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Abstract—Diabetic Retinopathy (DR) is a severe 

complication of diabetes mellitus that affects the retinal blood 

vessels and is a leading cause of blindness in productive-age 

individuals. The global increase in diabetes prevalence requires 

an effective DR classification system for early detection. This 

study aims to develop a DR classification system using several 

CNN architectures, such as EfficientNet-B4, ResNet-50, 

DenseNet-201, Xception, and Inception-ResNet-v2, with the 

application of the SMOTE oversampling technique to address 

data class imbalance. The dataset used is APTOS 2019, which 

has an unbalanced class distribution. Two scenarios were tested, 

the first without data balancing and the second with SMOTE 

implementation. The test results show that in the first scenario, 

Xception achieved the highest accuracy at 80.61%, but model 

performance was still limited due to majority class dominance. 

The application of SMOTE in the second scenario significantly 

improved model accuracy, with EfficientNet-B4 achieving the 

highest accuracy of 97.78%. Additionally, precision and recall 

increased dramatically in the second scenario, demonstrating 

SMOTE's effectiveness in enhancing the model's ability to 

detect minority classes and reduce prediction errors. DenseNet-

201 achieved the highest precision at 99.28%, while Inception-

ResNet-v2 recorded the highest recall at 98.57%. Overall, this 

study proves that the SMOTE method effectively addresses class 

imbalance in the fundus dataset and significantly improves CNN 

model performance. Although data balancing can help improve 

model quality by dealing with data imbalances, it comes at a 

higher computational cost. Using data balancing techniques 

with SMOTE significantly increased the iteration time per 

round on all tested CNN architectures. 

Keywords—Diabetic Retinopathy; CNN Architectures; 

SMOTE; Class Imbalance; Classification System. 

I. INTRODUCTION 

Diabetic retinopathy (DR) is a common microvascular 

complication of diabetes mellitus that can lead to visual 

impairment and blindness [1]. According to data from the 

International Diabetes Federation (IDF), in 2021 there were 

around 537 million adults (aged 20-79 years) living with 

diabetes worldwide [2]. Although specific data on the 

prevalence of diabetic retinopathy globally are not available, 

studies show that DR accounts for more than 50% of cases of 

visual impairment worldwide [3]. In the Asia-Pacific region, 

an estimated 51% of cases of visual impairment are caused 

by DR [4]. In Indonesia, diabetic retinopathy is the fifth 

leading cause of blindness and visual impairment. WHO 

estimates that 4.8% of the 37 million cases of blindness 

worldwide are caused by DR [5]. With the increasing 

prevalence of diabetes globally, the risk of developing 

diabetic retinopathy is also expected to increase. Therefore, it 

is important for people with diabetes to have regular eye 

screenings for early detection and appropriate treatment. 

The rapid increase in the prevalence of diabetes, driven 

by unhealthy lifestyles, population aging, and urbanization, 

has significantly increased the number of DR cases [6]. To 

overcome these challenges, DR classification has become 

essential to support early diagnosis, severity stratification, 

and therapeutic decision-making [7]. Currently, DR 

classification is generally based on guidelines developed by 

international health organizations, such as the American 

Academy of Ophthalmology (AAO) and the International 

Clinical Diabetic Retinopathy Disease Severity Scale 

(ICDRS) [8]. This approach groups DR into stages, such as 

mild non-proliferative to severe and proliferative, based on 

the presence of microaneurysms, retinal hemorrhages, or 

neovascularization [9]. In recent decades, technological 

advances have enabled the development of automated 

classification systems for DR using artificial intelligence (AI) 

and machine learning (ML) [10]. These classifications aim to 

differentiate the severity of DR, ranging from mild non-

proliferative to severe proliferative. This technology is based 

on the analysis of eye fundus images, allowing the detection 

of abnormal patterns such as microaneurysms, hard exudates, 

and neovascularization [11]. This system provides an 

opportunity for faster, more accurate and more cost-effective 

diagnosis compared to manual methods by specialist doctors. 

The importance of proper DR classification is not only for 

diagnosis, but also for determining the appropriate treatment 

strategy [12]. Grouping patients based on DR severity allows 

for more targeted treatment, such as laser photocoagulation 

for proliferative DR or anti-VEGF therapy for macular edema 

[13]. In addition, AI-based classification also helps expand 

access to healthcare in remote areas, where ophthalmology 

specialists are limited. Thus, modern DR classification 

becomes an important foundation for improving early 
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detection, patient management and prevention of more severe 

complications [14]. Suedumrong, et al [15] in their research 

used the CNN method to classify the severity of Diabetic 

Retinopathy (DR) based on retinal images (EyePACS 

dataset). From the dataset, 35155 images were categorized 

into 5 different classes (based on the severity of DR). The 

CNN models used include Inception V3, VGG, and ResNet 

with image pre-processing approaches including grayscale 

conversion, background removal, and data augmentation. 

Based on the research results, it was indicated that removing 

the image background was able to increase the performance 

of the CNN model in the classification process by 90.60%. 

In addition, Zhang, et al [16] proposed a CNN-based 

Grading method to classify Diabetic Retinopathy in Fundus 

images. Data cleaning and enhancement were performed on 

fundus images to reduce noise and improve image quality. 

Then the SACGAN method was used to synthesize the 

number of Diabetic Retinopathy fundus images so that the 

unbalanced data between classes became balanced. The 

DRMC Net model which is a combination of ResNeXt-50 

and residual convolution module is used to classify Diabetic 

Retinopathy which obtained a performance level of 92.3% 

(accuracy), 92.5% (specificity), 92.5% (sensitivity). 

