
Journal of Robotics and Control (JRC) 

Volume 6, Issue 1, 2025 

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i1.25579 446 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

Tracking Iterative Learning Control of TRMS using 

Feedback Linearization Model with Input Disturbance 

Hoang Dang Danh 1, Chi Nguyen Van 2*, Quy Vu Van 3 
1, 2, 3 Thai Nguyen University of Technology, Vietnam 

Email: 1 hoangktd1977@tnut.edu.vn, 2 ngchi@tnut.edu.vn, 3 vuvanquy@tnut.edu.vn 

* Corresponding Author 

 
Abstract—This paper presents a method for angular 

trajectory tracking control of the Twin Rotor Multi-Input 

Multi-Output System (TRMS) experimental model using 

linearized feedback control with nonlinear compensation and 

iterative learning-based angular trajectory tracking control. 

First, the dynamic model of the Twin Rotor MIMO System 

(TRMS) is developed in the form of Euler-Lagrange (ELF), 

including descriptions of uncertain parameters and input 

disturbances such as energy dependence related to the mass of 

components, friction forces, the effect of the TRMS flat cable, 

and the impact of the main rotor and tail rotor speeds on 

horizontal and vertical movements. Based on the nonlinear 

acceleration equations for the pitch and yaw angles of the 

TRMS, a compensator is designed to address the nonlinearity of 

the EL model. Notably, this compensator self-adjusts the 

compensation signal so that the closed-loop system, consisting of 

the TRMS and the compensator, becomes a predetermined 

linear model. Therefore, the structure of the compensator does 

not need to be designed based on the nonlinear model of the 

TRMS. After incorporating the compensator, the ELF becomes 

nearly linear with sufficient accuracy as designed. This system 

is then controlled using a predefined trajectory tracking 

controller based on iterative learning with proportional-type 

learning parameters. By adjusting a sufficiently small optional 

time parameter, the trajectory tracking error of the pitch and 

yaw angles of the closed-loop system can be reduced to a desired 

small-radius neighborhood. Simulation and experimental 

results demonstrate the trajectory-tracking capability of the 

closed-loop system. Although the convergence rate depends on 

the complexity of the TRMS dynamics, the robustness of this 

method with varying initial conditions is always ensured. The 

computational complexity is slightly higher compared to other 

methods, Still, this study contributes a straightforward yet 

effective trajectory control method under conditions of noise 

depending on the position, velocity, pitch and yaw angles and 

unmeasured kinematic model parameters for the TRMS system. 

Keywords—Feedback Linearization Control; Uncertain 

Parameters; Iterative Learning; TRMS; Euler-Lagrange Form; 

Input Disturbances. 

I. INTRODUCTION  

The TRMS system is manufactured by Feedback 

Instrument, as illustrated in Fig. 1. Due to the TRMS's rapid 

and complex nonlinear dynamic properties, its sensitivity to 

external disturbances, and the challenges in accurately 

measuring its parameters, the TRMS model is frequently used 

in laboratory research on control algorithms [1]-[5]. The 

TRMS is a highly nonlinear system involving vertical and 

horizontal movements driven by propulsive forces from the 

main rotor and horizontal tail rotor, respectively, with these 

forces varying based on the voltages applied to the DC 

motors. Yaw and pitch angles are measured using 

tachometers. The angle stabilization control problem for the 

TRMS is challenging due to its dynamic characteristics, 

including high nonlinearity and significant coupling between 

horizontal and vertical motions. In addition, factors such as 

friction, cable, and gyro moments act as input disturbances 

affecting the propulsive moments and are difficult to model 

precisely in practice. Variations in rotor speeds introduce 

substantial cross-coupling into the system, causing deviations 

from a flat system behavior [6], [11], [12]. 

 
Fig. 1. TRMS apparatus in the Instrument and Control Lab 309 TN Buliding, 

Thai Nguyen University of Technology 

Additionally, obtaining an exact model of the TRMS is 

challenging because many physical parameters are difficult 

to measure accurately. Parameters provided by the 

manufacturer can change over time during practical use of the 

TRMS, particularly the inertia constant, friction coefficient, 

viscosity constant, and sign function in the propulsive forces, 

all of which affect system performance and angle tracking 

errors. Over the past decade, various tracking control 

strategies for the TRMS have been explored. References [2] 

and [3] discussed the use of PID controllers and PID 

controllers with derivative filter coefficients. References 

[20]-[23], [15] cover control strategies for the TRMS using 

fuzzy logic and PID controllers. Reference [4] describes the 

application of an LQR controller based on the linearized 

TRMS model in hover mode, while reference [5] discusses 

an optimal state feedback controller using the LQR 

technique. References [6]-[10] examine the use of terminal 

sliding mode control to maintain system stability in pitch and 

yaw disturbances. Adaptive model inversion control 

approaches using artificial neural networks and genetic 
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algorithms are presented in references [13], [14], [16]-[19]. 

The sliding mode control method, known for its robustness in 

tracking errors, is discussed in references [39], [40], [29] 

where neural networks are used to approximate the dynamic 

model in sliding control laws. However, this approach is 

complex and challenging to implement in practice. 

The TRMS, characterized by rapidly changing dynamics, 

particularly the nonlinear influence of dynamic disturbances 

and unmeasured parameters on pitch and yaw movements, 

presents significant challenges. Consequently, PID, LQR, 

and fuzzy controllers in the aforementioned literature must 

either disregard these factors during the design process or 

assume certain limits to incorporate them into the design 

expressions. These controllers simultaneously perform both 

trajectory tracking and handling the effects of disturbances 

and unmeasured parameters within the control law, which 

limits control quality. Our solution to this issue involves 

using two control loops: an inner loop with a compensator to 

linearize the closed-loop system and an outer loop for 

trajectory tracking with iterative learning to improve tracking 

errors after each control cycle. Specifically, this study 

employs a feedback linearization regulator combined with 

iterative learning techniques [41]-[43] to develop an adaptive 

controller aimed at stabilizing the yaw and pitch angles of a 

TRMS. Initially, the mathematical model of the TRMS is 

reformulated into ELF incorporating uncertain parameters 

and input disturbances. These disturbances include energy 

variations dependent on the mass of TRMS components, 

frictional forces, flat cable tension, the influence of the main 

rotor’s speed on horizontal motion, and the tail rotor’s speed 

on vertical movement. Subsequently, a trajectory control 

strategy is proposed for the TRMS to handle noise and 

unmeasured parameters. Utilizing the acceleration equations 

for the pitch and yaw angles, a compensator is designed to 

address the nonlinearity present in the Euler-Lagrange model. 

