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Abstract—Comprising a multiplicity of AdHoc sensors 

working in concert to monitor a range of environmental and 

physical factors for the targeted area, wireless sensor networks 

(WSNs). These sensors are used to provide continuous 

environmental status like temperature, pressure, and humidity 

by forwarding vital data to the internet through a base station.   

Aiming to greatly increase the security and performance of 

WSNs, this study presents a new framework that is a 

combination of the Deep Learning-Enhanced Hybrid Trust 

(DLEHT) model and the Machine Learning-Enhanced Fuzzy-

Based Routing Protocol (ML-EFBRP). In this research, 

enhanced packet delivery, packet drop reduction, and the rogue 

nodes addressed in WSN from source to sink using a 

probabilistic approach, which depends on the experience of data 

with the integration of a sum-rule weight mechanism in HMM 

(Hidden Markov Model). Integration methodology played a 

major role in deep learning to observe the normal and abnormal 

node behavior with historic data. It enhanced the throughput 

and lowered latency with successful detection and addressing of 

rogue nodes by the integrated strategy. The proposed work, 

reflects an improvement in performance, both in terms of 

throughput and latency. The delay hyperparameters are 

observed, which vary from 7.48 to 26.22 ms with an average of 

15.855 ms. And the packet is controlled and decreased by 7%, 

showcasing more improvement compared to existing work. 

Simulation results show considerable improvements in network 

accuracy, reliability, energy efficiency, and resistance during 

node failures and security concerns for network correctness.  

These findings show the combination of DLEHT and ML-

EFBRP models provides stronger monitoring systems, hence 

enhancing operational efficiency in settings with limited 

resources.    

Keywords—Cluster Head Selection; WSN; Sensors; Deep 

Learning; Energy Optimization; Security Protocols; Network 

Resilience. 

I. INTRODUCTION 

A wireless sensor network is made up of tiny, power-

efficient, and highly portable sensors or motes. These devices 

are deployed to work together in monitoring different 

targeted area environmental parameters, acquiring data, and 

sending it to the sink node or designated control centers. Each 

sensor node is very important at the sink since it deals with 

data encoding through a voice synthesizer and sends report 

data to the sink. WSNs can be deployed for diverse fields 

such as environmental monitoring, forest monitoring, sea 

monitoring, agricultural monitoring, border monitoring, and 

industrial monitoring due to the fact that they measure several 

environmental and targeted parameters [8]. The conditional 

random fields [1] were implemented probabilistic approach 

with CRF to provide data segment and segment labeling [2] 

for the mass public and the military. This work intends to 

investigate the security-related issues and challenges in 

wireless sensor networks. The holistic approach aims to 

improve wireless sensor networks' performance with respect 

to security, longevity, and connectivity under changing 

environmental conditions. It also has security concerns 

involving all the layers to ensure overall network security. 

There must be a combined effort to take a standard model to 

ensure security. Two models for activity recognition: "hidden 

Markov models (HMMs)" and "conditional random fields 

(CRFs)." The authors examined the performance and effect 

of features in the network. The result shows that CRF has 

high performance and is effective for a wide variety of 

computing features in the network [3]. The CRF is deployed 

in WSN intrusion detection. The outcome of this work shows 

effective performance compared to existing techniques in the 

case of relational labeling data and conditional random fields 

[4]. The sensor node communicates with its neighbor nodes 

seamlessly using transceivers, allowing for the two-way 

communication of information without any cabling and 

connectors. A well-defined communication protocol has a 

major role in sending, collecting, and analyzing data [9][15]. 

Despite Because of WSNs, there is enhanced data 

processing and relationship building between systems, but 

there are still notable challenges that are a hindrance.  One of 

the great issues includes the constraints associated with 

power options, which stems from either battery usage or 

energy-grabbing methods.  As networks of WSNs scale up in 

size, intricacy, and sophistication, issues like data duplicates, 

poorly designed routing pathways, and even energy 

consumption begin to arise and grow worse. This escalating 

predicament necessitates the formulation of more efficient 

solutions to boost the productivity of a network [10]. 

Deficiencies within communication protocols are easier to fix 

than WSNs that can be hacked with rogue nodes, purposeful 

or defective sensors that may compromise the network's data. 

These weaknesses must be addressed for dependable 

functionality and usability. 
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The aforementioned research goal can be achieved by 

deep learning, enabling more economical, productive, and 

security-conscious operations [11]. 