Research conducted by Dutta, et al [17] successfully 

proposed an automatic Diabetic Retinopathy classification 

system using Ensemble Machine Learning such as Naive 

Bayes (NB), Decision Tree (DT), Random Forest (RF), 

XGBoost (XGB), and LightGBM (LGM). In addition, there 

is a process of missing value imputation, feature selection, 

and K-fold cross validation in the proposed system. Based on 

the results of system testing and analysis of variance, the 

accuracy level reached 73.5% and AUC of 83.2%. Another 

study conducted by Fayyaz, et al [18] also succeeded in 

detecting and classifying DR based on fundus images using 

the AlexNet and ResNet101 models. In the proposed system, 

layer interconnection and Ant Colony method helps in the 

process of feature identification and selection of important 

features. The result obtained an optimal accuracy level of 

93% in the system testing process. 

Based on several previous studies, this study will also 

propose a classification system for Diabetic Retinopathy 

(DR) on fundus images using several CNN architectures and 

Oversampling techniques. The novelty that we carry in this 

study is the use of the SMOTE oversampling technique to 

overcome the imbalance of data classes before the DR 

classification process is carried out. Balancing the amount of 

data in each class is expected to optimize the performance 

level of the classification model used. The CNN architectures 

used in this study include EfficientNet-B4, ResNet-50, 

DenseNet-201, Xception, and Inception-ResNet-v2. 

II. METHODOLOGY 

In order to classify diabetic retinopathy, there are several 

stages taken in this study starting from fundus dataset 

exploration, pre-processing (resizing, intensity 

normalization, noise removal, data augmentation, and 

background subtraction), data scenario determination (using 

the SMOTE oversampling technique to balance data classes 

and without using SMOTE), data partitioning, data training 

and testing using CNN models (EfficientNet-B4, ResNet-50, 

DenseNet-201, Xception, and Inception-ResNet-v2), and 

evaluation of the classification model. The Fig. 1 is an 

overview of the methodology in this research. 

A. Fundus Dataset 

This study utilized fundus images obtained from the Asia 

Pacific Tele-Ophthalmology Society 2019 Blindness 

Detection (APTOS 2019 BD) dataset [19]. The dataset 

comprises 3,662 samples collected from participants residing 

in rural India. It was curated by Aravind Eye Hospital, India. 

The fundus images were gathered under diverse conditions 

and environments over an extended timeframe. 

Subsequently, a team of trained physicians analyzed and 

labeled the samples based on the International Clinical 

Diabetic Retinopathy Severity Scale (ICDRSS). According to 

this classification system, the APTOS 2019 BD dataset is 

categorized into five groups: no Diabetic Retinopathy (DR), 

mild DR, moderate DR, severe DR, and proliferative DR. The 

distribution of image samples for the condition of no Diabetic 

Retinopathy is 1805, mild DR is 370, moderate DR is 999, 

severe DR is 193, and proliferative DR is 295. Based on the 

data distribution, it can be seen that each data class has a 

different number of samples. The following is a fundus image 

from the APTOS 2019 BD dataset.  

 

Fig. 1. Research methodology 
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The APTOS 2019 dataset (Asia Pacific Tele-

Ophthalmology Society) presents several specific challenges 

for tasks such as diabetic retinopathy classification. One of 

the primary challenges is data imbalance, where certain 

classes, particularly those with higher severity levels, often 

have significantly fewer samples compared to more common 

classes [20]. This imbalance can lead to models being biased 

toward the majority class, reducing accuracy for minority 

classes [21]. Additionally, the retinal fundus images in the 

dataset often exhibit varying visual quality, such as 

inconsistent lighting, artifacts, noise, or blurriness, which can 

affect the model's ability to detect important features [22]. 

Another challenge is the similarity between classes, 

especially in borderline cases between two severity levels, 

making classification more difficult [23]. Therefore, 

preprocessing techniques, data augmentation, or balancing 

methods such as SMOTE are needed to enhance the model's 

performance when dealing with this dataset (Fig. 2). 

 

Fig. 2. Illustration of SMOTE 

B. Pre-Processing 

Image pre-processing in Convolutional Neural Network 

(CNN)-based Diabetic Retinopathy (DR) detection includes 

several important steps to ensure that the data is ready to be 

processed by the model with optimal results. One of the main 

steps is resizing, which aims to align the image dimensions 

according to the requirements of the CNN architecture [24]. 

This process ensures the consistency of the input dimensions, 

thus facilitating the model training process without losing 

important information from the original image. The next step 

is intensity normalization, which organizes the image pixel 

values into a certain range [25]. In this study, the selected 

pixel range is [0, 1]. This normalization helps the CNN model 

to be more stable and efficient during training, while reducing 

the influence of lighting variations between images. With a 

uniform distribution of pixel values, important features such 

as blood vessels, exudates, and hemorrhages become more 

visible, which is very important for improving the accuracy 

of DR detection. 

Noise removal is also an important part of pre-processing. 

Retinal fundus images often contain noise from recording 

devices or artifacts. The Gaussian filter technique used in this 

study aims to reduce noise while retaining important edges 

and details [26]. With minimized noise, the CNN model can 

focus more on key features such as microaneurysms or retinal 

hemorrhages, which are important indicators of DR. Finally, 

data augmentation and background subtraction contribute 

significantly to improving the model performance. Data 

augmentation creates additional variations in the dataset 

through rotation, flipping, scaling, zooming, or changing 

color intensity, which helps reduce the risk of overfitting 

[27]. Meanwhile, background subtraction is used to remove 

irrelevant areas outside the retina, so that the model only 

processes important areas [28]. The combination of data 

augmentation and background subtraction ensures that the 

images used are of high quality, allowing the model to detect 

DR more accurately and reliably. 

C. Oversampling Technique 

Class imbalance is a common problem in Diabetic 

Retinopathy (DR) classification using fundus images [29]. 

