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Abstract—This study introduces a novel higher-order implicit
correction method derived from the Euler-Maclaurin formula to
enhance the approximation of initial value problems. The proposed
method surpasses the Runge-Kutta approach in accuracy, stability,
and convergence. An error bound is established to demonstrate
its theoretical reliability. To validate its effectiveness, numerical
experiments are conducted, showcasing its superior performance
compared to conventional methods. The results consistently con-
firm that the proposed method outperforms the Runge-Kutta
method across various practical applications.
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I. INTRODUCTION

In our present era, characterized by rapid advancements in
both experimental and applied sciences, the scope of scien-
tific exploration continues to expand. A significant aspect of
this progress is the swift evolution of artificial intelligence,
a transformative force with the potential to tackle complex
mathematical challenges. In the dynamic field of differential
equations, researchers are actively working to refine and mod-
ernize classical methods for approximating both initial and
boundary value problems [1]–[3]. To see more studies about the
IVPs, BVPs and their generalizations, applications, and more,
the reader may refer to the references [4]–[24].

While the Runge-Kutta method remains the predominant
technique for solving differential equations, researchers find
themselves balancing tradition and innovation. Widely regarded
as a benchmark, this method serves as a standard against which
new approaches are evaluated, particularly in the complex do-
main of chaotic systems. However, in an era of rapid scientific
advancements, it is essential not only to acknowledge estab-

lished methodologies but also to explore and extend beyond
their limitations.

This contemporary era necessitates the proactive develop-
ment of novel approaches for approximating Ordinary Differ-
ential Equations (O.D.E.) with greater precision and efficiency.
The demand for advancements in computational techniques is
increasingly evident as we strive to gain deeper insights into
complex mathematical models and systems (see [25]–[31] for
future directions in this field). In this pursuit, researchers are
encouraged to explore uncharted methodologies that not only
surpass the reliability of the Runge-Kutta method but also align
with the evolving needs of modern scientific inquiry. Standing
at the intersection of tradition and innovation, our goal extends
beyond mere comparison—toward pioneering new frameworks
that redefine the landscape of mathematical approximation in
the age of artificial intelligence.

After reviewing established methodologies, our exploration
now culminates in the introduction of a groundbreaking ap-
proach for approximating solutions to Initial Value Problems
(I.V.P.). This innovative method aims to achieve a refined bal-
ance between precision and computational efficiency, presenting
a compelling alternative to conventional techniques. As we em-
bark on this transformative journey, we invite readers to engage
in unraveling the complexities of numerical methods, fostering
a new era in I.V.P. approximations. For further insights, we
recommend referring to [32]–[36].

The Euler-Maclaurin formula, a fundamental result in math-
ematical analysis, was independently developed by Euler [37]
and Maclaurin [38] in the 18th century. Euler’s motivation was
to establish a connection between discrete sums and continuous
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integrals, while Maclaurin extended and refined these ideas.
Their combined contributions resulted in a powerful formula
that remains a cornerstone in numerical analysis and asymptotic
approximations. Specifically, if the function f(x) is analytic
over the integration region, the Euler-Maclaurin formula is
given by

n−1∑
k=1

f (k) =
∫ n

0
f (x) dx− f(0)+f(n)

2

+
∞∑
k=1

B2k

(2k)!

[
f (2k−1) (n)− f (2k−1) (0)

]
.

An elementary perspective on the Euler-Maclaurin formula
is extensively discussed in [39]. The elegance of this for-
mula lies in its derivation, which is fundamentally based on
integration by parts. By strategically applying this technique,
Euler and Maclaurin established a powerful connection between
discrete sums and continuous integrals. The derivation involves
transforming summations into integral expressions, carefully
handling boundary terms, and incorporating correction terms,
ultimately leading to a remarkably expressive formulation.
This process exemplifies their ingenuity in bridging discrete
and continuous mathematics. Over time, the Euler-Maclaurin
formula has garnered significant attention, inspiring extensive
research and leading to various alternative formulations and
extensions.

Darboux provided an alternative derivation of the Euler-
Maclaurin formula by applying the mean value theorem to
the integral terms. This approach offers a fresh perspective,
reinforcing the connection between discrete and continuous
processes through the lens of classical analysis. Darboux’s
insight deepens our understanding of the formula, highlighting
the diverse mathematical pathways that lead to its elegant
expression. Throughout this work, we consider a real interval
I , where a, b ∈ I◦ (the interior of I) with a < b. Additionally,
let Pn(I) denote the class of polynomials of degree at most n
defined on I ⊆ R.