This compensator is notable for its independence from the 

TRMS model. Following the integration of the compensator, 

the Euler-Lagrange system approximates linearity with high 

accuracy. The closed-loop TRMS system is then controlled 

using a trajectory tracking controller based on iterative 

learning with proportional-type learning parameters. By 

optimizing an adjustable time parameter, the trajectory 

tracking error for the pitch and yaw angles can be minimized 

to a desired small vicinity around the target error region [25]-

[28]. The research contribution is using linearized feedback 

control with nonlinear compensation and IL-based angular 

trajectory tracking control for TRMS model developed in the 

form of Euler-Lagrange (ELF), including descriptions of 

uncertain parameters and input disturbances such as energy 

dependence related. 

The structure of this paper is outlined as follows: The 

subsequent section addresses the reformulation of the TRMS 

model into ELF, incorporating uncertain parameters and 

input disturbances. This is followed by the development of a 

tracking control strategy for the TRMS, which integrates a 

non-model-based feedback linearization regulator with IL 

[52]-[55]. Section 4 presents the results derived from 

experimental studies. The final section provides the 

conclusions drawn from the research. 

II. THE MODEL OF TRMS IN ELF WITH UNCERTAIN 

PARAMETERS AND INPUT DISTURBANCES 

The mathematical modeling of the TRMS has been 

extensively addressed by various authors in seminal works 

such as those referenced in [2], [3]. In this study, we use the 

model proposed in [32]-[36], which provides a fairly accurate 

description of the TRMS dynamics based on the Lagrangian 

method. This model accounts comprehensively for the forces 

influencing TRMS motion, including frictional forces, forces 

exerted by the cables, the effects of the main rotor and the tail 

rotor speeds on horizontal, and vertical movements, 

respectively. To represent the TRMS model, we use the 

following notation: 𝜑ℎ , 𝜑𝑣 are the horizontal and vertical 

angles, which are measured outputs; 𝜔ℎ , 𝜔𝑣 are rotational 

speeds of tail rotor and main rotor; 𝑘𝑓ℎ𝑛, 𝑘𝑓𝑣𝑝, 𝑘𝑓𝑣𝑛,  𝑚𝑇1, 

𝑙𝑇1
,  𝑚𝑇2, 𝑙𝑇2

, 𝑔, ℎ, 𝑙𝑡 , 𝑙𝑚 , are the physical, and defined 

parameters 𝑘𝑚, 𝑘𝑔, 𝑘𝑓ℎ𝑝 of the TRMS are shown in the 

appendix of this artice. Fig. 2 denotes the parameters used to 

form the TRMS model. After a thorough examination of the 

kinematics of the TRMS, we observe that the parameters 𝐽1, 𝐽2 

and 𝐽3 are calculated by  

𝐽1 = (
𝑚𝑡

3
+ 𝑚𝑡𝑟 + 𝑚𝑡𝑠) 𝑙𝑡

2

+ (
𝑚𝑚

3
+ 𝑚𝑚𝑟 + 𝑚𝑚𝑠) 𝑙𝑚

2

+
𝑚𝑚𝑠

2
𝑟𝑚𝑠

2 + 𝑚𝑡𝑠𝑟𝑡𝑟
2  

 

𝐽2 =
𝑚𝑏

3
𝑙𝑏
2 + 𝑚𝑐𝑏𝑙𝑐𝑏

2   

𝐽3 =
𝑚ℎ

3
ℎ2 (1) 

and they are difficult to measure accurately, therefore, we 

assume these unknown parameters are represented by the 

vector 𝜃 as described in equation (2): 

𝜃 = [𝐽1 𝐽2 𝐽3] (2) 

 

 
Fig. 2. The symbols used to describe the physical quantities in the TRMS 

model 

To address the trajectory tracking control problem for the 

angles 𝜑ℎ and 𝜑𝑣 (which are state variables) of the TRMS, 

we define the vectors 𝜑 = [𝜑ℎ 𝜑𝑣]𝑇 , �̱̇� = [�̇�ℎ
�̇�

𝑣]
𝑇 ,  and 

 �̱̈� = [�̈�ℎ �̈�𝑣]
𝑇 to represent the state variables, their time 

derivatives, and their accelerations, respectively. Following 

the approach outlined in reference [15], we employ the 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 448 

 

Hoang Dang Danh, Tracking Iterative Learning Control of TRMS using Feedback Linearization Model with Input 

Disturbance 

comprehensive kinematic model that incorporates the 

unknown parameters 𝜃, and the forces affecting the TRMS 

motion, as detailed in Eq (3) below. 

𝑴(�̱�, 𝜃)�̱̈� + 𝑪(�̱�, �̱̇�, 𝜃)�̱̇� + 𝑮(�̱�) = 𝜏 + 𝜏𝑑 (3) 

where the system matrices and vectors, which are depend on 

the uncertain parameters vector 𝜃 , are defined as follows: 

𝑴(�̱�, 𝜃) =

[
 
 
 
 
𝜃1 𝑐𝑜𝑠2 𝜑𝑣 + 𝜃2 𝑠𝑖𝑛2 𝜑𝑣

 +ℎ2(𝑚𝑇1
+ 𝑚𝑇2

) + 𝜃3

ℎ𝑚𝑇1
𝑙𝑇1

sin 𝜑𝑣 −

ℎ𝑚𝑇2
𝑙𝑇2

cos 𝜑𝑣

ℎ𝑚𝑇1
𝑙𝑇1

sin 𝜑𝑣 −

ℎ𝑚𝑇2
𝑙𝑇2

cos𝜑𝑣
𝜃1 + 𝜃2

]
 
 
 
 

 (4) 

is the generalized inertia matrix, it is also defined positive 

matrix. 