The ability to optimally manage resources and make 

decisions in real time in the Wireless Sensor Networks 

(WSNs) is attributed to their capacity to acquire massive 

amounts of data from several nodes and relay the information 

to a base station.  As the networks grow more intricate, 

however, accomplishing data collection, energy usage 

efficiency, and general network stability becomes 

increasingly difficult [12][16]. One of the core elements of 

WSN operation is the cluster heads, which capture and relay 

information from the surrounding nodes to the main base 

station. The selection of cluster heads is one of the most 

sensitive parts of the process because it determines the 

network performance in terms of its life cycle, energy 

consumption, and data precision. From the traditional 

approaches to cluster head selection, physical features such 

as the remaining energy and the distance to other nodes 

predominate. While these selection criteria seem to be 

practical to some extent, and their information is provided, 

too often they ignore the most important characteristic of the 

nodes, reliability, and as a consequence encounter problems 

with data falsification and communication failures. It is 

essential to stress that, in order to settle these problems, great 

attention should be paid to the selection of cluster heads with 

the assistance of artificial intelligence that assesses nodes 

performance in real time [13][17]. Incorporating trust hybrid 

metrics—that is, combining historical records with real-time 

evaluations—allows WSNs to enhance their resilience 

toward security threats and adapt to node failures due to 

sensor compromise or malfunction.  Recent advances in 

machine learning technology offer effective tools for trust 

modeling in which sensor nodes are evaluated based on their 

communication dependency, behavior history, and energy 

consumption behavior [14][62]. 

This research intends to accomplish the following: 

1. Create an efficient framework aimed at the selection of 

cluster heads in Wireless Sensor Networks (WSNs) using 

deep learning and hybrid trust to improve the operation 

performance and secure the network from rogue nodes.  

2. Formulate an energy-efficient deep learning security 

architecture that boosts network performance by 

integrating trust management models with adaptive 

response strategies in order to lessen the effects from 

malicious nodes.  

A. Summary of Findings from the Research:  

Rogue Node Detection: The primary objective of this 

research is to locate malefactor nodes located in the densest 

regions of wireless sensor networks (WSNs) using 

sophisticated deep learning methods so as to increase 

network performance while, at the same time, improving data 

integrity. 

Hybrid Trust Metrics: A trust hybridization model is 

implemented using trust metrics to enhance resource 

management in the WSN by calculating the probabilities of 

service requests and forward data. 

Performance Enhancement: The framework simulation 

shows the enhancement in WSN performance metrics due to 

reduced processing time and an increment in throughput. 

Reduction in Packet Loss: Loss of packet rates, which is 

directly proportional to the reliability of WSN. It increases 

triple times reliability. 

Trust Based Cluster Head Selection: In this research 

machine learning techniques focus on the node 

trustworthiness evaluation and pertaining to the trust metrics 

used in securing a reliable for Wireless Sensor Network 

infrastructure. 

This research work addressed the energy efficiency and 

security research challenges of WSN using a deep learning 

hybrid trust model to make WSN a more robust sensor 

network, which can work in any target area. 

II. RELATED WORK 

The analysis of clustering in Wireless Sensor Networks 

(WSNs) has recently gained remarkable attention, indicating 

rapid development in research aimed at improving the 

efficiency and sustainability of these networks. Different 

protocols invariably focus on network lifetime optimization 

as the primary goal alongside achieving the system’s optimal 

performance. Most protocols give particular attention to 

different facets of clustering and devote their clustering 

strategies to strengthening certain grouping features during 

several operations’ phases. An in-depth study suggests that, 

at the system level, routing protocols constitute a dominant 

factor in the development and realization of the defined 

clustering approaches. These approaches include 

fundamental operations such as cluster construction, cluster 

head (CH) selection, data summary, and data delivery to sink 

nodes. This partitioning into functional phases makes it 

possible to improve network performance and energy 

efficiency at these levels [18]. Today, WSNs are being 

utilized in a variety of fields, including military surveillance, 

ecological monitoring, and smart city initiatives [19][61]. 

Each of these applications has distinct requirements 

concerning the routing protocols that are used. Building 

effective, robust, and adaptable routing schemes for WSNs is 

particularly difficult due to the constraints of battery-operated 

sensor nodes that require energy-saving solutions [20][21]. 

A layered approach is deployed using CRF to improve the 

accuracy and efficiency of WSN. The system works best with 

noisy data without affecting the network's performance 

[5][6]. In this network, user browsing behaviors are analyzed, 

and features or characteristics are gathered for training the 

CRF. After training the model, the proposed model will be 

deployed into the network to detect the attack. The proposed 

work is more potent than HMMs for intrusion detection in the 

wireless sensor network [7]. 