The origins of the Euler-Maclaurin formula can be traced
back to the celebrated Darboux formula. Let f(x) be analytic
over the interval [a, x], and let ϕ(t) ∈ Pn. For t ∈ [0, 1],
differentiation yields

d
dt

n∑
k=1

(−1)
k
(x− a)

k
ϕ(n−k) (t) f (k) (a+ t (x− a))

= − (x− a)ϕ(n) (t) f ′ (a+ t (x− a))

+ (−1)
n
(x− a)

n+1
ϕ (t) f (n+1) (a+ t (x− a)) .

(1)

Since ϕ(n)(t) = ϕ(n)(0) = constant, integrating from 0 to 1
with respect to t yields

ϕ(n) (0) [f (x)− f (a)] =
n∑

k=1

(−1)k−1 (x− a)k

×
{
ϕ(n−k) (1) f (k) (x)− ϕ(n−k) (0) f (k) (a)

}
+(−1)n (x− a)n+1 ∫ 1

0
ϕ (t) f (n+1) (a+ t (x− a)) dt,

(2)

Which is known as Darboux’s formula (see [40]). A detailed
discussion of this formula is also provided in [41].

The Euler-Maclaurin formula serves as a cornerstone in
mathematical analysis, offering a bridge between discrete sums
and continuous integrals. Its significance extends beyond its his-
torical origins, influencing contemporary mathematics, physics,
and engineering. The formula’s ability to simplify complex
computations and yield precise approximations makes it an
indispensable tool across various scientific disciplines. Its con-
tinued relevance underscores its profound impact, providing es-
sential insights into both discrete and continuous mathematical
structures.

In his formulation, Darboux arrived at an expansion that is
no less significant than the celebrated Euler-Maclaurin formula
itself. Indeed, the following expansion holds [40]:

(x− a)f ′ (a) = f (x)− f (a)− x−a
2 [f ′ (x)− f ′ (a)]

+
n−1∑
m=1

(−1)m−1Bm(x−a)2m

(2m)!

[
f (2m) (x)− f (2m) (a)

]
−Rn (f,B2n) ,

where the remainder term is given by

Rn (f,B2n)

= (x−a)2n+1

(2n)!

∫ 1

0
B2n (t) f

(2n+1) (a+ t (x− a)) dt,
(3)

where Bk (t) (k = 1, 2, 3, . . . ) are the Bernoulli polynomials,
and Bk are the Bernoulli numbers. Since all odd Bernoulli
numbers B2k−1 (k = 1, 2, . . . ) are zero, the above expansion
simplifies to

f (x) = f (a) + (x− a) f ′ (a) + (x−a)
2

[f ′ (x)− f ′ (a)]

−
n−1∑
m=1

(−1)m−1 B2m(x−a)2m

(2m)!

[
f (2m) (x)− f (2m) (a)

]
+Rn (f,B2n) .

(4)

Based on this formulation, this work derives a general higher-
order implicit method that surpasses the Runge-Kutta methods
in terms of accuracy. An error bound for the Euler-Maclaurin
higher-order method is established, demonstrating its stability,
convergence, and superior efficiency compared to conventional
Runge-Kutta methods. To substantiate these claims, numerical
experiments are conducted, highlighting the exceptional perfor-
mance of the proposed method over traditional well-established
techniques.

II. THE EULER-MACLAURIN METHOD FOR
APPROXIMATING SOLUTIONS OF I.V.P.

This section presents a novel approach for approximating the
solution of the well-posed initial-value problem

dy

dt
= f (t, y) , a ≤ t ≤ b, y (a) = α. (5)
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Assume that the solution y(t) possesses (2n + 1)-continuous
derivatives. Expanding y(t) using its (2n)-th order Euler-
Maclaurin expansion about ti and evaluating at ti+1, we obtain

y (ti+1) = y (ti) + (ti+1 − ti) y
′ (ti)

+
(ti+1−ti)

2
[y′ (ti+1)− y′ (ti)]−

n−1∑
m=1

(−1)m−1

×B2m(ti+1−ti)
2m

(2m)!

[
y(2m) (ti+1)− y(2m) (ti)

]
+
(ti+1−ti)

2n+1

(2n)!

∫ 1

0
B2n (s) y(2n+1) (ti + s (ti+1 − ti)) ds

(6)

We begin by establishing the assumption that the distribution
of mesh points is uniform across the interval [a, b]. This
requirement is ensured by selecting a positive integer N , from
which the mesh points are defined as

ti = a+ ih, for i = 0, 1, 2, . . . , N.

