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Abstract—Bipedal robots, designed to replicate human 

locomotion, face significant balance challenges due to instability 

and high degrees of freedom. This study examines dynamical 

models, balance control strategies, and locomotion 

methodologies. Dynamical models are categorized into 

simplified, centroidal dynamics, and whole-body dynamics 

models. Simplified models, such as the Linear Inverted 

Pendulum Model (LIPM), approximate the robot as a point 

mass at the Center of Mass (CoM) but neglect upper-body 

dynamics and complex terrain interactions. Centroidal 

dynamics models incorporate CoM motion, contact forces, and 

angular momentum for improved disturbance rejection but 

require extensive computational resources. Whole-body models 

achieve high fidelity by integrating joint torques and external 

forces but are constrained by computational complexity. 

Balance control methods for standing bipedal robots are 

classified into joint-specific and whole-body approaches. Ankle 

and hip strategies address small perturbations but are 

insufficient for real-world disturbances. Whole-body control 

utilizes all body segments to modulate contact forces and 

regulate momentum, enhancing stability against external 

disturbances, though challenges remain in force modeling and 

state estimation. Locomotion control is divided into model-based 

and learning-based approaches. Model-based strategies include 

LIPM and its extensions-based methods, Zero Moment Point 

(ZMP)-based methods, which ensure dynamic stability by 

maintaining moments within the support polygon; Capture 

Point (CP)-based methods, which predict foot placement to 

prevent falls; and Divergent Component of Motion (DCM)-

based approaches, which adjust footsteps based on CoM 

divergence. While learning-based methods leverage 

Reinforcement Learning (RL) and human motion data for 

adaptive and energy-efficient gait generation. This study 

highlights challenges in energy efficiency, terrain adaptation, 

and scalability, proposing sensor fusion, energy-aware RL 

reward functions, and hierarchical control architectures as 

potential solutions. 

Keywords—Bipedal Robots; Balance Control Strategies; 

Walking Control Methods; ZMP; CoP; LIPM; Push Recovery 

Control. 

I. INTRODUCTION 

Because of their similar structure and capability, bipedal 

robots are expected to execute human-designated 

applications. Unlike robotic arms, which are restricted to a 

fixed workspace, bipedal robots can traverse diverse terrains, 

giving them a significant advantage in real-world 

applications. For instance, in industrial settings, they can 

maneuver through crowded spaces to transport materials or 

perform inspection tasks. In healthcare, they can assist with 

patient mobility, rehabilitation, and caregiving duties. 

Additionally, in search and rescue operations, their ability to 

navigate hazardous environments allows them to locate and 

aid individuals in disaster-stricken areas, making them 

invaluable in emergency response efforts. 

One of the main challenges faced by bipedal robotics is 

their ability to maintain balance while standing and walking 

in the presence of disturbances. The complexity arises from 

the inherent instability of bipedal robotics, which lack a stable 

configuration. Furthermore, the high number of degrees of 

freedom makes it difficult to synchronize and control them in 

order to achieve smooth mobility. Additionally, the dynamics 

of bipedal robots are highly non-linear, resulting in a high 

degree of sensitivity to external disturbances. During the past 

two decades, a substantial number of studies have focused on 

improving the standing stability of bipedal robots, improving 

their interaction with diverse environments and their ability 

to interact with their environment, and ensuring their safe and 

effective locomotion on uneven surfaces. However, existing 

reviews primarily focus on isolated aspects of balance 

control, such as specific control strategies or modeling 

approaches, without providing a comprehensive comparison 

across methodologies. Additionally, a standardized 

evaluation framework is also lacking, making it difficult to 

compare different balance control methods.  

The objective of this paper is to bridge these gaps by 

providing a structure and in-depth review of balance control 

methods for bipedal robots. Initially, we conduct a thorough 

examination of the dynamical models used to represent 

bipedal robotics. This review covers a variety of models, 

ranging from simplified to comprehensive whole-body 

dynamic models. Secondly, we analyze and categorize 

bipedal robots' balance control strategies during 

environmental interactions and while standing into two 

groups: joint control strategies, which utilize specific joints 

such as ankles or hips to maintain equilibrium amid 

perturbations, and whole-body control strategies, which 

calculate the necessary motions throughout the entire robot to 

ensure stability. Third, we explore the various methodologies 

proposed in the literature to regulate bipedal locomotion. We 

categorize these into two groups: model-based walking 

control methods and learning-based walking control methods. 
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Fourth, this review identifies ongoing challenges in the field, 

including adaption to varied terrain, scalability issues, and 

energy consumption. Current bipedal robots struggle with 

stability on slippery or blind terrain, existing control methods 

for small robots do not scale efficiently to larger ones, and the 

energy consumption has not been adequately investigated. 

Lastly, we offer some specific recommendations for future 

research, with the aim of enhancing the practical application 

and development of bipedal robotics. These include using 

infrared or ultrasonic sensors for real-time surface 

classification, applying reinforcement learning to improve 

navigation, developing hierarchical control architectures to 

accommodate large-scale robots by adapting trajectory 

planning without compromising control precision, and 

utilizing techniques like Model Predictive Control to 

prioritize energy efficiency. 

The structure of this paper is meticulously organized to 

facilitate a comprehensive understanding of the subject 

matter, as depicted in Fig. 1. Section 2 delves into the 

dynamical models employed for elucidating the dynamics of 

bipedal robots. Section 3 critically evaluates balance control 

strategies essential for standing robots. Section 4 provides a 

detailed review and classification of walking control 

methodologies, distinguishing between model-based and 

learning-based approaches. Section 5 discusses the prevailing 

challenges within the field and offers pertinent 

recommendations for future research. The paper concludes 

with Section 6, which synthesizes the findings and 

implications of the study. 

II. DYNAMICAL MODELING OF BIPEDAL ROBOTS 

Several dynamical models have been suggested for 

describing bipedal robot behavior in both standing and 

walking scenarios. This section provides a comprehensive 

examination of simplified models, such as the Linear Inverted 

Pendulum Model (LIPM) and its extensions, as well as more 

complex and accurate models, such as centroidal dynamics 

and whole-body dynamics. 

A. Linear Inverted Pendulum Model (LIPM) 

The LIPM simplifies the analysis of a bipedal robot, 

consisting of multiple rigid bodies, by treating it as a single 

mass located at the Center of Mass (CoM). Additionally, a leg 

with no mass connects the CoM to the Center of Pressure 

(CoP). LIPM also assumes that the CoM's height is constant 

during motion (see Fig. 2 (a)). This assumption simplifies the 

process of developing control algorithms and analyzing 

stability. However, it fails to account for dynamic behaviors 

such as running, jumping, or walking on uneven terrain, 

which necessitate vertical movement of the CoM. To 

guarantee high processing efficiency, the LIPM neglects the 

angular momentum generated by the CoM. Initially, [1], [2] 

introduced the LIPM as a method for generating a stable 

walking pattern for bipedal robots. The dynamics of the LIPM 

in the sagittal plane (𝑥 − 𝑧 plane) can be described by a 

simple linear differential equation as follows: 

�̈�𝐶𝑜𝑀 =
𝑔

𝑧𝐶𝑜𝑀

𝑥𝐶𝑜𝑀  (1) 

Where 𝑥𝐶𝑜𝑀  is the horizontal displacement of the CoM, 𝑔 

is the gravitational acceleration, and 𝑧𝐶𝑜𝑀  is the CoM’s 

height. 