𝑪(�̱�, �̱̇�, 𝜃)

= [
2(𝜃2 − 𝜃1) 𝑠𝑖𝑛 𝜑𝑣 𝑐𝑜𝑠 𝜑𝑣 �̇�𝑣

ℎ(𝑚𝑇1
𝑙𝑇1

𝑐𝑜𝑠 𝜑𝑣

+𝑚𝑇2
𝑙𝑇2

𝑠𝑖𝑛 𝜑𝑣)�̇�𝑣

(𝜃1 − 𝜃2) 𝑠𝑖𝑛 𝜑𝑣 𝑐𝑜𝑠 𝜑𝑣 �̇�ℎ 0

]

∈ 𝑅2×2 

(5) 

is the centripetal-coriolis matrix. 

𝑮(𝜑) = [
0

𝑔(𝑚𝑇1
𝑙𝑇1

𝑐𝑜𝑠 𝜑𝑣 + 𝑚𝑇2
𝑙𝑇2

𝑠𝑖𝑛 𝜑𝑣)
] ∈ 𝑅2×1 (6) 

is gravity vector. 

The vector  𝜏 = [∑ 𝜏𝑖ℎ𝑖 ∑ 𝜏𝑖𝑣𝑖 ]𝑇 ∈ 𝑅2×1 represents the 

total applied torques in the horizontal and vertical directions, 

where  ∑ 𝜏𝑖ℎ 𝑖  denotes the sum of torques acting in the 

horizontal plane, and ∑ 𝜏𝑖𝑣𝑖  represents the sum of torques in 

the vertical plane. 

∑𝜏𝑖ℎ = 𝜏𝑝𝑟𝑜𝑝ℎ − 𝜏𝑓𝑟𝑖𝑐ℎ − 𝜏𝑐𝑎𝑏𝑙𝑒(𝜑ℎ) + 𝜏ℎ𝑣

𝑖

 
(7) 

∑ 𝜏𝑖𝑣 = 𝜏𝑝𝑟𝑜𝑝𝑣 − 𝜏𝑓𝑟𝑖𝑐𝑣 + 𝜏𝑣ℎ

𝑖

+ 𝜏𝑔𝑦𝑟𝑜 
(8) 

with 𝜏𝑝𝑟𝑜𝑝ℎ = 𝑙𝑡𝐹ℎ(𝜔ℎ) 𝑐𝑜𝑠 𝜑𝑣 represents the propulsive 

force generated by the tail rotor, 𝜏𝑓𝑟𝑖𝑐ℎ denotes the torque due 

to the frictional forces, 𝜏𝑐𝑎𝑏𝑙𝑒(𝜑ℎ) refers to the torque 

produced by the flat cable force, the term 𝜏ℎ𝑣 = 𝑘𝑚�̇�𝑣 𝑐𝑜𝑠 𝜑𝑣 

as presented in Eqs (7) and (8) signifies the influence of the 

main propeller speed on horizontal movement, 𝜏𝑝𝑟𝑜𝑝𝑣 =

𝑙𝑚𝐹𝑣(𝜔𝑣) represents the torque due to the propulsive force of 

the main rotor, 𝜏𝑓𝑟𝑖𝑐𝑣  is the torque associated with the 

frictional forces, 𝜏𝑣ℎ = 𝑘𝑡�̇�ℎ denotes the effect of the tail 

rotor speed on vertical movement of the beam, 𝜏𝑔𝑦𝑟𝑜 =

𝑘𝑔𝐹𝑣(𝜔𝑣)�̇�ℎ 𝑐𝑜𝑠 𝜑𝑣 represents the torque due to the 

gyroscopic effect. The functions 𝐹ℎ(𝜔ℎ), 𝐹𝑣(𝜔𝑣) are defined 

by the following equations. 

𝐹ℎ(𝜔ℎ) = {
𝑘𝑓ℎ𝑝|𝜔ℎ|𝜔ℎ     𝜔ℎ ≥ 0

𝑘𝑓ℎ𝑛|𝜔ℎ|𝜔ℎ     𝜔ℎ < 0
 (9) 

𝐹𝑣(𝜔𝑣) = {
𝑘𝑓𝑣𝑝|𝜔𝑣|𝜔𝑣     𝜔𝑣 ≥ 0

𝑘𝑓𝑣𝑛|𝜔𝑣|𝜔𝑣     𝜔𝑣 < 0
 (10) 

where 𝜔ℎ , 𝜔𝑣 represent the rotational speeds of the tail rotor 

and main rotor, respectively.  

Vector 𝜏𝑑 is defined as the bounded input disturbance 

torque vector, as specified by Eq (11) below: 

𝜏𝑑 =

[
 
 
 
 
 
−𝑀𝑓𝑟𝑖𝑐ℎ − 𝑀𝑐𝑎𝑏𝑙𝑒(𝜑ℎ) + 𝑘𝑚�̇�𝑣 𝑐𝑜𝑠 𝜑𝑣

−ℎ(𝑚𝑇1
𝑙𝑇1

𝑠𝑖𝑛 𝜑𝑣−𝑚𝑇2
𝑙𝑇2

𝑐𝑜𝑠 𝜑𝑣)�̈�𝑣

−𝑀𝑓𝑟𝑖𝑐𝑣 + 𝑘𝑡�̇�ℎ + 𝑀𝑔𝑦𝑟𝑜

−ℎ(𝑚𝑇1
𝑙𝑇1

𝑠𝑖𝑛 𝜑𝑣−𝑚𝑇2
𝑙𝑇2

𝑐𝑜𝑠 𝜑𝑣)�̈�ℎ ]
 
 
 
 
 

 (11) 

with ‖𝜏𝑑‖ < 𝑎0 + 𝑎1‖�̱�‖ + 𝑎2‖�̱̇�‖
2
, it is the additive 

disturbances, in practice 𝜏𝑑 is a disturbance vector that 

depends on the position, velocity, pitch, and yaw of the 

TRMS, and it is difficult to determine. 