Here, h represents the step size or the uniform spacing between
consecutive points, given by

h =
b− a

N
= ti+1 − ti.

Assuming that the unique solution to (5) possesses (2n + 1)
continuous derivatives on [a, b], this holds for each i =
0, 1, 2, . . . , N − 1. Furthermore, since y(t) satisfies the differ-
ential equation (6), successive differentiation of y(t) yields

y′ (t) = f (t, y (t)) , . . . , y(k) (t) = f (k−1) (t, y (t)) .

Substituting these expressions into (6), we obtain

y (ti+1) = y (ti) + hf (ti, y (ti))
+h

2 [f (ti+1, y (ti+1))− f (ti, y (ti))]

−
n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

×
[
f (2m−1) (ti+1, y (ti+1))− f (2m−1) (ti, y (ti))

]
.

(7)

The difference-equation method corresponding to (7) is de-
rived by omitting the remainder term involving ξi, yielding

w0 = α,
wi+1 = wi + hf (ti, y (ti))

+h
2 [f (ti+1, y (ti+1))− f (ti, y (ti))]

−hM(n−1) (wi, wi+1) ,

(8)

for i = 0, 1, 2, . . . , N − 1, where

M(n−1) (wi, wi+1) :=
n−1∑
m=1

(−1)
m−1 B2mh2m−1

(2m)!

×
[
f (2m−1) (ti+1, y (ti+1))− f (2m−1) (ti, y (ti))

]
.

In particular, we focus on the specific case of (8) presented in
the following section.

A. Euler-Maclaurin Method of Order 11

By setting n = 5 in (8), we obtain the following recurrence
relation:

w0 = α,
wi+1 = wi + hf (ti, wi) +

h
2
[f (ti+1, wi+1)− f (ti, wi)]

+h2

12
[f ′ (ti+1, wi+1)− f ′ (ti, wi)]

− h4

720
[f ′′′ (ti+1, wi+1)− f ′′′ (ti, wi)]

+ h6

30240

[
f (5) (ti+1, wi+1) + f (5) (ti, wi)

]
− h8

1209600

[
f (7) (ti+1, wi+1)− f (7) (ti, wi)

]
,

(9)

for each i = 0, 1, 2, . . . , N − 1.

Proposition 1. The Euler-Maclaurin Method given in (9) is of
order 11.

Proof. Substituting the exact solution into the Taylor series
expansion and simplifying, we obtain

y (ti+1)− y (ti)− hf (ti, y (ti))
−h

2 [f (ti+1, y (ti+1))− f (ti, y (ti))]

+h2

12 [f ′ (ti+1, y (ti+1))− f ′ (ti, y (ti))]

− h4

720 [f
′′′ (ti+1, y (ti+1))− f ′′′ (ti, y (ti))]

+ h6

30240

[
f (5) (ti+1, y (ti+1))− f (5) (ti, y (ti))

]
− h8

1209600

[
f (7) (ti+1, y (ti+1))− f (7) (ti, y (ti))

]
= O

(
h11

)
.

Thus, the local truncation error is O(h11), confirming that (9)
is of order 11.

Remark 1. In general, by employing mathematical induction,
one can observe that the Euler-Maclaurin method achieves an
order of accuracy O

(
h2n+1

)
.

III. CONVERGENCE AND STABILITY OF THE GENERAL
EULER-MACLAURIN METHOD

To establish the convergence and derive the error bound for
the general Euler-Maclaurin method (8), we first introduce the
following key lemma from [42].

Lemma 1. Let s and t be positive real numbers, and let {ai}ki=1

be a sequence satisfying a0 ≥ −t/s and

ai+1 ≤ exp ((1 + i) s)

(
a0 +

t

s

)
− t

s
.

The following result establishes the convergence of the Euler-
Maclaurin method of order 2n and provides a corresponding
error bound.

Theorem 1. Suppose that the derivatives f (k) for 0 ≤ k ≤
2n− 1 are continuous and satisfy the Lipschitz condition with
constant Lk on the domain

D := {(t, y) | a ≤ t ≤ b,−∞ < y < ∞} .
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Additionally, assume that there exists a constant M such that

∣∣∣f (2n) (t, y(t))
∣∣∣ ≤ M, for all t ∈ [a, b] ,

where y(t) is the unique solution to the initial-value problem

y′ = f (t, y) , a ≤ t ≤ b, y (a) = α.