Other simplified dynamical models have been 

proposed to enhance the original LIPM and provide it with 

additional characteristics and capabilities. The following is 

a summary of these models, with a particular focus on their 

distinctions from the LIPM. 

1) Linear Inverted Pendulum Model with Flywheel LIPM-

FW) 

The LIPM-FW is an enhanced version of the original 

LIPM that dynamically adjusts the robot’s angular 

momentum by incorporating a flywheel [3] (see Fig. 2 (b)). 

This model is useful for preserving balance while standing or 

walking on uneven terrain due to the flywheel’s response to 

disturbances. 

2) Spring-Loaded Inverted Pendulum (SLIP) Model 

The SLIP model improves the simple inverted pendulum 

model by representing the legs as massless, elastic springs [4] 

(see Fig. 2 (c)). As a result of the spring's compression and 

extension during the stance phase, this model is capable of 

simulating dynamic motions, including running and walking. 

3) Variable Height Inverted Pendulum (VHIP) Model 

The VHIP model expands upon the LIPM by allowing the 

pendulum’s height to change (see Fig. 2 (d)) [5], [6]. This 

model is beneficial for locomotion tasks that necessitate an 

adjustment of the CoM’s vertical position, such as stair 

climbing. 

4) Hybrid-Linear Inverted Pendulum Model (H-LIPM) 

The H-LIPM enhances the original LIPM by describing 

the robot’s dynamics for both single and double support 

phases [7]. The H-LIPM uses the same LIPM dynamics for 

single support phase; however, it assumes that the robot’s 

CoM maintains a constant velocity (�̈�𝐶𝑜𝑀 = 0) during the 

double support phase. This model is more accurate than LIPM 

in capturing the transition between phases, which leads to a 

more natural locomotion. 

5) Reaction Mass Pendulum (RMP) Model 

The RMP model expands upon the LIPM by incorporating 

an ellipsoidal reaction mass to determine the whole body’s 

generalized inertia projected at the CoM [8], [9] (Fig. 2 (e)). 

The centroidal moment of inertia, which is the result of limb 

movements, causes the ellipsoidal reaction mass to undergo 

changes in shape, size, and orientation. The RMP model is 

implemented to evaluate a bipedal robot's ability to maintain 

stability in the presence of disturbances, as it determines the 

robot's CoM and its interactions with the ground. 

6) Virtual-Mass-Ellipsoid Inverted Pendulum (VIP) Model 

In [10], the authors proposed the VIP model to remove 

both the constant CoM height constraint and the constant 

centroidal angular momentum constraint. The model has a 

variable ellipsoid mass at the CoM, and a telescopic leg 

connecting the pivot point (CoP) and the CoM (see Fig. 2 (f)). 

In contrast to the RMP model, which encompasses the 

dynamics of both the robot and the reaction mass and includes 

multiple degrees of freedom, the VIP model simplifies to 

fewer degrees of freedom, concentrating on the rotational 
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dynamics of a virtual mass. This simplifies the VIP model and 

facilitates its analysis; however, it may not effectively 

represent the impact of actual physical masses on the system's 

behavior [11]. 

B. Centroidal Dynamic Model 

The centroidal dynamic model describes the relationship 

between the angular momentum, forces, and the CoM’s 

motion. It is necessary to control the CoM’s motion, which 

includes position and velocity, to ensure stability of a bipedal 

robot that is either standing or walking and is subjected to 

external forces (such as ground reactions forces or pushing 

forces). The centroidal dynamic model achieves stability by 

regulating angular momentum around the CoM and 

generating opposing forces through the robot’s actuators. The 

CoM dynamic equation of bipedal robots can be formulated 

as (2).

 

Fig. 1. The paper’s structure 

 

Fig. 2. Simplified models: (a) LIPM, (b) LIPM-FW, (c) SLIP model, (d) VHIP model, (e) RMP model, and (f) VIP model
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[
𝐴𝐶𝑜𝑀,1

𝐴𝐶𝑜𝑀,2
] 𝐹𝐶𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑏𝐶𝑜𝑀 (2) 

Where 

𝐴𝐶𝑜𝑀,1 = [𝐼3×3 𝐼3×3 03×3 03×3] (3) 

𝐴𝐶𝑜𝑀,2 = [(𝑝𝑅 − 𝑐) (𝑝𝐿 − 𝑐) 𝐼3×3 𝐼3×3] (4) 

𝐹𝐶𝑜𝑛𝑡𝑎𝑐𝑡 = [

𝐹𝑅

𝐹𝐿

𝑀𝑅

𝑀𝐿

] (5) 

𝑏𝐶𝑜𝑀 = [
𝑚(𝑔 + �̈�)

�̇�
] (6) 

𝑝 is the position of the foot, 𝐹 is the foot contact force, 𝑀 is 

the foot contact moment, 𝐻 is the CoM angular momentum, 

𝑐 is the position of the CoM. The subscript 𝐿 represents the 

Left foot and 𝑅 represents the Right foot [12]. 

C. Whole-Body Dynamic Model (WBDM) 

The whole-body dynamics of a floating base bipedal 

robot, which involve calculating the robot's dynamic behavior 

and balance by considering joint torques, CoM, and external 

forces, are computed using Roy Featherstone's algorithm 

[13].  

The whole-body dynamics equation of general biped 

robots is: 

𝑀(𝑞)�̈� + 𝑁(𝑞, �̇�) = 𝐵𝜏𝑞 + 𝐽(𝑞)𝑇𝐹𝑓 (7) 

where 𝑞 ∈ 𝑅𝑛+6 is generalized coordinates (𝑞 = [𝑞𝑏𝑎𝑠𝑒 ,
𝑞𝑗𝑜𝑖𝑛𝑡𝑠]), 𝑞𝑏𝑎𝑠𝑒 = [𝑥, 𝑦, 𝑧, ∅, 𝜃, 𝜑] representing the position 

and orientation of the robot’s base, 𝑀(𝑞) ∈ 𝑅(𝑛+6)×(𝑛+6) is 

the rigid body dynamic inertial matrix, 𝑁(𝑞, �̇�) ∈ 𝑅𝑛+6 is the 

generalized force vector of all modeled forces including 

coriolis force, centrifugal force and gravity, 𝜏𝑞 ∈ 𝑅𝑛 is the 

driving torque vector, 𝐵 = [0𝑛×6 𝐼𝑛×𝑛] is select matrix, 

𝐼𝑛×𝑛 is 𝑛-dimensional identity matrix, 𝐽(𝑞) ∈ 𝑅𝑘×(𝑛+6) is 

force Jacobian matrix, 𝐹𝑓 ∈ 𝑅𝑘 is foot contact force, 𝑛 is the 

number of joints of the robot [12]. 

This model is crucial for planning and controlling 

complex, coordinated movements in bipedal robots, such as 

walking, running, and performing tasks that require precise 

manipulation. 

Table I shows the comparison between the dynamical 

models, including their computational complexity, accuracy, 

applicability, advantages, and limitations. 

