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Abstract—Assistive technology is crucial in enhancing the 

quality of life for individuals with disabilities, including the 

visually impaired. Many mobility aids lack advanced features 

such as real-time machine learning-based object detection and 

spatial audio for environmental awareness. This research 

contributes to developing more intelligent and adaptable 

assistive technology for visually impaired individuals, 

promoting improved navigation and environmental awareness. 

This research presents a head-mounted mobility aid that 

integrates a time-of-flight camera, a web camera, and a touch 

sensor with K-Means clustering, Convolutional Neural 

Networks (CNNs), and concurrent programming on a 

Raspberry Pi 4B to detect and classify surrounding obstacles 

and objects. The system converts obstacle data into spatial 

audio, allowing users to perceive their surroundings through 

sound direction and intensity. Object recognition is activated via 

a touch sensor, providing distance and directional information 

relative to the user using audio description. The concurrent 

programming implementation improves execution time by 

50.22% compared to Infinite Loop Design (ILD), enhancing 

real-time responsiveness. However, the system has limitations, 

including object recognition limited to 80 predefined categories, 

a 4-meter detection range, reduced accuracy under high-

intensity sunlight, and potential interference in spatial audio 

perception due to external noise. Assistive technology to help the 

mobility of blind people using advanced technology based on 

machine learning has developed in a form that can be used 

flexibly for the user's mobility. 

Keywords—Assistive Technology; Blind People; Time-of-

Flight Camera; K-Means; Image Recognition; Concurrent 

Programming. 

I. INTRODUCTION 

Technological advances aim to simplify various aspects 

of human life, with assistive technology being one of its 

applications. Assistive technology includes devices, 

products, or software designed to improve the functional 

abilities of individuals with disabilities [1]-[5]. Disability is a 

condition that can limit mental and physical abilities, 

preventing an individual from performing specific tasks in 

the usual manner [6]. Disabilities arise from limiting 

conditions that affect an individual's vision, physical 

mobility, social activities, and self-care abilities. Assistive 

technologies can significantly enhance navigation and daily 

activities for individuals with visual impairments [7]-[10]. 

One common challenge for visually impaired individuals is 

the difficulty in moving from one location to another due to 

obstacles, uneven surfaces, or challenges in determining 

orientation for mobility, as well as other hard-to-detect 

hazards [11]-[18].  

Assistive devices are tools for the visually impaired to 

enhance environmental awareness, mobility, and information 

acquisition [19]-[23]. Commonly used assistive technologies 

include navigation tools with cameras and audio to gather and 

convey information [24], [25]. One such example is an 

ultrasonic or radar navigation device. This device is like a 

cane with a sensor positioned in the center [26]-[28]. In 

addition to canes, some research explores the use of camera 

technology [29]-[35]. For instance, as in [36], assistive 

devices employ a smartphone camera with depth-sensing 

capabilities to detect obstacles for visually impaired 

individuals. However, these devices still have limitations, 

such as constrained obstacle detection, limited movement 

adaptation, and suboptimal use of sensory feedback systems 

for visually impaired users. Some assistive tools, such as 

canes, can only detect obstacles directly in front of the user, 

resulting in limited movement adaptation, which makes it 

difficult for users to detect obstacles on the sides, above or 

below them. Constrained obstacle detection is important 

when visually impaired individuals navigate new or dynamic 

environments since some assistive devices rely on predefined 

databases for obstacle detection. In such cases, unexpected 

obstacles may not be identified effectively. Moreover, 

sensory feedback systems in assistive devices enhance spatial 

awareness without disrupting the user's daily activities. These 

systems should provide clear and intuitive feedback 

regarding the spatial positioning of surrounding objects. 

Therefore, a device that can adapt movement direction, 

unconstraint obstacle detection, and provide clear, easily 

understood guidance is necessary. 

To perform their intended function, a walking aid for the 

visually impaired must incorporate a distance measurement 

function to guide visually impaired users. According to 

various studies, there are two primary methods for acquiring 

distance information about an object: the passive and active 

methods [37]-[41]. The passive method measures distance by 

receiving information about an object’s position within a 

frame [41]-[45]. This system is based typically on cameras 

and computer vision, with one standard implementation 

being stereo vision using the triangulation method. 

Stereovision is a computer vision system that calculates 
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distances using stereoscopic measurement techniques. It uses 

two cameras as if they were a single camera to create a sense 

of depth. It utilizes the disparity between the two camera 

views to calculate distance accurately [46]-[49]. Distance 

estimation via stereoscopic measurement requires 

trigonometric equations separated into three phases. The first 

stage employs various image processing techniques to 

improve computing speed, such as decreasing the input image 

resolution and transforming the RGB input image to 

grayscale. The second stage extracts the object's position 

from both cameras. The third stage determines the object's 

position based on the extracted data and estimates the 

distance using trigonometric equations [50]-[53]. Despite its 

precision, the stereo vision method has several significant 

limitations. One major drawback is the need for exact camera 

calibration, both for intrinsic parameters such as focus and 

lens distortion and extrinsic parameters that define the 

relative positions of the cameras. 

Additionally, the method is susceptible to lighting 

conditions or shadows and can disrupt feature matching 

between images. In areas with low texture, such as smooth 

surfaces, stereo vision struggles to find matching points, 

reducing distance measurement accuracy. Another challenge 

is the high computational demand for feature matching, 

mainly when working with high-resolution images, making 

real-time applications challenging without powerful 

hardware. The method also tends to be less accurate when 

measuring distances to objects that are either very close or far 

due to disparity errors. Occlusion, where one object blocks 

another in one camera's view, further complicates object 

matching between images, diminishing measurement 

accuracy. Finally, while stereo vision can be implemented 

with low-cost hardware, achieving optimal results requires 

high-quality cameras, increasing system costs. These 

limitations restrict the effectiveness of stereo vision, 

particularly in uncontrolled environments or resource-

constrained applications [54]-[57]. 

On the other hand, this research uses an active method to 

measure distance by transmitting a signal to the target. This 

system typically calculates the time-of-flight of laser beams, 

ultrasonic waves, or radio signals to detect and locate objects. 

Time-of-flight systems estimate the distance to an object by 

measuring the time a signal pulse travels to the object and 

returns. A primary drawback of this method is the potential 

confusion caused by echoes from previous or subsequent 

pulses and a limited accuracy range, typically between one to 

four meters [58]-[60]. Active distance measurement can be 

performed using ultrasonic waves, which are sound waves 

with frequencies above 20 kHz, to determine the distance to 

an object without physical contact. In this process, an 

ultrasonic sensor emits sound waves propagating through the 

air until they reach an object. The sensor then reflects and 

receives the waves, and the round-trip travel time is measured 

using a specific formula [61]. In addition to ultrasonic pulses, 

the active method can utilize infrared light. One example is 

the use of a time-of-flight camera. Time-of-flight cameras 

measure distance based on the time it takes for infrared light 

to be reflected off an object and captured by the receiver, 

providing a distance output for each camera pixel. Unlike the 

stereo vision method, time-of-flight cameras do not require 

training data, have lower processing overhead, function 

effectively in low-light conditions, and can avoid issues with 

object occlusion. Although it does not require training data, 

the use of a time-of-flight camera in previous research could 

only provide the distance for each pixel of the captured 

image. This distance information remains raw and cannot be 

a reference for visually impaired individuals [62]-[64]. In this 

research, specific obstacle distance information is obtained 

by integrating a time-of-flight camera with the K-Means 

algorithm. The detection results from the time-of-flight 

camera are processed using the K-Means algorithm to 

determine the distance and position of the nearest obstacle by 

clustering the distance values of each pixel and selecting the 

cluster that most accurately represents the distance. 

Subsequently, the clustered object is further processed to 

provide the obstacle's position [65]. The calculated object 

position and distance are then conveyed through audio 

output, providing real-time guidance to users. However, 

using the time-of-flight camera still has limitations when 

operating outdoors under high sunlight, as it can obscure the 

reflection results from the infrared laser. In contrast, the time-

of-flight camera performs better under low-light conditions 

or even in complete darkness. Therefore, this research would 

yield optimal results if conducted indoors. 

Previous research on assistive technology for the visually 

impaired has frequently employed audio cues or verbal 

descriptions to convey information about obstacles. This 

research proposed using audio descriptions to inform users of 

obstacle locations. The coordinates of obstacle points trigger 

warnings for obstacles in directions such as full right, entire 

left, below, or directly in front of the body. The system’s 

output consists of audio feedback based on the obstacle's 

direction, delivering phrases like “Left Torso,” “Full Right,” 

or “Left Ground” to alert the user [36]. However, the audio 

cue method has several limitations. These include restricted 

object description, the use of non-universal language, and 

lengthy descriptions that can interfere with the primary 

auditory function, such as engaging in conversations or 

listening to other sound sources [66]. In this research, 

development is conducted over previous research that relied 

on audio cues; a spatial audio-based navigation system is 

used to convey information about the position and distance of 

obstacles. A spatial audio navigation system uses the Head-

Related Transfer Function (HRTF) to characterize audio by 

implementing spatial sound. Implementing the spatial audio 

system involves creating a spatial audio dataset using a 

Digital Audio Workstation (DAW) equipped with spatial 

audio plugins. Mono audio data is manipulated within DAW 

using these plugins to produce spatial audio outputs. The 

audio outputs generated by the DAW are organized into a 

spatial audio dataset categorized by distance and direction. 