Datasets such as APTOS 2019 BD often have an uneven 

distribution where classes such as “no DR” tend to have more 

samples than other classes such as “proliferative DR.” This 

imbalance can affect model performance, as the algorithm 

tends to focus more on the majority class, reducing the 

model’s ability to accurately recognize the minority class 

[30]. Therefore, a method is needed to balance the data so that 

the model can learn optimally across all classes. Synthetic 

Minority Over-sampling Technique (SMOTE) is one popular 

method to address data imbalance. SMOTE works by 

creating synthetic samples for the minority class through 

interpolation between existing samples [31]. This process is 

done by randomly selecting samples from the minority class, 

determining their nearest neighbors, and then creating new 

samples between those two points [32]. In this way, SMOTE 

adds variation to the minority class data without simply 

duplicating existing samples, reducing the risk of overfitting 

[33]. The Fig. 3 is an illustration of SMOTE in balancing data 

classes by synthesizing samples from the minority class. 

 

Fig. 3. Illustration of SMOTE 

In the context of DR classification, SMOTE can be used 

to balance the distribution of classes such as “mild DR,” 

“moderate DR,” “severe DR,” and “proliferative DR.” By 

applying SMOTE, the number of samples in the minority 

classes can be increased to approach the number of samples 

in the majority class [34]. If the “proliferative DR” class only 

has 295 samples while “no DR” has 1,805 samples, SMOTE 

can generate additional samples for “proliferative DR” until 

they reach a balanced number. This ensures that the model 

has sufficient representation of each class. Using SMOTE 

before training a deep learning model, such as Convolutional 

Neural Networks (CNN), can improve the model’s 

performance in detecting all DR categories. With more 

balanced data, the model can learn relevant patterns for each 

class without bias towards the majority class [35]. As a result, 

evaluation metrics such as accuracy, precision, and recall on 

the minority class tend to increase. In addition, SMOTE helps 

ensure that the model not only performs well on the majority 
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class but also provides reliable predictions for classes with 

low prevalence [36]. 

D. CNN Architectures 

1) EfficientNet-B4 

EfficientNet-B4 is a variant of the EfficientNet deep 

learning model architecture designed for image classification 

tasks [37]. EfficientNet uses a compound scaling approach to 

optimize model efficiency, namely by proportionally 

increasing the three main dimensions of the model, namely 

depth, width, and resolution of the input image [38]. 

EfficientNet-B4 offers a balance between high accuracy and 

computational efficiency, making it a popular choice for 

various applications that require a robust but resource-

efficient model [39]. The main working principle of 

EfficientNet-B4 is compound scaling, where model 

enhancement is performed with a coordinated scale on the 

depth, width, and resolution of the input, rather than 

increasing only one aspect [40]. EfficientNet-B4 is built on 

the Mobile Inverted Bottleneck Convolution (MBConv) 

block, which is designed for efficiency by utilizing depthwise 

separable convolution and squeeze-and-excitation blocks to 

highlight important features [41]. With this approach, 

EfficientNet-B4 can achieve optimal performance on various 

dataset sizes without significantly increasing model 

complexity [42]. The following are the parameters of the 

EfficientNet-B4 architecture presented in Table I. 

Table I describes the EfficientNet-B4 architectural 

parameters, which consist of several main stages, starting 

from the Stem stage to the Head stage. In the Stem stage, the 

model receives an input image measuring 380×380×3 and 

runs a Conv2D operation with a 3×3 kernel, producing 48 

output channels with a stride of 2. Next, in stage 1, the model 

applies the MBConv1 block with 24 output channels. The 

MBConv6 block is applied in stages 2 and 3 with 32 and 48 

output channels, using 3×3 and 5×5 kernels respectively and 

a stride of 2 to reduce the image resolution. In stages 4 and 5, 

the model uses the MBConv6 block again with 96 and 136 

output channels, increasing the depth and number of features, 

and changing the kernel size to 5×5. Stages 6 and 7, which 

also use MBConv6, increase the number of output channels 

to 232 and 384, respectively, with more efficient and deeper 

convolution operations. Finally, in the Head stage, Conv2D 

operations followed by pooling and fully connected (FC) 

produce a final output with 1536 channels, which are used for 

classification. This architecture optimizes resource usage by 

proportionally increasing depth, width, and resolution using 

the compound scaling principle, allowing the model to 

achieve high performance with good computational 

efficiency. 

2) ResNet-50 

ResNet-50 is a variant of deep neural network architecture 

that uses the concept of residual learning to address the 

degradation problem in deeper networks [43]. ResNet-50 

refers to the ResNet model with 50 layers, designed for image 

classification, often used for object recognition tasks on 

datasets such as ImageNet [44]. This model is known for 

being able to achieve high performance with a large number 

of layers, without experiencing overfitting or slow training 

problems [45]. The main working principle of ResNet-50 is 

the use of residual learning, which avoids the degradation 

problem that often occurs in deep neural networks [46]. With 

residual learning, the model learns to improve the results of 

previous layers by learning the difference between the output 

of the previous layer and the desired output [47]. This is done 

by adding skip connections or shortcuts that allow 

information to pass through one or more layers unchanged, 

so that gradients can flow more easily during the training 

process, reducing vanishing gradients [48]. Thus, ResNet-50 

can be deeper and more efficient than more traditional 

models, without losing accuracy [49]. The following are the 

parameters of the ResNet-50 presented in Table II. 