III. KEY CONCEPTS IN BIPEDAL ROBOT STABILITY AND 

CONTROL 

This section provides a concise overview of four stability 

metrics, including the Zero Moment Point (ZMP), Center of 

Pressure (CoP), Centroidal Moment Pivot (CMP), and 

Capture Point (CP). 

A. Zero Moment Point (ZMP) 

The ZMP is the point on the ground where the total 

horizontal inertia force and gravity force have zero moment 

[14]-[17]. The ZMP equation for the multi-body model is 

available in [17], and for a simplified inverted pendulum 

model is: 

𝑥𝑍𝑀𝑃 = 𝑥𝐶𝑜𝑀 −
𝑧𝐶𝑜𝑀

𝑔
�̈�𝐶𝑜𝑀 (8) 

𝑦𝑍𝑀𝑃 = 𝑦𝐶𝑜𝑀 −
𝑧𝐶𝑜𝑀

𝑔
�̈�𝐶𝑜𝑀 (9) 

where 𝑥𝑍𝑀𝑃 and 𝑦𝑍𝑀𝑃  represent the ZMP position in 𝑥 and 

𝑦 axis, respectively.  

The ZMP is primarily utilized as a stability metric to 

guarantee that the bipedal robot remains stable, with the ZMP 

kept within the boundaries of the foot support region. 

B. Center of Pressure (CoP) 

The CoP is the point on the support surface where the total 

sum of the vertical reaction forces acts. Ankle joints can be 

equipped with force/torque sensors to measure ground 

reaction forces and torques. These measurements are used to 

determine the position of the CoP as follows: 

𝑥𝐶𝑜𝑃 =
𝜏𝐿𝑦  +  𝑝𝐿𝑧 𝑓𝐿𝑧  +  𝜏𝑅𝑦  +   𝑝𝑅𝑧 𝑓𝑅𝑧 

𝑓𝐿𝑥 + 𝑓𝑅𝑥

 (10) 

𝑦𝐶𝑜𝑃 =
𝜏𝐿𝑧  +  𝑝𝐿𝑧 𝑓𝐿𝑦  +  𝜏𝑅𝑧  +   𝑝𝑅𝑦 𝑓𝑅𝑦 

𝑓𝐿𝑥 + 𝑓𝑅𝑥

 (11) 

where 𝑓𝐿= [𝑓𝐿𝑥, 𝑓𝐿𝑦, 𝑓𝐿𝑧] and 𝜏𝐿=[𝜏𝐿𝑥, 𝜏𝐿𝑦, 𝜏𝐿𝑧] represent the 

forces and torques measured by the left ankle sensor located 

at position  𝑝𝐿=[ 𝑝𝐿𝑥,  𝑝𝐿𝑦 ,  𝑝𝐿𝑧]. Similarly, 𝑓𝐿=[𝑓𝐿𝑥, 𝑓𝐿𝑦, 𝑓𝐿𝑧] 

and 𝜏𝑅=[𝜏𝑅𝑥, 𝜏𝑅𝑦, 𝜏𝐿𝑅𝑧] are the forces and torques measured 

by the right ankle sensor located at position  𝑝𝑅=[ 𝑝𝑅𝑥, 

 𝑝𝑅𝑦 ,  𝑝𝑅𝑧] [18]. 

The CoP is commonly used to analyze balance in both 

static and dynamic scenarios in bipedal robotics, providing a 

direct measure of how and where ground reaction forces are 

distributed under the feet. It is worth mentioning that when 

the bipedal robot is standing still with no external 

disturbances or accelerations (inertial effects are minimal), 

the ZMP and CoP coincide inside the support polygon. 

TABLE I.  COMPARISON OF DYNAMICAL MODELS 

Model 
Computational 

Complexity 
Accuracy Applicability Limitations 

LIPM Low Moderate for flat terrain Simple tasks, flat terrain Limited to flat terrain, ignores upper body dynamics 

LIPM 

Extensions 
Moderate High for uneven terrain 

Dynamic tasks, uneven 

terrain 
Increased complexity 

Centroidal 
Dynamics 

High High 
Complex tasks requiring 

momentum control 
Computationally expensive, required detailed 

system parameters 

Whole-Body 

Dynamics 
Very high Very High 

Highly dynamic tasks, 

precise control 

Extremely complex, requires significant 

computational resources and accurate models 
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C. Centroidal Moment Pivot (CMP) 

The CMP denotes the point at which the ground reaction 

force vector must act so as to produce no torque about the 

CoM [19]. As a result, the rate of change of angular 

momentum is strongly correlated with the distance between 

CMP and ZMP. When the moment about the CoM is zero, the 

CMP coincides with the ZMP. However, when the CoM 

moment is nonzero, the extent of separation between the CMP 

and ZMP is equal to the magnitude of the horizontal 

component of the moment about the CoM, divided by the 

normal component of the ground reaction force. The CMP 

position in 𝑥 axis is given by: 

𝑥𝐶𝑀𝑃 = 𝑥𝑍𝑀𝑃 −
�̇�𝐶𝑜𝑀

𝑚𝑔
 (12) 

where �̇�𝐶𝑜𝑀 is the rate of change of angular momentum about 

the CoM. 

The CMP is useful in dynamic scenarios where angular 

momentum plays a significant role, such as in high-speed 

walking, or when the upper body is actively moving.  

D. Capture Point (CP) 

The CP is the point on the ground where the robot must 

step to maintain balance, considering its current state of 

motion. [20] first derived the CP based on orbital energy 

concept and using simplified inverted pendulum model as 

follows: 

𝑥𝐶𝑃 = 𝑥𝐶𝑜𝑀 −
�̇�𝐶𝑜𝑀

√
𝑔

𝑧𝐶𝑜𝑀

 
(13) 

where 𝑥𝐶𝑃 is the capture point. 

The CP plays a vital role in emergency situations, 

particularly when the robot encounters an abrupt external 

impact. Through the process of determining the CP, the 

control system is capable of making precise adjustments to 

the robot's step, so restoring its stability. 

To provide a clear understanding of the interrelationships 

between the stability metrics, Table II provides their 

definitions, strengths, weakness, and applications. This 

comparison highlights how each metric contributes to 

stability control in bipedal robots and underscores the 

importance of selecting appropriate metric based on the 

specific task and environments.  

IV. BALANCE CONTROL TECHNIQUES FOR STANDING 

BIPEDAL ROBOTS 

This section examines and discusses a variety of balance 

control techniques for standing bipedal robots. These 

methods can be classified into two groups: those that rely 

solely on specific joints, such as the ankles or hips, and those 

that employ the entire body, including the legs and arms and 

legs, to maintain standing stability. 

A. Joint Control Techniques for Standing Stability: Ankle 

and Hip 

Biomechanical studies have revealed that humans usually 

tend to use either their ankle or hip joints to maintain standing 

stability in the presence of external disturbances [21]. Several 

studies have utilized this bio-inspired behavior to allow 

bipedal robots to prevent falling when experiencing pushing 

forces. The ankle strategy involves utilizing only the ankle 

joints to generate an opposing force that brings the body into 

an upright posture, with the CoM positioned within the area 

of support (see Fig. 3 (a)). Given that only the ankle joint is 

in motion, the LIPM can be employed to examine this 

particular strategy [22]. The strategy's limitation is its ability 

to only control relatively minor disturbances, as the torque 

generated at the ankle joint influences the ZMP/CoP's 

position, which is restricted to the foot's geometry. The hip 

method is capable of effectively managing more disturbances 

compared to the ankle strategy through rapid rotation of the 

hip joints in response to the presence of disturbances (see Fig. 