III. RACKING CONTROL OF TRMS BY COMBINING NON-

MODEL FEEDBACK LINEARIZATION REGULATOR AND IL 

 The Proposed Control Structure 

From equation (3), the TRMS model can be rewritten as 

follows: 

�̱̈� = −𝚪𝟏�̱� − 𝚪𝟐�̱̇� + 𝜏 + 𝜙 (12) 

where 𝚪𝟏, 𝚪𝟐 are two optional matrices and the vector 𝜙 is of 

the following form: 

𝜙 = 𝜏𝑑 + (𝑰𝒏 + 𝑴𝒑(𝜑,̱ 𝜃))�̱̈�

−  (𝑪(�̱�, �̱̇�, 𝜃) − 𝚪𝟐)�̱̇�

− (𝑮(�̱�, 𝜃) − 𝚪𝟏�̱�) 

(13) 

where vector 𝜙 denotes unknown functions that characterize 

the nonlinear disturbances arising from factors such as 

frictional forces, connecting cables, the influence of the main 

rotor speed on horizontal movement, and the effect of the tail 

rotor speed on vertical movement. Utilizing the models 

described in Eqs (3), (12) and (13), we propose a trajectory 

tracking control structure for TRMS, as illustrated in Fig. 3, 

detailed as follows: 

 
Fig. 3. Tracking control for TRMS by using non-model feedback 

linearization regulator and iterative learning   

• Inner control loop: This loop is the linearized control 

loop achieved by using a compensator of the form described 

in equation (14) below, where �̂� is the estimate of the 

unknown function vector 𝜙 in equation (13). 

𝜏 = 𝜇 − �̂� (14) 

The inner closed-loop system, consisting of the TRMS 

system (3) and the compensator (14) will become linear 

according to the formula (15). 
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{
�̇� = 𝑨𝑧 + 𝑩(𝜇 + 𝛾)

𝑦 = �̱� = 𝑪𝑧 
 (15) 

where 𝛾 = 𝜙 − �̂� is the estimation error, and 

𝑧 = (
𝛼

�̇�) , 𝑨 = (
𝟎2 𝑰2

−𝚪𝟏 −𝚪𝟐
) , 𝐁 = (

𝟎𝟐

𝐼2
) , C =

(𝑰2, 𝟎2)  
(16) 

where  𝟎2 denotes 2 × 2 zero matrix, and 𝑰2 represents 2 × 2 

identity matrix. The estimation �̂� is conducted without 

relying on a specific model, thereby characterizing the 

internal loop as a non-model-based feedback linearization 

loop. 

• Outer control loop: This loop is designed for trajectory 

tracking, where the linear system described in Eq (15) is 

managed using an IL-based control law. The objective is to 

ensure that the pitch and yaw angles of TRMS, denoted as 𝑦, 

converge to the reference angles 𝑦𝑟𝑒𝑓 . 

 Linearized Feedback Using Disturbance Compensation 

From equation (15), it is essential to design the 

linearization block to estimate �̂�(𝑡) based on the measurable 

values of  𝑧(𝑡) in order to compensate for 𝜙(𝑡) and minimize  

𝛾(𝑡), if  �̂�(𝑡) = 𝜙(𝑡) then the model described by Eq. (15) 

will be transformed into a linear form as indicated by Eq. (17) 

below: 

�̇�(𝑡) = 𝑨𝑧(𝑡) + 𝑩𝜇(𝑡) (17) 

To accomplish this, consider the system at time 𝑡 between 

the sampling instants 𝑘 and 𝑘 + 1, where 𝑡 = 𝑘Δ𝑇 + 𝜁 with  

0 ≤ 𝜁 < Δ𝑇, and Δ𝑇 is a sufficiently small sampling period. 

Within this interval, it is assumed that 𝜇𝑘(𝜁) = 𝜇(𝑡),  and 

𝑧𝑘(𝜁) = 𝑧(𝑡). Consequently, the system model described in 

Eq. (17) can be reformulated as follows: 

�̇�𝑘(𝜁) = 𝑨𝑧𝑘(𝜁) + 𝑩(𝜇𝑘(𝜁) + 𝜙𝑘(𝜁) − �̂�𝑘(𝜁)) (18) 

Consider 𝑧𝑘(𝑖𝑇𝑠) and 𝑧𝑘((𝑖 − 1)𝑇𝑠), where 0 < 𝑇𝑠 ≪ 1 is 

a sufficiently small sampling interval. Here 𝜁 = 𝑖𝑇𝑠 

represents the current time value, and 𝜁 − 𝑇𝑠 = (𝑖 − 1)𝑇𝑠 

represents the preceding time value. The Taylor expansion 

[48], [49] of 𝑧𝑘(𝜁) around the point (𝑖 − 1)𝑇𝑠 allows  𝑧𝑘(𝜁) to 

be approximated by the following formula (19): 

𝑧𝑘((𝑖 − 1)𝑇𝑠) = 𝑧𝑘(𝑖𝑇𝑠) − 𝑇𝑠 �̇�𝑘(𝑖𝑇𝑠) +
𝑇𝑠

2

2
�̈�𝑘(𝜉) (19) 

where (𝑖 − 1)𝑇𝑠 ≤ 𝜉 ≤ 𝑖𝑇𝑠, or 

�̇�𝑘(𝑖𝑇𝑠) ≈
𝑧𝑘(𝑖𝑇𝑠)−𝑧𝑘((𝑖−1)𝑇𝑠)

𝑇𝑠
  (20) 

By omitting the higher-order terms in equation (19), 

equation (18) can be approximated as: 

𝑧𝑘(𝑖𝑇𝑠)−𝑧𝑘((𝑖−1)𝑇𝑠)

𝑇𝑠
 ≈ 𝑨𝑧𝑘(𝑖𝑇𝑠) + 𝑩(𝜇𝑘(𝑖𝑇𝑠) +

𝜙𝑘(𝑖𝑇𝑠) − �̂�𝑘((𝑖 − 1)𝑇𝑠))  
(21) 

Replacing the symbol " ≈ "with " = ", and 𝜙𝑘(𝑖𝑇𝑠) with 

�̂�𝑘(𝑖𝑇𝑠), equation (21) becomes: 

𝑧𝑘(𝑖𝑇𝑠)−𝑧𝑘((𝑖−1)𝑇𝑠)

𝑇𝑠
= 𝑨𝑧𝑘(𝑖𝑇𝑠) + 𝑩(𝜇𝑘(𝑖𝑇𝑠) +

�̂�𝑘(𝑖𝑇𝑠) − �̂�𝑘((𝑖 − 1)𝑇𝑠))  
(22) 

Thus, we have 

𝑩 �̂�𝑘(𝑖𝑇𝑠) =
𝑧𝑘(𝑖𝑇𝑠)−𝑧𝑘((𝑖−1)𝑇𝑠)