TABLE I.  PARAMETERS OF THE EFFICIENTNET-B4 

Stage Input Resolution Operator Number of Blocks Kernel Size Expansion Ratio Output Channels Stride 

Stem 380×380×3 Conv2D 1 3×3 - 48 2 

1 190×190×48 MBConv1 1 3×3 1 24 1 

2 190×190×24 MBConv6 2 3×3 6 32 2 

3 95×95×32 MBConv6 2 5×5 6 48 2 

4 48×48×48 MBConv6 3 3×3 6 96 2 

5 24×24×96 MBConv6 5 5×5 6 136 1 

6 24×24×136 MBConv6 5 5×5 6 232 2 

7 12×12×232 MBConv6 3 3×3 6 384 1 

Head 12×12×384 Conv2D + Pooling + FC 1 1×1 - 1536 - 

TABLE II.  PARAMETERS OF THE RESNET-50 

Layer Output Size Operator Number of Filters Kernel Size Stride Activation Function 

Initial Conv 112×112×64 Conv2D 64 7×7 2 ReLU 

Max Pooling 56×56×64 MaxPool - 3×3 2 - 

Residual Block 1 56×56×256 Conv2D + BatchNorm + ReLU 64, 64, 256 1×1, 3×3, 1×1 1 ReLU 

Residual Block 2 56×56×256 Conv2D + BatchNorm + ReLU 64, 64, 256 1×1, 3×3, 1×1 1 ReLU 

Residual Block 3 28×28×512 Conv2D + BatchNorm + ReLU 128, 128, 512 1×1, 3×3, 1×1 2 ReLU 

Residual Block 4 28×28×512 Conv2D + BatchNorm + ReLU 128, 128, 512 1×1, 3×3, 1×1 1 ReLU 

Residual Block 5 14×14×1024 Conv2D + BatchNorm + ReLU 256, 256, 1024 1×1, 3×3, 1×1 2 ReLU 

Residual Block 6 14×14×1024 Conv2D + BatchNorm + ReLU 256, 256, 1024 1×1, 3×3, 1×1 1 ReLU 

Residual Block 7 7×7×2048 Conv2D + BatchNorm + ReLU 512, 512, 2048 1×1, 3×3, 1×1 2 ReLU 

Residual Block 8 7×7×2048 Conv2D + BatchNorm + ReLU 512, 512, 2048 1×1, 3×3, 1×1 1 ReLU 

Global Average Pooling 1×1×2048 GlobalAveragePooling - - - - 

Fully Connected 1×1×1000 Dense 1000 - - Softmax 
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Table II illustrates the architectural parameters of ResNet-

50 consisting of various layers and blocks that make up the 

network. Initially, the input image is processed through the 

first convolution layer with a 7×7 kernel, producing an output 

with 64 channels and a size of 112×112, followed by max 

pooling with a 3×3 kernel and stride 2 to reduce the image 

size to 56×56. Next, the model uses residual blocks, which 

consist of multiple convolution and batch normalization 

layers, with each block having two or three convolution 

layers, which are then followed by the ReLU activation 

function. The first and second residual blocks have 64 and 

256 channels, using 1×1, 3×3, and 1×1 kernels, respectively. 

In the third and fourth residual blocks, the output increases to 

512 channels, and the convolution kernels used are 1×1 and 

3×3 with stride 2 to reduce the image dimension. In a further 

stage, ResNet-50 introduces a residual block with 1024 

channels and a stride of 2 to further reduce the image 

dimensionality, followed by a block with 2048 channels in 

the final stage. After going through all the residual blocks, the 

model uses global average pooling to summarize the features, 

producing a 2048-channel output that is then processed by a 

fully connected layer with 1000 units, using the Softmax 

activation function for classification. 

3) DenseNet-201 

DenseNet-201 is one of the deep neural network 

architectures that uses the principle of dense connectivity 

where each layer is directly connected to all previous layers 

[50]. DenseNet-201 refers to the DenseNet model that has 

201 layers, designed for image recognition and classification 

tasks [51]. Unlike conventional architectures, which connect 

each layer only to the next layer, DenseNet connects each 

layer to all previous layers, allowing for better information 

flow and more efficient feature reuse [52]. The main principle 

of DenseNet-201 is the concept of dense connectivity, which 

mitigates the vanishing gradient problem and enables very 

deep model training [53]. Each layer in DenseNet receives 

input from all previous layers, resulting in a more 

comprehensive feature map and improving the model's 

representation capabilities [54]. With this approach, 

DenseNet-201 not only improves information flow and 

gradients but also reduces the number of parameters because 

existing features are reused in subsequent layers [55]. This 

model also reduces memory requirements and redundant 

computation, making it efficient despite having many layers 

[56]. The following are the architectural parameters of 

DenseNet-201 presented in Table III. 

Table III describes the architectural parameters of 

DenseNet-201 which consists of various layers that form this 

network. Starting with the first convolution layer using a 7×7 

kernel with 64 channels, producing an output with a size of 

112×112, followed by a max pooling layer to reduce the 

dimension to 56×56. Next, DenseNet-201 adopts several 

Dense blocks consisting of 3×3 convolutions with channels 

increasing gradually, such as 64, 128, 256, and finally 512 

channels in the first block. Between each Dense block, there 

is a transition layer that reduces the number of channels by 

using 1×1 convolutions and pooling, which also reduces the 

spatial dimension of the image. This process is repeated for 

three additional Dense blocks with 512 and 1024 channels, 

reducing the image dimension from 56×56 to 28×28, 14×14, 

and finally 7×7 after each transition layer. After passing 

through all Dense blocks, the model uses global average 

pooling to summarize spatial information, producing an 

output of size 1×1×1024. Finally, a fully connected layer with 

1000 units and a Softmax activation function is used for 

classification. This architecture optimizes the use of features 

through dense connections between layers, allowing 

DenseNet-201 to handle models with many layers efficiently. 