3 (b)). 

 

Fig. 3. (a) ankle strategy, (b) hip strategy [23]  

The hip joint's rotation is critical for creating angular 

momentum around the CoM, which in turn increases ground 

reaction forces while keeping the CoP within the stability 

region [24]. In order to evaluate this strategy, the LIPM-FW 

can be used. 

TABLE II.  COMPARISON OF STABILITY METRICS FOR BIPEDAL ROBOTS

Metric Description Strengths Weaknesses Applications 

ZMP 
Point where the net moment of 

inertia equals zero 

Simple to compute, widely used in 

static and dynamic walking 

Assume flat ground, less effective for 

highly dynamic motions 

Static balance, trajectory 

planning for flat terrain 

CoP 
Point where the resultant 

ground reaction 

Directly measurable, useful for 

real-time feedback 

Sensitive to noise, limited to contact 

points 

Real-time stability 

monitoring 

CMP 

point where the ground reaction 

force aligns with the centroidal 
moment 

Captures rotational dynamics, 

useful for dynamic balance 

Computationally intensive, requires 

accurate system modeling 

Dynamic motions, such as 

running or jumping 

CP 
Point where the robot can step 

to regain balance 
Effective for fall prevention 

Requires precise foot placement, 

limited to specific recovery scenarios 

Fall prevention, reactive 

balance control 
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In ref. [25], [26] suggest an adaptive ankle impedance 

model that incorporates a damper, spring, and mass to 

preserve standing stability. The desired ankle joint torque is 

determined by combining the torque derived from the LIPM 

dynamics and the torque computed from the impedance 

model. The impedance gains are dynamically modified in 

[25] using the experience-based fuzzy rule interpolation 

approach in accordance with the angular position and velocity 

of the ankle joint. In [26], the authors employ an artificial 

muscle activation model to adjust the impedance gains. [27] 

suggests three distinct hip techniques to simultaneously 

manage standing balance and body posture when facing 

various push force locations. The first approach is the 

Symmetrical Bang-Bang (STB) control, which maintains the 

CoM's location while keeping the upright posture unchanged. 

This method is effective when the applied force passes 

directly through the CoM, resulting in only horizontal motion 

without any impact on the upright posture. Asymmetrical 

Bang-Bang (ATB) control is a secondary technique that 

corrects posture errors without affecting the CoM's motion. 

Applying an external torque to the CoM causes a change in 

posture without affecting horizontal motion, making this 

method effective. Universal Bang-Bang (UTB) control is 

employed to effectively regulate both the movements of the 

CoM and maintain an upright posture. The simulation results 

of a simpler two-link robot, with a mass concentrated at the 

hip joint, demonstrate the efficacy of maintaining standing 

stability. 

The ankle and hip strategies are integrated in [28] to 

maintain standing balance, with emphasis on using three 

specific forms of torques: feed-bias torque, stiffness torque, 

and intermittent feedback torque. The feed-bias torque 

counteracts the joint torques caused by gravity, while the 

stiffness torques represent the viscoelastic characteristics of 

the muscles in the joints. The intermittent feedback torques 

are calculated using sensor data and are only engaged upon 

detection of a disturbance to guarantee efficient and 

responsive corrections. In [29], a balance control framework 

is proposed that determines the most effective strategies (e.g., 

ankle or hip) based on the external force’s magnitude. A 

Virtual Model Control (VMC) is implemented for the ankle 

strategy to generate the necessary horizontal force to return 

the robot to its initial configuration. This VMC includes a 

virtual spring and damper that are attached to the CoM. A 

Proportional-Derivative (PD) controller, coupled LIPM-FW, 

is designed to create the necessary hip rotation for mitigating 

disturbances. 

In [22] controls both ankle and hip joints to limit the ZMP 

position to be within the support polygon. An integral control 

algorithm is designed to minimize the error between the 

desired ZMP and actual ZMP. In [30], a PD controller is 

employed to modify the robot's upper posture in order to 

counteract disturbances and shift the ZMP towards the zero 

position by manipulating the angular position of the ankle 

joint. A simple change of variables is used to define an 

augmented CoM in [31]. The augmented CoM is unaffected 

by the angular accelerations of the upper body and follows 

the dynamics of LIPM. This results in preserving of standing 

balance by rotating the upper body using the hip joint and 

translating the CoM using the ankle joint, all while 

maintaining the ZMP's position. To determine the most 

effective strategy, the study in [32] presents a partition-aware 

push recovery controller. This controller observes the robot’s 

CoM state to decide between using ankle strategies for swift 

adjustments and hip strategies for enhanced stability, 

optimizing the robot’s reaction to perturbations. 

B. Whole-Body Control for Standing Stability 

Whole-body balance control, as illustrated in Fig. 4, 

maintains standing balance by moving all body parts, 

including the arms, legs, and head, rather than relying solely 

on specific joints, such as the ankles or hips. Two types of 

whole-body balance control techniques include force control 

strategies and momentum control strategies. Momentum 

control techniques address the regulation of a robot's linear 

and angular momentum to maintain balance, whereas force 

control techniques concentrate on modulating joint torques 

and contact forces to ensure standing stability. 

 

Fig. 4. Whole-body balance control for standing robot [37] 

A convex formulation of Model Hierarchy Predictive 

Control (MHPC), which was initially proposed in [33], is 

employed in [34] to effectively maintain standing balance and 

execute dynamic motions. In order to decrease computational 

costs and enhance model accuracy, MHPC incorporates 

whole-body dynamics in the short horizon and simplified 

dynamics in the long horizon, as described in Fig. 5. The 

control problem is formulated as quadratic programming to 

optimize the joint torques and contact forces, ensuring that 

the constraints of feasibility and stability are satisfied. In [35], 

Dynamic Balance Force Control (DBFC) is introduced, 

which calculates the whole body's torques that enable a 

humanoid robot to execute various tasks while maintaining its 

balance and handling external disturbances. The optimal 

contact forces required to accomplish the desired CoM 

position and velocity are determined by employing centroidal 

dynamics in a constrained optimization problem. 

Additionally, VMC is implemented to account for non-

contact forces that are essential for posture control.  [36 ]  

creates a balancing control system to stabilize the CoM's 

position and the trunk's orientation in a compliant manner. 

The necessary wrench (force and torque) needed to achieve 

balance is calculated and then distributed as forces at 

predetermined locations. A multi-objective constrained 
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problem is formulated to distribute the force while 

minimizing the joint torques and Euclidean norm of the 

contact forces. 

 

Fig. 5. MHPC incorporates full-body dynamics in the short horizon and 

simplified dynamics in the long horizon [34] 

Integrating a Force/Torque (F/T) sensor onto small or 

inexpensive robots is challenging due to its high cost and 

large size. Hence, the researchers in [12] develop an external 

force observer that employs centroidal dynamics to precisely 

measure the external forces exerted on the robot. 

