
Journal of Robotics and Control (JRC) 

Volume 6, Issue 2, 2025 

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i2.25572 715 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

Improved Path Planning for Multi-Robot Systems 

Using a Hybrid Probabilistic Roadmap and Genetic 

Algorithm Approach 

Thanushika Jathunga 1*, Samantha Rajapaksha 2 
1 Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka  
2 Faculty of Computing, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka  

Email: 1 thanushika.j@sliit.lk, 2 samantha.r@sliit.lk 

*Corresponding Author 

 
Abstract—This study focuses on the development and 

application of an improved Probabilistic Roadmap (PRM) 

algorithm enhanced with Genetic Algorithms (GA) for multi-

robot path planning in dynamic environments. Traditional 

PRM-based methods often struggle with optimizing path length 

and minimizing turns, particularly in complex, multi-agent 

scenarios. To address these limitations, we propose a hybrid 

PRM-GA approach that incorporates genetic operators to 

evolve optimal paths for multiple robots in real-time.The 

research contribution is an enhanced PRM-GA framework that 

improves efficiency in multi-robot navigation by integrating 

evolutionary techniques for dynamic obstacle handling and 

optimized path generation.The research methodology involves 

testing the algorithm in various environments, including 

varying robot numbers and environmental complexities, to 

evaluate its scalability and effectiveness. Our results 

demonstrate that the PRM-GA algorithm successfully reduces 

both path lengths and turn counts compared to standard PRM-

based methods, ensuring collision-free and smooth paths. The 

algorithm showed robust performance across different 

scenarios, effectively handling dynamic obstacles and multi-

agent coordination. However, in highly dynamic environments 

with rapidly changing obstacles and constraints, the algorithm 

may occasionally produce paths with turn counts and distances 

similar to or slightly higher than those of simpler approaches 

due to the need for frequent re-optimization. Future research 

can explore incorporating additional factors such as energy 

consumption and time optimization, alongside distance and 

turns, to further enhance the algorithm's efficiency in real-

world applications. Overall, the PRM-GA approach advances 

the state of the art by offering a more adaptable and scalable 

solution for multi-robot path planning, with applications in 

logistics, industrial automation, and autonomous robotics.  

Keywords—Probabilistic Roadmap (PRM); Genetic 

Algorithms (GA); PRM-GA Hybrid Method; Multi-Robot Path 

Planning. 

I. INTRODUCTION  

Efficient path planning is a fundamental problem in 

robotics, particularly in environments with multiple robots 

operating simultaneously. Multi-robot systems are 

increasingly being used in applications such as automated 

warehouses, search-and-rescue operations, and autonomous 

vehicle coordination. In such scenarios, generating optimal 

paths for robots to navigate from start to goal positions 

without collisions while minimizing travel cost and 

complexity is critical [1]. 

Traditional methods for robot path planning, such as 

Dijkstra’s and A* algorithms, often struggle with scalability 

and computational overhead in multi-robot environments. 

Probabilistic Roadmap (PRM) is a widely used sampling-

based approach for motion planning due to its ability to 

efficiently handle high-dimensional spaces [2][3]. However, 

PRM-generated paths may not always be optimal, especially 

in terms of path smoothness and minimal distance. Moreover, 

PRM does not inherently address multi-robot coordination, 

making collision avoidance challenging in dynamic 

environments. 

On the other hand, Genetic Algorithms (GAs) are 

powerful optimization tools inspired by natural selection and 

genetic evolution [4]. GA excels in refining solutions by 

iteratively improving a population of candidate paths using 

genetic operations such as selection, crossover, and mutation. 

Despite the optimization capabilities, GA is computationally 

intensive and requires effective initialization to avoid 

convergence to suboptimal solutions. Furthermore, GAs 

alone do not explicitly incorporate real-time adaptability, 

which is crucial for multi-robot coordination in dynamic 

environments. 

To address these challenges, this paper proposes a hybrid 

approach that leverages the strengths of both PRM and GA 

while mitigating their limitations. The PRM is employed to 

generate feasible initial paths, which serve as the initial 

population for the GA. The GA then optimizes these paths by 

considering two critical fitness objectives: minimizing total 

path distance and reducing the number of sharp turns. By 

integrating PRM’s efficient path generation with GA’s 

optimization capability, this hybrid approach enhances both 

computational efficiency and path quality. More importantly, 

it provides an adaptive framework suitable for real-time 

multi-robot coordination, reducing potential collisions and 

improving navigation in complex environments. 

The proposed approach is particularly relevant in real-

world applications such as autonomous warehouse logistics, 

where multiple robots must navigate efficiently in confined 

spaces, or in search-and-rescue missions where robots need 

to coordinate movement in uncertain terrain. By ensuring 

smooth and computationally feasible path planning, the 

hybrid PRM-GA method enhances practical deployment in 

such scenarios. 
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The key research contributions of this study are as 

follows. This paper presents a novel hybrid PRM-GA 

approach that optimizes path planning for multi-robot 

systems by leveraging PRM’s efficiency in path generation 

and GA’s adaptability in path optimization. The study 

develops a framework that enhances real-time adaptability 

and collision avoidance in dynamic multi-robot 

environments. Furthermore, experimental validation is 

conducted to demonstrate the computational benefits and 

effectiveness of the hybrid approach in reducing travel cost 

and improving path smoothness. 

The rest of this paper is organized as follows. Section II 

presents a comprehensive overview of background research. 

Section III details the proposed methodology, including the 

implementation of PRM and GA and how they are adapted 

for multi-robot systems. Section IV presents experimental 

results and analysis, highlighting the advantages of the 

proposed method. Finally, Section V concludes with a 

discussion of findings and potential future work. 

II. BACKGROUND RESEARCH 

Path planning is essential for autonomous mobile robots 

to efficiently navigate in various environments such as 

industrial, agricultural, healthcare, and service sectors. The 

goal is to find an optimal or near-optimal path from a start 

point to a target point, avoiding obstacles, minimizing travel 

distance, energy consumption, and ensuring real-time 

feasibility. Literature discusses a range of path planning 

techniques developed in recent years, including Genetic 

Algorithms (GA), Probabilistic Roadmaps (PRM), Particle 

Swarm Optimization (PSO), and hybrid approaches.  

Several recent review papers provide an overview of 

existing path planning techniques, highlighting emerging 

trends. These reviews also discuss key performance metrics 

such as path smoothness, real-time applicability, and energy 

efficiency. Liu et al. [5] classify path planning approaches 

into global and local methods based on environmental 

knowledge. Their review categorizes algorithms into 

classical, bionic, and artificial intelligence-based techniques, 

offering a comprehensive overview of path evaluation 

strategies and emerging trends. Similarly, another study [6] 

emphasizes learning-based approaches for robotic 

manipulators, highlighting the adaptability of reinforcement 

learning and deep learning methods in complex, high-

dimensional spaces. The challenges of path planning in 

dynamic and multi-objective scenarios are discussed in [7] 

emphasizing the need for robust autonomous navigation 

strategies. In [8], authors discuss obstacle avoidance 

algorithms, demonstrating the potential of hybrid meta 

heuristic approaches like PSO-GA and fuzzy-neural models 

in overcoming limitations of classical techniques. A 

comparative analysis of classical and heuristic algorithms are 

presented in [9] focusing on dynamic clutter navigation and 

moving target tracking. Another study [10] addresses 

Coverage Path Planning (CPP) issues, emphasizing the 

importance of minimizing travel time, energy consumption, 

and overlapping. The integration of optimization algorithms 

with classical methods is proposed as a solution to the 

challenges posed by limited battery capacities and low 

planning efficiency. Further, in [11] authors examine the 

evolution of path planning algorithms, discussing the 

potential of cloud computing technologies to enhance 

algorithm deployment and scalability. A performance 

analysis of various path planning algorithms are presented in 

[12] with simulation results indicating the superiority of the 

Rapidly Exploring Random Tree (RRT) algorithm in 

deterministic environments. Mustafa et. al [13] review 

optimization methods used in path planning, offering a 

concise overview of recent advancements. In [14], the study 

provides insights into motion planning algorithms, with an 

emphasis on machine learning and reinforcement learning 

methods, which show promise for improving convergence 

speed and stability.  

Particle Swarm Optimization (PSO) is a population-based 

optimization algorithm that is often combined with other 

methods to improve real-time adaptation in dynamic 

environments. PSO has been shown to perform well in both 

static and dynamic scenarios. In the literature, researchers 

have introduced a hybrid Particle Swarm Optimization (PSO) 

and Simulated Annealing (SA) algorithm for Autonomous 

Guided Vehicle (AGV) path planning. This algorithm aims to 

enhance scalability and performance by minimizing local 

optima and reducing computation time. The hybrid PSO-SA 

algorithm outperforms other heuristic algorithms, showing 

faster convergence and significantly better performance in 

path length minimization and smoothness. Experimental 

results demonstrate its effectiveness in optimizing AGV path 

planning tasks [15]. A hybrid approach combining Improved 

Particle Swarm Optimization (IPSO) and the Improved 

Dynamic Window Approach (IDWA) is proposed in [16] for 

mobile robot path planning in dynamic environments. IPSO 

enhances search accuracy and exploration capabilities, while 

IDWA improves dynamic obstacle avoidance by integrating 

the velocity obstacle (VO) concept. The combination of these 

methods helps the robot effectively navigate through 

dynamic obstacles while maintaining path smoothness and 

safety. The APSO (A* and PSO) hybrid algorithm, which 

integrates A* for initial path planning and PSO for 

optimization, enhances search ability and reduces runtime by 

employing redundant point removal and stochastic inertia 

weight adjustments. The proposed method improves path 

efficiency, with simulation results showing a reduction of up 

to 18.97 percent in running time compared to traditional A* 

algorithms [17]. Faiza et al. present a multi-objective path 

planning algorithm using a hybrid Grey Wolf Optimization 

(GWO) and PSO approach. The algorithm addresses the NP 

hard nature of path planning by optimizing path distance, 

smoothness, and collision avoidance in three distinct steps. 

The approach incorporates evolutionary mutation operators 

to further improve path safety and reduce path length.    

Simulations demonstrate that this method outperforms 

conventional techniques, providing feasible, collision-free 

paths [18]. In another study, authors explore a bio-inspired 

hybrid algorithm that combines GWO and PSO with a 

mutation operator for multi-constraint path planning and 

collision avoidance. This algorithm accelerates convergence 

through frequency-based modifications and integrates a more 

efficient collision avoidance strategy, transforming non-

feasible points into optimal solutions. The method shows 

superior performance in path smoothness and safety across 

various simulation environments [19]. A hybrid FA and 
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Modified Chaotic PSO (MCPSO) algorithm, called 

HFAMCPSO is proposes in [20]. This hybrid algorithm 

significantly outperforms others like Radial Cell De 

composition (RCD) and A* in terms of path length, reducing 

path length by 43.3 percent and 25.5 percent, respectively. 