Important studies have tackled these problems by 

implementing new advanced clustering routing approaches 

that fit within WSN constraints [22]. The research develops 

the E-DSDV (Enhanced Destination Sequenced Distance 

Vector) routing protocol with the objective of extending the 

lifespan of WSNs. Each node in the proposed WSN has a 

routing table that contains all the information regarding 

neighboring nodes and the total number of nodes in the 
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communication between the source and the sink [59][60]. It 

should be mentioned that these protocols have been 

organized into a collection of grouping techniques based on 

what clustering features they possess to form a taxonomy of 

clustering algorithms [23]. The rapid expansion of WSNs has 

made the problem of efficient selection and transmission of 

data even more crucial. Certainly, energy issues remain 

central, especially given the limited life of the battery 

powering sensor nodes [24]. Studies have pointed out a 

number of approaches to energy-efficient routing of data in 

WSNs and divided them into many classes, such as flat and 

hierarchic, query, coherent and incoherent, negotiation, 

location, mobile agent, multipath, and quality of service 

(QoS) provisioning [25]. Flat protocols are best suitable in 

the case of a fixed sensor network, but an increasing number 

of nodes in the network is difficult because of processing 

overhead. By clustering the network into segments, we can 

harness its aforementioned significance for optimal scalable 

solutions and effective resource utilization. These clusters 

reduce the overall cost of transmitting messages as well as 

energy expenditure through message fusion and aggregation. 

It's also easy to use hierarchical protocols in large, heavily 

loaded sensor networks because of how the clusters are set up 

in terms of how far away they are from the cluster head and 

how much energy the sensors have [26][27]. 

The implementation of efficient routing protocols is 

paramount, as WSN’s face many constraints such as power 

consumption, scalability, and data redundancy. In this 

overview of the literature, the principal features and 

contributions to the enhancement of WSNs using LEACH, 

PSO, HSACP, BEE-CLUSTER, LEACH-C, and many other 

well-known routing protocols are covered. The idea of 

energy-conserving clustering in WSN was revolutionized 

with the advent of the LEACH protocol. It employs a 

randomized rotation of cluster head (CH) assignments to 

balance energy consumption among sensor nodes. 

Subsequently, LEACH permits data aggregation at cluster 

heads prior to sending them to the base station, which 

dramatically reduces energy consumption in the network 

[29]. This remarkable innovative strategy gave rise to 

numerous clustering protocols designed to prolong the 

operation of the network while enhancing data transmission. 

Research attention is increasingly shifting to the 

clustering of Wireless Sensor Networks (WSNs) because of 

the growing need to optimize the performance and lifetime of 

these networks. The central aim of most protocols is to 

achieve greater network durability alongside improving the 

system's overall effectiveness.  Every protocol tends to focus 

on certain portions of the clustering procedure, and attempts 

to strengthen particular grouping traits during different 

phases of the operation cycle. Examination shows that 

routing protocols are of special importance to the 

development and realization of processes linked with 

clustering. These processes include crucial activities like 

cluster creation, cluster head (CH) election, data 

summarization, and data transfer to sink nodes. This division 

into operational steps leads to network performance and 

energy efficiency improvements [18]. Today, WSNs are 

found in military, environmental monitoring, and even smart 

city initiatives [19][61]. Such diversity poses new challenges 

for the routing protocols used.   The design of WSNs is both 

efficient and complex due to the stringent requirement for 

reliability and scalability, primarily because of the limitations 

of power sources for the sensor nodes, which need energy-

saving designs [20][21]. 

Recent research conducted and implemented a 

sophisticated cluster routing mechanism for communication 

in-cluster sensors and CH to CH communication. E-DSDV 

(Enhanced Destination Sequenced Distance Vector) routing 

protocol [59] is implemented in WSN to enhance and better 

the lifetime of the overall WSN. In this protocol, sensor nodes 

maintain their own routing table, which keeps neighbor node 

information for the next round of path creation and selection 

[60]. The cluster classification mechanism is implemented 

using a group of protocols [30], which provide effective CH 

selection and the creation of a cluster in WSN. Effective 

utilization of the sensor’s hardware and other resources, 

especially the battery, can help to improve the lifetime of the 

sensor and WSN because all the sensors are powered by a tiny 

battery. Battery can be managed if the source analyzes the 

collected data, removes the redundant data, and uses optimal 

transmission techniques [24]. These were grouped into a 

number of classes, including flat, hierarchical, query-based, 

coherent and incoherent, negotiation-based, location-based, 

mobile agent-based, multipath-based, and quality of service 

(QoS)-based [25]. Flat protocols perform uniform stationary 

sensor nodes, in this realm, hierarchical protocols can be of 

great use since they allow dividing the network into clusters. 

This segmentation reduces the energy portion spent on 

transmitting messages because of data fusion and 

aggregation. In addition, the clusters are arranged in terms of 

the sensor’s remaining energy and distance to the cluster 

head, which makes hierarchical protocols suitable for high 

utilization and large-scale sensor networks [26][27]. 