Let w0, w1, . . . , wN be the approximations generated by the
Euler-Maclaurin method (8) for some positive integer N . Then,
the general Euler-Maclaurin method described in (8) is conver-
gent.

Proof. For i = 0, the assertion holds trivially since y(t0) =
w0 = α. For i ≥ 1, using the Euler-Maclaurin expansion from
(6), we obtain

y (ti+1) = y (ti)
+hf (ti, y (ti)) +

h
2 [f (ti+1, y (ti+1))− f (ti, y (ti))]

−
n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

×
[
f (2m−1) (ti+1, y (ti+1))− f (2m−1) (ti, y (ti))

]
+h2n+1

(2n)!

∫ 1

0
B2n (s) f

(2n) (ti + s (ti+1 − ti)) ds,

for i = 0, 1, . . . , N − 1.
Similarly, from (8), the numerical approximation satisfies

wi+1 = wi + hf (ti, wi) +
h
2 [f (ti+1, wi+1)− f (ti, wi)]

+−
n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

×
[
f (2m−1) (ti+1, wi+1)− f (2m−1) (ti, wi)

]
,

for each i = 0, 1, 2, . . . , N − 1. Utilizing the notations
yi = y(ti) and yi+1 = y(ti+1), we obtain the following by
subtracting the numerical scheme from the exact solution:

yi+1 − wi+1 = yi − wi + h [f (ti, yi)− f (ti, wi)]
+h

2 [f (ti+1, yi+1)− f (ti+1, wi+1)]
−h

2 [f (ti, yi)− f (ti, wi)]

−
n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

×
[
f (2m−1) (ti+1, yi+1)− f (2m−1) (ti+1, wi+1)

]
−

n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

×
[
f (2m−1) (ti, yi)− f (2m−1) (ti, wi)

]
+h2n+1

(2n)!

∫ 1

0
B2n (s) f

(2n) (ti + s (ti+1 − ti)) ds.

Employing the triangle inequality, we obtain

|yi+1 − wi+1| ≤ |yi − wi|+ h |f (ti, yi)− f (ti, wi)|
+h

2 |f (ti+1, yi+1)− f (ti+1, wi+1)|
+h

2 |f (ti, yi)− f (ti, wi)|

+
n−1∑
m=1

B2mh2m

(2m)!

×
∣∣f (2m−1) (ti+1, yi+1)− f (2m−1) (ti+1, wi+1)

∣∣
+

n−1∑
m=1

B2mh2m

(2m)!

×
∣∣f (2m−1) (ti, yi)− f (2m−1) (ti, wi)

∣∣
+ h2n

(2n)!

∣∣f (2n) (µi, y (µi))
∣∣ ∫ 1

0
|B2n (s)| ds.

Now, the function f (m−1) (m = 1, 2, . . . , 2n − 1) satisfies
the Lipschitz condition in the second variable with a constant
denoted as

L := max
1≤m≤2n−1

{Lk} ,

and it holds that
∣∣f (2n+1) (t, y (t))

∣∣ ≤ M . Thus, we obtain

|yi+1 − wi+1| ≤ |yi − wi|+ hL |yi − wi|
+h

2L |yi+1 − wi+1|+ h
2L |yi − wi|

+L
n−1∑
m=1

|B2m|h2m

(2m)! |yi+1 − wi+1|

+L
n−1∑
m=1

|B2m|h2m

(2m)! |yi − wi|

+ h2n

(2n)!M
∫ 1

0
|B2n (s)| ds.

Combining the terms, we obtain

|yi+1 − wi+1| ≤
(

1
2hL+ L

n−1∑
m=1

|B2m|h2m

(2m)!

)
× |yi+1 − wi+1|+

(
1 + 3

2hL+ L
n−1∑
m=1

|B2m|h2m

(2m)!

)
× |yi − wi|+ h2n

(2n)!M |B2n|.

where we used the fact that |B2n (s)| < |B2n|, see [43].
For simplicity, we define

Sn (L, h) :=

(
1 + 3

2hL+ L
n−1∑
m=1

|B2m|h2m

(2m)!

)
,

Cn (L, h) :=

(
1− 1

2hL− L
n−1∑
m=1

|B2m|h2m

(2m)!

)
,

and

En (h) := 2

n−1∑
m=1

|B2m|h2m−1

(2m)!
.

Before proceeding further, we note that

1
2LhEn (h) = L

n−1∑
m=1

|B2m|h2m

(2m)!