4) Xception 

Xception stands for Extreme Inception, which is an 

extension of the previous Inception architecture. The main 

difference between Xception and Inception is that Xception 

uses depthwise separable convolution instead of standard 

convolution [57]. This architecture is designed to improve 

computational efficiency and performance by reducing the 

number of parameters and speeding up the training process, 

making it suitable for image processing and object 

recognition applications [58]. The working principle of 

Xception focuses on the use of depthwise separable 

convolution, which divides the convolution operation into 

two separate steps [59]. First, depthwise convolution is 

applied to each input channel, and second, pointwise 

convolution (1×1) to combine information between channels 

[60]. This separable convolution replaces the usual 

convolution which usually uses a larger kernel and more 

parameters [61]. In this way, Xception reduces the number of 

parameters and speeds up computation, while maintaining the 

network's ability to extract complex features from images 

[62]. This allows Xception to handle large datasets and 

applications with high accuracy [63]. The following are the 

Xception architecture parameters presented in Table IV. 

TABLE III.  PARAMETERS OF THE DENSENET-201 

Layer Output Size Operator Number of Filters Kernel Size Stride Activation Function 

Initial Conv 112×112×64 Conv2D 64 7×7 2 ReLU 

Max Pooling 56×56×64 MaxPool - 3×3 2 - 

Dense Block 1 56×56×256 Conv2D + BatchNorm + ReLU 64, 64, 128, 256 3×3 1 ReLU 

Transition Layer 1 28×28×128 Conv2D + AvgPool 128 1×1, 2×2 2 - 

Dense Block 2 28×28×512 Conv2D + BatchNorm + ReLU 128, 128, 256, 512 3×3 1 ReLU 

Transition Layer 2 14×14×256 Conv2D + AvgPool 256 1×1, 2×2 2 - 

Dense Block 3 14×14×1024 Conv2D + BatchNorm + ReLU 256, 256, 512, 1024 3×3 1 ReLU 

Transition Layer 3 7×7×512 Conv2D + AvgPool 512 1×1, 2×2 2 - 

Dense Block 4 7×7×1024 Conv2D + BatchNorm + ReLU 512, 512, 1024 3×3 1 ReLU 

Global Average Pooling 1×1×1024 GlobalAvgPool - - - - 

Fully Connected 1×1×1000 Dense 1000 - - Softmax 
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TABLE IV.  PARAMETERS OF THE XCEPTION 

Layer Output Size Operator 
Number of 

Filters 

Kernel 

Size 
Stride 

Activation 

Function 

Initial Conv 299×299×32 Conv2D 32 3×3 2 ReLU 

Depthwise Separable 

Conv 1 
149×149×64 

Depthwise Conv2D + Pointwise 

Conv2D 
64 3×3, 1×1 1 ReLU 

Depthwise Separable 

Conv 2 
149×149×128 

Depthwise Conv2D + Pointwise 

Conv2D 
128 3×3, 1×1 2 ReLU 

Depthwise Separable 

Conv 3 
73×73×256 

Depthwise Conv2D + Pointwise 

Conv2D 
256 3×3, 1×1 2 ReLU 

Depthwise Separable 

Conv 4 
37×37×728 

Depthwise Conv2D + Pointwise 

Conv2D 
728 3×3, 1×1 2 ReLU 

Depthwise Separable 

Conv 5 
19×19×728 

Depthwise Conv2D + Pointwise 

Conv2D 
728 3×3, 1×1 2 ReLU 

Depthwise Separable 

Conv 6 
19×19×728 

Depthwise Conv2D + Pointwise 

Conv2D 
728 3×3, 1×1 1 ReLU 

Depthwise Separable 

Conv 7 
10×10×1024 

Depthwise Conv2D + Pointwise 

Conv2D 
1024 3×3, 1×1 2 ReLU 

Depthwise Separable 

Conv 8 
10×10×1024 

Depthwise Conv2D + Pointwise 

Conv2D 
1024 3×3, 1×1 1 ReLU 

Global Average Pooling 1×1×1024 GlobalAvgPool - - - - 

Fully Connected 1×1×1000 Dense 1000 - - Softmax 

Table IV describes the Xception architecture parameters 

consisting of the various layers that make up the Xception 

network. Starting with an initial convolution layer, which 

uses a 3×3 kernel with 32 channels and produces an output of 

size 299×299. After that, the network continues with a series 

of depthwise separable convolutions consisting of two stages, 

the first stage using depthwise convolution for each channel 

separately and the second stage using pointwise convolution 

(1×1) to combine information across channels. Each 

depthwise separable convolution layer in Xception has two 

parts: a 3×3 kernel for depthwise convolution and a 1×1 

kernel for pointwise convolution. In the first block, the output 

is 149×149 with 64 channels, and this process is repeated 

with increasing numbers of channels (128, 256, and 728) 

through the next few blocks. The transition layer reduces the 

spatial dimension of the image through stride 2 in some 

blocks, while other layers maintain the spatial size with stride 

1. After several blocks of depthwise separable convolution, 

the architecture continues with a global average pooling layer 

that summarizes the spatial information of the extracted 

features and produces a 1×1 output with 1024 channels. At 

the end of the architecture, a fully connected layer with 1000 

units and a Softmax activation function is used for 

classification, producing a final output representing the 

prediction for each class. 