As WSNs address critical issues such as energy 

efficiency, scalability of the network, and data 

summarization, the implementation of effective routing 

protocols is essential to harness their full benefits. This 

review of the literature provides the main features and 

contributions to WSN performance of several popular routing 

protocols: LEACH, PSO, HSACP, BEE-CLUSTER, and 

LEACH-C. WSNs are well equipped in energy-efficient 

clustering because of the protocol LEACH (Low Energy 

Adaptive Clustering Hierarchy), which the astonishing author 

Heinzelman and colleagues first presented in 2000. It uses a 

random rotation of cluster heads (CHs) towards achieving 

balanced energy consumption throughout the sensor nodes. 

LEACH greatly increases the energy efficiency of the WSNs 

by enabling data aggregation at CHs before it is transmitted 

to the base station [28]. This novel method has paved the way 

for numerous clustering protocols that seek to maximize the 

life of the networks while delivering the data. To identify 

malicious nodes, a trust evaluation model and encryption 

method are used with the help of a blockchain, whereas the 

blockchain identifies sensor nodes and aggregator nodes 

[71][72][73]. 
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III. PROPOSED METHODOLOGY 

A. Development and Optimization of a Deep Learning-

Enhanced Hybrid Trust (DLEHT) Model for Wireless 

Sensor Networks 

The Deep Learning-Enhanced Hybrid Trust (DLEHT) 

model was designed and implemented to monitor abnormal 

activity of nodes in a wireless sensor network (WSAN). This 

model is simulated with Network Simulator 3 (NS-3), which 

is an advanced tool for simulating and analyzing WSANs 

model’s performance. The configuration consists of a WSAN 

model where all nodes implement the DLEHT model, which 

combines energy-saving measures with complex security 

measures based on deep learning. This novel approach solves 

the glaring weaknesses of most traditional WSANs. The 

network performance is closely analyzed under different 

circumstances with respect to energy dissipation, throughput, 

latency, and the number of attacks captured. These metrics 

are crucial for determining the efficacy of the framework in 

enhancing security at the same time energy conservation. The 

publicly available dataset from the Intel Berkeley Research 

Lab provides the needed data for the training and evaluation 

along with simulated data from NS-3. This mixture offers 

different sensor readings and network activities that are 

fundamental for validating the DLEHT model in terms of 

effective energy and security. 

The DLEHT model design integrates Convolutional 

Neural Networks (CNNs) and blends them with Long Short-

Term Memory (LSTM) Networks for reducing the energy 

footprint and enhancing the security of wireless sensor and 

actor networks (WSANs). LSTMs capture important 

temporal components to detect security anomalies, while 

CNNs analyze the spatial aspects of the sensor data. The 

model is composed of five convolutional layers using ReLU 

functions and is followed by max-pooling layers to lower the 

dimensionality of the data. The sequential data is processed 

by three LSTM layers with 128 units each, followed by a 

dense layer that is activated by softmax functions for 

classification. Important hyperparameters are learning rate = 

0.001, batch size = 128 and training through 100 epochs. In 

the model, the dropout layers are placed with a rate of 0.6 to 

avoid overfitting while increasing the robustness of the 

model. The effective management of energy in devices 

improves their performance and increases their life span 

which helps in reducing the operating cost due to the high 

amount of energy consumed. The odds for various network 

activities that include, but are not limited to, query servicing 

and data transfer is determined using a sum-rule weighted 

method. This approach aggregates individual probabilities 

from distinct evaluation criteria, assigning particular weights 

to them according to their importance. The probability score 

assists in decision making accuracy, throughput 

maximization, and processing time minimization. 

Furthermore, the secure middleware of the wireless sensor 

network incorporates deep neural networks as a fundamental 

element, providing the network with the capability to address 

multiple scenarios by combining logical inference with 

reinforcement learning and other underlying layers. Certain 

features are activated at the start of the data transmission 

process after estimating the detrimental device behaviors and 

adaptive characteristics of the network. Such features 

comprise data loss monitoring and delay management, which 

help to strengthen the operational integrity of the network. 

The integration of IoT technologies with secure sensor 

features in WSANs has improved network reliability and data 

integrity.  This strategy optimizes energy efficiency and 

allows for better security, which enables sustainable 

communication in more complex ecosystems.   Further 

improvements in these strategies will enhance the 

effectiveness and reliability of WSANs, in the long term. The 

routing framework based on a Connected Dominating Set 

(CDS) as depicted in Fig. 1, starts with the Cover Set 

Detection process to create a cover set. CDS plays a crucial 

role in this research to enhance security with optimal path 

creation and selection. The main aim is to provide a security 

framework that can detect normal and abnormal behavior of 

the nodes during the data transmission from the source node 

to the sink. 

 

Fig. 1. Integration of CDS in WSN 

B. DLEHT Security Mathematical Model: 

It is the integration of HMM, CDS, polynomial neurons, 

and Gaussian distribution.  It will track the transition of the 

sensors, the creation and selection of the optimal path for 

communication between source and sink, and checking 

security metrics with evaluation and detection of abnormal 

sensors. 