This data set serves as the system's output, allowing the 

software to call the appropriate audio files based on the 

detected distance and direction, streamlining the system's 

final output. One key advantage of this method is the reduced 

processing load on the system, enabling the system to operate 

more efficiently. The spatial audio quality is superior because 

the audio data is pre-rendered, ensuring high fidelity [67]-

[70]. 
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In addition, previous assistive technologies for the 

visually impaired also included functionality to identify 

objects essential for daily activities—machine learning 

algorithms based on CNNs commonly used for object 

recognition. CNNs are a type of artificial neural network 

capable of identifying and classifying objects in images with 

high accuracy. Images are captured by extracting frames from 

video footage recorded by a web camera at regular intervals. 

A commonly used library for executing CNN is YoloV8, with 

a limitation in object detection, without new training data, 

which is the detection of only 80 object types. However, the 

object recognition typically only provides the object's name 

[71]-[74]. In this research, a method is implemented to obtain 

object position information by incorporating distance data 

from the time-of-flight camera to determine the distance of 

each detected object. This research tested four random 

objects to evaluate the system's reliability. Using this system, 

once an object is identified, it will classify its position based 

on the pixel coordinates of the object's center of mass and 

convert this information into audio output. The type and 

position of the object will be conveyed to the user via 

earphones in the form of audio, providing real-time guidance 

for enhanced spatial awareness. 

In addition to detection systems, technological 

advancements can be applied to processing systems. 

Assistive technologies for the visually impaired primarily 

enhance environmental awareness, mobility, and information 

acquisition. Typically, these technologies utilize embedded 

systems that sequentially execute programs, beginning with 

data collection from cameras or sensors, then object or 

obstacle recognition, and concluding with audio output to 

convey the results before restarting the cycle. This approach 

is known as the ILD, where detection, computation, and 

actuator execution programs run repeatedly in a continuous 

loop. 

An example of assistive technology employing infinite 

loop design is in research with the Raspberry Pi, a camera, 

and a speaker in its design. In this research, Raspberry Pi 

executed the program using the ILD methodology [75]. 

However, this method has notable limitations, as it can only 

execute tasks serially, processing one instruction at a time. 

This method becomes problematic when the mobility aid 

must handle multiple sensors and perform high-demand 

processing tasks, where responsiveness and rapid execution 

are critical. The limitations of assistive technologies for the 

visually impaired in previous research necessitate the 

development of more advanced methods for controlling 

program execution [76], [77]. This research implemented 

multitasking control through concurrent programming. 

Concurrent programming improves system processing time 

by distributing tasks across each core, which operates in 

parallel, to maximize the processing speed of a multi-core 

system. This system can be achieved using Real-Time 

Operating Systems (RTOS), threading, and multiprocessing. 

Research has shown that RTOS, threading, and 

multiprocessing can execute multitasking systems with 

improved processing times and responsiveness. However, 

unlike threading and multiprocessing, which are designed to 

handle multiple tasks simultaneously for computationally 

intensive operations, RTOS focuses primarily on scheduling 

time-sensitive tasks with strict reliability requirements. 

RTOS operates on a priority-based task-scheduling 

mechanism. When an interruption occurs, the current task is 

delayed until the necessary conditions are met, which 

prevents true parallelism from being achieved. Consequently, 

threading and multiprocessing are more suitable for 

multitasking in mobility aids for the visually impaired, as 

they allow concurrent execution of multiple tasks without 

compromising system responsiveness [78]-[81]. This 

research designed an appropriate implementation of 

threading and multitasking to improve processing times. 

Therefore, concurrent programming is adopted to overcome 

the limitations of the infinite loop design. Threading and 

multiprocessing improve processing speed and system 

response time, ensuring a more efficient and reliable assistive 

device. 

The novelty of this research lies in the integration of a 

time-of-flight camera with the K-Means algorithm to 

determine specific obstacle positions and distances, the 

incorporation of distance data acquired from the time-of-

flight camera to complement object detection by CNN, the 

use of a spatial audio-based navigation system to convey this 

information, and the implementation of concurrent 

programming techniques, such as threading and 

multiprocessing, to enhance system responsiveness and 

processing efficiency in mobility aids for the visually 

impaired. This research aims to design and test mobility aids 

for the visually impaired with better performance in 

detection, audio navigation, and speed processes using 

machine learning based on time flight cameras and spatial 

audio. This research contributes to developing mobility aids 

for the visually impaired to implement better design, sensor, 

algorithm, and processing techniques. The design of this 

device is worn on the user's head and can detect obstacles 

around the user during mobility. This study utilizes a time-

of-flight camera, web camera, and touch sensor to acquire 

data and output it as spatial audio and object descriptions 

through a headset. This research employs machine learning, 

specifically the K-means algorithm, to process depth 

information from the time-of-flight camera, allowing for 

determining the distance and direction of the nearest 

obstacles. The study also incorporates an object recognition 

system that identifies obstacles' type, position, and distance 

by applying CNNs to the images captured by the web camera. 

All systems implemented using concurrent programming to 

achieve better task execution performance compared to the 

infinite loop design, enhancing system efficiency and 

responsiveness. 

II. METHOD 

The program in this research consists of an obstacle 

detection system and an object detection system, which are 

integrated using concurrent programming. The obstacle 

detection results from the K-Means algorithm, which 

provides the position and distance of the nearest objects, are 

processed and then conveyed to the user in the form of spatial 

audio. The spatial audio is designed to create the effect of the 

sound source appearing to come from a specific direction in 

3D space, relying on the HRTF in humans. Additionally, 

object recognition results are provided through audio 
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descriptions. The hardware block diagram is represented in 

Fig. 1. 

 

Fig. 1. Block diagram of the assistive system 

This research uses the Raspberry Pi 4B as a single-board 

computer (SBC) to execute previously designed programs. 

The sensors employed in this study include the Logitech 

C270 HD Webcam and the Arducam time-of-flight camera. 

The inputs for the object recognition subsystem consist of 

image data generated by the web camera and distance data 

provided by the time-of-flight camera. A 15-watt power bank 

battery powers the device. The data read by the Raspberry Pi 

4B is MJPEG (compressed video data), an efficient data type 

that retains its quality. The design of the mobility aid for the 

visually impaired in this research is shown in Fig. 2. 

 

Fig. 2. Hardware design of the mobility aid for the visually impaired 

The mobility aid for the visually impaired is designed 

with two main features based on continuous real-time 

processing. The first feature is a tool that guides the condition 

of the pathway and the environment encountered by the 

visually impaired person based on obstacles around them. 

The second feature is a tool capable of recognizing objects 

useful for the daily life of the visually impaired. In the first 

feature, the object detection subsystem provides information 

on the distance and direction of obstacles, which is then 

passed to the audio subsystem for processing and 

characterizing the information into spatial audio. In the 

second feature, the object recognition subsystem interrupts 

the looping process in the object detection subsystem, 

triggered by the touch sensor. The object recognition 

subsystem provides information about the object's name 

through audio descriptions. Each system will run 

simultaneously using a concurrent programming method. 

This method allows the system to acquire data, process the 

collected data, and output the results simultaneously without 

waiting for each other. The workflow diagram of the mobility 

aid for the visually impaired in this paper is shown in Fig. 3. 

To illustrate further, the operational scheme of the mobility 

aid in this paper is shown in Fig. 4. The system initiates its 

operation by performing object detection using the K-Means 

clustering algorithm, which identifies and categorizes objects 

based on their spatial distance and position. Subsequently, the 

system evaluates whether the detected object has changed its 

position. If no movement is detected, the system continuously 

monitors the object's location.  

 
Fig. 3. Workflow diagram of the mobility aid for the visually impaired 

Conversely, if movement is detected, the system proceeds 

to classify the object's position and generates spatial audio 

feedback to inform the user of the object's relative location. 

The workflow then includes assessing whether the capacitive 

touch sensor has been activated. If the sensor is not activated, 

the system returns to resume object detection and spatial 

audio feedback. Upon activating the touch sensor, the system 

transitions to the object recognition process, identifying the 

specific object detected. Following recognition, descriptive 

audio feedback is provided to convey detailed information 

about the identified object to the user. Finally, the system 

evaluates whether the user intends to terminate the process. 

If the termination condition is not met, the system continues 

its operations; otherwise, it concludes. This architecture 

effectively integrates object detection, spatial and descriptive 

audio feedback, and user interaction to enhance the usability 

and responsiveness of assistive systems for visually impaired 

individuals. 
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(a) Object detection scheme 

 
(b) Object recognition scheme 

Fig. 4. Operational scheme of mobility aid for the visually impaired 

A. Obstacle Detection System  

The limited detection range in previous technologies, 

which used one-directional sensors, can be addressed using 

more advanced sensors, such as the time-of-flight camera. A 

time-of-flight camera can directly measure the distance to an 

object by calculating the time taken for an infrared laser to 

travel to the object and reflect on the sensor, providing 

distance data that can work even in the absence of light. 