Subsequently, the foot contact force is used to counterbalance 

the estimated external forces through the implementation of 

whole-body torque control. In [38], a control algorithm for 

force-position balance is developed to ensure standing 

stability while subjected to external pushing forces or 

standing on slopes with variable inclinations. A quadratic 

programming optimization problem is formulated to 

determine the optimal forces and moments exerted by the foot 

in order to achieve both the desired ZMP and the necessary 

vertical force.  

In [39] introduces the resolved momentum control, which 

generates the whole-body motion of a humanoid robot to 

maintain standing stability based on the desired linear and 

angular momenta. In resolved momentum control, the inertia 

matrix is derived to represent the relationship between joint 

velocities and momenta, with the desired linear momentum 

specified in terms of CoM position and velocity through a PD 

controller, while the angular momentum is assumed to be 

zero. In [40], the required joint accelerations, which 

correspond to the desired rate of momentum changes, are 

obtained by computing the time derivative of the inertia 

matrix presented in [39]  and using Moore-Penrose pseudo-

inverse. The desired change in angular momentum over time 

is defined as the difference between the positions of the CoP 

and the CoM. In  [41], a multi-objective optimization problem 

is developed to obtain the joint accelerations required to 

accomplish the desired momenta and track the reference 

motion. The inverse dynamics is then used in [41] to calculate 

the whole-body joint torques by inputting the optimal joint 

accelerations with ground reaction forces. Instead of 

employing linear proportional control for linear momentum, 

in [42] a variable power reaching law for sliding mode control 

is developed and evaluated to robustly regulate linear 

momentum. The desired rate of change of angular momentum 

is defined in terms of the ground reaction forces, CoP, and the 

desired rate of change of linear momentum. Additionally, in 

[42], a bipedal robot name HURON efficiently handles 

multiple successive forces by using the null-space method to 

execute both posture recovery control and momentum control 

simultaneously.  

A new momentum-based balancing control method is 

introduced in [43], which uses the admissible values of 

momenta rate of change. The permissible ground reaction 

force, which guarantees the friction limit to prevent slipping, 

and the permissible CoP, which assures that the CoP position 

is within the robot's support ground, are initially calculated. 

Afterwards, the admissible values of ground reaction force 

and CoP are used to recalculate the acceptable rate of change 

of momentum (see Fig. 6). The Centroidal Momentum Matrix 

(CMM) is then used to compute the necessary joint 

accelerations based on the desired momenta. [33] introduces 

a novel push recovery method for humanoid robots, which 

uses the rotational dynamics of the system. The algorithm 

initiates by computing the Centroidal Angular Momentum 

(CAM) reference in real-time, utilizing the magnitude and 

direction of the pushing forces. Subsequently, a quadratic 

optimization problem is formulated, incorporating the CAM 

reference as an input. This problem aims to generate feasible 

whole-body motion by optimizing the adjusted velocities, 

including the linear velocity of the CoM, the angular velocity 

of the hip, and the translational and rotational velocities of the 

right and left foot. The final torque required for the robot's 

desired motion is determined using the passivity-based 

whole-body controller provided in [37], [44], [45] in the last 

stage. The experiments demonstrate the humanoid robot's 

potential to maintain balance and prevent falling when 

standing on either one or two legs. 

Our analysis of whole-body control methods indicates 

that force-based approaches effectively stabilize bipedal 

robots by managing joint torques and contact forces. 

However, these methods demand accurate force modeling 

and can be computationally intensive. In contrast, 

momentum-based approaches regulate robot motion by 

controlling linear and angular momentum, enhancing 

adaptability to dynamic disturbances. Yet, their real-time 

implementation remains challenging due to the complexity of 

state estimation and control computations. 

 

Fig. 6. The admissible momentum-based balance control system [43] 

V. WALKING CONTROL METHODS FOR BIPEDAL 

ROBOTS 

A. Model-Based Walking Control Methods 

We examine several model-based walking control 

methods and categorize them into four groups: (1) LIPM and 

its extensions-based walking control methods; (2) CP-based 

walking control methods; (3) Divergent Component of 

Motion (DCM)-based walking control methods; and (4) 

ZMP-based walking control methods. 

1) LIPM and its Extensions-Based Walking Control Methods 

The 3D-LIPM model was originally used by the authors 

of [2] to describe the dynamics of a biped robot during the 
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Single Support Phase (SSP) and to generate a walking pattern. 

The work presented in [2] is enhanced by [46] through the 

integration of the robot's dynamics during the Double Support 

Phase (DSP). This integration enables a smooth transition 

between various gait types, such as standing to walking, 

stopping walking, and speed switching. [47] improves 

walking stability and energy efficiency by analyzing the 

potential energy variations of LIPM in respect to different 

foot positions and CoM trajectories.  

Walking patterns developed using LIPM are only suitable 

for flat terrain. Therefore, it is crucial to modify foot 

placements or to enhance the dynamics of the LIPM to ensure 

adaptability on uneven terrains. [48] uses the LIPM-based 

walking pattern generator presented in [49] for regular 

walking without any external pushing force. Once the push 

happens, [48] proposes switching to a push recovery walking 

generator, which is composed of an acceleration phase (when 

the velocity of the CoM increases) and a deceleration phase 

(when the velocity of the CoM decreases). The transition 

between phases occurs when the leg is landed promptly, 

which prevents further acceleration of the CoM and leads to 

the creation of a new CoM and foot positions. [50] suggests a 

novel dynamical model, the Virtual Force Linear Inverted 

Pendulum Model (VFLIPM), that allows a bipedal robot to 

modify its locomotion pattern parameters in response to 

external disturbances.  To modify the VFLIPM parameters, 

such as the step length, lean angle, and virtual mass, a fuzzy 

controller is developed after the push is detected by 

measuring the deviation between the natural ZMP reference 

presented in [51], [52] and the actual ZMP. 

Numerous studies use the SLIP model, which extends the 

LIPM by representing the legs as springs, to develop walking 

patterns for bipedal robots. Modeling the legs as springs 

allows the robot to walk naturally like a human and execute 

other dynamic tasks like hopping and running. Prior to [4], 

researchers assumed that the SLIP model only applied to 

running. In [4], the authors highlight the significance of 

incorporating a compliant spring to obtain the basic walking 

mechanics. This indicates that the SLIP model produces a 

more natural walking pattern than other simplified models, 

such as the LIPM. In [53], a 3D dual-SLIP with bio-inspired 

leg actuation is used to produce locomotion that closely 

resembles human walking. The capability to achieve stable 

walking on uneven terrain has been enhanced through the 

implementation of an optimization formulation [54]. The foot 

placements and CoM trajectory are updated to create human-

like walking over uneven terrain through the multiple-

shooting optimization [54]. In [55], the 3D dual-SLIP model 

with an updated swing leg trajectory adjusted to the terrain is 

proposed for the purpose of navigating blind terrain in the 

absence of perception. The swing leg trajectory retracts and 

extends towards the final stage of the swing phase, an action 

that exhibits human-like characteristics when walking in 

blind terrain. Several extensions of the classical SLIP model 

have been proposed to accommodate a broader range of 

environmental conditions as described in Table III.  