1) Optimal path creation and selection: CDS 

𝑃𝑡 = { 𝑃𝑡1, 𝑃𝑡2, − − − − − 𝑃𝑡𝑛) (1) 

2) State transition:  HMM 

𝑃𝑟(𝑆 𝑖 + 1 ⏐ 𝑆𝑖)  =  𝐴 (2) 

3) Polynomial Equation: Calculate the security or trust 

score of sensors Ss(t). 

𝑆𝑠(𝑡) = 𝐶𝑜 + 𝐶1. 𝑅(𝑡) + 𝐶2. 𝑃𝑇(𝑡) + 𝐶3. 𝑃𝐿(𝑡) + 𝐶4. ⨊ 𝑃(𝑡) (3) 

C0 to n: coefficient values for reliability R, transmission 

power PT, packet loss PL and other parameters P at any given 

time t. 

4) Neural methodology for abnormal behaviour 

𝑓(𝑥) = 𝜕(𝑊𝑥 + 𝑏 ) (4) 

C. Algorithm for Assessing Sensor Security/Trust Values 

Step 1: Initialize sensor nodes and set up network trust 

security parameters  

Set sensor_trust_value to 0.5 
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Set sensor_anomaly_value to 0 

Set sensor_energy_percentage to 100 

Create an empty list for sensor_history 

Create an empty list for sensor_comm_metrics  
Execute anomaly_detection_train 

(sensor_history) 

Step 2: Observe the behavior of sensor nodes within the 

network  

Calculate sensor_packet_delivery_ratio using co
llect_sensor_packet_delivery_ratio(sensor) 

Calculate sensor_jitter using collect_sensor_ji
tter(sensor) 

Calculate sensor_delay using collect_sensor_del
ay(sensor) 

Calculate sensor_energy_consumption using colle
ct_sensor_energy_consumption(sensor) 

Append the values of 
sensor_packet_delivery_ration,sensor_jitte,

sensor_delay and sensor_energy_consumption to 
sensor_history 

Step 3: Compute trust values for the sensor: both indirect 

and direct  

Determine sensor.indirect_trust(sensor, 
neighbours) 

Determine sensor.direct_trust(sensor) 

Calculate the combined trust_value using the 

formula: 

trust_value = (sensor.indirect_trust * 0.7) 

+ (sensor.direct_trust * 0.3) 

 

Patterns of behavior are set using the average values of 

the metrics prior to anomaly detection. The difference 

between benign and malicious nodes is advanced from the 

variance and standard deviation of the trained input 

parameters. The parameters that are provided serve as inputs 

to the neurons, which, using the data that other allocating 

neurons have gathered, compute the metrics and assign 

probabilities to them. The model has four hidden layer 

neurons, which consist of both active and inactive ones. A 

random matrix is generated using a transfer function which is 

integrated with a random vector. The sigmoid function and 

SoftMax function are employed as polynomial arithmetic 

operations when setting the bias. The difference in the 

position of the introduced neuron and the training data is used 

to determine the distance with the error for training data to be 

refined in error. State and parameter functions are used to 

model behavior and misuse functionality, respectively. In the 

activation phase, the threshold for neuron matching is 

determined at the start of each epoch for every hidden layer 

with outputs being a determinant of the preceding layer. 

The canonical fragment for a probability distribution 

function in the hidden layer is represented as: 

𝑃𝐷 = 𝑆𝑢𝑚(𝑒−
𝜖

𝐾∗𝑇) (5) 

∈ is the Dissemination Continual using Boltzmann, 𝐾 is the 

Erudition factor, and 𝑇 is the Knowledge Time Part. 

Validation of the hypothesis is necessary to diagnose the 

steps marked by behaviors in a hypothetical context with the 

intention of distinguishing various behavioral types factoring 

characteristics. In the accompanying Fig. 2, the second 

depicts the deep learning architecture proposed in this study. 

Normal behavior is established with defender actions, and the 

attacker’s intentions are inferred from the behaviors. When 

the malicious nodes are within reach, detector nodes send out 

an “attacker announcement” to the rest of the network and 

hence disable the attacker nodes from the system. 

 

Fig. 2. DLEHT model architecture 

The below algorithm is aimed at implementing a Wireless 

Sensor Network (WSN) and monitoring its activities for any 

deviations through a Neural Network framework. The 

process is initiated by defining the normal and abnormal 

sensor nodes, which in turn leads to the initializing of the 

feature matrix and label for the nodes. The network is 

appropriate to perform training so as to provide for the 

classification of nodes, and this promotes the efficiency of 

anomaly detection within the network. 

Step 1: Generate and deploy sensor nodes  

Create (S): Construct 100 sensor nodes 

that are location defined so as to form 

the WSN. 