5) Inception-ResNet-v2 

Inception-ResNet-v2 is a deep neural network 

architecture that combines the advantages of two major 

approaches in deep learning model development, namely 

Inception and ResNet (Residual Networks) [64]. This model 

is designed to improve the efficiency and accuracy of pattern 

recognition from images, especially for tasks such as 

classification and object detection [65]. Inception-ResNet-v2 

combines the Inception module for multi-scale feature 

exploration with the residual learning technique from ResNet 

to accelerate training convergence and overcome the 

degradation problem that often occurs in very deep networks 

[66]. This architecture was developed by Google researchers 

and is a further development of the previous version, namely 

Inception-ResNet-v1 [67]. The working principle of 

Inception-ResNet-v2 lies in the combination of Inception 

blocks and residual connections [68]. The Inception block 

allows the network to extract features from various scales 

using filters with different kernel sizes (eg 1×1, 3×3, and 5×5) 

in one layer [69]. Residual connections, introduced in 

ResNet, add shortcut connections that skip several layers and 

directly connect inputs to outputs [70]. This helps mitigate 

the vanishing gradient problem in very deep networks and 

allows for more efficient model training [71]. In Inception-

ResNet-v2, each Inception block has a residual connection 

that adds the original features to the features generated by the 

Inception module, thus accelerating learning and improving 

accuracy [72]. The following are the architectural parameters 

of Inception-ResNet-v2 presented in Table V. 

Table V illustrates the architectural parameters of 

Inception-ResNet-v2, which consists of the main structure of 

the model that combines Inception blocks with residual 

connections to improve efficiency and accuracy. In the early 

stage (Stem), the model uses multiple successive convolution 

layers with small filters (3×3 and 1×1) and pooling to 

efficiently reduce the spatial dimension of the input image 

while extracting initial features. After that, the network enters 

three main types of blocks: Inception-ResNet-A, Inception-

ResNet-B, and Inception-ResNet-C, each designed to capture 

feature patterns with increasing complexity. Each Inception 

block combines multi-scale convolution operations with 

residual connections to accelerate training convergence and 

retain important information from the input. At each stage, 

reduction blocks (Reduction-A and Reduction-B) are used to 

significantly reduce the spatial dimension while increasing 

the feature depth (number of channels), allowing for more 

abstract and dense information processing. For example, the 

Reduction-A block reduces the size from 35×35 to 17×17 

while increasing the number of channels to 1088. On the 

other hand, the Reduction-B block reduces the size from 

17×17 to 8×8 with an increase in the number of channels to 

2080. This stage is very important to simplify the data 

representation before moving on to the final stage. The 

Inception-ResNet-A, B, and C blocks each use filters with 

varying kernel sizes (e.g. 1×1, 3×3, 7×1) to extract features 

at different spatial scales, while the residual connections keep 
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the initial information of the input from being lost during the 

process. The output of each residual block is added to the 

original input, improving the training stability and allowing 

very deep network training without experiencing the 

vanishing gradient problem. At the end of the network, a 

Global Average Pooling layer is used to summarize the 

spatial features into a single feature vector with dimensions 

of 1×1×2080. This vector then passes through a fully 

connected layer with Softmax activation function to generate 

probability predictions for 1000 classes. 

E. Model Evaluation 

Model evaluation matrices are metrics used to assess the 

performance of classification models, including 

Convolutional Neural Networks (CNN)-based models. 

Common evaluation matrices such as accuracy, precision, 

and recall are derived from a confusion matrix that maps 

model predictions to actual labels in four categories, such as 

True Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN) [73]. Accuracy measures the 

percentage of correct model predictions from the entire data, 

while precision focuses on how accurate the model's positive 

predictions are [74]. Meanwhile, recall, also known as 

sensitivity, measures the extent to which the model can 

correctly detect positive data from all the positive data 

available [75]. The mathematical equations for these three 

metrics are as follows: 

1) Accuracy 

Accuracy shows the proportion of correct predictions 

(both positive and negative) compared to the entire data. 

However, accuracy can be misleading if the dataset is 

imbalanced, for example if one class is more dominant. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

 

 

 

2) Precision 

Precision measures the ratio of correct positive 

predictions to all positive predictions. This is important for 

cases where the consequences of false positives are high, such 

as in disease detection. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

3) Recall 

Recall measures the model’s ability to capture all true 

positive data. This is important in situations where missed 

detection has a major impact, such as in medical diagnosis. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

 In CNN-based classification, accuracy, precision, and 

recall metrics are used to evaluate the model’s performance 

on previously unseen test data [76]. A good CNN should 

strike a good balance between these three metrics, especially 

on datasets with imbalanced classes [77]. For example, in the 

task of disease detection using medical images, high 

precision is important to reduce false positives, while high 

recall is important to ensure that no cases of a disease are 

missed [78]. By using these three metrics together, 

researchers can evaluate not only the model’s ability to make 

correct predictions overall, but also how well it handles 

positive and negative data specifically [79]. 

III. RESULTS AND DISCUSSIONS 

As previously explained, this study uses the APTOS 2019 

BD dataset for the Diabetic Retinopathy classification 

process based on CNN architecture. This fundus image 

dataset has a different amount of data in each class. The data 

distribution from each class is 1805 non-Diabetic 

Retinopathy data, 370 mild DR data, 999 moderate DR data, 

193 severe DR data, and 295 proliferative DR data [19]. So 

we apply 2 types of scenarios in the Diabetic Retinopathy 

classification process. 