≤ L · max
1≤m≤n−1

{
h2m

}
·
n−1∑
m=1

|B2m|
(2m)!

≈ L · max
1≤m≤n−1

{
h2m

}
·
n−1∑
m=1

2(2m)!

(2π)2m
· 1
(2m)!

= K ·
[

2
4π2−1 + 8π2

1−4π2 ·
(

1
4π2

)n]
,
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where the last summation was evaluated using Maple Software.
Before this, we utilized the asymptotic approximation of even

Bernoulli numbers [43], given by

(−1)
m+1

B2m ≈ 2 (2m)!

(2π)
2m , for every positive integer m.

Moreover, as n → ∞, we obtain
1

2
LhEn (h) ≤ K · 2

4π2 − 1
.

Considering our ultimate interest in allowing h → 0+, it is
reasonable to assume that

1

2
LhEn (h) < K · 2

4π2 − 1
,

where K is some fixed nonzero positive real number, without
any adverse consequences. Consequently, we can infer that

|yi+1 − wi+1| ≤ Sn(L,h)
Cn(L,h) · |yi − wi|+ h2nM |B2n|

(2n)!Cn(L,h)

=
(
1 + Sn(L,h)−Cn(L,h)

Cn(L,h)

)
· |yi − wi|

+ h2n

(2n)!Cn(L,h)M |B2n|
=

(
1 + L·h·En(h)

Cn(L,h)

)
· |yi − wi|

+ h2n

(2n)!Cn(L,h)M |B2n| .

Employing Lemma 1, with

s(h) = L·h·En(h)
Cn(L,h) , t(h) = h2n

(2n)!Cn(L,h)M |B2n| ,

and defining aj = |yj − wj | for each j = 0, 1, 2, . . . , N , we
observe that

|yi+1 − wi+1| ≤ exp
(
(i+ 1) · L·h·En(h)

Cn(L,h)

)
×
(
|y0 − w0|+ t(h)

s(h)

)
− t(h)

s(h) .

Since |y0 − w0| = 0, it follows that

lim
h→0+

L · h · En(h)

Cn(L, h)
= 0, and lim

h→0+

t(h)

s(h)
= 0.

Thus, we conclude that

lim
h→0+

max
1≤i≤N

|yi+1 − wi+1| = 0,

Which implies that wi+1 converges to yi+1. Consequently,
the Euler-Maclaurin Method of Order 2n is convergent as
required.

Theorem 2. Under the assumptions of Theorem 1, the error
bound for the Euler-Maclaurin method is given by

|yi+1 − wi+1| ≤
t (h)

s (h)

(
exp

(
(ti+1 − a)

LhEn (h)

Cn (L, h)

)
− 1

)
,

(10)

for all i = 0, 1, 2, . . . , N − 1.

Proof. This bound follows directly from the final inequality in
the proof of Theorem 1. Given that (i+ 1)h = ti+1 − t0 =

ti+1−a, substituting this into the derived expression yields the
result in (10), completing the proof.

Remark 2. Based on the fundamental theorem of stability for
well-posed initial value problems (I.V.P.), Theorem (1) estab-
lishes that the general Euler-Maclaurin method, as formulated
in (9), is both stable and consistent.

A key takeaway from the error bound derived in Theorem 1
is its direct dependence on the step size, h. Consequently, de-
creasing h leads to a proportional improvement in the accuracy
of the computed approximations.

IV. PERTURBATIONS IN THE GENERAL EULER-MACLAURIN
METHOD

Theorems 1 and 2 establish the convergence and error bound
of the Euler-Maclaurin method; however, they do not account
for the influence of round-off errors when selecting the step
size. As h decreases, the number of required computations
increases, which in turn amplifies the accumulation of round-off
errors. In practical implementations, the recurrence relation in
(8) is not directly used to compute the numerical approximation
of the solution yi at the mesh points ti. Instead, the following
perturbed equation is employed:

v0 = α+ δ0,

vi+1 = vi + hB̃(n) (ti, vi) + δi+1, (11)

for each i = 0, 1, 2, . . . , N − 1, where

B̃(n) (ti, vi) := f (ti, vi) +
1
2 [f (ti+1, vi+1)− f (ti, vi)]

−
n−1∑
m=1

B2mh2m−1

(2m)!

[
f (2m−1) (ti+1, vi+1)− f (2m−1) (ti, vi)

]
.