Label the nodes: Implement a labeling 

algorithm to denote the normal sensor 

nodes that have the value of zero.  

Step 2: Generate and deploy abnormal nodes  

Create abnormal sensor nodes (AS): Create 

5 abnormal nodes randomly.  

Label the abnormal sensor nodes: Set the 

marking for these sensors using the 

labeling algorithm to 1. 

Step 3: Construct the feature matrix  

Develop a feature matrix for which each 

sensor node represents a row and 

corresponding features are included in 

that row. 

Step 4: Construct the label vector  

Construct a label vector that classifies 

nodes as normal and abnormal. 

Step 5: Segment the dataset into training and testing sets   

Implement a Hold Out cross-validation 

method with an 80:20 split to allocate 

portions of the dataset as training and 

testing data. 

Step 6: Create the structure of the Neural Network  
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Input Layer: 

Add 2 neurons for the (x) and (y) 

positions of the sensors. 

Hidden Layer: 

Create a single hidden layer containing 

10 neurons which is fully connected and 

uses the Rectified Linear Unit (ReLU) as 

the activation function. 

Output Layer: 

Create a fully connected output layer with 

one neuron and an activation function for 

binary classification. 

Step 7: Educate the Neural Network  

Optimize with Adam and train the network 

for 100 epochs with a mini-batch size of 

16. 

Step 8: Conduct analyses to predict and appraise the output.  

Make predictions to detect if any attacks 

took place and evaluate the model’s 

accuracy. 

D. ML-EFBRP (Machine Learning-Enhanced Fuzzy-Based 

Routing Protocol) 

As With the increasing use of Wireless Sensor Networks 

(WSNs) in interconnected systems, a number of issues arise, 

especially regarding security gaps and energy constraints, 

which endanger the overall efficiency of the system. To 

mediate these primary concerns, we propose a new hybrid 

security approach that integrates traditional security methods 

with sophisticated deep learning models. In our framework, 

Convolutional Neural Networks (CNNs) are employed in 

feature extraction and anomaly detection in sensor data, while 

Long Short-Term Memory (LSTM) networks are used to 

capture temporal behaviors of features. This allows the 

system to maximize security combined with dynamically 

responding to emerging threats. Our model also seeks to 

minimize energy expenditure to maintain sufficient 

performance levels in low-capability environments. This 

model is aimed at practically applying it in the real world, 

hence, the performance evaluation is done using important 

metrics such as energy efficiency, data throughput, latency, 

and incidence of security breaches, which in turn provide a 

comprehensive view of its effectiveness. We made the 

following modifications to raise the performance of our deep 

learning improved hybrid security model for Wireless Sensor 

Networks (WSNs):  

1) Using Reinforcement Learning Techniques:  

Reinforcement learning elements in the model have been 

fitted to enable it to change with newly discovered security 

concerns. This helps to strategically modify the security 

measures by enabling continuous learning depending on the 

interactions of the network users and the conditions of the 

network. By use of reinforcement learning, the system may 

make decisions depending on environmental feedback to 

react to different security issues. It therefore can more 

successfully handle certain security issues. 

2) Evaluation of Performance and Scalability of Real-Life 

Use Case  

We tested the scalability and operational performance of 

the model from many node densities as well as shifting nodes, 

testing it. We investigated the capacity of the model to 

withstand real-life practical situations and obtained relevant 

knowledge enabling the fine adjustment of parameters to 

attain desired performance in several operating 

environments. This evaluation guarantees the model's 

realistic and strong enough nature to meet the difficulties 

presented by actual WSN implementations. 

3) Head Selection in Clusters Applied in Machine Learning 

Methodologies  

The general operation of WSNs and data transfer depends 

on the choice of the suitable nodes acting as cluster chiefs. 

We apply Random Forest, one of the most potent ensemble 

learning methods with great accuracy for classification 

issues, for this aim. Among the basic procedures in our work 

are the following: 

4) Creation of Datasets  

Initially we try to obtain values that are representative of 

a variety of metrics like communication overhead, node 

density, distance (from base station), node degree, residual 

energy, etc. Each record, depending on existing selection 

methodologies or simulated methodologies, is marked 

categorically to flag potential cluster heads. This multifarious 

dataset captures a number of network conditions, which is 

required for CH selection optimization, and is very useful to 

our work.  

5) Feature Engineering  

To make the selection procedure of cluster heads more 

efficient, the selection feature engineering techniques are 

performed. In order to improve the representation of input 

features, this procedure employs the techniques of 

dimensionality reduction, feature scaling, and encoding. We 

also apply domain-specific measures and give importance to 

residual energy with regard to its impact on the cluster head 

candidate.  