Based on the known speed of light, the distance of each pixel 

in the camera frame can be calculated using the equation (1), 

where 𝑑 is the distance (𝑚), 𝑡 is the time taken by the light to 

travel from the source to the sensor (𝑠), and c is the constant 

speed of light (𝑚/𝑠). The distance measurements create a 

map that provides 3D information in a 2D matrix. 

𝑑 =
1

2
c𝑡 (1) 

The time-of-flight camera can be used in conjunction with 

the K-Means clustering algorithm. The K-Means clustering 

algorithm divides data into many clusters depending on their 

inherent distance from one another. The K-Means algorithm's 

final step is to group the data based on their proximity to the 

centroids identified in earlier iterations. The formula for 

calculating the new centroid is given by equation (2), where 

𝑐𝑗 is the new centroid for cluster j, 𝑁𝑗 is the number of data 

points in cluster 𝑗, and 𝑥𝑖 is the data point 𝑖 in cluster 𝑗. 

𝑐𝑗 =
1

𝑁𝑗

∑ 𝑥𝑖

𝑁𝑗

𝑖=1

 (2) 

The K-Means algorithm detects the nearest objects 

without requiring prior training. This research utilizes the K-

Means clustering method because it allows the nearest 

objects to be detected by clustering different depth values. 

Another advantage of using K-means clustering in this study 

is that it does not require training data, meaning the types of 

objects that can be detected are not limited if the object has a 

measurable distance or depth value that can be measured 

using light. K-Means clustering method is employed to group 

the distance data from the time-of-flight camera based on the 

distance value of each pixel. The value of K is determined 

based on the need to detect various distance differences of 

objects that may fall within the camera's range. The cluster 

with the smallest distance values, indicating the closest 

objects, serves as the reference cluster for detecting objects.  

 Object detection coordinates limit the measurement area 

within the depth matrix from the time-of-flight camera, where 

each element in the array contains a distance value. The 

distance value of the object is obtained from the computation 

of the distance data within that boundary. The distance 

measurement calculates the second quartile (median) of the 

sorted distance values at each pixel within the detected object 

area. The object's angle is determined by converting the 

centroid position of the object within the camera frame into 

an angle measured in degrees. The centroid position 

represents the angle derived from the ratio of the maximum 

number of pixels to the camera's maximum field of view 

angle. This direct ratio yields the detection angle distorted by 

the camera lens. Therefore, an equation is applied to 

compensate for this distortion. The distortion compensation 

equation is shown in equation (3). 

𝐻 = tan−1 (
2(𝑥 − 𝑐𝑥)

𝑊𝐻

tan (
𝐹𝑂𝑉𝐻

2
)) (3) 

Several variables must be calibrated, including the sample 

size (pixels) captured in a single frame, the number of clusters 

in the K-Means algorithm, and the distance measurement 

calibration across the system to achieve optimal results. 

Sample size calibration is performed by trying several sample 

sizes, such as 3200, 6400, 12800, 25600, and 43200, to 

balance computational efficiency, object detection accuracy, 

and noise captured by the time-of-flight camera. Larger 

samples increase computational load and noise but improve 

accuracy, while smaller samples reduce noise and processing 

load but decrease accuracy. Based on these considerations, a 

sample size of 6400 pixels was determined with a smaller 

computational load, noise, and enough accuracy. Similarly, 

the number of clusters on K-Means was calibrated by trying 

several numbers of clusters from 3, 5, and 7 clusters, 

considering computational efficiency and the clarity of object 

selection based on distance. A higher number of clusters 

increases computational load but improves object selection, 

although excessive clustering can make the system overly 

sensitive to surfaces protruding toward the time-of-flight 

camera. Consequently, five clusters were chosen for the K-

Means algorithm with a smaller computational load and more 

apparent object selection. Distance measurement calibration 
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was conducted using linear regression, comparing the 

system's distance measurements to tape measurements, 

resulting in an equation incorporated into the algorithm to 

correct measurement results. 

Despite being reliable for detecting nearby obstacles 

without requiring training data and offering lightweight 

processing, time-of-flight cameras and K-Means have 

limitations. Time-of-flight cameras, which operate using 

infrared laser emissions, have a maximum detection range of 

4 meters and are sensitive to external light sources, such as 

sunlight in outdoor environments. High-intensity sunlight can 

overshadow the infrared signals emitted by the time-of-flight 

camera, causing false detections of the closest object. 

Consequently, this system is unsuitable for environments 

with direct or intense sunlight. Additionally, reflected light 

from mirrors or bright-colored objects such as white can 

generate noise, reducing accuracy. Therefore, this system is 

better suited for indoor use or in dark-to-moderate lighting 

conditions. 

Additionally, the use of a time-of-flight camera combined 

with the K-Means algorithm can prevent occlusion, where a 

smaller object in front of it obstructs a detected object. This 

is because the K-Means algorithm utilizes clusters based on 

the average nearest distance within each cluster, causing 

objects with minor anomalies to be overshadowed by the 

dominant members of the cluster [82]-[85]. Several strategies 

are employed to mitigate the impact of sunlight on time-of-

flight cameras. Narrow-band optical filters allow only the 

specific wavelength emitted by the camera, reducing 

interference from ambient sunlight. Increasing the intensity 

of the emitted infrared (IR) signal ensures that reflected 

signals are more potent than background noise. Advanced 

algorithms are implemented to separate relevant signals from 

sunlight-induced noise, enhancing depth data accuracy. 

Physical adjustments, such as placing the camera in shaded 

areas or at optimal angles, also help minimize sensor 

saturation. Finally, modern time-of-flight systems utilize 

frequency modulation to distinguish reflected signals from 

environmental noise, including sunlight interference [86]-

[88]. 

B. Spatial Audio-Based Navigation System 

The spatial audio-based navigation system manages the 

output through spatial audio, which is delivered to the user 

through earphones. The audio system is configured based on 

input from the object detection system from the previous 

process. Technology for delivering object position 

information in assistive technology for the visually impaired 

is developed through spatial audio based on HRTF. HRTF is 

a mathematical function that describes how sound from its 

source is altered by parts of the human body, such as the head, 

ears, and torso, before reaching the eardrum [89], [90]. As a 

result of these changes, the listener, in this case, a human, can 

perceive the position of the sound source [91]-[93]. 

Implementing HRTF on binaural sound sources such as 

earphones, headphones, and stereo speakers manipulates the 

audio signal so that the direction of the sound source can be 

determined. The HRTF mathematical function alters the 

amplitude and phase at several frequency bands, mimicking 

changes caused by human anatomy [94]. The altered 

amplitude and phase allow the listener to perceive differences 

in the direction of the sound source using binaural sound 

sources. The frequency response graph shows differences at 

specific frequencies [95]. These changes are caused by 

acoustic interference due to the shape of the human anatomy, 

enabling humans to distinguish the direction of the sound 

source. 

The spatial audio-based navigation system manages the 

output through spatial audio, which is delivered to the user 

through earphones. The audio system is configured based on 

input from the object detection system from the previous 

process. This process generates spatial audio output using the 

input coordinates of the centroid and the distance to the 

detected object. In this design, the system calls audio from a 

dataset, which is then adjusted in intensity and playback 

interval based on the object's distance. The adjustment of 

intensity and interval is intended to represent the object's 

distance from the user. The dataset consists of 21 “beep” 

audio files with a duration of 200 milliseconds, which have 

been manipulated using the HRTF method. The audio dataset 

includes 7 variations of azimuth: -30°, -20°, -10°, 0°, 10°, 

20°, and 30°. Elevation varies into three levels: -15°, 0°, and 

15°, representing the maximum field of view angle of the 

camera. The azimuth and elevation are distinguished based 

on the angle of the detected object. 

Although spatial audio provides more efficient 

information by leveraging the heightened auditory perception 

of visually impaired individuals, it requires acclimatization 

for users to perceive the position and distance of obstacles 

accurately. The duration and effectiveness of this 

acclimatization process may vary depending on the user's 

auditory sensitivity and prior experience with spatial audio 

systems. External sounds, particularly those louder than the 

spatial audio signals, can interfere with the system's 

effectiveness by masking its output. To mitigate this, it is 

crucial to use audio output devices that are best suited to the 

user's needs. The flexibility of the device allows users to 

choose from a range of compatible audio output options, 

including earbuds, bone-conduction headphones, or over-ear 

headphones. For environments with high ambient noise, 

devices equipped with Active Noise Cancelling (ANC) 

technology can enhance spatial audio experience by reducing 

background noise, especially low-frequency sounds like 

engine hums. However, users should note that ANC may not 

entirely suppress higher-frequency or sudden noises. 

Furthermore, volume levels and audio sampling rates can be 

adjusted to improve user comfort and enhance the clarity of 

spatial audio cues. It is essential to maintain safe volume 

levels to avoid auditory fatigue or potential long-term hearing 

damage. These considerations ensure that the system remains 

practical, adaptable, and effective for diverse environmental 

conditions and user preferences. 