2) Capture Point (CP)-Based Walking Control Methods 

As previously stated in section 3.4, the CP is the point on 

the ground at which the robot must step to achieve a complete 

stop, considering its current motion state [56]. While the CP 

provides a one-step solution for instant stability, N-step 

capturability takes this concept a step further by estimating if 

a bipedal robot can achieve balance by performing a sequence 

of N steps. Theoretical analysis of N-step capturability is 

performed on three distinct dynamic models: LIPM with a 

point foot, LIPM with a finite size foot, and a reaction mass 

in [20]. 

TABLE III.  EXTENSIONS OF THE CLASSICAL SLIP MODEL 

Model Description 

SLIP model with 

variable leg stiffness 
(V-SLIP) [57] 

This model has the ability to efficiently 

handle external disturbances while walking 
by adjusting the stiffness of the legs 

SLIP model with 

Swing Legs (SLIP-SL) 

[58] 

This model enhances the SLIP model by 
adding the dynamics of the passive swing leg 

Bipedal Trunk SLIP 

(BTSLIP)  [59] 

This model incorporates a trunk to the 

classical SLIP model to accurately depict the 

dynamics of the upper body 

decoupled actuated 

SLIP (aSLIP) [60] 

This model incorporates a virtual linear 
actuator into the SLIP model to 

independently modify the walking dynamics 
without affecting the spring system 

Variable SLIP with 

Finite-Size Foot 

(VSLIP-FF) [61] 

This model incorporates the contribution of 
the ankle joint in the walking dynamics 

Flywheel SLIP 

(FSLIP) [62] 

Flywheel is added to capture the centroidal 

angular dynamics 

 

In [63] develops real-time CP trajectory optimization to 

stabilize dynamic walking in bipedal robots. By optimizing 

the CP trajectory, the control input keeps the ZMP near the 

center of the support polygon, thereby preventing the robot 

from falling while performing dynamic movements like 

sudden stop and fast walking. [64] improves the work 

presented in [63] by optimizing both CP and CoM trajectories 

in real-time. This results in better ZMP control and reduced 

errors in CP tracking, enabling the robot to walk stably even 

with reduced foot size and under dynamic walking 

commands. In [65], a push recovery control system that 

integrates a CoM angular momentum controller and a 

steeping controller is created. First, the CP concept [62] is 

implemented to determine the required foot position to 

preserve walking balance. Then, the CoM trajectory is 

modified using the gait dataset in accordance with the desired 

foot step. The CMP criterion is employed in [65] to regulate 

the angular momentum around the CoM, thereby producing a 

natural and robust walking motion. 

In [66] proposes the implementation of walking balance 

control, which involves the modification of landing position 

and timing based on capturability. First, the authors generate 

the walking pattern using the foot-guided agile control 

proposed in [67]. Subsequently, they employ the CP to adjust 

the landing position and timing in accordance with the 

magnitude and direction of the perturbation. The concept of 

CP is also employed in [66] to detect falling, which is crucial 

for allowing sufficient time to transition to the fall pose. The 

authors of [5] extend the analysis of capturability from the 

LIPM to the Variable-Height Inverted Pendulum (VHIP) 

model. By eliminating the constraint of a constant CoM 

height, this addition facilitates the development of walking 

patterns on uneven terrains. [11] enhances CP stability for 

bipedal walking by incorporating the angular momentum 
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control through a Virtual-mass ellipsoid Inverted Pendulum 

(VIP) model. This model eliminates the constraints of 

constant CoM height and constant centroidal angular 

momentum present in the classical LIPM. The proposed 

method in [11] optimizes the CP trajectory and incorporates 

real-time adjustments in angular momentum to maintain 

stability, even on uneven terrains and under disturbances.  

3) Divergent Component of Motion (DCM)-Based Walking 

Control Methods 

The dynamics of the LIPM consists of two components: 

one that is stable and another that is unstable. The DCM is an 

extension of the LIPM that specifically deals with the 

unstable part of the CoM motion in order to produce a stable 

walking pattern [68], [69]. The DCM is expressed based on 

the current state of CoM (position and velocity), and it reflects 

the part of motion that diverges from the support point and 

must be regulated in order to maintain stability. Therefore, it 

provides a prediction of the future position of the CoM, which 

is valuable for determining foot placement and timing. [70], 

[71] use a QP-based trajectory optimization which aims to 

compute the next foot location and timing by minimizing the 

deviation between the desired DCM and the actual DCM at 

end of the step. [72] suggests an online planning method for 

bipedal walking trajectories using DCM. The first step 

planner generates the nominal location and timing of the 

footstep, which are then used as inputs for the DCM planner. 

The DCM planner generates the nominal DCM trajectory and 

foot position. The step adapter module integrates nominal 

values (foot and DCM trajectories) with measurements 

(actual DCM) to evaluate the adapted feet trajectories, 

footstep position, and time. 

4) ZMP-Based Walking Control Methods 

ZMP is primarily used in bipedal locomotion to ensure 

that dynamic motions like walking are stable, with the ZMP 

kept within the foot support region. There are numerous 

studies that generate bipedal walking patterns to satisfy the 

ZMP reference trajectory. The preview control of ZMP is 

employed to generate a bipedal walking pattern [73]. The 

ZMP reference trajectory is supposed to be placed in the 

middle of the support foot during the Single Support Phase 

(SSP), and a cubic spline is developed to ensure smooth 

transitions during the Double Support Phase (DSP). The 

preview control in [73] is derived from the concept of preview 

optimization control, which was introduced in [74]. It is 

designed to find the ZMP reference for N steps in the future 

at each time step. A control action is calculated and inputted 

into a cart-table model to generate the desired CoM trajectory, 

based on the ZMP error. [75] enhances the preview control of 

ZMP by shifting the ZMP reference trajectory backward 

(behind the foot) instead of defining it to be in the midpoint 

of the support foot. The acceleration of the CoM trajectory 

generated is reduced as a result of the modification in ZMP. 

[76] improves the preview control of ZMP by incorporating a 

push recovery generator which adjusts the swing leg 

trajectory and trunk flexion to counteract the momentum 

generated by the pushing force. It is important to note that the 

preview control of ZMP in [73] can only produce a walking 

pattern with a constant CoM height. Conversely, [77] 

implements a preview control framework that utilizes the 

virtual plane method to produce a walking pattern with a 

variable CoM height. The ZMP preview control in [73] 

employs a cart-table model that fails to represent the whole-

body dynamics of bipedal movement, resulting in an 

inaccurate ZMP trajectory. In contrast, the ZMP preview 

control in [78] uses the whole-body dynamics, which takes 

into account the angular momentum around the CoM and the 

change in CoM height, resulting in a more precise ZMP 

trajectory. 

In contrast to the optimal preview control employed in 

[73], which results in poor tracking performance when 

dealing with uncertain systems, [79] suggests the use of 

optimal preview integral Sliding Model Control (SMC) to 

produce a stable and robust walking pattern. Investigations 

into the natural gait of humans have demonstrated that the 

ZMP trajectory does not remain beneath the support foot. In 

order to accomplish a natural walking pattern, Fourier series 

approximation techniques are implemented in [73] to 

generate a human-like ZMP trajectory for the LIPM 

equations. [80] initially defines the reference ZMP trajectory, 

which is subsequently fed into the LIPM-FW to produce the 

desired CoM trajectory. To improve the stability when 

navigating uneven terrains, [80] incorporates the ankle and 

hip strategy into the control system. Fig. 7 provides an 

overview of model-based walking control methods. 