𝑇𝑠
− 𝑨𝑧𝑘(𝑖𝑇𝑠) −

𝑩(𝜇𝑘(𝑖𝑇𝑠) − �̂�𝑘((𝑖 − 1)𝑇𝑠))  
(23) 

Finally, the estimated value �̂�𝑘(𝑖𝑇𝑠) is calculated using 

the measured values 𝑧𝑘(𝑖𝑇𝑠), 𝑧𝑘((𝑖 − 1)𝑇𝑠) and the previous 

estimated value  �̂�𝑘((𝑖 − 1)𝑇𝑠) according to the following 

formula: 

�̂�𝑘(𝑖𝑇𝑠) = 𝐵𝑇 [
𝑧𝑘(𝑖𝑇𝑠)−𝑧𝑘((𝑖−1)𝑇𝑠)

𝑇𝑠
− 𝑨𝑧𝑘(𝑖𝑇𝑠)] −

(𝜇𝑘(𝑖𝑇𝑠) − �̂�𝑘((𝑖 − 1)𝑇𝑠))  
(24) 

It is important to note that the estimator described in Eq. 

(24) is employed to compensate for the total disturbance 

vector 𝜙 and model mismatches without relying on the 

original TRMS model. Consequently, the compensator 

detailed in Eq. (14) which utilizes �̂�𝑘(𝑖𝑇𝑠) as specified in Eq. 

(24) is also classified as a model-free compensator. 

Theorem 1: For the model described in Eq. (12), the estimate 

�̂�𝑘(𝑖𝑇𝑠) derived from Eq (24) will minimize the 

approximation error associated with Eq (21).  

Proof: Let the error 𝜀 between the two sides of equation (21) 

as indicated by Eq (24) below 

𝜀 = 𝑨𝑧𝑘(𝑖𝑇𝑠) + 𝑩(𝜇𝑘(𝑖𝑇𝑠) + 𝜙𝑘(𝑖𝑇𝑠) −

�̂�𝑘((𝑖 − 1)𝑇𝑠)) −
𝑧𝑘(𝑖𝑇𝑠)−𝑧𝑘((𝑖−1)𝑇𝑠)

𝑇𝑠
= 𝑩𝜙𝑘(𝑖𝑇𝑠) +

𝛾  

(25) 

With 

  𝛾 = 𝑨𝑧𝑘(𝑖𝑇𝑠) + 𝑩(𝜇𝑘(𝑖𝑇𝑠) − �̂�𝑘((𝑖 − 1)𝑇𝑠))

−
𝑧𝑘(𝑖𝑇𝑠) − 𝑧𝑘((𝑖 − 1)𝑇𝑠)

𝑇𝑠

 
(26) 

then the following minimization problem 

𝝓∗ = argmin
𝜙𝑘

‖𝝐‖𝟐

= argmin
𝜙𝑘

‖𝑩𝜙𝑘 + 𝛾‖
𝟐

= argmin
𝜙𝑘

[𝑩𝜙𝑘 + 𝛾]
𝑻

[𝑩𝜙𝑘

+ 𝛾]

= argmin
𝜙𝑘

[𝜙𝑘
𝑇𝜙𝑘 + 2𝛾𝑇𝑩𝜙𝑘

+ 𝛾𝑇𝛾] 

(27) 
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has a unique solution 

𝝓∗ = −𝑩𝑇𝛾 (28) 

which ensures �̂�𝑘(𝑖𝑇𝑠) as given in equation (24). 

 Linearization of Feedback Using Non-Model-Based 

Compensation 

Once the total disturbance 𝜙, as defined in (13), is 

compensated for using Eq. (14), the system described by Eq. 

(12) transforms into a linear time-invariant (LTI) system 

[44]-[47] as characterized by Eq. (15), This system is 

represented in the form of ILC as follows 

{
𝑧𝑘(𝑖 + 1) = �̂�𝑧𝑘(𝑖) + �̂� [𝜇𝑘(𝑖) + 𝛾𝑘(𝑖)]

𝑦𝑘(𝑖) = 𝑪𝑧𝑘(𝑖)
 (29) 

where 𝑖 = 0,1, … , 𝑁 = 𝑇/𝑇𝑠, 𝑧𝑘(𝑁) = 𝑧𝑘+1(0) , �̂� =

𝑒𝑨𝑇𝑠 , �̂� = ∫ 𝑒𝑨𝑇𝑠
𝑇𝑠

0
𝑩𝑑𝑡, and 𝑪 = (𝐈𝐧, 𝟎𝐧). 

Assuming that the matrices 𝚪𝟏 and  𝚪𝟐 are selected such 

that the matrix 𝑨 in Eq. (16) is Hurwitz [50], [51]. 

Therefore, system (15) is linear with poles located on the 

left side of the imaginary axis, ensuring that the internal 

closed-loop system is always stable. Consequently, we can 

proceed to design the trajectory tracking controller for the 

outer loop. Since the subsystem is linear and stable, the 

design process for the outer controller only requires a 

proportional controller that can be adjusted through iterative 

learning over a sampling period k. Specifically, the 

subsequent step in the control design process is to determine 

the parameter 𝑲 for the proportional (P-type) update law. 

𝜇𝑘+1(𝑖) =   𝜇𝑘(𝑖) + 𝑲𝑒𝑘(𝑖) (30) 

where 𝑒𝑘(𝑖) = 𝑦𝑘
𝑟𝑒𝑓(𝑖) − 𝑦𝑘(𝑖), and convergence condition 

requires that ‖𝑒𝑘(𝑖) ‖ approaches zero, or at the very least, 

becomes as close to zero as possible.  

Since 𝜇𝑘(𝑖) is derived from ILC as described in Eq. (30) 

over a sufficiently small time interval, the discrete system 

represented by Eq. (29) is equivalent to the continuous model 

given by Eq. (15). Moreover, this model (29) does not 

incorporate any information from the TRMS system defined 

by Eq. (3). It can be observed from Eq. (29) that this 

equivalence is achievable under the assumption that 𝛾𝑘(𝑖) =

0. 

