictive performance will be necessary for real-world 

clinical implementation. Future work will focus on 

validating the model across diverse datasets and optimizing 

it for more efficient, practical use in clinical settings. 
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