B. Reinforcement Learning-Based Walking Control 

Methods 

Reinforcement Learning (RL) is a machine learning 

technique that determines the optimal control actions to 

accomplish specific objectives by learning them based on 

future rewards. In situations where the system's dynamics are 

unknown, or when dealing with highly complex or nonlinear 

systems, RL is effective. RL-based methods have gained 

significant interest in bipedal robot locomotion control. This 

is attributed to RL's ability to develop robust and stable 

walking with a high degree of adaptability to environments. 

Model-based RL approaches use an explicit model of the 

environment or system dynamics to make decisions, while 

model-free RL approaches learn policies from interactions 

with the environment without the need for models. 

In [81] creates a controller that is inspired by human 

movement and integrates both learned and unlearned 

movements to ensure stable walking. Initially, a high-level 

trajectory planner is developed to produce desired trajectories 

for the controllable points (trunk and ankles). The required 

feed-forward joint angles are subsequently determined by 

inputting these trajectories into the Inverse Kinematics (IK) 

solver. The feedback policy, responsible for adjusting the 

joint angles in response to disturbances, is trained using 

Proximal Policy Optimization (PPO) with the same 

trajectories of the ankles and trunk. [82] introduces the 

Behavior-Based Locomotion Controller (BBLC) to regulate 

the motion of a 3D bipedal robot in the presence of 

disturbances, applying Behavior-Based Control (BBC) to 

specify numerous control behaviors and synchronize them, 

thereby creating a more complicated controller. BBLC 

consists of three layers: The task layer defines a variety of 

task-space motions, such as the CoM trajectory, the swing leg 

trajectory, and the torso rotation, using a variety of methods. 
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A set of reference joint trajectories is computed by 

coordinating these tasks. Different methods of planning each 

task-space trajectory are defined in the behavior layer. The 

RL layer, which employs the Q-learning algorithm, is 

responsible for identifying the action vectors that generate the 

optimal balancing strategies. 

In [83] introduces an RL-based walking control method 

that learns the optimal policy for stable walking by 

controlling the ankle joints or updating the swing leg foot 

placement, effectively overcoming a variety of disturbances, 

including uneven ground and pushing forces. [84] proposes 

the use of the Q-learning technique to facilitate stable walking 

of a bipedal robot, without requiring any prior knowledge of 

the robot's dynamics. The agent performs an action to ensure 

that the ZMP remains within the limit of the foot. [85] 

suggests a model-free reinforcement learning technique to 

develop a policy that allows a bipedal robot (Cassie) to 

execute different agile actions by following reference 

motions. Instead of applying a model-based walking 

controller to generate reference motion, the training system 

employs a variety of parameterized motions that are 

generated based on Hybrid Zero Dynamics (HZD), a concept 

originally introduced in [86]. In [87], the authors suggest the 

application of a model-free reinforcement learning approach 

to develop feedback control policies for bipedal walking 

without relying on prior reference trajectories. The policy 

structure leverages physical insights derived from the Hybrid 

Zero Dynamics (HZD) framework to streamline the design of 

neural networks by minimizing the number of trainable 

parameters. This methodology enables a 3D bipedal robot to 

acquire stable and robust gaits independently of reference 

trajectories. 

One method that has been proposed in literature to achieve 

stability and naturalness in bipedal robots is to use human 

motion data to produce walking. This method includes the 

collection and analysis of movements using technologies 

such as motion capture systems, which capture a variety of 

parameters, including joint angles and locomotion patterns. 

Nevertheless, this method is limited by the fact that the direct 

transfer of observed human motions to the robot's motions 

leads to unreliable motion as a result of the differences 

between human and humanoid kinematics and dynamics. 

Therefore, [88]-[91] suggest the use of model-free RL to track 

reference motions that are predetermined based on human 

motion data. [88] introduces a control system that employs 

model-free RL to transform human motions captured by a 

low-cost camera into dynamically stable robot motion. 

Initially, a prioritized controller is suggested, with the 

primary objective of maintaining the ZMP within the support 

polygon and the secondary objective of reproducing the 

movements. Next, RL is implemented to reduce the 

discrepancy between the observed human motions and the 

robot's movements by modifying the parameters of dynamic 

movement primitives (DMPs) using Weighting Exploration 

with the Returns (PoWER). [89] integrates motion re-

targeting and domain randomization techniques to the RL 

process to reduce the discrepancies in joint configurations 

between the movements of human and bipedal robot. [90] 

addresses the challenge of transferring complex human 

movements into robotic actions by incorporating a reward 

function that focuses on dynamic balance and smooth 

transitions between steps, in addition to pose accuracy. Using 

PPO guarantees reliable and efficient learning, enabling the 

neural networks to dynamically adjust the robot's walking 

behavior to closely resemble human gait patterns. [91] 

addresses the issue by segmenting human motion into 

meaningful components and incorporating a balancing 

controller to guarantee the dynamic stability of the robot’s 

motion. Fig. 8 provides an overview of RL applications in 

bipedal locomotion. 

VI. CURRENT CHALLENGES AND RECOMMENDATIONS 

Although there have been advancements in modeling, 

standing balance control, and robust locomotion, bipedal 

robots still face problems that limit their efficient 

performance in real-world applications. We have pinpointed 

the challenges that require attention.  

 

 

Fig. 7. Overview of model-based walking control methods
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A. Adaptation to Slippery or Blind Terrain 

Previous studies have suggested several robust 

locomotion methods, but research on slippery or blind terrain 

is lacking. Current locomotion methods rely on the 

assumption that there is sufficient friction between the feet 

and the ground. However, this assumption does not hold true 

on slippery surfaces. Adaptive control approaches are used in 

many locomotion methods to update the next footstep 

depending on the terrain. These locomotion methods become 

less effective in the blind terrain, where the environmental 

feedback is limited. 

To enhance bipedal mobility on slippery or concealed 

surfaces, we recommend the integration of infrared and 

ultrasonic sensors with reinforcement learning-driven 

adaptive control. Infrared sensors identify differences in 

surface materials through thermal emissivity, whereas 

ultrasonic sensors evaluate surface roughness and indicate 

potential dangers like water or unstable ground. These 

sensors provide adaptive alterations in locomotor techniques 

by delivering real-time terrain classification. RL can enhance 

flexibility by training policies to modify footstep positions, 

joint torques, and locomotion patterns based on sensor inputs. 

The effectiveness of these approaches in actual applications 

is evidenced by several case studies, including the 

deployment of ultrasonic sensors in Boston Dynamics' Spot 

robot and infrared sensors in autonomous cars. 

B. Energy Efficiency 

Many studies have concentrated on the balance control of 

bipedal robots, neglecting the significant obstacle of energy 

consumption. Bipedal robots face challenges when 

attempting to carry out practical activities in the real world 

due to their limited operational time. Using techniques such 

as MPC, one potential solution is to create locomotion 

methods that prioritize both energy consumption and 

stability. Additionally, integrate energy consumption metrics 

into the robot's decision-making process to enable the robot 

to select actions and paths that minimize energy consumption 

while still achieving its objectives. Current research 

investigates methodologies that incorporate energy-aware 

control systems, enabling robots to utilize energy-related 

feedback for performance optimization. Our laboratory is 

presently refining a reward function in reinforcement learning 

that has a component aimed at minimizing energy usage 

during task execution. 