Here, δi represents the round-off error associated with the
computed value vi. By employing techniques similar to those
used in the proof of Theorem 1, we can establish an upper
bound on the numerical error introduced by finite-precision
computations in the Euler-Maclaurin method. Consequently, it
is possible to derive an analogous result to the one presented
in the following theorem.

Theorem 3. Let y(t) be the unique solution to the initial-value
problem

y′ = f (t, y) , a ≤ t ≤ b, y (a) = α. (12)

Let {vi}Ni=0 be the numerical approximations obtained using
the Euler-Maclaurin method (8) for a given positive integer N .
Suppose the round-off errors satisfy |δi| < δ for each i =
0, 1, . . . , N , and the assumptions of Theorem 1 hold for (12).
Then, the error bound for the approximations is given by

|yi − vi| ≤
(

t(h)
s(h) +

δC(n,h)
LhEn(h)

)(
e((ti−a)

LhEn(h)
Cn(L,h) ) − 1

)
+|δ0|e((ti−a)

LhEn(h)
Cn(L,h) ),

(13)

Mohammad. W. Alomari, A Comparative Analysis of Numerical Techniques: Euler-Maclaurin vs. Runge-Kutta Methods



Journal of Robotics and Control (JRC) ISSN: 2715-5072 817

for all i = 0, 1, 2, . . . , N .

Proof. The proof follows a similar argument as in Theorem 1,
but applied to the difference equation (11).

It is important to observe that the error bound given in (13)
is no longer linear in h. In fact, we note that

lim
h→0+

(
t (h)

s (h)
+

δCn (L, h)

LhEn (h)

)
→ ∞.

As the step size h approaches increasingly small values, the
error is expected to grow. Furthermore, if h is reduced beyond
a certain critical threshold, the total error in the numerical ap-
proximation may increase. However, it is essential to recognize
that in most practical scenarios, the round-off error δ remains
sufficiently small. As a result, this theoretical lower bound on h
does not significantly hinder the computational effectiveness or
accuracy of the Euler-Maclaurin method. Despite the theoretical
implications regarding error accumulation for extremely small
values of h, the method remains computationally stable and
reliable within a practical range of step sizes.

V. NUMERICAL EXPERIMENTS

In this section, we apply the Euler-Maclaurin method of order
11 to various initial-value problems (I.V.P.s) using different step
sizes.

Example 1. To illustrate the performance of the Euler-
Maclaurin method of order 11 (9), we approximate the solution
of the initial-value problem

y′ (t) = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5. (14)

For this experiment, we set the parameters as follows: N = 10,
step size h = 0.2, discrete points ti = 0.2i, and initial condition
w0 = 0.5 shown in Table I. The computed approximation is
then compared against the exact solution given by

y (t) = (t+ 1)2 − 0.5et.

TABLE I. ABSOLUTE ERROR COMPARISON BETWEEN THE RUNGE-
KUTTA (RK) METHOD OF ORDER 6 AND THE EULER-MACLAURIN (EM)

METHOD OF ORDER 11 FOR EXAMPLE 1 WITH STEP SIZE h = 0.2

ti RK Error ×10−6 EM Error ×10−13

0.0 0.00000000 0.00000000
0.2 0.06348402 0.00222045
0.4 0.13430131 0.00444089
0.6 0.21258715 0.01554312
0.8 0.29817725 0.02220446
1.0 0.39046848 0.02664535
1.2 0.48823256 0.04884981
1.4 0.58936888 0.05329071
1.6 0.69057836 0.08881784
1.8 0.78693577 0.09769963
2.0 0.87133141 0.15099033

As observed, the Euler-Maclaurin Method (9) provides sig-
nificantly more accurate approximations compared to the well-
established Runge-Kutta method of order 6 shown in Table I.

Fig. 1 and Fig. 2 illustrate a comparative analysis of the
approximate solutions obtained by these methods, along with
their respective absolute errors. To further validate the effec-
tiveness of our approach, we extend our study to two additional
examples.
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Fig. 1. Comparison of the exact solution with the Runge-Kutta (RK) method of order 6
and the Euler-Maclaurin (EM) method of order 11 for Example 1, using a step size of
h = 0.2.
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10-7 Absolute error of y(t)

The proposed method solution

Runge-Kutta solution of order 6

Fig. 2. Absolute errors of the Runge-Kutta (RK) method of order 6 and the Euler-
Maclaurin (EM) method of order 11 for Example 1, using a step size of h = 0.2.