The hybrid approach also improves efficiency and path 

smoothness, demonstrating its superiority in navigating static 

obstacles. Another study addresses global path planning 

under kinematic constraints using a modified PSO (MPSO) 

algorithm combined with η3-splines for path smoothing. The 

MPSO algorithm incorporates adaptive random fluctuations 

to overcome local convergence issues and improve 

optimization. The integration of η3-splines ensures smoother 

trajectories while respecting kinematic limitations. 

Simulation results show that this method outperforms other 

PSO-based algorithms in path quality and smoothness [21]. 

With the integration of subsystems such as motion planning, 

localization, and map generation, this study offers a PSO-

based autonomous robot navigation system for unknown 

environments that guarantees effective path-following and 

collision avoidance. The PSO algorithm minimizes the travel 

distance between several waypoints to improve the robot’s 

route. Through successful testing with the Gazebo simulator 

in a variety of dynamic situations, the system showed strong 

navigation and obstacle avoidance capabilities [22]. Another 

study introduces the Bi-Population Particle Swarm 

Optimization with a Random Perturbation Strategy (BPPSO) 

for mobile robot path planning. BPPSO divides particles into 

two subpopulations to enhance global and local search 

capabilities. The random perturbation strategy boosts 

diversity, preventing premature convergence and improving 

search quality. Experimental results show that BPPSO 

outperforms conventional PSO algorithms in terms of path 

quality and runtime efficiency [23].  

The A* algorithm is another foundational path-planning 

method that employs a heuristic-based approach to find the 

shortest path between two points. While simple and efficient, 

its high memory consumption limits its scalability. To 

address this, one of the studies have proposed an improved 

A* algorithm, introducing bidirectional search, a guideline 

for path optimization, and a key point list to reduce memory 

usage. MATLAB simulations demonstrated a 60 percent 

reduction in memory footprint, highlighting the algorithm’s 

practicality in constrained environments [24]. Building on 

A*, [25] introduced the Adaptive Bidirectional A* (ABA*) 

algorithm for aerial robot path planning in 3D environments. 

By integrating adaptive techniques for 3D variables and 

employing bidirectional search, ABA* achieved a 91.2 

percent reduction in planning time compared to traditional 

A*, showcasing its potential for computationally limited 3D 

applications. Similarly, another study has presented a hybrid 

RRT-A*-BT approach that combines Rapidly Exploring 

Random Trees (RRT) with A* and Back-Tracking (BT). This 

method, supported by vision-based environment modeling, 

demonstrated superior performance in cluttered indoor 

settings, outperforming Genetic Algorithms and standard 

RRT in path length and computational efficiency [26]. To 

address the challenges of dynamic obstacles and real time 

planning, [27] proposed a fusion algorithm combining an 

improved A* for global planning and the Dynamic Window 

Approach (DWA) for local planning. Enhancements to A* 

included sub-node selection and path smoothness, while 

fuzzy control was integrated into DWA. Experiments using a 

TurtleBot3 robot showed a 9.6 percent reduction in path 

length and a 29 percent reduction in planning time, 

emphasizing the algorithm’s adaptability and efficiency in 

dynamic environments. Focusing on two-wheel mobile 

robots, another study has integrated RRT, BiRRT, and HA* 

for path planning and trajectory tracking. The study used a 

kinematic Differential Drive Mobile Robot (DDMR) model 

with a PID controller to minimize tracking deviations. 

Optimization techniques such as Particle Swarm 

Optimization (PSO) and Hybrid Butterfly Particle 

Optimization (HBPO) were applied to fine-tune PID 

parameters. Simulation results showed that HA* generated 

smoother and shorter paths compared to RRT and BiRRT, 

while HBPO outperformed other methods by achieving faster 

convergence [28].  

Ant Colony Optimization (ACO) has emerged as a 

powerful algorithm for solving path-planning problems, 

inspired by the natural behavior of ants in finding the shortest 

paths to food. ACO-based techniques are particularly 

effective in complex environments due to their ability to 

balance exploration and exploitation. However, traditional 

ACO faces challenges such as slow convergence, redundant 

paths, and inefficiency in high-dimensional spaces. To 

address these limitations, researchers have proposed several 

enhancements and hybrid approaches. Basic ACO often 

struggles with inefficiency, particularly during early 

iterations, where ants explore redundant or suboptimal paths. 

Wang et al. proposed a Monte Carlo based Improved ACO 

(MC-IACO) for the path planning of welding robots. By 

integrating Monte Carlo sampling, this method evaluates path 

quality during each iteration using a sigmoid-based Monte 

Carlo factor, enabling ants to prioritize nodes likely to form 

optimal paths. A feedback adjustment factor further enhances 

decision-making by considering the impact of subsequent 

nodes. Simulations demonstrated that MC-IACO 

significantly outperforms basic ACO in terms of pathfinding 

efficiency, making it suitable for applications like welding 

robot path planning [29]. In [30], authors have proposed an 

improved ACO algorithm for intelligent warehouse robot 

path planning, modeling storage shelves with Poisson 

Distribution for unknown factors and using a three-color 

raster map. An optimized pheromone mechanism evaluates 

paths based on safety, length, and turns. Simulations showed 

the algorithm required fewer iterations, turns, and runtime, 

effectively addressing blind search and deadlock issues, high 

lighting its efficiency for warehouse logistics. To overcome 

the limitations of ACO and enhance its convergence speed 

and solution quality, hybrid approaches combining ACO with 

Genetic Algorithms (GA) have been explored. Kangkang Ma 

et al. introduced a fusion algorithm that integrates ACO and 

GA through two key strategies: the Optimal Strategy, which 

selects high-quality parent paths using a roulette mechanism, 

and the Genetic Region Strategy, which restricts offspring 

ants to search within defined regions. This method reduces 

the search area, accelerates convergence, and stabilizes         

performance. Simulation results showed that the fusion 

algorithm achieves faster and more reliable convergence than 

standalone ACO or other variations [31]. Tsagaris and 

Mansour have further extended the application of ACO-GA 
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hybrids for mechatronic systems, such as robotic arms and 

CNC machines, requiring optimization of large point sets. 

The hybrid approach resulted in up to a 40 percent reduction 

in trajectory length and a 20 percent decrease in path planning 

time, significantly outperforming traditional GA methods. 

Although real-world applications slightly reduced these 

improvements, the method demonstrated its efficacy for 

high-dimensional path planning tasks [32].  

Genetic Algorithms (GAs) are one of the most popular 

optimization methods used in the domain of path planning 

due to their ability to handle complex, multidimensional 

solution spaces. They evolve a population of candidate 

solutions iteratively to find the optimal or near-optimal path, 

often balancing efficiency with the ability to navigate through 

environments with numerous obstacles. Multiple studies have 

contributed enhancements to traditional GAs, incorporating 

problem-specific knowledge and introducing new hybrid 

methods. In [33], authors have proposed a hybrid Genetic 

Algorithm-Bezier Curve (GA-BZ) method for mobile robot 

path planning, optimizing performance in environments with 

varying obstacle densities. Simulation results highlighted the 

superior efficiency of GA-BZ compared to other algorithms 

like A-Star and Dijkstra’s. Similarly, Mohanraj et al. [34] 

developed a hybrid algorithm to balance global path planning 

and real-time navigation, reducing computation time and 

enhancing path cost efficiency, particularly for larger grids. 

Multi-objective optimization methods have also been 

explored. A Multi Objective Genetic Algorithm (MRPS-

MOGA) that prioritizes safety, smoothness, and trip duration 

is introduced in [35]. The algorithm outperformed 

conventional methods in both time complexity and path 

efficiency. In a similar way, another study has addressed the 

limitations of the Firefly Algorithm by hybridizing it with 

Genetic Algorithm operations, mitigating the issue of local 

optima and improving global path planning accuracy [36]. 

Fang and Liang have presented an intelligent obstacle 

avoidance system combining a potential field method with 

Genetic Algorithm and Reinforcement Learning to improve 

manipulator efficiency. This system significantly reduced 

path length, nodes, and working time in simulation tests [37]. 

A simulated annealing-based genetic algorithm for 

evacuation route planning is proposed in [38]. The study 

proved effective in avoiding local optima while maintaining 

population diversity through adaptive genetic operators. In 

[39], authors have proposed a modified Genetic Algorithm 

designed for industrial robots to address path planning in 

confined workspaces. The system successfully handled arc 

welding-specific technology limitations and collision 

avoidance. Similar to this, Sarkar et al. [40] have improved 

the performance of traditional genetic algorithms by lowering 

path complexity with the introduction of domain knowledge-

based operators for single and multi-target path design. 

Hybrid fuzzy-logic-based GA approaches have also 

demonstrated well performance in selecting collision free 

paths. In [41] authors have used a combined fuzzy computing 

with a genetic algorithm to evaluate and select collision-free 

paths, relying on fuzzy logic when paths were blocked. Rath 

et al. [42] extended this by integrating Genetic Algorithms 

with Neural Networks for humanoid robots, achieving 

minimal navigation errors in cluttered environments. In 

another study, Rath et al. [43] proposed a hybrid fuzzy-

genetic algorithm for path planning, combining fuzzy logic 

for initial calculations and GA for optimization. In the realm 

of three-dimensional path planning, one of the studies [44] 

proposed a Hybrid Genetic Cuckoo Search Algorithm, which 

combined the global search capability of GA with the 

adaptive local search ability of Cuckoo Search. This approach 

effectively handled multi constrained environments and 

improved efficiency. Similarly, Sriniketh et al. [45] proposed 

a Genetic Algorithm (GA) based approach to optimize 

evacuation routes during fire drills, significantly reducing 

path distances compared to conventional algorithms.  

Probabilistic Road Maps (PRMs) are another commonly 

used global path planning method, particularly in             

environments with many obstacles. PRM constructs a graph 

of randomly sampled points, connecting them using simple 

local planners to form a roadmap that the robot can follow. 

Often combined with other optimization techniques like GAs 

or PSO, PRMs provide a powerful tool for handling complex 

and high-dimensional environments. Pohan and Utama               

introduced Smart-PRM, a fast and asymptotically optimal 

path planning algorithm, to overcome the limitations of 

traditional PRM. Smart-PRM incorporates five smart 

sampling   strategies, including informed search, incremental 

dense sampling, and sampling near obstacles, to enhance 

efficiency and path quality. Comparative studies with PRM 

and other advanced algorithms like Informed RRT*-connect 

highlighted Smart PRM’s superior speed and accuracy. Its 

ability to consistently generate optimal paths quickly makes 

it suitable for real-world applications requiring high 

computational performance [46]. Similarly, another study has 

proposed a hybrid method that enhances population 

initialization and reduces infeasible paths by incorporating 

fitness-based initialization techniques. This method also 

introduces a combination of genetic operators to optimize 

path quality. Experimental results demonstrated the 

effectiveness of the CBPRM-GA approach in reducing 

computational time and improving path feasibility and        

quality, showcasing its potential for solving the MRGPP   

problem [47]. Another promising method integrates 

Probabilistic Roadmaps (PRM) with Modified Ant Colony 

Optimization (ACO) for path planning in complex 

environments. Raheem proposed a three-stage framework 

that first generates a random roadmap using PRM, followed 

by path optimization using modified ACO, and concludes 

with path smoothing using third-order B-spline curves. This 

approach addresses the need for smooth, continuous, and 

efficient paths, ensuring feasibility and safety in dynamic 

settings. The method demonstrated significant improvements 

in path quality and smoothness compared to traditional 

techniques [48].  