C. Object Recognition System 

 The object recognition system can provide the type of 

object, its position, and its distance based on data from the 

time-of-flight and web cameras. The object recognition 

system in the mobility aid for the visually impaired can be 

implemented using a machine learning algorithm based on 

CNNs to identify the object type. CNNs are artificial neural 
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networks that can accurately identify objects in images [4]. 

CNNs can be developed using vision-based navigation. 

Vision-based navigation is a technique that uses camera 

visual data to determine position and orientation relative to 

the environment. Objects can be detected using a camera to 

find the centroid, representing the object's location. The 

results are conveyed to the user as an audio description 

through earphones. The flowchart of the object recognition 

system is shown in Fig. 5. Segmentation is performed on the 

camera frame to play audio based on the detected object's 

horizontal center of mass position (`xc`). The frame is divided 

into three equal horizontal sections. These sections are 

defined as the left, center, and right areas. All three areas are 

of equal size. The distance units in meters are converted into 

indices and then used to select the appropriate audio file 

corresponding to the detected object's distance. The distance 

classification process aims to simplify the grouping of certain 

distance ranges to improve computational efficiency. The 

audio for the object's distance is limited within each 25 cm 

range, so the distance data from the time-of-flight camera is 

divided every 25 cm. 

 

Fig. 5. Flowchart of the object recognition system 

 There are limitations in object type recognition within this 

system. The object recognition system utilizes YoloV8, 

which can detect 80 different types of objects without 

additional training. However, the testing in this study focused 

on five randomly selected objects: Bottle, Cup, Scissors, 

Human, and Mobile Phone. Moreover, the number of object 

types that can be recognized significantly affects 

computational load. The recognized object types could be 

specified to include only those frequently encountered by 

visually impaired individuals, thereby reducing 

computational demands to mitigate the impact in future 

research. 

D. Multitasking System using Concurrent Programming 

The program consists of threads and subprocesses that 

allow each system to operate simultaneously. The program 

will create two threads: one for performing calculations using 

the K-Means algorithm to compute the distance and position 

of object obstacles and another for playing audio based on the 

data generated by the system. The program will also create 

two subprocesses: one for recording raw data from the sensor 

and performing distance and position calculations for object 

recognition and another for object recognition to process the 

images captured by the sensor. A comparison of the 

concurrent programming architecture and the ILD is shown 

in Fig. 6.  

 
(a) ILD   (b) Concurrent 

Fig. 6. Comparison of concurrent program and ILD 

Fig. 6 shows the fundamental differences in the main 

functions between systems using ILD and concurrent 

programming systems. It can be observed that the ILD system 

executes the main functions sequentially with only one 

processing loop. In contrast, the concurrent programming 

system has multiple loops, including threads and 

subprocesses, that communicate and operate based on their 

respective inputs. A limitation of the infinite loop design 

method is its suboptimal use of multi-core capabilities on the 

Raspberry Pi and its inability to handle inputs or interrupts. 

In contrast, concurrent programming allows the program to 

receive input from cameras or sensors while performing other 

tasks without waiting for the previous task to be completed. 

This feature is critical for mobility aids for the visually 

impaired, as such assistive technologies require dynamic 

systems that can respond quickly to obstacles.  

 In concurrent programming, risks such as race conditions 

and crashes frequently arise. A race condition occurs when 

multiple threads simultaneously access and modify shared 

resources, leading to unpredictable outcomes. This issue is 

mitigated using mechanisms like threading. Lock and 

queue—queue to ensure thread-safe operations. Crashes can 

also result from deadlocks, where threads are stuck waiting 

for each other to release resources, or from resource 

contention, where multiple threads compete for limited 

system resources. Maintaining a consistent locking order or 

using timeouts on locks is essential to prevent deadlocks. 

Multiprocessing is preferred over threading to bypass 

Python's Global Interpreter Lock (GIL) for CPU-bound tasks. 

Proper thread management and thorough testing ensure 

stability and reliability in concurrent programs. Moreover, 
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the computational load of the system is not significantly 

affected when detecting a single object compared to multiple 

objects, as it utilizes the same inference model. The system 

still processes the entire frame if it detects one or multiple 

objects. However, slight differences occur in the post-

processing stage when detecting multiple objects. In this 

case, the system generates a more significant number of 

bounding boxes and requires more memory for labeling. 

Nevertheless, there is no significant difference in 

computational load in the overall process, which primarily 

focuses on object recognition [96]-[98]. 

III. RESULTS AND DISCUSSION 

A. Obstacle Detection  

Using the K-Means algorithm, the object detection 

system was tested to assess the success of detecting the 

nearest objects. The testing was conducted by positioning the 

time-of-flight camera at various angles toward several 

obstacles. Success parameters were determined based on two 

factors: success in detecting the presence of obstacles and the 

object selection results. The success of detecting the obstacle 

presence indicates that the object detection system can detect 

the nearest object. The object selection result shows how 

accurately the system can select an object as a detected 

object. The test evaluated five objects of different sizes at 1.5 

meters. The objects tested were a human, a wall, a wooden 

rack, a bucket, and a door. The results of the testing are 

presented in Table I. 

TABLE I.  OBJECT DETECTION SYSTEM TESTING 

Object Type Description Object Selection 

Human Successfully detected Perfect 

Wall Successfully detected Imperfect 

Wooden Rack Successfully detected Perfect 

Bucket Successfully detected Imperfect 

Door Successfully detected Perfect 

 

Table I shows that the system successfully detected all 

objects. However, there are imperfections in the Bucket and 

Wall object selection. In the case of Wall selection, 

inaccuracies arise due to the extensive surface area of the 

wall, causing the system to primarily detect the nearest 

portion, which is the section directly in front of the user. Wall 

surfaces located to the side or beyond the detection frame of 

the time-of-flight camera remain undetected because their 

absolute distances from the time-of-flight camera do not fall 

within the nearest cluster. For the bucket, selection 

imperfections occur at certain distances where the bucket, 

positioned on the floor, does not exhibit significant depth 

variation compared to the surrounding floor. Consequently, 

the system may partially misidentify floor regions with 

similar absolute distances as part of the closest detected 

object. However, when detected at closer distances, the object 

selection process for the bucket improves, as the absolute 

distance of the floor in that region then falls within the nearest 

cluster. The Wall selection imperfection generally does not 

require mitigation, as the detected central portion of the wall 

sufficiently represents its distance. Furthermore, objects with 

extensive surface areas, such as walls, do not necessitate full 

selection. Conversely, inaccuracies in Bucket selection are 

more challenging to mitigate solely through calibration and 

may require additional algorithms or systems to prevent floor 

misclassification. Nevertheless, the inaccuracies in bucket 

selection do not significantly affect the overall distance 

accuracy, as the system calculates the mean distance of the 

second quadrant, and the selected floor and bucket pixels 

generally share similar depth values. The screenshot captured 

on Raspberry Pi in Fig. 7 shows an example of the test. A 

silhouette resembling a human figure can be observed in Fig. 

7, representing the first cluster of the K-Means algorithm. 

This silhouette is composed of points corresponding to 

individual pixels within the frame. Pixels closer to the sensor 

appear brighter, whereas those at greater distances appear 

darker. Objects beyond the time-of-flight camera's maximum 

detection range of 4 meters are rendered in black. The 

bounding box is also constructed using the outermost points 

of the detected silhouette, forming the bounding box edges. 

 

Fig. 7. Testing with human obstacle objects 

Compared to the AI-Based Visual Aid with Integrated 

Reading Assistant [99] and the Assistive Cane with Visual 

Odometry [100], the proposed obstacle detection system 

demonstrates a key advantage in its adaptability to diverse 

environments due to its unsupervised K-Means clustering 

approach. Unlike deep-learning-based methods, which 

require extensive dataset training and rely on predefined 

object labels for classification, the proposed system 

autonomously segments objects based on depth information 

without prior knowledge of their specific characteristics. This 

eliminates the need for labeled training data, allowing the 

system to generalize more effectively across different 

environments and obstacle types. In contrast, the AI-based 

visual Aid [99] employs a combination of camera and 

ultrasonic sensors, which, while effective for static object 

detection, lacks the flexibility to classify unknown obstacles 

dynamically. Similarly, the Assistive Cane with Visual 

Odometry [100] relies on a structured approach to processing 

visual data, necessitating optimal camera positioning and 

parameter adjustments to enhance detection accuracy. The 

unsupervised nature of the proposed system ensures greater 

robustness and scalability, enabling real-time adaptation to 

varied environmental conditions without the computational 

overhead of deep learning models. 

B. Accuracy of Obstacle Detection Distance Measurement 

The accuracy of the obstacle detection distance 

measurement was tested to determine the accuracy of area-

based distance measurements. The testing involved 

comparing the actual measured distance of an object with the 
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measurement made by the prototype device. The test was 

conducted using a measurement tape aligned with the sensor 

as a reference for the actual distance of the object from the 

sensor. The reference object measured was cardboard with 

dimensions 65×90cm. The test was conducted by taking 12 

data points at distances ranging from 0.25 to 3 meters in 

increments of 0.25 meters using three measurement methods. 