 

Fig. 8. Overview of RL applications in bipedal locomotion, including (1) training the RL model in a simulated environment (Simulink), (2) transferring the 

learned policy from simulation to real-world application (Sim-to-Real), and (3) utilizing RL to generate walking patterns that imitate motion data captured  
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C. Scalability Issues 

Balance control methods developed for small bipedal 

robots are ineffective when applied to large robots due to 

differences in dynamic parameters such as inertia, CoM, and 

joint torques. Large robots are more sensitive to disturbances, 

necessitating the implementation of robust balance control 

systems than small-scale robots. Implementing hierarchical 

control systems, comprising a low-level layer responsible for 

controlling joint movements and a high-level layer 

responsible for generating planned trajectories, can help 

address the scalability problem. Within hierarchical control 

systems, when the robot's size increases, the high-level layer 

adapts to the planned trajectory, while the low-level layer 

remains unchanged. This independence allows the control 

system to be adjusted to accommodate larger robots. 

VII. CONCLUSION 

This paper presents a systematic review of dynamical 

models, standing balance control strategies, and walking 

control methods for bipedal robots. In conclusion, the review 

highlights a clear trade-off between computational 

complexity and model accuracy across different dynamic 

modeling approaches. The LIPM serves as a low-complexity 

solution ideal for simple, flat terrain tasks but falls short in 

accounting for upper body dynamics. Extensions to the LIPM 

offer enhanced accuracy on uneven terrains, albeit with 

increased computational demands. Centroidal dynamics 

provide high accuracy and are well-suited for complex tasks 

requiring precise momentum control, yet they necessitate 

detailed system parameters and significant computational 

power. At the extreme, whole-body dynamics deliver the 

highest fidelity and control for highly dynamic tasks, but their 

implementation is hampered by substantial computational 

expense and model complexity. Ultimately, the optimal 

choice depends on the specific application requirements and 

the available computational resources, underscoring the need 

for a balanced approach in selecting the appropriate dynamic 

model. 

 In addition, we categorized balance control strategies for 

standing bipedal robots into two main categories: joint control 

strategies and whole-body control strategies. Joint control 

strategies are limited to specific joints, such as ankles or hips, 

to maintain standing stability when subjected to external 

disturbances like pushing forces. These strategies utilize 

simplified models and control systems to manage ankle or hip 

joints for achieving stability. However, they are inadequate in 

managing high-level disturbances due to their exclusion of 

whole-body dynamics. Consequently, other researchers have 

developed whole-body balance control strategies that involve 

all body parts, including the arms, legs, and head, to achieve 

standing stability. Our analysis of whole-body control 

methods reveals that these strategies either compute the 

desired contact forces or joint torques, or regulate both linear 

and angular momentum to stabilize the robot in an upright 

posture. Force-based approaches effectively stabilize bipedal 

robots by managing joint torques and contact forces, though 

they demand accurate force modeling and can be 

computationally intensive. In contrast, momentum-based 

approaches regulate robot motion by controlling linear and 

angular momentum, enhancing adaptability to dynamic 

disturbances. However, their real-time implementation 

remains challenging due to the complexity of state estimation 

and control computations. To conclude, whole-body control 

strategies are more effective than joint control strategies in 

absorbing greater disturbances and producing more natural 

responses. However, the application of these strategies in real 

physical robots is limited by the computational demands of 

whole-body dynamic model or centroidal dynamic model. 

This paper also reviewed walking control methods, 

distinguishing between model-based and learning-based 

methods. Model-based walking control methods were 

classified into four groups: The first group includes the 

LIPM-based methods and their extensions, which use 

simplified models such as the LIPM or the SLIP model to 

generate the desired CoM trajectories, ensuring that the ZMP 

remains within the support polygon. LIPM-based methods are 

generally suitable for flat terrains, whereas SLIP-based 

approaches can handle uneven surfaces. The second group, 

CP-based methods, utilizes the concept of the capture point to 

update the foot placements in response to disturbances such 

as uneven terrain. The third group, DCM-based methods, 

employs the Divergent Component of Motion to inform 

strategic adjustments in foot placement, ensuring balance 

when the stability point diverges from the stable region. The 

fourth group, ZMP-based methods, which plans the ZMP 

trajectory to stay within the support polygon, using 

techniques such as MPC or preview control to generate the 

planned CoM trajectory, facilitating precise foot position 

updates for stable locomotion. In contrast, learning-based 

walking control methods use RL algorithms to train bipedal 

robots in simulation environments for natural walking. Some 

studies integrate human motion data, applying RL algorithms 

to minimize kinematic and dynamic discrepancies between 

the real robot and human motion capture. These methods tend 

to produce more natural and energy-efficient walking patterns 

compared to model-based methods. However, they require 

extensive training time to enable robots to learn robust and 

natural walking over rough terrains. 

Over the past two decades, there has been a significant 

increase in research on bipedal robots, which has resulted in 

significant advancements in areas such as learning 

algorithms, stability, and motion control. Despite the progress 

made in the field, there are still challenges to be addressed. 

Generating walking patterns over slippery or blind terrains 

remains a significant challenge that impedes the real-world 

application of bipedal robots. Traditional walking 

methodologies often assume adequate friction between the 

feet and the ground, utilizing terrain information as feedback 

to adjust subsequent foot placements. However, these 

methods fail to handle slippery or blind terrains where such 

assumptions are invalid. To address this, infrared or 

ultrasonic sensors can be employed for real-time detection of 

surface conditions. This real-time data can then be used to 

classify the type of terrain, a crucial step in determining 

optimal walking parameters to achieve stable locomotion. 

Furthermore, RL algorithms can enhance flexibility by 

training policies to modify footstep positions, joint torques, 

and overall locomotion patterns based on sensor inputs, 

paving the way for more robust and stable locomotion in 

challenging environments.  
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It is evident that bipedal robots exhibit short operational 

time. To enhance their efficiency, it is recommended to 

employ optimization algorithms that focus not only on 

stabilizing movement but also on minimizing energy 

consumption. Additionally, integrating energy consumption 

metrics into the decision-making process of these robots 

could enable the selection of actions and paths that optimize 

energy usage while still fulfilling the intended objectives. 

This integrated approach could significantly extend the 

operational effectiveness of bipedal robotic systems in 

various applications. In addition to the challenges previously 

outlined, balance control methods developed for large robots 

do not efficiently translate to small-scale robots. Large robots, 

being more sensitive to disturbances, necessitate robust 

balance control mechanisms. Implementing hierarchical 

control systems, which consist of a low-level layer for 

controlling joint movements and a high-level layer for 

generating planned trajectories, may mitigate scalability 

issues. Within such systems, the high-level layer adapts the 

planned trajectory as the robot's size increases, while the low-

level layer remains consistent. This structural independence 

enables the control system to be effectively adjusted for larger 

robots, facilitating scalable application across different robot 

sizes. Future research should focus on sensor fusion, efficient 

control algorithms, and scalability, paving the way toward 

more versatile, energy-conscious robots capable of handling 

complex, unstructured environments. 
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