Over the years, numerous other methods and algorithms 

have also been developed to address challenges such as 

obstacle avoidance, efficiency, and adaptability to complex 

scenarios. These include classical algorithms, optimization 

techniques, hybrid methods, and AI-driven approaches. Li et 

al. [49] leveraged Deep Reinforcement Learning (DRL) with 

reflective reward design to enhance multi-agent and multi-

task learning, enabling higher success rates in dynamic 

environments. Building on the limitations of traditional     

methods, another study has combined the Whale 
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Optimization Algorithm (WOA) and Adaptive Genetic 

Algorithm (AGA) into the WOA-AGA model, achieving 

improved efficiency and shorter paths in complex scenarios 

[50]. Addressing dynamic environments, researchers have 

enhanced the Simulated Annealing (SA) algorithm with 

improved path selection and deletion operations, 

demonstrating superior adaptability [51]. Meanwhile, another 

research has introduced the Pelican Optimization Algorithm 

(POA) and compared it to Particle Swarm Optimization 

(PSO), achieving lower trajectory errors for obstacle 

avoidance [52]. To further refine navigation strategies, 

another study has utilized the Gray Wolf Optimizer (GWO), 

which outperformed PSO, ABC, and other heuristic methods 

by maintaining an effective balance between exploration and 

exploitation [53]. In another hybrid approach, Awei et al. [54] 

combined the Mayfly Optimization Algorithm with the 

Dynamic Window Approach, enhancing real-time obstacle 

avoidance and reducing path lengths. The Quantum-inspired 

Evolutionary Algorithm (QEA) proposed by Gao et al. [55] 

significantly improves runtime efficiency and accuracy in 

large-scale optimization problems. On the other hand, Elmi 

and Efe [56] developed a sensory-driven grasshopper 

algorithm for crowded and dynamic environments, ensuring 

collision-free paths with superior stability. Another study 

[57] introduced the Adaptive Parallel Arithmetic 

Optimization Algorithm (APAOA), incorporating novel 

parallel communication strategies to prevent local optima and 

enhance convergence. Meanwhile, Kumar and Sikander [58] 

improved the Artificial Bee Colony Algorithm by integrating 

B. Units Evolutionary Programming, achieving notable 

reductions in path length and search costs. In the realm of 

hybrid optimization, Zang has combined WOA with 

computer perception techniques, enabling robots to perceive 

and optimize paths in complex environments effectively [59]. 

Further exploration of swarm intelligence was undertaken by 

Seyedadhi and Chitra [60], who applied the Cuckoo 

Optimization Algorithm for dynamic obstacle navigation, 

ensuring smooth and collision free paths. Hybridization was 

also explored in [61], where the authors have merged the 

Cuckoo Search and Bat Algorithm (BA), demonstrating 

robust performance in unknown environments. In [62], Deep 

learning approaches were integrated and researchers have 

employed a GRU-RNN model with modified ant colony 

optimization techniques to enhance collision avoidance in 

dynamic scenarios. Another study [63] developed hybrid 

swarm intelligence algorithms combining Cuckoo Search 

with Bat Algorithm and Firefly Algorithm, achieving 

superior efficiency and success rates compared to standalone 

methods.  

Some research works were related to robot path planning 

using machine learning algorithms. Many research works 

used supervised, unsupervised, and reinforcement learning. 

However, most of the implementations and evaluations were 

at the theoretical level instead of real-world applications [64]. 

Neural network and reinforcement learning are the main 

techniques used in machine learning for local path planning 

[65]. Deep reinforcement learning was used on path planning 

for dynamic environments with transfer learning [66][79]. 

There were enhanced reinforcement learning algorithms for 

autonomous path planning with fewer steps [67][68]. End-to-

end and Imitation Learning were used to get more optimal 

performance in autonomous driving [69]. Machine learning 

and deep learning were used in Multi-Robot Path Planning to 

get the best solutions [70][71][72]. The path planning can be 

improved using a hybrid approach where two or more 

methods can be merged to get optimal results [73][74]. There 

were studies on web-based robot path planning with user 

commands [75][76][77]. Some research was done on 

computer vision and image processing to navigate robots 

[78]. Many research works used heuristics and metaheuristics 

to find optimal paths in unknown areas [80][81]. Artificial 

potential field and reinforcement learning were used in robot 

pathfinding with optimum results [82][83][86]. Static and 

dynamic rewarding techniques were used to find the optimal 

path in an unknown environment [84][85]. Posture rewarding 

and sparse rewarding techniques were used with 

reinforcement learning to find the best path in an unknown 

area for robots [86][87]. Energy efficient path planning was 

developed using deep meta learning algorithms to get the 

optimal results [88]. Potential fields with population-based 

meta-heuristics is a technique used in real time path planning 

for robots [89]. 

 Together, these studies highlight the diverse and 

innovative solutions developed for addressing the challenges 

of robot path planning, ensuring safer, more efficient, and 

adaptive navigation in complex environments. Based on the 

reviewed literature, the choice of combining the Probabilistic 

Roadmap (PRM) with Genetic Algorithm (GA) for multi-

robot path planning is well-supported by several key factors. 

PRM efficiently handles high-dimensional environments by 

generating collision-free paths, while GA optimizes these 

paths for criteria such as energy efficiency, smoothness, and 

collision avoidance. Literature shows that PRM alone can 

create feasible paths, but struggles with optimizing them for 

multiple objectives, especially in dynamic environments. GA 

addresses this by refining initial PRM generated paths, 

ensuring optimal routes for multiple robots in complex, real-

time scenarios. The research gap lies in the limited 

exploration of hybrid methods like PRM-GA specifically for 

multi-robot systems. While both techniques are well-studied 

individually, their combined potential to enhance path 

planning in dynamic, real-world settings require further 

investigation. Thus, selecting PRM-GA fills this gap by    

offering a scalable and adaptable solution for efficient, 

coordinated robot navigation. 

III. METHODLOGY 

The methodology behind the Genetic Algorithm (GA) 

used in this multi-robot path finding approach follows a 

structured, phase-based approach aimed at achieving efficient 

and collision-free navigation in a grid environment with fixed 

obstacles. Fig. 1 illustrates the process of the proposed path 

planning algorithm. 

The process begins with environmental modeling, where 

the grid and obstacles are mapped, laying the foundation for 

planning. Following this, the initial population of potential 

paths for each robot is generated using the Probabilistic 

Roadmap (PRM) method, which samples 1,000 random 

points within the workspace and connects them based on 

predefined distance criteria. This generates a diverse set of 

paths, representing various possible routes from each robot's 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 720 

 

Thanushika Jathunga, Improved Path Planning for Multi-Robot Systems Using a Hybrid Probabilistic Roadmap and Genetic 

Algorithm Approach 

starting point to its target destination. Next, in the genetic 

operations phase, each path is evaluated using a fitness 

function. This function is designed to minimize the path 

length and the number of turns. The selection process ensures 

that the best-performing paths (individuals) are given higher 

chances to reproduce and pass on their traits to the next 

generation. Elitist selection is used, where the top-performing 

paths are directly carried over to the next generation to 

maintain solution quality. Crossover operation combines 

sections from two well-performing paths to create new 

offspring paths, increasing diversity in the population and 

enhancing overall fitness. After crossover, mutation 

introduces minor changes, such as slight deviations in cell 

selection, helping the algorithm avoid local optima and 

improving path exploration. The mutation process accounts 

for collision avoidance by ensuring minimum separation 

between robots. GA iterates through these genetic operations 

until it either converges on an optimal solution or reaches a 

predefined stopping criterion, such as a maximum number of 

iterations or a minimum error threshold. This iterative 

process refines the paths, balancing efficiency and safety. By 

the end of the process, the GA produces an optimized set of 

collision-free paths, enabling effective multi-robot 

navigation within the fixed-obstacle environment. 

A. Environmental Modelling 

The environmental model for this simulation utilized a 

binary occupancy grid with a 10x10 unit grid structure, 

representing the operational area for the robots. In this setup, 

each cell represents a specific spatial location within the grid, 

allowing for a straightforward distinction between navigable 

and obstructed spaces. Obstacles were strategically 

positioned at pre-determined coordinates within the grid, and 

these locations were marked with a binary value of 1 to 

indicate non-traversable areas. The rest of the cells were 

assigned a value of 0, representing open and accessible paths 

for the robots. 

 

Fig. 1. Process of the proposed PRM-GA algorithm
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To effectively assign these obstacle locations within the 

grid, their coordinates were transformed into linear indices, 

accurately marking the designated cells as occupied. This 

conversion allowed for efficient mapping of each obstacle 

within the structured environment, enhancing the simulation's 

spatial awareness by clearly defining boundaries and barriers. 

This modeling approach emphasized both the spatial 

distribution and density of obstacles, providing the robots 

with a detailed, realistic environment for pathfinding and 

collision avoidance, and forming a foundation for optimizing 

their movements within the structured grid. Fig. 2 illustrates 

the simulation environment, highlighting the static obstacles 

within the workspace. 

 
Fig. 2. Simulation environment 

B. Probabilistic Road Map Initialization 

The initial path generation employed the Probabilistic 

Roadmap (PRM) method. A total of 1,000 random points 

were sampled within the workspace, and connections were 

established between points that fell within a predefined 

connection distance of 1 unit. Each connection was validated 

to ensure it did not intersect with obstacles, thereby 

guaranteeing collision-free paths. Once the roadmap was 

constructed, each robot was assigned start and goal positions, 

and the PRM computed an initial feasible path. Although 

these paths avoided obstacles, they did not always optimize 

path length or minimize the number of turns. 

C. Fitness Function 

In the genetic algorithm's selection phase, each candidate 

path is evaluated using a fitness function designed to 

minimize energy expenditure, which is influenced by two key 

factors: path length and the number of turns. Longer paths 

require more energy for traversal, making them less efficient, 

while sharp or frequent turns increase energy consumption 

due to changes in momentum and direction. The Fitness 

Score (FS) used in this implementation is given by: 

𝐹𝑆 =
1

(𝑃𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑢𝑟𝑛𝑠 )2 
    (1) 

The path length (L) is computed by summing the 

Euclidean distances between consecutive waypoints. 