TABLE V.  PARAMETERS OF THE INCEPTION-RESNET-V2 

Stage Block/Layer Output Size Operator Number of Filters Kernel Size Stride Activation 

Stem Conv2D 149×149×32 Conv2D 32 3×3 2 ReLU 

- Conv2D 147×147×32 Conv2D 32 3×3 1 ReLU 

- Conv2D 147×147×64 Conv2D 64 3×3 1 ReLU 

- MaxPooling 73×73×64 MaxPooling - 3×3 2 - 

- Conv2D 73×73×80 Conv2D 80 1×1 1 ReLU 

- Conv2D 71×71×192 Conv2D 192 3×3 1 ReLU 

- MaxPooling 35×35×192 MaxPooling - 3×3 2 - 

Inception-ResNet-

A 
10× Block A 35×35×320 

Conv2D + Residual 

Connection 
[32, 32, 64, 96, 96] 1×1, 3×3 1 ReLU 

Reduction-A 
Reduction Block 

A 
17×17×1088 Conv2D + MaxPooling [384, 256, 256] 3×3, 1×1 2 ReLU 

Inception-ResNet-

B 
20× Block B 17×17×1088 

Conv2D + Residual 
Connection 

[128, 128, 256, 
896] 

1×1, 7×1, 
1×7 

1 ReLU 

Reduction-B 
Reduction Block 

B 
8×8×2080 Conv2D + MaxPooling 

[256, 384, 256, 

256] 
1×1, 3×3 2 ReLU 

Inception-ResNet-

C 
10× Block C 8×8×2080 

Conv2D + Residual 
Connection 

[192, 192, 256, 
1792] 

1×1, 3×3 1 ReLU 

Final Layers Average Pooling 1×1×2080 Global Average Pooling - - - - 

- Fully Connected 1×1×1000 Dense 1000 - - Softmax 
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The first scenario, the fundus image dataset will be 

directly partitioned into training and testing data. The training 

data will be used as input for training CNN architectures such 

as EfficientNet-B4, ResNet-50, DenseNet-201, Xception, 

and Inception-ResNet-v2, and the results will be tested with 

testing data to see the performance level of each CNN 

architecture in the Diabetic Retinopathy classification 

process. While in the second scenario, the fundus image 

dataset will be balanced by data class using the oversampling 

technique (SMOTE) and then partitioned into training and 

testing data. The use of SMOTE aims to synthesize data 

samples from classes with a small amount of data and then 

the data samples will be increased until all classes have the 

same amount of data (balanced) [80]. Similar to scenario 1, 

the training data will be used as input for training CNN 

architectures and the results will be tested using testing data. 

The results of the accuracy, precision, and recall of the CNN 

architecture in scenarios 1 and 2 will be compared to observe 

the influence or effectiveness of using the oversampling 

technique (SMOTE) in the classification of Diabetic 

Retinopathy. 

Based on the test results using several Convolutional 

Neural Networks (CNN) architectures, as shown in Fig. 4, a 

comparison of the classification performance of Diabetic 

Retinopathy (DR) in two different scenarios was obtained. In 

scenario 1 (without data balancing), the model performance 

showed quite varied accuracy. Xception recorded the highest 

accuracy of 80.61%, followed by Inception-ResNet-v2 with 

77.55%, DenseNet-201 at 76.53%, ResNet-50 at 74.83%, and 

EfficientNet-B4 at 74.15%. These results show that 

architectures such as Xception are able to overcome data 

imbalance better than other models, but their performance is 

still limited by the dominance of the majority class. When 

data balancing was carried out using the SMOTE method in 

scenario 2, the model accuracy increased significantly. The 

highest accuracy rate was obtained by EfficientNet-B4 with 

97.78%, followed by DenseNet-201 at 97.09%, ResNet-50 at 

96.95%, Xception at 96.81%, and Inception-ResNet-v2 at 

91.14%. This improvement shows that SMOTE successfully 

overcomes the problem of class imbalance in the dataset, 

allowing the model to learn better towards the minority class. 

The effectiveness of this method can be seen from the spike 

in performance across all CNN architectures, indicating that 

balanced data plays an important role in improving 

classification performance. 

In addition to accuracy, precision is an important 

evaluation metric in assessing the performance of CNN 

models, especially in detecting DR (Fig. 5). In scenario 1, the 

highest precision was obtained by Xception at 73.76%, 

followed by EfficientNet-B4 at 73.33%, DenseNet-201 at 

70.23%, Inception-ResNet-v2 at 67.86%, and ResNet-50 at 

65.65%. However, the precision increased drastically after 

data balancing using SMOTE in scenario 2. DenseNet-201 

recorded the highest precision of 99.28%, followed by 

EfficientNet-B4 with 98.75%, ResNet-50 with 98.56%, 

Xception with 97.68%, and Inception-ResNet-v2 with 

90.77%. This increase shows that the SMOTE method is able 

to improve the model's ability to avoid false positives, so that 

predictions become more accurate. Meanwhile, recall, which 

measures the model's ability to detect positive classes, also 

showed a significant increase (Fig. 6). In scenario 1, the 

highest recall was obtained by Xception with 83.87%, 

followed by Inception-ResNet-v2 with 81.90%, DenseNet-

201 with 75.41%, ResNet-50 with 74.78%, and EfficientNet-

B4 with 71.22%. After data balancing using SMOTE in 

scenario 2, recall increased significantly. Inception-ResNet-

v2 recorded the highest recall of 98.57%, followed by 

EfficientNet-B4 of 98.40%, Xception of 98.20%, ResNet-50 

of 97.50%, and DenseNet-201 of 96.99%. This improvement 

indicates that the model can detect more positive cases more 

accurately after the data is balanced. 