Example 2. The Euler-Maclaurin–Euler method (9) is applied
to approximate the solution of the following initial-value prob-
lem:

y′ (t) = exp (t− y) , 0 ≤ t ≤ 1, y (0) = 1. (15)

The computations are performed using N = 10 subintervals,
with a step size of h = 0.1, mesh points defined as ti = 0.1i,
and an initial value of w0 = 1 shown in Table II. The obtained
numerical solution is then compared against the exact solution
given by

y (t) = ln (exp(t) + exp(1)− 1) .

As observed, the Euler-Maclaurin method (9) provides sig-
nificantly more accurate approximations compared to the well-
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known Runge-Kutta method of order 6. Fig. 3 and Fig. 4
illustrate the comparative performance of these methods, show-
casing their respective absolute errors. To further refine our
analysis and enhance the accuracy of the Euler-Maclaurin
method (9), we now present the following example.

TABLE II. ABSOLUTE ERRORS IN THE RUNGE-KUTTA (RK)
METHOD OF ORDER 6 AND EULER-MACLAURIN (EM) METHOD

OF ORDER 11 FOR EXAMPLE 1 WITH STEP SIZE h = 0.1

ti RK Error ×10−9 EM Error ×10−15

0.0 0.00000000 0.00000000
0.1 0.01797051 0.22204460
0.2 0.03922263 0.22204460
0.3 0.06406808 0.22204460
0.4 0.09274892 0.44408921
0.5 0.12541213 0.44408921
0.6 0.16208479 0.44408921
0.7 0.20265589 0.22204460
0.8 0.24686364 0.44408921
0.9 0.29429104 0.22204460
1.0 0.34437453 0.22204460

0 0.2 0.4 0.6 0.8 1

t

1

1.1

1.2

1.3

1.4

1.5

y
(t

)

Exact vs. Numerical Solutions

The proposed method solution

Runge-Kutta solution of order 6

Exact solution

Fig. 3. Example 2: Comparison of the exact solution with the Euler-Maclaurin method
(order 11) and the Runge-Kutta method (order 6), using step size h = 0.1
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Fig. 4. Example 2: Absolute errors of the Euler-Maclaurin (order 11) and Runge-Kutta
(order 6) methods, using step size h = 0.1

Example 3. The Euler-Maclaurin method (9) is applied to
approximate the solution of the following system of linear
initial-value problems: z′1 (s) = z2, z1 (0) = 1,

z′2 (s) = −z1 − 2es + 1, z2 (0) = 0,
z′3 (s) = −z1 − es + 1, z3 (0) = 1.

for 0 ≤ s ≤ 2, with specific parameters set to N = 10, h = 0.2,
and ti = 0.2i. The computed approximation is then compared
with the exact solution z1 (s) = cos (s) + sin (s)− es + 1,

z2 (s) = − sin (s) + cos (s)− es,
z3 (s) = − sin (s) + cos (s) .

Furthermore, a comparative analysis is performed between
the classical Runge-Kutta (RK) method and the proposed Euler-
Maclaurin method. Specifically, Fig. 5, Fig. 7, and Fig. 9 illus-
trate the exact solution alongside the numerical approximations
obtained using both the Euler-Maclaurin and RK methods with
a step size of h = 0.2. Additionally, Fig. 6, Fig. 8, and Fig. 10,
along with Tables III, IV, and V, present the absolute errors
for both methods. The results indicate that the Euler-Maclaurin
method consistently delivers highly accurate approximations,
significantly outperforming the RK method.

TABLE III. ABSOLUTE ERRORS IN THE RUNGE-KUTTA (RK)
METHOD OF ORDER 6 AND EULER-MACLAURIN (EM) METHOD OF

ORDER 11 APPLIED IN EXAMPLE 1 WITH STEP SIZE h = 0.2

ti RK Error EM Error ×10−15

0.0 0.00000000 0.00000000
0.2 0.11102230 0.01033334
0.4 0.22204460 0.02163267
0.6 0.11102230 0.03368738
0.8 0.11102230 0.04626921
1.0 0.00000000 0.05913556
1.2 0.22204460 0.07203310
1.4 0.11102230 0.08470149
1.6 0.19428903 0.09687735
1.8 0.24286129 0.10829828
2.0 0.11102230 0.11870699

TABLE IV. COMPARISON OF ABSOLUTE ERRORS BETWEEN THE RUNGE-KUTTA
(RK) METHOD OF ORDER 6 AND THE EULER-MACLAURIN (EM) METHOD