𝐿 =  ∑ √ (𝑥i+1 − 𝑥i)
2 +  (𝑦i+1 − 𝑦1)2𝑛−1

𝑖=1     (2) 

 Here, n is the total number of waypoints in the path, and 

the sum represents the total distance covered by the path. 

The angle θ between two consecutive segments of a path 

is the angle formed between two vectors that represent the 

direction of travel along each segment. For three consecutive 

points, 𝑃(𝑖−2), 𝑃(𝑖−1),𝑃𝑖, the angle θ is formed by the 

segments, 𝑃(𝑖−2) ⇾  𝑃(𝑖−1), and 𝑃(𝑖−1) ⇾ 𝑃𝑖. 

𝜃 = 𝐶𝑜𝑠−1 (
(𝑥𝑖−1 − 𝑥𝑖−2)(𝑥𝑖 − 𝑥𝑖−1) + (𝑦𝑖−1 − 𝑦𝑖−2)(𝑦𝑖 − 𝑦𝑖−1) 

√(𝑥𝑖−1 − 𝑥𝑖−2)2 + (𝑦𝑖−1 − 𝑦𝑖−2)2. √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2
   (3) 

D. Selection 

The selection process ensures that the best-performing 

paths (individuals) are given higher chances to reproduce and 

pass on their traits to the next generation. After evaluating the 

fitness scores of all paths in the population, the paths are 

ranked in descending order of their fitness. The selection 

method used here is elitist selection, where the top paths with 

the highest fitness scores are selected for reproduction. These 

"elite" paths represent the most efficient routes based on their 

distance and number of turns. By focusing on these top paths, 

the algorithm ensures that the next generation is more likely 

to inherit favorable traits that result in better performance. 

E. Crossover 

The crossover phase then combines sections from two 

well-performing paths to create new offspring paths. This 

phase increases diversity in the population, potentially 

producing paths that inherit advantageous traits from each 

parent, thereby improving the overall fitness of the 

population. A crossover point is randomly chosen, and 

segments from two parent paths are swapped to generate new 

solutions. 

F. Mutation 

After crossover, mutation introduces minor changes to 

some paths, including slight deviations in cell selection. This 

helps the algorithm avoid local optima, exploring new routes 

that could yield more efficient paths. Mutation involves 

slightly perturbing waypoint coordinates and adding or 

removing intermediate waypoints. The mutation process 

accounts for collision avoidance by ensuring minimum 

separation between robots. 

G. New Population 

After the crossover and mutation steps, a new population 

is created, consisting of the offspring generated from the 

previous population. This new generation replaces the old 

one, and the process repeats. The genetic algorithm continues 

to iterate for a predefined number of generations (in this case, 

2000), gradually improving the quality of the population with 

each cycle. 

H. Parameter Tuning 

The GA parameters, including population size, mutation 

rate, and crossover rate, were tuned using a grid search 

method combined with cross-validation. Different parameter 

combinations were tested, and the best set was selected based 

on path length and computational efficiency. This ensures an 

optimal balance between exploration and exploitation, 
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allowing the algorithm to find efficient paths without 

excessive computational costs. 

To fine-tune the GA parameters, the population size was 

set to 250, the mutation rate to 0.01, and the crossover rate to 

1.0. These values were selected based on preliminary 

experiments that balanced convergence speed with solution 

quality. 

I. Performance Evaluation  

The performance of the hybrid approach is evaluated in 

comparison to standalone PRM using two key metrics: total 

path distance and turn count. Total path distance is calculated 

as the sum of all waypoint-to-waypoint distances along the 

path, representing the overall length of the journey. Turn 

count measures the total number of angular deviations in the 

path, indicating the complexity and smoothness of 

navigation. The results demonstrate the effectiveness of the 

genetic algorithm (GA) in enhancing path quality by 

optimizing both distance and turn count, leading to more 

efficient and energy-saving paths. 

Additionally, the number of robots in the hybrid approach 

was varied from 2 to 8 to analyze the scalability and 

effectiveness of the system under different levels of 

complexity. By increasing the number of robots, the approach 

was tested for its ability to handle multiple simultaneous path 

optimizations while maintaining efficient navigation. This 

variation allowed for a comprehensive evaluation of the 

algorithm's performance in scenarios with varying 

coordination demands, further demonstrating its robustness 

and adaptability. 

The proposed hybrid PRM-GA approach offers several 

key advantages in multi-robot path planning. PRM efficiently 

generates diverse initial paths, while GA refines them to 

minimize path length and reduce unnecessary turns, leading 

to optimized and efficient navigation. By leveraging PRM for 

initialization and GA for optimization, the method balances 

solution quality and computational efficiency, ensuring 

feasibility for real-time applications. Furthermore, the hybrid 

approach is robust in structured and semi-structured 

environments, effectively navigating static obstacle 

configurations while dynamically optimizing paths. This 

combination of advantages makes the PRM-GA hybrid 

approach a promising solution for multi-robot path planning 

in complex environments. 

IV. RESULTS AND DISCUSSION 

 The results of the study provide a comprehensive analysis 

of the hybrid approach's performance in multi-robot path 

planning. Key findings include the significant improvements 

achieved in total path distance and turn count when compared 

to standalone PRM. The hybrid approach demonstrated its 

effectiveness in optimizing paths for multiple robots, 

showcasing enhanced efficiency and smoother navigation. 

Additionally, the scalability of the system was validated by 

varying the number of robots from 2 to 8, revealing consistent 

performance across different levels of complexity. These 

outcomes highlight the robustness of the hybrid method and 

its potential for real-world applications in dynamic and multi-

agent environments. 

A. Path Planning for Two Robots 

The improved PRM-GA algorithm was initially applied 

to two robots, each given a distinct color to simplify visual 

tracking. Robot 1, which started at position (9, 1) and aimed 

for a goal at (1, 9), was colored red, while Robot 2, starting 

at (1, 7) with a goal at (7, 1), was colored blue. Fig. 3 displays 

the paths generated for each robot using both the PRM 

method (represented by dotted lines) and the optimized PRM-

GA method (represented by solid lines), allowing for clear 

comparison between initial and refined paths.  

Table I outlines the positions of each robot at every time 

step, providing a clear record of their movements. By 

monitoring the trajectories of Robot 1 and Robot 2 over time, 

it becomes evident that their paths avoid obstacles and do not 

overlap, ensuring safe and well-coordinated navigation 

across the grid.  

 
Fig. 3. Path comparison of PRM-GA and Standalone PRM method for two 

robots path planning 

TABLE I. TIMELY POSITIONS OF TWO ROBOTS AFTER APPLYING PRM-GA 

ALGORITHM 

Time Frame 
Robot 1 Robot 2 

x y x y 

1 9.0 1.0 1.0 7.0 

2 8.7 1.2 1.1 7.0 

3 8.3 1.6 1.4 6.7 

4 7.6 1.9 2.6 5.7 

5 7.2 2.1 2.9 5.4 

6 6.6 2.5 3.5 4.7 

7 5.8 2.9 3.8 4.4 

8 5.7 3.1 4.4 3.7 

9 4.9 3.7 5.2 3.0 

10 4.4 4.3 5.4 3.0 

11 3.7 4.8 6.5 1.8 

12 3.6 4.8 6.6 1.6 

13 2.6 6.1 7.0 1.3 

14 2.3 6.6 7.0 1.0 

15 2.0 7.0 7.0 1.0 

16 1.4 7.8 7.0 1.0 

17 1.3 8.2 7.0 1.0 

18 1.1 9.0 7.0 1.0 

19 1.0 9.0 7.0 1.0 

 

The bar charts shown in Fig. 4 present a comparison of 

the total distance and number of turns for the PRM-GA and 

PRM paths of Robot 1 and Robot 2. For Robot 1, the PRM-

GA path has a total distance of 11.7946 units and 11 turns, 
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while the PRM path covers 11.8176 units and involves 14 

turns. For Robot 2, the PRM-GA path has a total distance of 

8.6621 units with 9 turns, while the PRM path covers 8.9185 

units and requires 11 turns. This chart clearly highlights the 

differences in path length and turns between the two 

algorithms for each robot, showcasing the efficiency of the 

PRM-GA paths in terms of both distance and number of 

turns. 

 
Fig. 4. Performance Comparison of PRM-GA and Standalone PRM method 

for two robots path planning 

B. Path Planning for Three Robots 

The enhanced PRM-GA algorithm was applied to three 

robots. Robot 1, starting at position (9, 1) and aiming for a 

goal at (1, 9), was colored red. Robot 2, starting at (1, 9) with 

a goal at (9, 1), was colored blue. Robot 3, beginning at (1, 7) 

and targeting a goal at (7, 1), was colored magenta. Fig. 5 

illustrates the paths generated for each robot using both the 

PRM method (shown by dotted lines) and the optimized 

PRM-GA method (represented by solid lines). This allows for 

a clear comparison between the initial and refined paths for 

all three robots. 

 
Fig. 5. Path comparison of PRM-GA and Standalone PRM method for three 

robots path planning 

 Table II details the positions of each robot at every time 

step, offering a comprehensive record of their movements. By 

observing the trajectories of Robot 1, Robot 2, and Robot 3 

over time, their paths successfully avoid obstacles and remain 

non-overlapping, ensuring safe and coordinated navigation 

across the grid 

TABLE II. TIMELY POSITIONS OF THREE ROBOTS AFTER APPLYING PRM-

GA ALGORITHM 

Time Frame 
Robot 1 Robot 2 Robot 3 

x y x y x y 

1 9.0 1.0 1.0 9.0 1.0 7.0 

2 8.8 1.1 1.1 9.0 0.8 6.8 

3 8.0 1.5 1.3 8.4 1.2 6.4 

4 7.6 1.8 1.6 8.1 1.8 6.2 

5 7.0 2.1 2.0 7.5 2.2 5.8 

6 6.4 2.7 2.5 6.8 2.7 5.3 

7 6.2 2.9 2.8 6.2 3.2 4.8 

8 5.6 3.5 3.5 5.4 4.0 4.0 

9 4.9 4.1 4.2 4.7 4.4 3.8 

10 4.4 4.4 4.7 4.2 5.1 3.1 

11 3.8 5.1 5.6 3.8 5.7 2.4 

12 3.0 5.7 6.4 3.1 6.2 1.8 

13 2.7 6.6 6.9 2.8 6.7 1.2 

14 2.4 7.1 7.3 2.5 7.0 1.0 

15 1.9 7.8 7.7 2.1 7.0 1.0 

16 1.5 8.5 8.2 1.8 7.0 1.0 

17 1.0 9.1 8.9 1.2 7.0 1.0 

18 1.0 9.0 8.9 1.0 7.0 1.0 

19 1.0 9.0 9.0 1.0 7.0 1.0 

 

Fig. 6 compares the total distance and number of turns for 

the PRM-GA and PRM paths for three robots. Robot 1's 

PRM-GA path has 11.6754 units with 10 turns, while the 

PRM path covers 11.7095 units with 12 turns. Robot 2's 

PRM-GA path achieves a distance of 11.6172 units with 12 

turns, slightly better than the PRM path's 11.6178 units and 

13 turns. Robot 3's PRM-GA path is the most efficient, with 

a distance of 8.7805 units and 8 turns, compared to the PRM 

path's 8.7869 units and 9 turns. The chart highlights the PRM-

GA's overall advantage in optimizing paths. 