𝑦𝑘+1(𝑖) = 𝑪�̂�𝑖  𝑧𝑘(0) + ∑𝑪

𝑖−1

𝑗=0

�̂�𝑖−𝑖−1�̂�𝜇𝑘+1(𝑗)  (31) 

Based on Eq. (31) and the observed ability to repeat 𝑧𝑘(0) =

𝑧𝑘+1(0), for all 𝑘, we have, 

𝑒𝑘(𝑖) = 𝑦𝑘
𝑟𝑒𝑓(𝑖) − [𝑪�̂�𝑖  𝑧𝑘(0) +

∑ 𝑪𝑖−1
𝑗=0 �̂�𝑖−𝑖−1�̂� (𝜇𝑘+1(𝑗) + 𝑲𝑒𝑘(𝑗))]  

= 𝑦𝑘
𝑟𝑒𝑓(𝑖) − 𝑦𝑘(𝑖) − ∑ 𝑪𝑖−1

𝑗=0 �̂�𝑖−𝑖−1�̂�𝑲𝑒𝑘(𝑗)  

(32) 

= (𝐼 − 𝑪�̂�𝑲)𝑒𝑘(𝑖) − ∑ 𝑪𝑖−2
𝑗=0 �̂�𝑖−𝑖−1�̂�𝑲𝑒𝑘(𝑗)  

Or 

(

 

𝑒𝑘+1(0)

𝑒𝑘+1(1)

⋮
𝑒𝑘+1(𝑁 − 1))

 =

(

𝑰 − 𝑪�̂�𝑲 𝟎 … 𝟎
−𝑪�̂��̂�𝑲 𝑰 − 𝑪�̂�𝑲 ⋯ 𝟎

⋮ ⋮ ⋱ ⋮
−𝑪�̂�𝑵−𝟏�̂�𝑲  −𝑪�̂�𝑵−𝟐�̂�𝑲 ⋯ 𝑰 − 𝑪�̂�𝑲

)

(

 

𝑒𝑘(0)

𝑒𝑘(1)

⋮
𝑒𝑘(𝑁 − 1))

   

(33) 

Finally, we have 

 𝑬𝑘+1 = Φ𝑬𝑘   (34) 

With 

𝑬𝑘 =

(

 

𝑒𝑘(0)

𝑒𝑘(1)

⋮
𝑒𝑘(𝑁 − 1))

  và 𝚽 =

 (

𝑰 − 𝑪�̂�𝑲 𝟎 … 𝟎
−𝑪�̂��̂�𝑲 𝑰 − 𝑪�̂�𝑲 ⋯ 𝟎

⋮ ⋮ ⋱ ⋮
−𝑪�̂�𝑵−𝟏�̂�𝑲  −𝑪�̂�𝑵−𝟐�̂�𝑲 ⋯ 𝑰 − 𝑪�̂�𝑲

)  

(35) 

Theorem 2:  For the case where 𝛾𝑘(𝑖) = 0, the condition 

‖𝑒𝑘(𝑖)‖ → 0 for all 𝑖 = 0, 1, … , 𝑁 − 1 will be  met if and only 

if the proportional (P-type) learning parameter K is selected 

such that the matrix 𝜱, as defined in Eq. (35), is Schur. 

Proof: It is well-established that the stability of the 

autonomous system described by Eq. (15) is guaranteed if 

and only if the matrix  𝚽 is Schur, as previously 

demonstrated. 

 Control Algorithm and Quality of the Closed-Loop 

System 

To implement the proposed model-free controller as 

defined in Eq. (14), with 𝜇 and 𝜙 derived from Eq. (30) and 

(24), respectively, the following algorithm is established. In 

this control algorithm, each iteration of the while loop 

represents an experimental cycle, corresponding to a 

repeating time interval 𝑇 of TRMS. This section will 

conclude with a general evaluation of the output tracking 

performance of the closed-loop system, as depicted in Fig.  3, 

under the condition where 𝛾𝑘(𝑖) ≠ 0. 

Theorem 3: If the disturbance vector 𝜏𝑑  is continuous and 

bounded, then the model-free control framework depicted in 

Fig.  2, which incorporates the linearization feedback block 

through the disturbance compensator described in Equations 

(14) and (24) along with the ILC block from Eq (30) will drive  

trajectory tracking error ‖𝑒𝑘(𝑖)‖ of TRMS to a region O 

around the origin. Furthermore, the radius of the attractive 

region O decreases as the sampling interval 𝑇𝑠 becomes 

smaller. 

Proof: Given that 𝜏𝑑 is continuous and bounded, it follows 

that the total disturbance 𝜙 is also continuous and bounded. 

Consequently, 𝛾 is likewise bounded. Let 𝜅 represent the 

upper bound of 𝛾, according to Theorem 1, this upper bound 

can be made arbitrarily small by decreasing 𝑇𝑠. The validity 
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of the correctness of Eq (36) is further supported by Theorem 

2. 

�̇� = 𝑨𝑔 + 𝑩𝜇 với 𝑔 = 𝑣𝑒𝑐( 𝛼, �̇�)  (36) 

Subtracting (36) from (15), we have 

𝜖̇ = 𝑨𝜖 − 𝑩𝛾  with  𝜖 = 𝑣𝑒𝑐( 𝑒, �̇�) (37) 

Since A is a Hurwitz matrix, the Lyapunov equation 𝐀T𝐏 +
𝐏𝐀 = −𝐐, where Q is a positive definite matrix, always has 

a positive definite solution P. Utilizing the positive definite 

function V(ϵ) = ϵT𝐏ϵ, we have 

 �̇� = (𝑨𝜖 − 𝑩𝛿)
𝑇
𝑷𝜖 + 𝜖𝑇𝑷 (𝑨𝜖 − 𝑩𝛾) 

= 𝜖𝑇(𝑨𝑇𝑃 + 𝑷𝑨)𝜖 − 2𝜖𝑇𝑷𝑩𝛾

= −𝜖𝑇𝑸𝜖 − 2𝜖𝑇𝑷𝑩𝛾 

≤ −𝜆𝑚𝑎𝑥(𝑸)‖𝜖2‖ + 2‖𝑷𝑩‖𝜅‖𝜖‖

= ‖𝜖‖[−𝜆𝑚𝑎𝑥(𝑸)‖𝜖‖

+ 2‖𝑷𝑩‖𝜅] 

(38) 

where λmax(𝐐)  denotes the largest eigenvalue of the positive 

definite matrix Q. Since V̇ < 0 whenever. 