Distance measurements were taken from direct 

measurements displayed in the Raspberry Pi terminal. Fig. 8 

shows the calibrated measurement graph using linear 

regression. The testing resulted in an average calibration error 

of 0.026 m compared to the actual measurement values using 

the measurement tape. This result provides an average error 

value like the distance measurement results using the stereo 

vision method [38]. 

 

Fig. 8. Calibrated measurement graph 

In the distance calculation algorithm, the second quadrant 

filters the time-of-flight camera distance measurements when 

there are pixels within the bounding box that are either too 

close, such as noise, or too far, such as regions outside the 

nearest cluster. Additionally, based on measurement results, 

the second quadrant exhibits the smallest error compared to 

the first, third, and fourth quadrants. However, errors still 

occur because the system relies on the average distance of the 

second quadrant. This quadrant is assumed to represent the 

distance of each pixel on the obstacle's surface. Since 

obstacle surfaces are not always perfectly flat, the average 

value from the second quadrant may not always correspond 

to the nearest point of the object. It is recommended that a 

new algorithm be developed that replaces the bounding box 

with an object selection method that conforms to the surface 

shape of the obstacle to mitigate this error. This approach 

would increase the likelihood that the second quadrant 

accurately represents the closest distance to the object. 

Compared to existing assistive technologies, the proposed 

system demonstrates better distance measurement accuracy 

and broader detection coverage through its time-of-flight-

based sensing approach and quadrant-based filtering 

technique. The Millimeter-Wave Radar Cane [27] employs a 

122 GHz radar sensor for distance measurement, leveraging 

range alignment techniques to enhance detection accuracy. 

While radar-based systems exhibit high robustness in varied 

environmental conditions, their distance resolution is lower, 

making them less effective for precise near-field 

measurements. In contrast, the proposed time-of-flight 

system achieves an average calibration error of 0.026 m, 

offering superior precision in detecting stationary obstacles 

within a 0.25 to 3 meters range. Similarly, the Smart Assistive 

System for Visually Impaired People [33] utilizes ultrasonic 

sensors for obstacle detection. However, ultrasonic sensors 

have a narrow detection angle, typically ranging between 15° 

and 30°, meaning they can only detect obstacles directly in 

front of the sensor. In contrast, the proposed time-of-flight 

camera-based system provides a significantly wider field of 

view, allowing for the simultaneous detection of objects 

across a broader spatial range. This advantage ensures that 

users receive more comprehensive environmental awareness, 

reducing the risk of undetected obstacles outside the narrow 

sensing path of ultrasonic-based systems. 

Additionally, the object distance measurement system 

refines distance calculations by reducing noise from outliers 

and ensuring that only the most reliable depth values 

contribute to the final measurement. Unlike visual odometry-

based approaches, such as the Assistive Cane with Visual 

Odometry [27], which require camera motion tracking for 

distance estimation, the proposed method does not rely on 

positional changes, making it more stable for static object 

detection. Therefore, the proposed time-of-flight camera-

based approach offers a more precise, computationally 

efficient, and spatially comprehensive distance measurement 

method, outperforming radar, ultrasonic, and vision-based 

alternatives in near-field obstacle detection. 

C. Accuracy of Object Detection Angle Measurement 

The device tested the angle measurement system to 

evaluate the performance of the angle measurements. The 

testing was conducted only on the horizontal axis due to the 

limitations of the measuring tool, and the horizontal axis 

measurements can represent the angle measurements on the 

vertical axis since lens distortion is identical on both axes. 

The angle measurements were carried out using a 5×3 cm 

object placed 2 meters away from the sensor at a radius of 40 

cm, 60 cm, 80 cm, and 1 meter, with a horizontal angle range 

from -20° to 20° at 10° intervals. Three trials were conducted 

for each angle. The test compared the measured angles with 

the actual angles. Fig. 9 shows the angle measurement system 

test. The accuracy of the angle measurement was evaluated 

by calculating the difference between the actual and 

measured angles. The test result yielded the maximum 

average error and was calculated at 2.80% in measurement 

testing in 40 cm. The error occurred due to the limitations of 

the actual angle measuring equipment and the imperfections 

in object detection, where the centroid may not be positioned 

precisely at the object's center. The average error of 

measurement is shown in Table II. 

 

Fig. 9. The angle measurement system testing 
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TABLE II.  OBJECT DETECTION ANGLE MEASUREMENT  

Distance (cm) Average Error (°) Average Error (%) 

40 1.12 2.80% 

60 1.19 1.98% 

80 1.08 1.35% 

100 1.21 1.21% 

 

In the object detection angle measurement algorithm, the 

angle is determined based on the center point of the bounding 

box. Consequently, error increases when an object deviates 

significantly from the rectangular shape of the bounding box. 

Conversely, if the object closely aligns with the bounding box 

shape, the angle detection error decreases. As shown in Table 

II, the average error decreases as the object distance 

increases. This phenomenon occurs due to human error 

during testing. The evaluation was conducted by detecting a 

vertically positioned cane. If the cane was not perfectly 

perpendicular to the surface or was tilted, the bounding box, 

which should ideally enclose the cane accurately, became 

distorted, leading to detection inaccuracies. It is 

recommended that a new algorithm, like the distance 

calculation method, be developed to mitigate this error. 

Replacing the bounding box with an object selection 

algorithm that conforms to the obstacle's surface shape can 

reduce errors, as the algorithm would detect the object's 

center of mass rather than relying solely on the bounding box 

centroid. 

Compared to existing systems, the proposed Object 

Detection Angle Measurement demonstrates superior 

precision and stability in static object detection. The Assistive 

Cane with Visual Odometry [100] estimates object angles 

using camera-based motion tracking, but its reliance on 

continuous movement introduces accumulative errors over 

time, making it less reliable for precise static angle 

measurements. In contrast, the proposed system directly 

calculates angles from bounding box centroids, ensuring 

consistent accuracy without dependence on motion. 

Similarly, the Integrating Wearable Haptics and Obstacle 

Avoidance System  [21] employ an RGB-D camera for depth-

based object detection, but it lacks a dedicated angle 

computation framework, limiting its effectiveness in 

providing precise angular positioning. The proposed time-of-

flight-based approach achieves a low average error, offering 

higher spatial resolution and structured angle estimation 

compared to these vision-based systems. While minor errors 

arise from bounding box centroid misalignment, integrating 

an object selection algorithm that conforms to obstacle 

contours could further enhance precision. Thus, the proposed 

system provides a more stable, accurate, and computationally 

efficient alternative for real-time angular measurement in 

assistive visual aid applications. 

D. HRTF Spatial Audio  

Spatial audio testing was conducted by comparing the 

frequency response graphs of the spatial audio channels on 

the left and right. The frequency response graphs were 

displayed using the DAW Adobe Audition, with frequency 

responses taken at the peak amplitude of the audio. The 

frequency response graph shows the left channel in red and 

the right channel in yellow. Fig. 10 displays the spatial audio 

frequency response graph with an azimuth of -30° and an 

elevation of 0°. The graph indicates a significant amplitude 

drop on the right channel at frequencies below 30 Hz and a 

slight amplitude drop across the overall frequencies.  

 

Fig. 10. Frequency response graph of spatial audio with an azimuth of -30° 

and an elevation of 0° 

Fig. 11 displays the frequency response graph of HRTF 

audio with an azimuth of 0°and elevation of 0°. Visually, 

there is no significant difference in the frequency response 

because the azimuth and elevation are set to 0°, meaning the 

sound source is directly in front of the listener, resulting in 

the sound being perceived similarly by both the right and left 

ears.  

 
Fig. 11. The frequency response graph of HRTF audio has an azimuth of 0° 

and an elevation of 0°. 

The implementation of spatial audio uses a dataset 

consisting of 21 datasets. Each dataset, lasting less than 1 

second, provides dynamic information about the object's 

position, enabling the user to track changes in the object's 

movement. Spatial audio offers a more effective 

representation of an object's position than audio cues, as it 

continuously updates the object's position information when 

played repeatedly, according to the input data from the 

obstacle detection system [11]. Spatial audio can also blend 

with ambient sounds since it is static audio, like a "beep," 

which does not interfere with conversations, in contrast to 

audio cues or audio descriptions in previous studies that 

would be disruptive if played repeatedly. There will be 

variable delays in repeated playback. The farther the obstacle, 

the greater the delay, as its value is determined by the obstacle 

detection algorithm. This effect is intended to enhance depth 

perception by reinforcing the sense of distance. 

The proposed HRTF-based spatial audio system enhances 

spatial awareness and depth perception for visually impaired 

users by dynamically adjusting frequency responses based on 

object azimuth and elevation. Unlike the AI-Based Visual 

Aid with Integrated Reading Assistant [99], which relies on 

static audio cues or verbal descriptions, the proposed system 

continuously updates the spatial positioning of obstacles 
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through directional filtering, allowing for real-time object 

tracking without disrupting the user’s auditory environment. 