 
Fig. 6. Performance Comparison of PRM-GA and Standalone PRM method 

for three robots path planning 

C. Path Planning for Four Robots 

The improved PRM-GA algorithm was implemented for 

four robots, each with distinct start and goal positions. Robot 

1, starting at (9, 1) and moving toward (1, 9), was represented 

in red. Robot 2, with a start position of (1, 9) and a goal at (9, 

1), was depicted in blue. Robot 3 began at (1, 7) and aimed 

for (7, 1), shown in green. Finally, Robot 4, starting at (9, 9) 

and targeting (1, 1), was illustrated in magenta. Fig. 7 

showcases the paths generated for each robot using the PRM 

method (indicated by dotted lines) alongside the optimized 

PRM-GA paths (shown as solid lines), effectively 

highlighting the differences between the initial and enhanced 

paths for all four robots. 
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Fig. 7. Path comparison of PRM-GA and Standalone PRM method for four 

robots path planning 

Table III presents the positions of each robot at every time 

step, offering a detailed record of their movements. By 

tracking the trajectories of Robots 1, 2, 3, and 4 over time, it 

is clear that their paths successfully avoid obstacles and 

remain non-overlapping, ensuring safe and well-coordinated 

navigation across the grid for all four robots. 

TABLE III. TIMELY POSITIONS OF FOUR ROBOTS AFTER APPLYING PRM-

GA ALGORITHM 

Time Frame 
Robot 1 Robot 2 Robot 3 Robot 4 

x y x y x y x y 

1 9.0 1.0 1.0 9.0 1.0 7.0 9.0 9.0 

2 8.9 1.1 1.0 9.1 1.1 6.9 8.9 9.0 

3 8.7 1.3 1.3 8.6 1.9 6.5 7.9 8.7 

4 8.2 2.0 1.6 8.2 2.3 5.9 7.4 8.3 

5 7.8 2.5 1.9 7.7 2.7 5.6 7.0 8.1 

6 7.4 2.7 2.7 6.7 3.3 5.2 6.4 7.7 

7 6.7 3.3 2.6 6.4 3.9 4.5 5.4 7.0 

8 6.2 3.8 3.3 5.6 4.1 4.2 5.5 6.6 

9 5.7 4.1 4.1 5.1 4.7 3.6 4.8 6.0 

10 5.2 4.4 4.8 4.6 5.4 2.9 4.4 5.5 

11 4.8 4.7 4.9 4.5 6.0 2.3 3.9 4.7 

12 4.1 5.2 5.5 3.9 6.1 2.2 3.4 3.9 

13 3.4 5.3 6.1 3.4 6.8 1.5 3.0 3.0 

14 3.1 5.8 6.8 2.9 7.0 1.1 2.5 2.5 

15 2.8 6.4 7.0 2.8 7.0 1.0 1.7 1.8 

16 2.4 7.0 7.8 2.2 7.0 1.0 1.1 1.3 

17 1.8 7.7 8.0 1.9 7.0 1.0 0.9 1.1 

18 1.8 8.2 8.7 1.4 7.0 1.0 1.0 1.0 

19 1.2 8.8 9.1 1.1 7.0 1.0 1.0 1.0 

20 1 9 9 1 7.0 1.0 1.0 1.0 

 

The performance comparison between the PRM and 

PRM-GA algorithms for Robots 1, 2, 3, and 4 is shown in 

Fig. 8 highlighting total path distances and the number of 

turns. For Robot 1, the PRM-GA path covers a distance of 

11.8345 units with 11 turns, while the PRM path is slightly 

shorter at 11.5426 units but involves 14 turns. Similarly, 

Robot 2's PRM-GA path spans 11.8193 units with 10 turns, 

compared to the PRM path's 11.7188 units and 13 turns. 

Robot 3's PRM-GA path covers 8.6697 units with 9 turns, 

while the PRM path measures 8.6193 units with 11 turns. 

Lastly, Robot 4 achieves a PRM-GA path of 11.9474 units 

with 12 turns, compared to the PRM path's 11.9413 units and 

15 turns. 

 
Fig. 8. Performance Comparison of PRM-GA and Standalone PRM method 

for four robots path planning 

D. Path Planning for Five Robots 

The enhanced PRM-GA algorithm was implemented for 

five robots, each with distinct starting positions, goals, and 

assigned colors. Robot 1, starting at (9, 1) and heading to (1, 

9), was assigned red, while Robot 2 began at (1, 9) with a 

target of (9, 1) and was colored blue. Robot 3 started at (1, 7) 

and aimed for (7, 1), represented in green. Robot 4 began at 

(9, 9) and moved towards (1, 1), marked in magenta. Lastly, 

Robot 5, starting at (7, 2) with a goal at (1, 4), was depicted 

in cyan. Fig. 9 illustrates the paths generated by both the PRM 

method (dotted lines) and the optimized PRM-GA method 

(solid lines), showcasing a clear comparison of the original 

and improved paths for all five robots. 

 
Fig. 9. Path comparison of PRM-GA and Standalone PRM method for five 

robots path planning 

Table IV provides a comprehensive record of the 

positions of all five robots at each time step, detailing their 

movements throughout the grid. By analyzing the trajectories 

of Robots 1, 2, 3, 4, and 5 over time, it is evident that their 

paths effectively avoid obstacles and remain distinct, 

ensuring collision-free and well-coordinated navigation for 

all robots. 

The bar charts given in Fig. 10 provide a comparative 

analysis of the total distances and the number of turns for five 

robots using the PRM and PRM-GA algorithms. For Robot 

1, the PRM-GA method achieved a total distance of 11.5543 

with 11 turns, compared to the PRM method with a slightly 
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higher distance of 11.7826 and 16 turns. Similarly, Robot 2 

traveled 11.8111 with 11 turns under PRM-GA, whereas 

PRM recorded 11.8337 with 15 turns. Robot 3 showed 

notable observations with PRM-GA, completing the path in 

9.2706 with 8 turns, while PRM required 8.9328 and 10 turns. 

Robot 4 experienced a trade-off where PRM-GA covered 

12.0445 with 13 turns, and PRM completed the path in 

11.8208 but with 15 turns. Finally, Robot 5 demonstrated 

minimal differences, achieving a distance of 7.3231 with 6 

turns under PRM-GA and 7.3309 with 9 turns using PRM.  

TABLE IV. TIMELY POSITIONS OF FIVE ROBOTS AFTER APPLYING PRM-

GA ALGORITHM 

Time 

Frame 

Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 

x y x y x y x y x y 

1 9.0 1.0 1.0 9.0 1.0 7.0 9.0 9.0 7.0 2.0 

2 8.7 1.2 1.0 9.0 1.0 6.8 8.9 9.1 6.9 2.0 

3 8.6 1.3 1.2 8.6 1.4 6.5 8.5 8.9 6.1 2.3 

4 8.1 1.7 1.4 8.2 1.7 6.2 7.7 8.5 5.7 2.3 

5 7.7 2.0 2.1 7.6 2.5 5.6 7.2 8.2 4.5 2.4 

6 7.1 2.3 2.5 7.1 2.8 5.4 6.5 7.6 3.8 2.5 

7 6.8 2.7 2.9 6.2 3.3 5.0 5.9 7.0 3.3 2.5 

8 6.3 3.1 3.2 5.6 3.7 4.5 5.4 6.3 2.2 2.5 

9 5.6 3.8 3.6 5.0 4.3 4.0 5.0 6.0 1.3 2.5 

10 4.9 4.4 4.2 4.6 4.7 3.7 4.3 5.5 1.2 3.1 

11 4.7 4.5 4.8 3.9 5.3 3.2 4.0 5.2 1.1 4.0 

12 4.0 5.1 5.5 3.5 6.2 2.5 3.7 4.4 1.0 4.0 

13 3.4 5.7 6.3 3.0 6.2 2.3 3.5 4.0 1.0 4.0 

14 2.6 6.2 7.1 2.5 6.3 2.1 3.2 3.1 1.0 4.0 

15 2.2 6.7 7.2 2.5 6.9 1.4 2.8 2.7 1.0 4.0 

16 1.5 8.0 7.3 2.4 7.3 0.9 2.5 2.3 1.0 4.0 

17 1.3 8.3 8.8 1.3 7.0 1.0 2.0 1.7 1.0 4.0 

18 1.0 9.0 9.1 1.0 7.0 1.0 1.5 1.2 1.0 4.0 

19 1.0 9.0 9.0 1.0 7.0 1.0 1.0 0.8 1.0 4.0 

 

 
Fig. 10. Performance Comparison of PRM-GA and Standalone PRM method 

for five robots path planning 

E. Path Planning for Six Robots 

The enhanced PRM-GA algorithm was applied to six 

robots. Robot 1, starting at position (9, 1) with a target at (1, 

9), is represented in red. Robot 2, beginning at (1, 9) and 

moving toward (9, 1), is shown in blue. Robot 3, originating 

from (1, 7) and heading to (7, 1), is depicted in green. Robot 

4, starting at (9, 9) and aiming for (1, 1), is illustrated in 

magenta. Robot 5, starting from (7, 2) and targeting (1, 4), is 

displayed in cyan. Robot 6, starting at (7, 1) with a goal at 

(1,7), is highlighted in yellow. Fig. 11 presents the paths 

generated for all six robots, comparing the PRM method 

(dotted lines) with the optimized PRM-GA method (solid 

lines), enabling a clear comparison of the initial and refined 

paths. 

Table V outlines the positions of all six robots at each 

time step. The analysis of the trajectories for Robots 1, 2, 3, 

4, 5 and 6 demonstrates that their paths effectively avoid 

obstacles and remain distinct, ensuring collision paths. 

 
Fig. 11. Path comparison of PRM-GA and Standalone PRM method for six 

robots path planning 

 The comparison between the improved PRM-GA 

algorithm and the standalone PRM shown in Fig. 12 

highlights notable improvements in path smoothness and 

efficiency for multi-robot navigation. 

For Robot 1, PRM-GA reduced turns to 8 from 9, with 

distances remaining comparable (11.8682 vs. 11.588). Robot 

2 achieved 9 turns in PRM-GA compared to 10 in PRM, with 

similar distances (11.7555 vs. 11.7025). Robot 3 saw turns 

reduced to 8 from 9, with minimal distance change (9.1698 

vs. 9.1581). Robot 4 showed a significant reduction in turns 

(11 vs. 14) with nearly identical distances (11.8622 vs. 

11.8946). Robot 5 reduced turns to 7 from 8, with slightly 

higher distance (6.8447 vs. 6.7471). Robot 6 achieved fewer 

turns (9 vs. 10) with similar distances (9.1057 vs. 9.0179). 