2‖𝑷𝑩‖𝜅 < 𝜆𝑚𝑎𝑥(𝑸)‖𝜅‖ hay  
2‖𝑷𝑩‖Δ

𝜆𝑚𝑎𝑥(𝑸)
< ‖𝜅‖ (39) 

The tracking error vector ϵ will converge towards the origin 

and eventually reach the attractive region defined by. 

𝑂 = {𝜖 ∈ 𝑅2𝑛  ⌊‖𝜖‖ ≤
2‖𝑷𝑩‖𝜅

𝜆𝑚𝑎𝑥(𝑸)
}  (40) 

Proof completed. 

IV. SIMUALTION AND EXPERIMENTAL RESULTS 

In this section, we present the simulation and 

experimental results obtained by applying the tracking 

Control using feedback linearization regulator and IL for real 

TRMS with the physical and defined parameters listed in the 

appendix. Simulations were conducted using Matlab-

Simulink R2020 [59]-[62], while experiments were 

performed with Simulink Real-Time and dSPACE 1103 

hardware [56]-[58]. The experimental system utilizes 

additional graphical tools such as LabView running 

concurrently with Simulink Real-Time for data collection and 

plotting. The computer configuration used is a Core i5 with 

16GB of RAM, and all other software is turned off during the 

experiment, with only Simulink Real-Time and LabView 

2021 running. The initial conditions for the pitch and yaw 

angles are kept constant, with a sampling time of 0.01s for 

the inner loop and 0.1s for the outer loop. The friction torques 

for the two channels were determined as follows: 

𝜏𝑓𝑟𝑖𝑐ℎ = 𝑠𝑖𝑔𝑛(�̇�ℎ)(0.03 × |�̇�ℎ|

+ 3 × 10−4)  (𝑁𝑚) 

𝜏𝑓𝑟𝑖𝑐𝑣 = 𝑠𝑖𝑔𝑛(�̇�𝑣)(0.0024 × |�̇�𝑣|

+ 5.69 × 10−4)  (𝑁𝑚) 

(41) 

The cable torque was determined using: 

𝜏𝑐𝑎𝑏𝑙𝑒 = 0.0016 × (𝛼ℎ + 0.0002)  (𝑁𝑚) (42) 

The tracking control algorithm for the TRMS, employing 

feedback linearization and ILC, is generalized as follows. 

Algorithm of tracking control for TRMS by using 

feedback linearization regulator and IL   

1 Initialization: 

Choose 𝚪𝟏, 𝚪𝟐 so that matrix 𝑨 is Hurwitz   

Choose the constant 𝑇𝑠 to be sufficiently small 

Calculate 𝑁 = 𝑇/𝑇𝑠 

Calculate �̂�, �̂� 

Choose the initial value of  �̂� 

Choose matrix K so that matrix 𝚽 is Schur 

2 while not stop do 

3  for 𝑖 = 0,1,2, . . . , 𝑁 do 

4   Send out the control signal 𝜏 = 𝜇 − �̂� to 

TRMS during 𝑇𝑠 

5   Measure 𝑦(𝑖) = 𝜑 = [𝜑ℎ 𝜑𝑣]𝑇 , �̱̇� =

[�̇�ℎ
�̇�

𝑣]
𝑇 

6   Calculate  𝑒𝑘(𝑖) = 𝑦𝑘
𝑟𝑒𝑓(𝑖) − 𝑦𝑘(𝑖) 

7   Calculate  �̂� ← 𝐵𝑇 [
𝒙 −𝒛

𝑇𝑠
− 𝑨𝑧𝑘(𝑖𝑇𝑠)] −

(𝜇𝑘(𝑖𝑇𝑠) − �̂�𝑘((𝑖 − 1)𝑇𝑠))  

8   Set 𝒙 ← 𝑧 

9  end for  

10     Calculate  𝜇𝑘(𝑖), 𝑒𝑘(𝑖) 

11     𝜇𝑘+1(𝑖) ←   𝜇𝑘(𝑖) + 𝑲𝑒𝑘(𝑖) 

12 end while 

To simulate and test the control algorithm, we chose 

square waveforms for the horizontal and vertical desired 

trajectories, with an amplitude of 0.4 𝑟𝑎𝑑, a period of 30 

seconds, and a duty cycle of 50%. The initial values of 𝛼ℎ 

and 𝛼𝑣 are 0.4 𝑟𝑎𝑑 and −0.5 𝑟𝑎𝑑, respectively.  The selected 

trajectories are well-suited to demonstrate the effectiveness 

of the trajectory tracking performance of the controller 

examined in this study. Fig. 4 through Fig. 11 present the 

results from both simulation and experimental tests. 

 
Fig. 4. Responces of horizontal and vertical angles 

Fig. 4 shows the horizontal and vertical angle responses 

of the two cases, comparing the simulation results with the 

experimental results against the desired trajectory. The 

settling time is 10 seconds, and the overshoot is 0%. Fig. 5 

illustrates the error of the experimental trajectory compared 

to the desired trajectory for both angles of TRMS. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 452 

 

Hoang Dang Danh, Tracking Iterative Learning Control of TRMS using Feedback Linearization Model with Input 

Disturbance 

 
Fig. 5. Errors of horizontal and vertical angles 

Fig. 6 shows the total moments acting on the TRMS for 

both horizontal and vertical movements, including moments 

from the propulsive force of the motors, friction force, flat 

cable force, the torque of the gyroscopic, and other forces. 

 
Fig. 6. Sum of the applied torques in both the horizontal and vertical 

directions 

The control forces of horizontal and vertical angles driven 

by feedback linearization regulator and iterative learning are 

depicted in Fig. 7. 

 
Fig. 7. Control signal of tracking controller based on iterative learning 

Fig. 8 illustrates the nonlinear disturbances modeled by 

Eq. (24) affecting the motion of the horizontal and vertical 

angles, compared for both simulation and experimental cases. 

Similarly, Fig. 9 presents input torque disturbances 𝜏𝑑. 

Fig. 10 and Fig. 11 respectively depict the rotor speed and its 

derivative of the vertical rotor and horizontal rotor, compared 

between simulation and experimental results. 