 

 

Fig. 4. Comparison of Diabetic Retinopathy Classification Accuracy using CNN Architecture with and without Data Balancing (SMOTE) 
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Fig. 5. Comparison of Diabetic Retinopathy Classification Precision using CNN Architecture with and without Data Balancing (SMOTE) 

 

Fig. 6. Comparison of Diabetic Retinopathy Classification Recall using CNN Architecture with and without Data Balancing (SMOTE) 

Overall, the test results emphasize the importance of 

implementing the SMOTE method in dealing with data 

imbalance in CNN-based Diabetic Retinopathy (DR) 

classification. Data imbalance is a common problem in 

medical datasets, where the number of samples for minority 

classes, such as severe DR and proliferative DR, tends to be 

much smaller than the majority class [81]. Without data 

balancing, the model tends to be biased towards the majority 

class, so that the performance in detecting rare disease 

conditions is not optimal [82]. The application of SMOTE 

successfully creates synthetic samples for the minority class, 

so that the data distribution becomes more balanced and the 

model can learn the patterns of each class more effectively 

[83]. Modern architectures such as EfficientNet-B4 and 

DenseNet-201 show significant performance improvements 

after applying SMOTE compared to scenarios without data 

balancing [84]. This can be seen from the spike in evaluation 

metrics, such as accuracy, precision, and recall, indicating 

that the model can better classify various levels of DR 

severity. The efficiency of architectures such as EfficientNet-

B4, which optimizes the network scale in terms of depth, 

width, and resolution, contributes to more accurate detection 

capabilities [85]. Meanwhile, DenseNet-201 with its dense 

connectivity mechanism enables better feature propagation, 

which is very helpful in understanding the complex features 

of the retinal fundus images used in this study. 

With the increasing ability of the model to detect positive 

classes accurately and consistently, the implementation of the 

SMOTE method can improve the reliability of the early 
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detection system for Diabetic Retinopathy [86]. This system 

can help medical professionals make faster and more precise 

diagnoses, especially for cases with high severity conditions 

such as severe DR and proliferative DR that require 

immediate treatment [87]. Early detection is crucial because 

Diabetic Retinopathy is a progressive disease that can cause 

permanent blindness if not treated promptly [88]. Therefore, 

the combination of an optimal CNN architecture and an 

effective data balancing method opens up significant 

opportunities in the development of artificial intelligence-

based systems in the field of ophthalmology [89]. 

Furthermore, this study shows that the SMOTE method not 

only improves model performance but also provides a fairer 

approach to disease classification. With a balanced data 

distribution, each disease category has an equal chance of 

being recognized by the model, so that the classification 

results are more reliable [90]. In addition, this 

implementation has the potential to be integrated into clinical 

decision support systems that can be used by doctors or 

medical personnel as a diagnostic tool [91]. 

Table VI compares the iteration time per round for 

various CNN architectures under two conditions, without 

data balancing and with data balancing using SMOTE 

(Synthetic Minority Oversampling Technique). It is evident 

that applying data balancing significantly increases the 

iteration time across all architectures. For instance, 

EfficientNet-B4 has an iteration time of 53.14 seconds 

without data balancing, which rises to 124.14 seconds with 

SMOTE. Similarly, ResNet-50 shows an increase from 31.84 

seconds to 72.80 seconds. DenseNet-201 experiences the 

most significant rise, from 59.16 seconds to 142.16 seconds, 

while Inception-ResNet-v2 also exhibits a substantial 

increase, from 52.14 seconds to 132.15 seconds. The smallest 

relative increase is observed in ResNet-50, and the largest in 

DenseNet-201. This indicates that while SMOTE improves 

data balance, it imposes a computational cost, likely due to 

the additional synthetic data generation and processing 

required for balanced datasets. The results highlight a trade-

off between computational efficiency and data balancing in 

CNN training. In the future, further optimization through a 

combination of the SMOTE method with other performance 

improvement techniques, such as ensemble learning or 

transfer learning, can further improve the accuracy and 

efficiency of the CNN-based Diabetic Retinopathy early 

detection system. 

TABLE VI.  COMPARISON OF CNN ARCHITECTURES COMPUTATION TIMES 

CNN Architectures 

Iteration Time per Round (s) 

Without Data 

Balancing 

Data Balancing 

(SMOTE) 

EfficientNet-B4 53.14 124.14 

ResNet-50 31.84 72.80 

DenseNet-201 59.16 142.16 

Xception 33.91 81.90 

Inception-ResNet-v2 52.14 132.15 

IV. CONCLUSIONS 

Based on the test results, the use of the SMOTE method 

has proven effective in handling data imbalance in CNN-

based Diabetic Retinopathy (DR) classification. In scenarios 

without data balancing, model performance tends to be 

limited by the dominance of the majority class, with Xception 

showing the highest performance in accuracy, precision, and 

recall. However, when data balancing is carried out using 

SMOTE, there is a significant increase in all evaluation 

metrics across various CNN architectures. The highest 

accuracy increase was achieved by EfficientNet-B4 with 

97.78%, followed by DenseNet-201, ResNet-50, Xception, 

and Inception-ResNet-v2. This shows that data balancing 

allows the model to learn more effectively from the minority 

class, so that classification performance becomes more 

optimal. Similar improvements are also seen in precision and 

recall, with DenseNet-201 recording the highest precision 

and Inception-ResNet-v2 recording the highest recall after 

applying SMOTE. These results confirm that SMOTE not 

only improves the overall accuracy of the model, but also 

improves the model's ability to detect positive cases (recall) 

and avoid false positives (precision). Architectures such as 

EfficientNet-B4 and DenseNet-201 have proven to be very 

reliable in utilizing balanced data, making them strong 

candidates for the implementation of early detection systems 

for DR. Thus, the use of the SMOTE method in the 

classification of Diabetic Retinopathy is highly 

recommended to improve the accuracy of the diagnosis. 

Although data balancing can help improve model quality by 

dealing with data imbalances, it comes at a higher 

computational cost. Using data balancing techniques with 

SMOTE significantly increased the iteration time per round 

on all tested CNN architectures. Therefore, it is important to 

consider the trade-off between improved model performance 

and increased computational time when applying techniques 

like SMOTE, especially for more complex architectures such 

as DenseNet-201 and Inception-ResNet-v2. This 

implementation can contribute significantly to the clinical 

decision support system, helping medical personnel to detect 

and treat Diabetic Retinopathy more quickly and accurately, 

thereby preventing the risk of blindness due to late diagnosis. 
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