6) Training Random Forest Model  

The prepared dataset is used to train the Random Forest 

classifier.  Cluster head candidacy for each node is predicted 

during the training cycle using a model from a previous 

dissertation [62]. Random Forest, a type of ensemble 

learning, combines results from multiple trees to make 

accurate predictions. The following is a mathematical 

representation of the training process: 

a. Random Forest Classifier Training: 

𝑅𝐹. 𝑓𝑖𝑡(𝑋, 𝑦) (5) 

b. CH Candidacy Prediction: 

𝑦_𝑝𝑟𝑒𝑑 =  𝑅𝐹. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥) (6) 

c. Choosing CH Prospects: 

𝐼𝑓 𝑦_𝑝𝑟𝑒𝑑[𝑛𝑜𝑑𝑒]  ==  1, 𝑡ℎ𝑒𝑛 𝐶𝐻_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 
=  [𝑛𝑜𝑑𝑒 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑊𝑆𝑁_𝑛𝑜𝑑𝑒𝑠] 

(7) 
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7) Assessment of Performance  

Using a selected performance metric, we compare the 

predicted labels to the real CH labels in order to determine 

how effective our CH selection method is: 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡𝑟𝑖𝑐(𝑦_𝑡𝑟𝑢𝑒, 𝑦_𝑝𝑟𝑒𝑑)
= 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 

(8) 

We make sure the Random Forest model is strong and 

dependable in choosing appropriate cluster heads by using 

this multi-step procedure.  

E. Data Transmission Using Fuzzy-Based Routing 

Subsequently, after selecting CH, a routing strategy using 

fuzzy logic is implemented to account for the changing nature 

of WSNs. The fuzzy logic system has multiple rules to 

consider while making routing decisions including the 

delivery success, energy, and reliability of the node. 

Designing Fuzzy Logic Systems and the fuzzy routing 

protocol uses fuzzy logic to generate rules based on variables 

extracted from the state of the network. This allows for better 

flexibility and adaptability because it allows for decision-

making granularity during uncertain situations.  

1) ML-EFBRP Integration  

For real-time adaptive decision-making in response to 

changes, the trained Random Forest model is incorporated 

into the fuzzy routing protocol in a seamless manner. By 

ensuring that the routing decisions are directed by predictive 

analytics, this integration helps to improve the efficiency of 

data transmission and the depletion of energy resources 

[59][60].  

2) Adaptation of the Model  

Retraining intervals for the model are set in order to 

maintain the system performance efficacy which causes this 

model to be more sustainable and flexible in the long term to 

better respond to the network environment over time.  

Algorithm: Cluster Head Selection Using Random Forests  

Input:  

Dataset (D): A table that holds the attributes of WSN nodes 

and their class labels. 

Output:  

A list containing the prepared and identified Cluster Head 

candidates: Cluster Head candidates. 

Steps:  

Dataset Preparation:  

Collect dataset ((data = [features, labels])), 

where ((features)) contains node characteristics and 

((labels)) shows whether nodes are suitable as Cluster Heads 
(CH candidate: ((labels = 1)), non-CH 

candidate: ((labels = 0))). 

Feature Engineering:  

Perform feature engineering on ((data)), apply some 

form of dimensionality reduction, feature scaling and 

encoding, and domain metric CH enhancement metrics are 

added in the requisite areas. 

Random Forest Training:  

Partition the dataset into training and validation sets: 
((data_train= [features_train, 

labels_train])),((data_val= 

[features_val, labels_val])).  

Train the Random Forest classifier: ((model = 

RandomForestClssifier())) 

((model.fit(features_train, 

labels_train))) 

CH Candidate Prediction:  

For each node, calculate the feature values of the node: 

((node_features)), and estimate candidacy: 
((predicted_label = 

model.predict(node_features))) 

CH Candidate Selection:  

Prepare an empty list or array for storing the Cluster Head 

candidates: ((CH_candidates=[ ])) 

Performance Evaluation:  

Evaluate algorithm performance using the network lifetime 

and the energy efficiency, comparing with baseline methods. 

Output:  

The final step is to provide the resultant list or array of cluster 

head candidates: ((CH_candidate)). 

The algorithm contributes towards an optimal identification 

of the suitable cluster heads in WSNs using an automatic 

machine learning technique, which improves data 

aggregation and communication effectiveness. 

3) Fuzzy Based Route selection 

After the completion of Cluster Head (CH) selection, the 

ML-EFBRP model employs fuzzy logic for route selection. 

In a Wireless Sensor Network (WSN), this approach attempts 

to find the most appropriate route for the flow of information 

between Cluster Heads and the Base Station (BS) [39]. In 

order to send the detected information to the BS or its final 

destination, the CH has to decide on the next hop [40]. 