Additionally, while the Integrating Wearable Haptics and 

Obstacle Avoidance System [21] employs haptic feedback 

for navigation, tactile-based approaches may become 

cognitively demanding in complex environments with 

multiple obstacles. In contrast, the HRTF spatial audio 

method provides a non-intrusive auditory representation, 

allowing users to perceive both direction and distance 

without requiring direct physical interaction. Furthermore, 

the incorporation of variable delay effects, where delays 

increase with obstacle distance, reinforces depth perception, 

a feature that is not present in traditional binaural or cue-

based audio systems. This ensures that the proposed system 

delivers a more immersive and continuous spatial awareness 

experience, facilitating real-time obstacle tracking while 

minimizing interference with natural environmental sounds 

and conversations. 

E. Accuracy of Object Type Recognition 

 The accuracy of object type detection is tested to obtain 

the percentage of success in detecting and identifying each 

object class. In the tests conducted, objects from five classes 

were tested, each evaluated 20 times. The detection accuracy 

of object type is shown in Fig. 12. The results show that 

several objects, such as bottles, cups, and humans, have a 

high recognition rate in the object type identification process, 

with 100% accuracy at close and far distances. The accuracy 

of scissors is higher at 0.5 meters, at 80%, but only 30% at 

1.5 meters. The accuracy for a mobile phone at 0.5 meters is 

50%, and 40% at a far distance. 

 

Fig. 12. Detection accuracy of object type 

The low accuracy of the scissors aligns with the findings 

in [36], which were caused by the object's detailed shape and 

the small, more complex size of the scissors. Smaller objects 

at greater distances exhibit lower accuracy because they 

occupy fewer pixels, leading to a loss of fine-grained details 

crucial for recognition. Smaller objects like scissors are 

particularly affected, as their intricate shapes blend with the 

background, reducing detection accuracy. Lower resolution 

and sensor limitations can cause blurring, while perspective 

distortions and lighting variations further complicate object 

recognition. As a result, larger and well-defined objects like 

bottles and humans maintain high accuracy, while smaller, 

complex objects experience significant detection drops. 

However, through various enhancements such as attention 

mechanisms, multi-scale feature fusion, and improved loss 

functions, the detection accuracy loss for small objects can be 

mitigated. These advancements are crucial for applications 

requiring precise small object detection in complex scenarios 

[101]-[104].  

F. Accuracy of Object Centroid Detection  

The accuracy of object centroid detection was tested to 

obtain the percentage of successful object centroid 

detections. The objects used for accuracy testing were in 5 

object classes and three angular variations, namely -15º, 0º, 

and 15º, where 0º is the central viewpoint, positive angles are 

measured to the right of the Line of Sight (LOS), and negative 

angles are measured to the left of the LOS. Each object class 

was tested 18 times. The test data are shown in Table III. The 

results show that the error in detecting the object's centroid 

varies. It can be observed in Table III that the centroid error 

for the mobile phone was detected with RMSE 0.07 at an 

angle of 0º, while for other angle variations, the mobile phone 

object was 3.52 and 2.08.  

TABLE III.  ACCURACY OF OBJECT CENTROID DETECTION WITH A 

DISTANCE OF 0.5 METERS 

Object Type 
RMSE of Centroid Position Detection 

-15 º 0 º 15 º 

Bottle 2.69 3.36 5.38 

Cup 6.11 2.04 1.82 

Scissors 5.66 0.36 1.51 

Human 2.18 2.88 5.67 

Mobile Phone 3.52 0.07 2.08 

 

The influence of position variations, whether left, center 

or correct, does not show a significant difference in the error 

magnitude. The variations in the accuracy of object centroid 

detection using YoloV8 can be attributed to several factors, 

including object size, shape, viewing angle, distance from the 

camera, and dataset limitations [105]. Smaller objects, such 

as scissors and mobile phones, tend to have higher centroid 

detection errors at non-central angles because fewer pixels 

represent the object in the frame, making precise localization 

more difficult. Additionally, irregularly shaped objects like 

scissors may result in inconsistent bounding box placements, 

leading to centroid misalignment. Viewing angle effects also 

play a significant role, as objects positioned at -15º and 15º 

relative to the Line of Sight (LOS) may experience 

perspective distortion, altering their perceived shape and 

position. This is evident in the mobile phone detection results, 

where the RMSE at 0º was only 0.07 but significantly 

increased to 3.52 at -15º and 2.08 at 15º, likely due to 

perspective changes affecting bounding box positioning. 

Another contributing factor is the bounding box detection 

limitations of YoloV8, which relies on learned features from 

training data that may not always align perfectly with real-

world conditions. Variations in lighting, background clutter, 

or object occlusion can lead to inconsistent bounding box 

placements, further impacting centroid calculations [106], 

[107]. 

G. Accuracy of Object Position Classification 

The accuracy of object position classification was tested 

to determine the percentage of success in classifying the 

position of objects. The objects tested for accuracy were in 

the bottle, cup, scissors, human, and mobile phone categories, 
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with variations of close distance (0.5 meters) and far distance 

(1.5 meters). Each object category was tested 20 times. The 

test data visualization is shown in Fig. 13. 

  

Fig. 13. Classification accuracy of object in center position 

The accuracy of all five types of objects was 100% when 

positioned in the center. However, when the objects were 

positioned to the left or right, some objects, specifically 

scissors and mobile phones, did not achieve 100% accuracy. 

The inability to detect scissors and mobile phones resulted in 

lower accuracy for position classification. The object position 

recognition system identifies objects, determines their center 

point, and retrieves the distance data from the time-of-flight 

camera for that point. Errors may occur due to misalignment 

between the web camera and the time-of-flight camera. 

Calibration of both cameras is performed only initially using 

trigonometric calculations based on the actual distance and 

their relative positioning, resulting in a formula for frameshift 

and scaling in the time-of-flight camera. Shifts in camera 

placement, such as those caused by vibrations, can lead to 

distance discrepancies when retrieving object distance data 

from the time-of-flight camera. Implementing a dynamic 

calibration algorithm that adjusts distance when necessary 

without modifying the code is recommended to mitigate this 

error. Additionally, a more stable camera mounting can help 

minimize shifts due to vibrations, ensuring consistent camera 

positioning within the system. 

H. Accuracy of Object Distance Detection 

The accuracy of object distance detection was tested to 

determine the percentage of success in detecting the distance 

of each object. The objects tested for accuracy were a human, 

a bottle, a chair, a bag, and a laptop. Each object category was 

identified 45 times with five distance variations (0.5 m, 0.75 

m, 1 m, 1.25 m, and 1.5 m) and three position variations (left, 

center, right). The detection accuracy of object distance is 

shown in Fig. 14. The accuracy of distance detection for each 

type of object varied and fluctuated. However, there was a 

tendency for the accuracy to decrease as the distance 

increased. According to polynomial regression, the optimal 

object distance detection range is between 0.5 and 1 meter, as 

it resulted in a relatively high average accuracy. Fig. 15 

shows the distribution of object distance detection data. The 

data distribution shows varying detected distance values, but 

there is a tendency for the values to cluster around the actual 

distance. Based on the graph visualization, it is observed that 

the deviation in detected distance values increases as the 

actual distance increases with the testing distance. The 

average detection results obtained at the distance variations 

of 0.5 m, 0.75 m, 1 m, 1.25 m, and 1.5 m are 0.51 m, 0.75 m, 

1 m, 1.27 m, and 1.56 m, respectively. 

 
Fig. 14. Detection accuracy of object distance 

 
Fig. 15. Distribution of distance data compared to actual distance 

Based on Fig. 14, the highest accuracy is achieved for 

humans, while the lowest accuracy is observed for scissors. 

Additionally, as the object's distance increases, the accuracy 

of distance detection decreases. This result is influenced by 

the object's size and distance, which affects the number of 

pixels captured in the frame. Larger and closer objects 

produce more pixels, reducing the likelihood of incorrect 

distance estimation. Moreover, the calibration between the 

time-of-flight and web cameras can also contribute to lower 

accuracy when only a few pixels represent the object. The 

object's distance is obtained by retrieving the pixel's distance, 

representing the object's center point. Since calibration is 

performed only initially, any camera displacement may 

reduce accuracy over time. Several improvements are 

suggested, including developing an additional algorithm to 

compare distances from multiple pixels instead of relying 

solely on the center point, implementing a dynamic 

calibration algorithm for both the time-of-flight camera and 

web camera to adjust for positional shifts, and enhancing the 

camera mounting system to prevent displacement and 

maintain alignment to mitigate this issue. Moreover, based on 

Fig. 15, there is a linear relationship between the actual object 

distance and the distance detected by the system. Therefore, 

linear regression can be applied to improve the accuracy of 

object distance detection, and the resulting regression 

equation can be integrated into the code for more precise 

distance estimation. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 791 

 

Wahyudi, Mobility Aid for the Visually Impaired Using Machine Learning and Spatial Audio 

I. Overall Object Recognition Accuracy 

The overall testing of the object recognition subsystem 

aims to determine the accuracy of detecting the object type, 

object center of mass location, object position, and object 

distance. The overall testing accuracy is obtained using Mean 

Absolute Percentage Error (MAPE) to determine the error in 

detecting the object type and position. The testing is 

conducted using five variations of object types (bottle, cup, 

scissors, human, and bag), three variations of position (left, 

center, right), and variations of short distance (0.5 m) and 

long distance (1.5 m). The visualization of the test data is 

shown in Fig. 16. The highest accuracy value is observed for 

the human object. In contrast, other object types exhibit 

fluctuating values depending on the distance variation. The 

accuracy is better when the object is positioned in the center 

than when positioned on the left or right. The accuracy is 

generally higher at a short distance (0.5 meters) than at a long 

distance (1.5 meters). Detection accuracy decreases as the 

distance increases, though the extent of the effect varies 

across different object types. The differences in the impact of 

distance on accuracy are likely due to the varying dimensions 

of the objects tested. The accuracy tends to be higher when 

the object is positioned at the center compared to the left or 

right positions. The result indicates that the overall testing 

accuracy is 54%. 