OF ORDER 11 APPLIED IN EXAMPLE 3 WITH STEP SIZE h = 0.2 FOR z2(s)

ti RK Error EM Error ×10−15

0.0 0.00000000 0.00000000
0.2 0.11102230 0.01033334
0.4 0.22204460 0.02163267
0.6 0.11102230 0.03368738
0.8 0.11102230 0.04626921
1.0 0.00000000 0.05913556
1.2 0.22204460 0.07203310
1.4 0.11102230 0.08470149
1.6 0.19428903 0.09687735
1.8 0.24286129 0.10829828
2.0 0.11102230 0.11870699
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TABLE V. COMPARISON OF ABSOLUTE ERRORS BETWEEN THE RUNGE-KUTTA
(RK) METHOD OF ORDER 6 AND THE EULER-MACLAURIN (EM) METHOD

OF ORDER 11 APPLIED IN EXAMPLE 3 WITH STEP SIZE h = 0.2 FOR z3(s)

ti RK Error EM Error ×10−15

0.0 0.0000000 0.0000000
0.2 0.0027999 0.1110223
0.4 0.0234673 0.1110223
0.6 0.0650996 0.0000000
0.8 0.1301210 0.0000000
1.0 0.2202234 0.0555111
1.2 0.3363742 0.0555111
1.4 0.4788973 0.1526556
1.6 0.6476337 0.0173472
1.8 0.8421834 0.0277555
2.0 1.0622312 0.16653345
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Fig. 5. Example 3: The exact solution of z1(s) compared with the Euler-Maclaurin
(EM) and Runge-Kutta (RK) methods of order 11 and 6, respectively, using step size
h = 0.2.
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Fig. 6. Example 3: Absolute errors in z1(s) using the Euler-Maclaurin (EM) and
Runge-Kutta (RK) methods of order 11 and 6, respectively, with step size h = 0.2.

VI. RECOMMENDATION

In this study, we have introduced a novel approach for
approximating initial value problems (I.V.P.). Through a com-
prehensive analysis of method (8) and various numerical ex-
periments, we have demonstrated that the Euler-Maclaurin
method significantly outperforms well-established techniques,
particularly the widely used Runge-Kutta method.
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Fig. 7. Example 3: The exact solution of z2(s) compared with the Euler-Maclaurin
(EM) and Runge-Kutta (RK) methods of order 11 and 6, respectively, with step size
h = 0.2.
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Fig. 8. Example 3: Absolute errors in z2(s) using the Euler-Maclaurin (EM) and
Runge-Kutta (RK) methods of order 11 and 6, respectively, with step size h = 0.2.
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Fig. 9. Example 3: The exact solution of z3(s) compared with the Euler-Maclaurin
(EM) and Runge-Kutta (RK) methods of order 11 and 6, respectively, with step size
h = 0.2.

Our findings indicate that the Euler-Maclaurin method of
order 11 exhibits superior accuracy compared to the Runge-
Kutta method of order 6, especially in scenarios requiring
precise analytic solutions. This advantage is evident in its ability
to produce highly accurate approximations while maintaining a
reduced absolute error.
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Fig. 10. Example 3: Absolute errors in z3(s) using the Euler-Maclaurin (EM) and
Runge-Kutta (RK) methods of order 11 and 6, respectively, with step size h = 0.2.

Beyond its numerical superiority, the Euler-Maclaurin
method showcases enhanced stability and faster convergence
rates. The empirical results presented validate the method’s
robustness and efficiency across a wide range of mathematical
modeling applications.

Furthermore, over extended computations, the Euler-
Maclaurin method (8) of order 2n+1 consistently demonstrates
superior performance over the Runge-Kutta method, particu-
larly when high-precision analytic solutions are needed. Addi-
tionally, its competitiveness across various scientific domains
is reinforced by Example 3, where it effectively approximates
a system of linear I.V.P., confirming its potential as a strong
alternative to existing numerical methods.

VII. CONCLUSION AND FUTURE WORKS

In this study, we introduced an enhanced numerical method
based on the Euler-Maclaurin formula for solving initial-value
problems (I.V.P.), demonstrating its superior accuracy, stability,
and convergence compared to the well-known Runge-Kutta
methods. Numerical experiments confirmed its effectiveness,
particularly for higher-order implementations. Future research
could explore adaptive step-size techniques, applications to
fractional and stochastic differential equations, and parallel
computing implementations to further optimize performance
and extend its applicability to real-world scientific and engi-
neering problems.
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