These findings demonstrate the PRM-GA algorithm's ability 

to produce smoother paths with fewer turns while 

maintaining efficient path lengths, enhancing navigation and 

coordination in multi-robot systems. 

 
Fig. 12. Path comparison of PRM-GA and Standalone PRM method for six 

robots path planning 

F. Path Planning for Seven Robots 

The enhanced PRM-GA algorithm was tested on seven 

robots. Robot 1, starting at (9, 1) and targeting (1, 9), 
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wacolored red. Robot 2, starting at (1, 9) and aiming for (9, 

1), was colored blue. Robot 3, beginning at (1, 7) with a goal 

at (7, 1), was colored green. Robot 4, starting at (9, 9) and 

heading to (1, 1), was colored magenta. Robot 5, starting at 

(7, 2) and aiming for (1, 4), was colored cyan. Robot 6, 

starting at (7, 1) with a goal at (1, 7), was colored yellow. 

Lastly, Robot 7, beginning at (1, 4) with a goal at (7, 2), was 

colored black. Fig. 13 illustrates the paths generated by both 

the PRM method (dotted lines) and the optimized PRM-GA 

method (solid lines), providing a clear comparison of the 

initial and optimized paths for all seven robots. 

Table VI outlines the positions of all five robots at each 

time step, providing a clear view of their movements across 

the grid. The analysis of the trajectories for Robots 1, 2, 3, 4, 

5,6 and 7 demonstrates that their paths effectively avoid 

obstacles and remain distinct, ensuring safe, collision-free, 

and coordinated navigation for all robots. 
 

Fig. 13. Path comparison of PRM-GA and Standalone PRM method for 

seven robots path planning 

TABLE V. TIMELY POSITIONS OF SIX ROBOTS AFTER APPLYING PRM-GA 

Time Frame 
Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 

x y x y x y x y x y x y 
1 9.0 1.0 1.0 9.0 1.0 7.0 9.0 9.0 7.0 2.0 7.0 1.0 
2 9.1 1.1 1.1 8.8 1.0 7.1 8.9 9.1 7.2 2.0 6.9 1.0 
3 8.9 1.2 1.2 8.6 1.5 6.6 8.3 8.9 6.5 2.1 6.3 1.6 
4 8.2 1.7 1.7 7.9 2.1 6.1 7.4 8.5 6.0 2.3 6.1 1.9 
5 8.0 1.9 2.1 7.3 2.7 5.5 7.2 8.4 5.2 2.4 5.5 2.5 
6 7.2 2.5 2.5 6.6 3.3 4.9 6.6 8.0 4.4 2.6 5.0 3.1 
7 6.6 3.0 2.8 6.4 3.5 4.7 6.1 7.2 3.5 2.7 4.5 3.7 
8 5.9 3.6 3.2 5.7 4.2 4.1 5.4 6.5 2.5 2.9 4.0 4.2 
9 5.3 4.1 3.7 5.1 4.6 3.7 4.9 6.0 1.7 2.9 3.5 4.9 

10 4.8 4.5 4.4 4.5 5.2 2.8 4.5 5.3 1.5 3.5 3.2 5.2 
11 3.4 5.6 4.8 4.0 5.6 2.6 4.1 4.8 1.4 3.6 2.6 5.8 
12 3.3 5.6 5.1 3.7 5.9 2.2 3.7 4.2 1.0 4.0 2.5 5.9 
13 2.7 6.1 5.6 3.2 6.6 1.6 3.4 3.9 1.0 4.0 1.6 6.5 
14 2.4 6.4 5.9 2.9 7.0 1.0 3.1 3.2 1.0 4.0 1.1 6.9 
15 1.9 6.7 6.2 2.4 7.0 1.0 2.8 2.5 1.0 4.0 1.0 7.0 
16 1.6 7.1 7.0 1.8 7.0 1.0 1.8 1.5 1.0 4.0 1.0 7.0 
17 1.4 7.7 7.4 1.5 7.0 1.0 1.6 1.4 1.0 4.0 1.0 7.0 
18 1.2 8.2 8.0 1.0 7.0 1.0 0.8 1.0 1.0 4.0 1.0 7.0 
19 1.1 8.8 8.9 0.6 7.0 1.0 1.0 1.0 1.0 4.0 1.0 7.0 
20 1.0 9.0 9.0 1.0 7.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 

TABLE VI. TIMELY POSITIONS OF SEVEN ROBOTS AFTER APPLYING PRM-GA 

Time Frame 
Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 

x y x y x y x y x y x y x y 
1 9.0 1.0 1.0 9.0 1.0 7.0 9.0 9.0 7.0 2.0 7.0 1.0 1.0 4.0 
2 8.8 0.8 1.3 9.0 1.0 7.3 9.0 8.7 6.8 2.1 7.0 0.9 0.9 4.0 
3 8.3 1.5 2.1 8.5 1.6 6.5 8.7 8.9 5.4 2.5 6.4 1.3 1.2 3.6 
4 8.0 1.8 2.8 8.1 2.1 6.0 8.3 8.7 5.1 2.5 6.2 1.6 1.4 3.3 
5 7.6 2.3 3.4 7.6 2.4 5.7 7.8 8.5 4.2 2.7 5.5 2.2 2.5 2.8 
6 7.1 2.7 4.1 7.0 3.0 5.2 6.9 8.2 3.3 2.8 5.0 2.5 3.1 2.7 
7 6.4 3.3 4.3 6.6 3.3 4.8 6.4 7.5 2.4 2.8 4.2 3.6 4.6 2.5 
8 5.8 3.8 4.7 5.5 3.8 4.3 5.9 7.0 1.8 3.0 3.9 4.1 4.8 2.5 
9 5.3 4.3 4.9 4.9 4.2 3.9 5.4 6.5 1.4 3.9 3.4 4.9 5.5 2.2 

10 4.8 4.6 5.2 4.5 4.8 3.5 4.9 5.9 1.3 3.9 3.1 5.2 6.1 2.2 
11 4.4 4.8 5.7 4.1 5.4 2.9 4.7 5.4 1.0 4.0 2.6 5.6 6.6 2.1 
12 3.7 5.4 6.4 3.4 5.8 2.6 4.3 4.7 1.0 4.0 2.2 6.0 7.1 2.0 
13 2.9 6.0 6.7 3.1 6.5 1.7 4.1 4.2 1.0 4.0 1.5 6.7 7.0 2.0 
14 2.5 6.6 7.3 2.6 6.5 1.7 3.6 3.3 1.0 4.0 1.1 7.1 7.0 2.0 
15 2.0 7.2 7.8 2.1 7.0 1.1 2.9 2.7 1.0 4.0 1.0 7.0 7.0 2.0 
16 1.7 7.9 8.4 1.5 7.0 1.0 2.2 2.1 1.0 4.0 1.0 7.0 7.0 2.0 
17 1.6 8.2 8.9 1.0 7.0 1.0 1.5 1.5 1.0 4.0 1.0 7.0 7.0 2.0 
18 1.0 9.0 9.0 1.0 7.0 1.0 1.1 1.1 1.0 4.0 1.0 7.0 7.0 2.0 
19 1.0 9.0 9.0 1.0 7.0 1.0 1.0 1.0 1.0 4.0 1.0 7.0 7.0 2.0 
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The performance of the PRM-GA algorithm was 

compared to the standard PRM method for seven robots, 

highlighting improvements in path distance and the number 

of turns. The comparison between the improved PRM-GA 

algorithm and the standalone PRM shown in Fig. 14.  

Robot 1 achieved a distance of 11.8536 with 10 turns 

using PRM-GA, compared to 11.8587 with 12 turns for PRM.  

Robot 2 followed a path of 11.9419 with 8 turns using PRM 

GA, versus 11.8221 with 10 turns for PRM. efficiency in 

multi-robot navigation. Robot 3 completed its route in 8.7879 

with 8 turns under PRM-GA, compared to 8.9234 with the 

same number of turns for PRM. Robot 4 maintained identical 

results, with a distance of 11.7514 and 10 turns in both 

methods. Robot 5 saw a reduction to 7.0824 with 8 turns in 

PRM-GA, from 7.0834 with 9 turns in PRM. Similarly, 

Robot 6 achieved 8.5616 with 10 turns in PRM-GA, 

compared to 8.5694 with 11 turns in PRM. Lastly, Robot 7 

followed a path of 6.7007 with 9 turns under PRM-GA, 

slightly outperforming the PRM path of 6.6854 with 10 turns.  

 
Fig. 14. Performance Comparison of PRM-GA and Standalone PRM method 

for seven robots path planning 

G. Path Planning for Eight  Robots 

The enhanced PRM-GA algorithm was applied to eight 

robots, each with a unique start and goal position, represented 

by distinct colors. Robot 1 traveled from (9, 1) to (1, 9) in red, 

while Robot 2 moved from (1, 9) to (9, 1) in blue. Robot 3, 

starting at (1, 7) and heading to (7, 1), was green, and Robot 

4, from (9, 9) to (1, 1), was magenta. Robot 5 went from (7, 

2) to (1, 4) in cyan, and Robot 6, from (7, 1) to (1, 7), was 

yellow. Robot 7 traveled from (1, 4) to (7, 2) in black, while 

Robot 8 moved from (3, 1) to (6, 9) in red. Fig.15 compares 

the initial PRM paths, shown as dotted lines, with the 

optimized PRM-GA paths, depicted as solid lines, 

highlighting the improvements. 

 
Fig. 15. Path comparison of PRM-GA and Standalone PRM method for eight 

robots path planning 

Table VII presents the positions of each robot at every 

time step, offering a detailed record of their movements. By 

tracking the trajectories of Robots 1, 2, 3,4,5,6,7 and 8 over 

time, it is clear that their paths successfully avoid obstacles 

and remain non-overlapping, ensuring safe and well-

coordinated navigation across the grid for all four robots.