  

Fig. 16. Detection accuracy with variations of objects and distances 1.5 

meters 

The error in testing results for object recognition accuracy 

can be attributed to several factors, including the number of 

pixels representing the object at different distances, camera 

displacement, and variations in object size within the frame. 

When objects are farther away (1.5 meters), fewer pixels 

represent them in the captured image, reducing the system's 

ability to accurately detect the object's type, centroid, and 

position. This is particularly evident in smaller objects like 

scissors and mobile phones, which suffer from greater 

detection errors at increased distances. Additionally, 

inaccuracies in distance estimation can occur due to slight 

shifts in camera positioning, which affect calibration and lead 

to inconsistencies in object localization. Camera 

displacement may result from minor vibrations or 

misalignment after initial calibration, impacting the accuracy 

of distance measurement and object placement within the 

frame. The size of an object also plays a crucial role, as larger 

objects like humans and bags tend to maintain higher 

detection accuracy due to their significant presence in the 

frame, whereas smaller objects contribute to more fluctuating 

results. Improvements should be made to each subsystem, 

including Object Type Recognition, Object Centroid 

Detection, Object Distance Detection, and Object Position 

Classification to mitigate these issues. Enhancing the 

accuracy of each component will contribute to a more reliable 

overall system. 

The proposed object recognition subsystem demonstrates 

strength in integrating multi-parameter detection, 

encompassing object type classification, centroid 

localization, position estimation, and distance measurement, 

making it more comprehensive than traditional detection 

methods. Compared to the Design of Blind Guiding Robot 

Based on Speed Adaptation and Visual Recognition [31], 

which employs YOLOv5 for object classification, the 

proposed system provides a broader range of spatial 

information rather than solely focusing on object presence. 

Similarly, the Millimeter-Wave Radar Cane excels in 

distance estimation and motion tracking [27] but lacks the 

capability to perform detailed object classification and 

precise position detection. Despite achieving an overall 

accuracy of 54%, the proposed system offers a more holistic 

approach to scene understanding, capturing multiple 

attributes rather than prioritizing a single detection metric.  

J. Obstacle Detection Processing Time  

The testing compares the processing time of the 

concurrent programming system and the infinite loop 

program. The test is conducted by varying the constant 

movement of objects detected by both systems to determine 

the average processing time. Fig. 17 shows the time testing 

results of the obstacle detection system with variations in 

obstacle movement.  

 

Fig. 17. Graph of obstacle detection system time process 

Fig. 17 demonstrates that the processing time of the 

infinite loop program increases as the object distance grows. 

This increase is attributed to the extended 3D audio delay, 

which postpones subsequent processing steps. In contrast, the 

concurrent programming system separates 3D audio 

processing from distance detection tasks, including frame 

acquisition and K-Means algorithm implementation. This 

separation ensures that the 3D audio playback does not delay 

distance detection. Additionally, for distances below 0.6 

meters, the infinite loop program processes data faster, 

achieving faster execution, as its processing time depends on 

the object's proximity. The system's processing time in an 

infinite loop remains constant and is longer than that of 

concurrent programming. The object's lateral movement 

distance remains unchanged, ensuring the 3D audio delay 
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remains consistent. However, concurrent programming 

achieves better processing efficiency by dividing the 

workload into three parallel processes: frame acquisition, K-

Means algorithm execution, and 3D audio playback. These 

processes run concurrently across multiple cores while 

sharing the same memory through shared variables. Utilizing 

multiple cores maximizes CPU workload distribution 

compared to a single-core approach, improving processing 

time. However, based on Table IV, the overall average 

processing time of the concurrent programming approach 

remains faster. 

Based on testing the obstacle detection system control 

with variations in movement direction, the concurrent 

programming system can respond to obstacle changes more 

quickly than the infinite loop system design. Concurrent 

programming can improve the average processing time by up 

to 19.23%. This performance improvement in concurrent 

programming demonstrates that implementing concurrent 

programming provides significant benefits in real-time 

applications where rapid response is critical.  

K. Object Recognition Processing Time  

The test compares the processing time between the 

concurrent programming system and the infinite loop 

program. The test was conducted by presenting variations of 

objects in a video for recognition by both systems, with the 

same playback duration for each object, to determine the 

average processing time. Fig. 18 compares processing times 

between the two systems for object recognition in the video. 

Table IV shows the time improvement in the system process. 

Concurrent programming offers significant time 

improvement in object recognition compared to conventional 

programming. During the scissor recognition test, concurrent 

programming improved the object recognition processing 

time by 55.39%. The process saw an improvement of 47.75% 

for the cup object test while recognizing another cup object 

yielded a time improvement of 57.15%. Overall, concurrent 

programming has proven effective in accelerating the object 

recognition process, with an average time improvement of 

approximately 53.43%. 

 
Fig. 18. Object detection program results for objects in video based on time 

TABLE IV.  OBJECT RECOGNITION PROCESSING TIME 

Object 
Process Time (s) 

Time Improvement (%) 
Infinite Loop Concurrent 

Human 16.50 7.07 57.15 

Cup 14.91 7.79 47.75 

Scissor 18.92 8.44 55.39 

Average 53.43 

 

Object recognition using CNN operates continuously 

without being triggered by a sensor, ensuring that both 

systems consistently detect objects in front of them. In CNN-

based processing, frame acquisition and object recognition 

using YoloV8 impose a significant computational load on the 

system. When these processes are executed on the same core, 

the system's FPS decreases, and frame acquisition 

experiences delays during YoloV8 processing, leading to 

delayed or incorrect object recognition. In contrast, the 

concurrent programming system assigns frame acquisition 

and object recognition to separate cores, improving the 

system's FPS and preventing delays during YoloV8 

processing. This parallel execution enhances real-time 

performance and ensures accurate and timely object 

detection. 

L. Overall System Processing Time 

This section creates a timing diagram for the concurrent 

programming system, starting from the timing diagram for 

each thread and subprocess to the touch sensor timing. The 

threadK-means is a thread that works based on input from the 

frame_reader_process to calculate the distance to the nearest 

object. The threadAudio is a thread responsible for 

calculating the index in calling audio samples and looping 

through those samples with a frequency that adjusts to the 

distance of the obstacle. The frame_reader_process is a 

subprocess responsible for capturing data from the time-of-

flight and web cameras and calculating the distance to objects 

recognized by the ultralytic_process. Ultralytic_process is a 

subprocess that works when given an image input, recognizes 

the image, and provides the result for the following process. 

The touch sensor is the input that provides the start signal for 

the object recognition system. The four processes and the 

response from the touch sensor are shown in Fig. 19. 

 

Fig. 19.  Comparison timing diagram of concurrent and infinite loops 

In Fig. 19, the black dashed line indicates when the object 

recognition process begins, at which point processes other 

than ultralytic_process will start. When the object 

recognition process finishes, the threadAudio will run at the 

black dashed line to provide the object description. The red 

dashed line shows when the obstacle detection process 

resumes after playing the description audio. Additionally, it 

can be observed that thread K-means can run concurrently 

with other processes and will start processing once 

frame_reader_process begins. The threadAudio will always 

run unless the ultralytic_process is active, in which case 

threadAudio will enter an idle state. Similarly, the 

frame_reader_process will always run unless the 

ultralytic_process is active; in this case, the 

frame_reader_process will also enter an idle state. The 

ultralytic_process will run when the touch sensor enters a 

high state, causing the other systems to enter an idle state. The 
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timing diagram shows that all systems have been controlled 

as intended and can operate concurrently to maximize 

efficiency. The overall processing times for the infinite loop 

and concurrent system are shown in Table V and Table VI, 

respectively. 