 
Fig. 8. Estimated of nonlinear disturbances modelled by Eq (23) 

 
Fig. 9. The input torque disturbances 

 
Fig. 10. Vertical rotor speed and its derivative 
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Fig. 11. Horizontal rotor speed and its derivative 

The simulation and experimental results demonstrate that 

the trajectory tracking control system for the TRMS achieves 

robustness against disturbances 𝜏𝑑  arising during changes in 

pitch and yaw angles to ensure movement along the desired 

trajectory. At times when the desired trajectory undergoes 

sudden level changes, the trajectory is smoothly adjusted 

without amplitude spikes. This indicates that the IL controller 

appropriately adjusts the gain factor with each sampling 

cycle. 

From the comparison results between the simulations and 

experiments, it is evident that they are consistent with each 

other. These results reflect the accuracy of the proposed 

algorithm in this paper. The compensation unit has calculated 

the deviation between the nonlinear noisy model of TRMS 

(3) and the linear model (15) to correct for this influence. The 

trajectory tracking controller based on IL has computed the 

control signals for the main and tail motors to ensure that the 

    ’s pit h and yaw an les  ollow the desired setpoint. 

V. CONCLUSIONS  

This paper introduced an innovative intelligent control 

strategy for TRMS. The proposed controller features two 

main components: a disturbance compensator operating as a 

model-free feedback linearization regulator and an output 

tracking controller utilizing ILC. The model-free controller 

developed in this study operates independently of the 

traditional Euler-Lagrange model of the TRMS. Instead, it 

relies solely on real-time measurements of horizontal and 

vertical angles, making it both robust and adaptable to 

changing conditions without the need for an explicit dynamic 

model of the TRMS. 

The essence of the proposed method lies in its capacity to 

compensate for disturbances and achieve accurate output 

tracking through adaptive mechanisms inherent in the model-

free framework. The disturbance compensator is specifically 

designed to address uncertainties and matched disturbances, 

thereby ensuring stable and precise control. Concurrently, the 

output tracking controller, derived from the ILC paradigm, 

improves performance by iteratively refining control actions 

based on previous tracking errors. This iterative process 

enhances accuracy and facilitates convergence to desired 

tracking objectives. The advantage of the method mentioned 

in this study lies in its ability to compensate for the nonlinear 

characteristics of the TRMS using a feedback linearization 

controller, where the estimated nonlinear component 

deviations are considered as input disturbances of the linear 

system with known system matrices. Although the 

computational load is quite large compared to other control 

methods, with modern microprocessors, this can be easily 

implemented in commercial systems. Simulation and 

experimental results confirm that the proposed intelligent 

model-free controller demonstrates exceptional adaptive 

performance, consistent with expected outcomes. These 

results validate the controller's effectiveness in managing 

uncertainties and achieving accurate output tracking, 

underscoring its potential for practical applications in 

robotics. 

Our future work is to simplify the determination of the 

feedback linearization controller and the trajectory tracking 

controller using IL to reduce computational load. This will 

further enhance robustness against external influences, such 

as wind blowing on the TRMS from different directions, 

impacting the TRMS. 

VI. APPENDIX 

The physical parameters provided by Feedback 

Instruments Limited (Table I), along with the defined 

parameters of TRMS. 

TABLE I.  THE PHYSICAL PARAMETERS SUPPLIED BY THE FEEDBACK 

INSTRUMENT  

Symbol Quantity Value 

𝑚𝑏 Mass of the counter-weight beam 0.022kg 

𝑚𝑐𝑏 Mass of the counter-weight 0.068kg 

𝑚𝑚 Mass of main part of the beam 0.014kg 

𝑚𝑚𝑟 Mass of the main DC motor 0.236kg 

𝑚𝑚𝑠 Mass of the main shield 0.219kg 

𝑚𝑡 Mass of the tail part of the beam 0.015kg 

𝑚𝑡𝑟 Mass of the tail DC motor 0.221kg 

𝑚𝑡𝑠 Mass of the tail shield 0.119kg 

𝑟𝑚𝑠 Radius of the main shield 0.155m 

𝑟𝑡𝑠 Radius of the tail shield 0.1m 

ℎ Length of the offset between 
base and joint 

0.06m 

𝑔 Gravitational acceleration 9.8m/s2
 

𝑘𝑔 Gyroscopic constant 0.2 

𝑘𝑚 Positive constant 210-4 

𝑘𝑡 Positive constant 2.610-5 

𝑙𝑡 Length of tail part of the beam 0.282m 

𝑙𝑚 Length of main part of the beam 0.246m 

𝑙𝑏 Length of counter-weight beam 0.29m 

𝑙𝑐𝑏 Distance between counterweight 

and joint 

0.276m 

𝑘𝑓ℎ𝑝 Positive constant 1.8410-6 

𝑘𝑓ℎ𝑛 Positive constant 2.210-7 

𝑘𝑓𝑣𝑝 Positive constant 1.6210-5 

𝑘𝑓𝑣𝑛 Positive constant 1.0810-5 

 

The defined parameters of TRMS model: 

𝑚𝑇1
= 𝑚𝑡 + 𝑚𝑡𝑟 + 𝑚𝑡𝑠 + 𝑚𝑚 + 𝑚𝑚𝑟 + 𝑚𝑚𝑠 

𝑚𝑇2
= 𝑚𝑏 + 𝑚𝑐𝑏 

𝑙𝑇1

=
(0.5𝑚𝑚 + 𝑚𝑚𝑟 + 𝑚𝑚𝑠)𝑙𝑚 − (0.5𝑚𝑡 + 𝑚𝑡𝑟 + 𝑚𝑡𝑠)𝑙𝑡

𝑚𝑇1

 

(43) 
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𝑙𝑇2
=

0.5𝑚𝑏𝑙𝑏 + 𝑚𝑐𝑏𝑙𝑐𝑏
𝑚𝑇2

 

𝐽1 = (
𝑚𝑡

3
+ 𝑚𝑡𝑟 + 𝑚𝑡𝑠) 𝑙𝑡

2 + (
𝑚𝑚

3
+ 𝑚𝑚𝑟 + 𝑚𝑚𝑠) 𝑙𝑚

2

+
𝑚𝑚𝑠

2
𝑟𝑚𝑠

2 + 𝑚𝑡𝑠𝑟𝑡𝑟
2  

𝐽2 =
𝑚𝑏

3
𝑙𝑏
2 + 𝑚𝑐𝑏𝑙𝑐𝑏

2 , 𝐽3 =
𝑚ℎ

3
ℎ2 
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