TABLE VII. TIMELY POSITIONS OF SEVEN ROBOTS AFTER APPLYING PRM-GA ALGORITHM 

Time Frame 
Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 Robot 8 

x y x y x y x y x y x y x y x y 
1 9.0 1.0 1.0 9.0 1.0 7.0 9.0 9.0 7.0 2.0 7.0 1.0 1.0 4.0 3.0 1.0 
2 9.0 0.8 1.0 9.0 1.0 7.1 9.1 9.0 7.1 1.9 7.0 1.1 1.3 3.5 3.0 1.1 
3 8.5 1.3 1.5 8.0 1.4 6.7 8.7 8.9 6.6 2.1 6.4 1.3 1.2 3.5 3.2 1.7 
4 7.7 1.9 1.8 7.4 2.0 6.1 8.0 8.7 6.0 2.1 5.7 2.0 1.7 2.9 3.7 2.8 
5 7.1 2.4 2.3 6.6 2.3 5.9 7.2 8.3 5.1 2.2 5.4 2.5 2.0 2.8 3.9 3.2 
6 6.4 3.1 2.5 6.4 3.0 5.3 6.5 7.5 4.6 2.2 4.8 3.4 2.8 2.9 4.2 4.1 
7 5.8 3.7 3.1 5.9 3.8 4.6 6.1 7.1 4.3 2.2 4.3 4.0 3.4 2.8 4.4 4.6 
8 5.1 4.4 3.4 5.6 3.8 4.1 5.5 6.8 3.3 2.5 3.7 4.5 4.1 2.8 4.6 5.1 
9 4.7 5.1 4.0 5.2 4.3 3.6 5.3 6.4 2.5 2.6 3.2 5.0 4.7 2.7 4.8 5.9 

10 4.3 6.0 4.7 4.8 4.6 3.1 4.8 5.8 1.8 2.7 3.0 5.2 5.1 2.7 5.1 6.7 
11 4.1 6.9 5.3 4.3 4.9 2.7 4.5 5.3 1.3 3.3 2.4 5.7 5.8 2.6 5.3 7.6 
12 3.9 7.2 5.8 3.9 5.5 2.0 4.3 4.9 1.0 3.9 2.2 5.9 6.3 2.5 5.4 8.2 
13 3.1 7.7 7.0 2.7 6.2 1.0 3.8 4.1 1.0 4.0 1.5 6.6 7.2 2.2 5.5 8.3 
14 2.5 8.1 6.6 3.0 6.5 1.1 3.2 3.4 1.0 4.0 1.0 7.0 7.0 2.0 6.0 9.0 
15 2.2 8.4 7.4 2.5 6.9 0.7 3.0 2.8 1.0 4.0 1.0 7.0 7.0 2.0 6.0 9.0 
16 1.7 8.7 7.9 2.0 7.0 1.0 2.2 1.7 1.0 4.0 1.0 7.0 7.0 2.0 6.0 9.0 
17 1.1 9.1 8.6 1.3 7.0 1.0 2.1 1.6 1.0 4.0 1.0 7.0 7.0 2.0 6.0 9.0 
18 1.0 9.0 8.9 1.0 7.0 1.0 2.0 1.5 1.0 4.0 1.0 7.0 7.0 2.0 6.0 9.0 
19 1.0 9.0 9.0 1.0 7.0 1.0 1.2 1.0 1.0 4.0 1.0 7.0 7.0 2.0 6.0 9.0 
20 1.0 9.0 9.0 1.0 7.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 7.0 2.0 6.0 9.0 
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The results highlight the performance differences 

between the PRM and the enhanced PRM-GA algorithms for 

eight robots. For Robot 1, the PRM-GA path covered a 

distance of 12.0531 with 10 turns, closely matching the PRM 

path at 12.0576 and 10 turns. Robot 2 saw a slight increase in 

distance with PRM-GA (12.5789) compared to PRM 

(11.658) but achieved fewer turns, 10 compared to 12. Robot 

3 benefited from a reduced number of turns with PRM-GA 

(11 versus 14), though the distance slightly increased from 

9.1868 to 9.4195. Robot 4 showed a marginal improvement 

in turns, with PRM-GA requiring 13 compared to 14 for 

PRM, and a nearly identical distance of around 12.02. For 

Robot 5, PRM-GA achieved a similar distance (7.0421 vs. 

7.0303) with fewer turns (8 compared to 10). Robot 6 had 

comparable distances for both methods (8.7169 for PRM-GA 

and 8.7221 for PRM) but required fewer turns with PRM-GA 

(10 versus 11). demonstrated its capability to optimize paths 

by either reducing the number of turns or maintaining 

comparable distances, with improved coordination and 

efficiency across most cases. Robot 7 demonstrated a reduced 

distance with PRM-GA (7.2129 vs. 7.7196) while 

maintaining the same number of turns (10). Finally, Robot 8 

achieved a notable improvement with PRM-GA, covering a 

slightly shorter distance (8.6249 vs. 8.6989) and requiring 

only 5 turns compared to 7 for PRM. Overall, the PRM-GA 

algorithm Fig. 16 illustrates the comparison of PRM – GA 

path and standalone PRM path in terms of total distance and 

total number of turns on the path for each robot. 

 

Fig. 16. Performance Comparison of PRM-GA and Standalone PRM method 

for eight robots path planning 

H. Statistical Performance Analysis of the Proposed PRM -

GA Approach 

To evaluate the performance of the proposed PRM-GA 

approach, statistical comparisons were conducted on key 

metrics such as path length and turn count. A t-test was 

performed to assess whether the PRM-GA method 

significantly improves path efficiency compared to the 

standard PRM approach. Additionally, the impact of varying 

robots count on performance was considered to examine 

scalability and adaptability. The following analysis presents 

the results and their implications for multi-robot path 

planning. 

Table VIII indicates t- test results to compare the mean 

path lengths of PRM and PRM-GA in two robot scenario. The 

p-value indicates no statistically significant difference, 

though PRM-GA shows a slight reduction in path length 

variance. 

TABLE VIII. PATH LENGTH ANALYSIS FOR TWO ROBOTS 

Parameter PRM Path Length PRM -GA Path Length 

Mean 10.36805 10.22835 

Variance 4.20239 4.90628 

t Stat 1.19709 

p(T<=t) one-tail 0.22152 

t Critical one-tail 6.31375 

p(T<=t) two-tail 0.44305 

t Critical two-tail 12.70620 

 

 The t-test for turn count shows a reduction in turns for 

PRM-GA. However, the p-value remains above the 

significance threshold, suggesting the improvement is not 

statistically confirmed. A summary of t-test results for turn 

count analysis for two robots is shown in Table IX. 

TABLE IX. TURN COUNT ANALYSIS FOR TWO ROBOTS 

Parameter 
PRM Path Turn 

Count 

PRM -GA Path Turn 

Count 

Mean 12.50000 10.00000 

Variance 4.50000 2.00000 

t Stat 5.00000 

p(T<=t) one-tail 0.06283 

t Critical one-tail 6.31375 

p (T<=t) two-tail 0.12567 

t Critical two-tail 12.70620 

 

The P-values for both metrics were greater than 0.05, 

indicating no statistically significant difference. While PRM-

GA showed reduced turn counts and slightly shorter path 

lengths, the results suggest that the improvements are not 

substantial enough to be statistically confirmed with the given 

data. Further testing with larger datasets is needed to validate 

the observed trends. 

For the three-robot scenario, the analysis compares the 

PRM and PRM-GA methods based on path length and turn 

count, using t-tests to assess statistical significance. Table X 

indicates the statistical analysis of path length performance in 

the proposed approach. 

TABLE X. PATH LENGTH ANALYSIS FOR THREE ROBOTS 

Parameter PRM Path Length PRM -GA Path Length 

Mean 10.70473 10.69103 

Variance 2.76067 2.73845 

t Stat 1.32540 

p(T<=t) one-tail 0.15809 

t Critical one-tail 2.91999 

p(T<=t) two-tail 0.31618 

t Critical two-tail 4.30265 

 

The mean length for PRM was 10.7047, while for PRM-

GA, it was 10.6910, showing only a slight reduction. The t-

statistic of 1.3254 and one-tailed p-value of 0.1581 indicate 

that this difference is not statistically significant, as the p-

value is greater than the standard threshold (0.05). Similarly, 

the two-tailed p-value of 0.3162 confirms that PRM-GA does 

not significantly improve path length compared to PRM. 

However, a notable improvement is observed in turn 

count. The mean turn count for PRM was 11.3333, while for 

PRM-GA, it reduced to 10.0000, indicating smoother 

navigation. The t-statistic of 4.0000 and one-tailed p-value of 

0.0286 suggest that this reduction is statistically significant, 

as the p-value is below 0.05. The two-tailed p-value of 
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0.0572, though slightly above 0.05, still indicates a 

meaningful improvement. Table XI showcases the statistical 

analysis of three robot scenario turn count improvement in 

the proposed approach. 

TABLE XI. TURN COUNT ANALYSIS FOR THREE ROBOTS 

Parameter 
PRM Path Turn 

Count 

PRM -GA Path Turn 

Count 

Mean 11.3333 10.0000 

Variance 4.3333 4.0000 

t Stat 4.0000 

p(T<=t) one-tail 0.0286 

t Critical one-tail 2.9200 

p(T<=t) two-tail 0.0572 

t Critical two-tail 4.3027 

 

 For the four-robot scenario, the t-test results for path 

length are shown in Table XII. The results indicate that PRM-

GA produces a slightly longer average path compared to 

PRM. The t-statistic of -1.7836 suggests that this difference 

is not statistically significant, as the one-tailed p-value of 

0.0862 is greater than 0.05. Similarly, the two-tailed p-value 

of 0.1725 confirms that PRM-GA does not significantly 

impact path length in this case. 

TABLE XII. PATH LENGTH ANALYSIS FOR FOUR ROBOTS 

Parameter PRM Path Length PRM -GA Path Length 

Mean 10.9555 11.0677 

Variance 2.4523 2.5591 

t Stat -1.7836 

p(T<=t) one-tail 0.0862 

t Critical one-tail 2.3534 

p(T<=t) two-tail 0.1725 

t Critical two-tail 3.1824 

 

 However, for turn count, PRM-GA shows a substantial 

improvement, reducing the mean turn count from 13.2500 

(PRM) to 10.5000 (PRM-GA). The t-statistic of 11.0000 and 

a very low one-tailed p-value of 0.0008 indicate a highly 

significant reduction, emphasizing the effectiveness of PRM-

GA in optimizing smoother paths with fewer turns. The two-

tailed p-value of 0.0016 further confirms the significance of 

this result. The statistical analysis of four robot scenario turn 

count improvement is shown in Table XIII. 

TABLE XIII. TURN COUNT ANALYSIS FOR FOUR ROBOTS 

Parameter 
PRM Path 

Turn Count 

PRM -GA Path 

Turn Count 

Mean 13.2500 10.5000 

Variance 2.9167 1.6667 

t Stat 11.0000 

p(T<=t) one-tail 0.0008 

t Critical one-tail 2.3534 

p(T<=t) two-tail 0.0016 

t Critical two-tail 3.1824 

  

 For the five-robot scenario, the t-test results for path 

length indicate that PRM-GA results in a slightly longer 

average path compared to PRM. However, the difference is 

minimal, and the t-statistic of -0.6079 suggests that this 

variation is not statistically significant. The one-tailed p-

value of 0.2880 is much greater than 0.05, and the two-tailed 

p-value of 0.5761 further confirms the lack of significant 

difference between the two methods in terms of path length. 

The t-critical values for both one-taile and two-tailed tests 

reinforce that the observed difference is within an expected 

range of variation. The statistical analysis of five robot 

scenario path length performance is shown in Table XIV. 