TABLE V.  OVERALL PROCESSING TIME FOR INFINITE LOOP  

Object 
Processing Time (s) Total Time 

(s) Obstacle detection Object recognition 

Human 2.20 8.60 10.80 

Cup 2.24 8.63 10.87 

Scissor 2.40 8.65 11.05 

TABLE VI.  OVERALL PROCESSING TIME FOR CONCURRENT  

Object 
Processing Time (s) Total Time 

(s) Obstacle detection Object recognition 

Human 1.64 3.66 5.30 

Cup 1.65 3.86 5.51 

Scissor 1.73 3.75 5.48 

 

Table V and Table VI show that the system with 

concurrent programming can respond to changes in obstacles 

and recognize objects more quickly than the infinite loop 

system. A comparison of overall processing time for infinite 

loop and concurrent programming is shown in Table VII.  

TABLE VII.  COMPARISON OF OVERALL PROCESSING TIME FOR INFINITE 

LOOP AND CONCURRENT  

Object 
Overall Processing Time (s) 

Time Improvement (%) 
Infinite Loop Concurrent 

Human 10.80 5.30 50.93 

Cup 10.87 5.51 49.31 

Scissor 11.05 5.48 50.41 

Average 50.22 

 

Table VII shows that the overall processing time for 

obstacle detection and object recognition with concurrent 

programming is quicker than the infinite loop system. For 

three objects, concurrent programming has a process time 

improvement with an average of 50.22% compared to the 

infinite loop program. The difference in processing time 

between the infinite loop and concurrent programming is 

primarily due to differences in core utilization and task 

distribution within the system. Concurrent programming 

achieves faster distance change detection and object 

recognition by fully utilizing the cores of the Raspberry Pi 

4B, eliminating task waiting times that would otherwise 

cause tasks to halt while others are being executed. This 

allows tasks to run concurrently, significantly improving 

overall efficiency. 

Additionally, concurrent programming enhances object 

recognition performance as it can successfully identify 

objects on the first attempt. In contrast, the infinite loop 

system often fails to do so due to frame delays. In the infinite 

loop system, the initial object recognition attempt may result 

in no detection because the object has not yet entered the 

frame, requiring the process to be repeated. Due to these 

advantages, concurrent programming delivers more real-time 

and responsive results, making it particularly beneficial for 

applications requiring fast processing and immediate 

feedback. 

M. Testing with Visually Impaired Users 

The testing was conducted by allowing visually impaired 

users to use the device directly in a controlled and supervised 

environment. The test involved two fully blind participants 

aged between 20 and 30 years. In this controlled setting, the 

users navigated the environment using the device while 

several individuals stood stationary to act as obstacles, in 

addition to environmental objects such as parked cars, walls, 

fences, and other abstract obstacles. When encountering an 

obstacle, users were instructed to point at it and maneuver 

around it to ensure the device functioned effectively as a 

mobility aid. Testing with visually impaired users is shown 

in Fig. 20. 

 

Fig. 20. Picture of testing setup 

Fig. 20 shows that encounter 1 standing human obstacle 

and a parked car obstacle. The test results showed that users 

could avoid and locate stationary obstacles. However, some 

adjustments were required to improve their ability to detect 

fast-moving objects approaching from the side, while slow to 

normal speed moving objects were still identifiable. The 

device's design, which conforms to the user’s facial structure, 

was found to be comfortable during movement, followed 

head movements well, and remained securely in place. 

Additionally, the system was powered by a 10,000mAh 

power bank, which provided sufficient energy without issues 

throughout the test period.  

Despite these advantages, there are limitations in the use 

of spatial audio. Users require an adaptation period to become 

familiar with the spatial audio. Moreover, overlapping 

environmental sounds can reduce the effectiveness of the 

device. Another challenge is that the device currently requires 

assistance from a caregiver to properly fit it onto the user due 

to the specific placement of the headset and power cables. 

Several improvements can be implemented to mitigate these 

challenges. First, integrating Active Noise Cancelling (ANC) 

technology can help reduce background noise, mainly low-

frequency sounds like engine hums. However, users should 

be aware that ANC may not completely suppress sudden or 

high-frequency sounds. Adjusting the volume levels and 

audio sampling rates can also enhance the clarity of spatial 

audio cues while maintaining safe listening levels to prevent 

auditory fatigue or potential long-term hearing damage. 

In addition, improving the detection of fast-moving 

objects can be achieved by implementing predictive motion 
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tracking, which can further anticipate the movement of 

approaching objects, allowing users more time to react. The 

headset and power connection layout can be redesigned to 

make it more intuitive for visually impaired users to wear and 

adjust without assistance to increase user independence in 

setting up the device. Implementing voice-guided setup 

instructions can also provide step-by-step guidance on how 

to wear and position the device correctly. Furthermore, a 

structured spatial audio training program can be introduced 

to mitigate the challenge of adapting to spatial audio cues. 

This program would involve step-by-step familiarization 

exercises in controlled environments before real-world use. 

Users can begin by recognizing directional sounds in quiet 

settings, then gradually progress to noisier environments to 

improve their ability to differentiate relevant audio cues from 

background noise. Additionally, interactive training sessions, 

such as virtual simulations or gamified exercises, could help 

users develop a stronger spatial awareness through repeated 

practice. Implementing these strategies allows the system to 

become more effective, user-friendly, and adaptable to 

various real-world conditions. These improvements will not 

only enhance the device's usability but also contribute to 

greater mobility, confidence, and independence for visually 

impaired users. 

Compared to the Design of Blind Guiding Robot Based 

on Speed Adaptation and Visual Recognition [31], which 

utilizes YOLOv5 for object detection and motion adaptation, 

the proposed system focuses on real-time spatial awareness 

through a combination of time-of-flight camera and HRTF 

spatial audio feedback. This enables more natural and 

intuitive navigation, particularly in environments where static 

and dynamic obstacles coexist. Similarly, while the 

Millimeter-Wave Radar Cane [27] excels in motion tracking 

and obstacle differentiation, its lower spatial resolution limits 

fine-grained object classification. In contrast, the proposed 

system offers a broader range of environmental perception 

through object type recognition, centroid detection, and 

position estimation. The Smart Assistive System for Visually 

Impaired People [33] relies on ultrasonic sensors for obstacle 

detection, which are effective for general navigation but lack 

detailed spatial representation. In contrast, the proposed 

system enhances depth perception and localization accuracy 

by combining a time-of-flight camera with K-Means 

Clustering. 

Additionally, wearable haptic systems like the Integrating 

Wearable Haptics and Obstacle Avoidance System [21] offer 

direct tactile feedback but may become overwhelming in 

complex environments, whereas the proposed HRTF-based 

spatial audio feedback provides a non-intrusive, ambient 

guidance mechanism, allowing users to maintain situational 

awareness without excessive cognitive load. Also, user 

testing with visually impaired participants demonstrated the 

system's effectiveness in navigating static obstacles but 

highlighted areas for improvement, particularly in detecting 

fast-moving objects approaching from the side. While the 

system remains securely positioned and aligns with head 

movements, the spatial audio component requires an 

adaptation period, like challenges noted in other audio-based 

navigation aids [99]. 

IV. CONCLUSIONS 

Mobility aids for the visually impaired based on machine 

learning using a time-of-flight camera and spatial audio have 

been described in this research, integrating a time-of-flight 

camera, web camera, and touch sensor with K-Means, CNNs, 

and concurrent programming on the Raspberry Pi 4B to 

detect objects and obstacles around the user. The novelty of 

this research lies in the obstacle detection system; this 

research excels in detecting dynamic objects using the time-

of-flight camera and the K-Means algorithm without 

requiring training data or an internet connection. The use of 

spatial audio distinguishes this research from previous studies 

that utilized audio descriptions. Spatial audio modifies sound 

to include direction and distance, leveraging the blind's 

heightened sensitivity to sound. Spatial audio allows users to 

estimate the position of the nearest obstacle using a universal 

language, making it accessible to everyone. In the object 

recognition system, users can recognize objects that are 

useful for daily activities by touching a sensor to trigger the 

system. Unlike previous studies, objects are recognized and 

described in terms of distance and position relative to the 

user. All systems run concurrent programming, offering 

better execution time than previous studies based on infinite 

loop programming. The device is designed to conform to the 

user's facial structure and incorporates flexible audio output, 

ensuring adaptability to individual needs. This research 

advances mobility aids for the visually impaired by refining 

system design, sensor integration, algorithmic efficiency, and 

overall user experience. However, several limitations remain. 

The device has a maximum detection range of 4 meters, 

reduced performance under high-intensity sunlight, and 

requires user adaptation to spatial audio, which may be 

affected by external noise. Additionally, object recognition is 

limited to 80 predefined categories, and minor inaccuracies 

persist in obstacle distance measurement and object 

recognition. Future research should focus on enhancing the 

bounding box algorithm to better conform to object contours, 

optimizing spatial audio samples for improved listener 

comfort, and implementing a robust trigonometric calibration 

algorithm between the time-of-flight camera and the web 

camera. Furthermore, expanding the training dataset to 

improve object recognition across different perspectives and 

lighting conditions, designing a more stable camera mounting 

system to mitigate direct sunlight exposure, and developing a 

user-friendly interface tailored for the visually impaired will 

further enhance the device’s usability. Lastly, providing 

structured training guidelines will help users familiarize 

themselves with the system’s unique features, particularly 

spatial audio, ensuring optimal adoption and effectiveness. 
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