TABLE XIV. PATH LENGTH ANALYSIS FOR FIVE ROBOTS 

Parameter PRM Path Length PRM -GA Path Length 

Mean 10.3402 10.4007 

Variance 4.3850 4.1927 

t Stat -0.6079 

p(T<=t) one-tail 0.2880 

t Critical one-tail 2.1318 

p(T<=t) two-tail 0.5761 

t Critical two-tail 2.7764 

  

 In contrast, for turn count, PRM-GA demonstrates a 

notable improvement in five robot scenario, reducing the 

mean turn count from 14 to 10.75. The t-statistic of 4.3333 

and a one-tailed p-value of 0.0113 indicate a statistically 

significant reduction, emphasizing PRM-GA's ability to 

produce smoother paths with fewer turns. Additionally, the 

two-tailed p-value of 0.0227 further confirms the significance 

of the results. The t-critical values for one-tailed and two-

tailed tests indicate that the observed difference is substantial. 

The statistical analysis of five robot scenario path turn count 

performance is shown in Table XV. 

TABLE XV. TURN COUNT ANALYSIS FOR FIVE ROBOTS 

Parameter 

PRM Path 

Turn 

Count 

PRM -GA Path Turn 

Count 

Mean 14.0000 10.7500 

Variance 7.3333 4.2500 

t Stat 4.3333 

p(T<=t) one-tail 0.0113 

t Critical one-tail 2.3534 

p(T<=t) two-tail 0.0227 

t Critical two-tail 3.1824 

 

 Table XVI shows the path length analysis of six robots 

scenario. In this case, PRM-GA achieves a slightly shorter 

average path compared to PRM. The t-statistic of 2.3701 

suggests a moderate difference between the two methods. 

The one-tailed p-value of 0.0320 is less than 0.05, indicating 

a statistically significant improvement in path length using 

PRM-GA. The two-tailed p-value of 0.0639 is slightly above 

0.05, suggesting that the difference may not be as strong 

when considering both positive and negative deviations. 

However, the t-critical values for one-tailed (2.0150) and 

two-tailed (2.5706) confirm that PRM-GA provides a 

meaningful reduction in path length. 

TABLE XVI. PATH LENGTH ANALYSIS FOR SIX ROBOTS 

Parameter PRM Path Length PRM -GA Path Length 

Mean 10.1064 10.0126 

Variance 4.3077 4.2284 

t Stat 2.3701 

p(T<=t) one-tail 0.0320 

t Critical one-tail 2.0150 

p(T<=t) two-tail 0.0639 

t Critical two-tail 2.5706 

 

 For turn count, PRM-GA significantly reduces the mean 

turn count from 10.0000 (PRM) to 8.6667 (PRM-GA), 
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showing a smoother path with fewer abrupt directional 

changes. The t-statistic of 4.0000, along with a one-tailed p-

value of 0.0052, indicates a highly significant difference in 

turn count reduction. The two-tailed p-value of 0.0103 further 

confirms this result. The t-critical values for one-tailed 

(2.0150) and two-tailed (2.5706) tests reinforce that PRM-

GA substantially outperforms PRM in minimizing turns. The 

statistical analysis of six robot scenario turn count 

improvement is shown in Table XVII. 

TABLE XVII. TURN COUNT ANALYSIS FOR SIX ROBOTS 

Parameter 
PRM Path 

Turn Count 

PRM -GA Path Turn 

Count 

Mean 10.0000 8.6667 

Variance 4.4000 1.8667 

t Stat 
4.0000 

  

p(T<=t) one-tail 0.0052 

t Critical one-tail 2.0150 

p(T<=t) two-tail 0.0103 

t Critical two-tail 2.5706 

 

These findings for six robots suggest that PRM-GA 

effectively reduces path complexity while also slightly 

optimizing path length.  

 In seven robot scenario, for the path length, PRM-GA has 

a mean of 9.5299, which is very close to PRM's mean of 

9.5235. The variances are also similar, with PRM having 

5.2870 and PRM-GA having 5.1488. The t-statistic is -

0.2297, and the p-value for the two-tailed test is 0.8259, 

which is much higher than typical significance levels of 0.05 

or 0.01. Since the p-value is large, we fail to reject the null 

hypothesis, meaning there is no statistically significant 

difference in path length between PRM and PRM-GA. The 

statistical analysis of seven robot scenario path length 

performance is shown in Table XVIII. 

TABLE XVIII. PATH LENGTH ANALYSIS FOR SEVEN ROBOTS 

Parameter PRM Path Length 
PRM -GA Path 

Length 

Mean 9.5235 9.5299 

Variance 5.2870 5.1488 

t Stat -0.2297 

p(T<=t) one-tail 0.4130 

t Critical one-tail 1.9432 

p(T<=t) two-tail 0.8259 

t Critical two-tail 2.4469 

 

For turn count, PRM-GA achieves a lower mean turn 

count of 9.2857, compared to 10.1429 for PRM in the seven 

robot scenario. The variance for PRM is 1.8095, while for 

PRM-GA, it is lower at 0.9048. The t-statistic is 3.2863, and 

the p-value for the two-tailed test is 0.0167, which is below 

0.05. This means that the null hypothesis is rejected, 

indicating that PRM-GA significantly reduces the number of 

turns compared to PRM. The statistical analysis of five robot 

scenario path turn count performance is shown in Table XIX. 

In eight robot scenario, the mean path length for PRM is 

9.7716, while for PRM-GA, it is slightly lower at 9.5736. The 

variances are 4.6325 for PRM and 4.3011 for PRM-GA, 

indicating similar levels of variability. The t-statistic is 

1.6065, and the p-value for the two-tailed test is 0.1522, 

which is greater than the common significance levels of 0.05 

or 0.01. This high p-value suggests that there is no 

statistically significant difference in path length between 

PRM and PRM-GA, meaning PRM-GA does not provide a 

meaningful reduction in path length. The statistical analysis 

of seven robot scenario path length performance is shown in 

Table XX. 

TABLE XIX. TURN COUNT ANALYSIS FOR SEVEN ROBOTS 

Parameter 
PRM Path Turn 

Count 

PRM -GA Path Turn 

Count 

Mean 10.1429 9.2857 

Variance 1.8095 0.9048 

t Stat 3.2863 

p(T<=t) one-tail 0.0083 

t Critical one-tail 1.9432 

p(T<=t) two-tail 0.0167 

t Critical two-tail 2.4469 

TABLE XX. PATH LENGTH ANALYSIS FOR EIGHT ROBOTS 

Parameter PRM Path Length PRM -GA Path Length 

Mean 9.7716 9.5736 

Variance 4.6325 4.3011 

t Stat 1.6065 

p(T<=t) one-tail 0.0761 

t Critical one-tail 1.8946 

p(T<=t) two-tail 0.1522 

t Critical two-tail 2.3646 

 

 For turn count, PRM-GA shows an improvement by 

achieving a lower mean turn count of 9.6250, compared to 

11.0000 for PRM. The variance values are 5.4286 for PRM 

and 5.4107 for PRM-GA, indicating similar dispersion. The 

t-statistic is 3.6667, and the p-value for the two-tailed test is 

0.0080, which is below 0.05. This indicates that the 

difference in turn count is statistically significant, suggesting 

that PRM-GA effectively reduces the number of turns 

required for navigation. The statistical analysis of five robot 

scenario path turn count performance is shown in Table XXI. 

TABLE XXI. TURN COUNT ANALYSIS FOR EIGHT ROBOTS 

Parameter 
PRM Path 

Turn Count 

PRM -GA Path 

Turn Count 

Mean 11.0000 9.6250 

Variance 5.4286 5.4107 

t Stat 3.6667 

p(T<=t) one-tail 0.0040 

t Critical one-tail 1.8946 

p(T<=t) two-tail 0.0080 

t Critical two-tail 2.3646 

 

I. Computational Complexity 

Table XXII shows the navigation times recorded for 

different numbers of robots to indicate how the computational 

complexity of the PRM-GA method scales as the number of 

robots increases. These values represent the average time 

taken to complete path navigation after running each scenario 

10 times. Since only the number of robots varied while 

keeping other parameters constant, the observed trend 

directly reflects the impact of robot density on computational 

performance. 

The computational time required for multi-robot path 

planning increases as the number of robots increases. The 
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data reveals a non-linear growth in computational time, 

indicating that the complexity of planning paths for multiple 

robots significantly impacts processing time. For a small 

number of robots, the computational time remains relatively 

low at 16.67s and 26.12s, respectively. However, as the 

number of robots increases, the computational burden grows, 

reaching 42.72s for 5 robots and 60.29s for 7 robots. The 

highest recorded computational time is 1.14s for 8 robots, 

suggesting that beyond a certain number of robots, the 

increase in computational time becomes more pronounced. 

TABLE XXII. TURN COUNT ANALYSIS FOR SEVEN ROBOTS 

Number of Robots Average Computational Time (s) 

2 16.67 

3 26.12 

4 31.56 

5 42.72 

6 46.38 

7 60.29 

8 71.14 

 

This trend is likely due to the increasing complexity of 

collision avoidance, path optimization, and interaction 

among multiple robots. The algorithm must account for more 

constraints and dependencies as the number of robots rises, 

leading to higher computational overhead. Optimizing the 

algorithm or leveraging parallel computing techniques may 

help mitigate this growing computational cost in large-scale 

multi-robot systems. 

V. CONCLUSION 

The study successfully demonstrated the effectiveness of 

the PRM-GA approach in optimizing multi-robot path 

planning by reducing turn counts and enhancing trajectory 

smoothness across diverse test scenarios. Statistical analysis 

confirmed that PRM-GA significantly improved path 

efficiency, particularly in environments with a higher number 

of robots, where smooth coordination is essential. While 

reductions in path length were observed in many cases, the 

improvements were not always consistent, indicating a need 

for further refinement. 

Despite its advantages, the algorithm’s performance in 

highly dynamic environments revealed certain challenges. 

Frequent obstacle changes sometimes necessitated 

continuous re-optimization, leading to occasional instances 

where turn counts and path lengths were comparable to 

conventional methods. This highlights the complexity of 

multi-robot coordination in real-time applications and 

underscores the need for additional enhancements to ensure 

more consistent path optimization without excessive 

computational costs. 

Future research can expand upon these results by 

integrating energy and time as additional optimization 

criteria, alongside distance and turns, to enhance the 

efficiency and adaptability of path planning algorithms. This 

approach could directly address industry-specific challenges 

in logistics, robotics, and autonomous navigation, such as 

reducing operational costs, improving battery life in 

autonomous vehicles, and optimizing delivery routes. 

Highlighting these practical benefits further underscores the 

real-world significance of the study. Additionally, exploring 

hybrid approaches that combine PRM-GA with other 

metaheuristic techniques, such as Ant Colony Optimization 

or Reinforcement Learning, may lead to improved 

performance in highly dynamic environments. Further 

investigation into real-time implementations using parallel 

computing, GPU acceleration, and distributed systems could 

enhance computational efficiency, making the algorithm 

more viable for large-scale applications. 
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