Several constraints along with their respective fuzzy 

membership functions make fuzzy-based route selection 

possible. These criteria are helpful to determine whether or 

not given routes can facilitate data transmission, and fuzzy 

memberships depict the degree of acceptability of each route-

related parameter [41]. The route is determined using fuzzy 

logic after a thorough consideration of all parameters that 

influence the route. Fuzzy logic parameters and the 

associated memberships may vary [42] which greatly affects 

the performance, reliability, and efficiency of data 

transmission within the network. Apart from that, the 

implementation of deep learning and machine learning 

models answers the complex problems quite well, which is 

greatly in line with the purpose of our research works [49]. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 853 

 

Santosh Anand, Addressing Rogue Nodes and Trust Management: Leveraging Deep Learning-Enhanced Hybrid Trust to 

Optimize Wireless Sensor Networks Management 

F. Important Factors in Route Selection  

The prior considerations for the selection of a route are 

critiqued on the following measures:   

1) Mean Distance Overall Covered by Cluster:  

It is the distance between nodes and their CH, CH to CH, 

and CH to sink. Sensor nodes require PTX (transmission 

power) to send data to their near CH to reach the sink. 

Distance is directly proportional to the PTX in radio 

management conditions. 

2) Mean Distance from Sink:  

It indicates the distance between sensor nodes to sink. 

Majorly CH communicates with the sink, and each node can 

become CH according to the available residual energy. The 

mean distance of any participating node should be measured 

from the CHs to the sink.   It has a major role in measuring 

the required transmission power and impacts on energy use, 

latency, data transmission quality, and overall network 

performance [45]. 

3) Sensor Node Residual Energy:  

Residual energy can be enhanced if the sensor lowers 

energy expenditures, which directly increases the lifetime of 

the WSN. The importance of the residual energy of sensor 

nodes, which have the ability to balance the network's 

objective to maximize energy availability and increase the 

network's longevity while optimizing energy consumption, is 

extended, shown in Fig. 4. 

4) Fuzzy Membership Function:  

The ML-EFBRP applies fuzzy criteria to ascertain the 

optimal route to transfer data from the nodes to the Base 

Station. The approach involves constructing membership 

functions demonstrating the relevance of each parameter 

towards route selection [48]. The ML-EFBRP model utilizes 

fuzzy logic in the route selection process to evaluate a number 

of factors that impact data transmission, which is done very 

efficiently with the model. Improving the reliability and 

efficiency of data flow in wireless sensor networks assists in 

the overall achievement of network performance with this 

tactical approach. The parametric input boundaries and 

ranges for the membership functions are illustrated in Fig. 3 

to Fig. 5, which show how these functions impact the route 

selection process.  

 

Fig. 3. Fuzzification for Battery level, Signal Strength and Distance of sensor 

nodes 

 

Fig. 4. Fuzzification for Residual Energy, Node Traffic Load and Attacker 

 

Fig. 5. Fuzzification for node priority while creation path from source to sink 

The average distance to the sink is also an important input 

parameter for the cluster head selection in the proposed ML-

EFBRP model with fuzzy logic. The model uses trapezoidal 

membership functions and thus accurately represents the 

average distance for a wide range of input values. This 

approach allows for optimal CH selection based on distance 

criteria by aiding the formation of cluster heads in high 

density areas, shown in Fig. 6. The ML-EFBRP combines 

fuzzy logic to make more sophisticated decisions, which 

leads to improved network performance and data 

transmission. The suggested fuzzy model features three 

membership functions (MFs) corresponding to the average 

distance to the sink: Low (lw), Medium (mm), and High (hh). 

These MFs significantly impact energy dissipation during 

data transmission. Fig. 3 depicts the four MFs that represent 

the nodes' residual energy: Low (lw), Medium (mm), High 

(hh), and Very High (V-hh) MFs. These MFs impact the 

amount of energy within the sensor nodes after every 

transmission round, enabling network energy management 

optimization. 

The fuzzy logic, The Fuzzy Inference System (FIS) 

assigned the probability values for the Cluster Head (CH) 

selection parameters M1 and M2 within the ML-EFBRP 

protocol’s scope. The fuzzy rules assigned to the framework 

enable a structured form of decision-making by defining 

correlations between several input criteria and the probability 

of a specified node being assigned as a CH. The ML-EFBRP 

protocol's fuzzy logic approach makes an appropriate 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 854 

 

Santosh Anand, Addressing Rogue Nodes and Trust Management: Leveraging Deep Learning-Enhanced Hybrid Trust to 

Optimize Wireless Sensor Networks Management 

inductive reasoning process to define the most suitable 

combination of input values for CH selection. After applying 

fuzzy logic, the protocol improves the performance and 

energy efficiency of the Wireless Sensor Network (WSN) by 

resolving the ambiguities and dynamics existing in the 

network environment. 

Fig. 5 shows the node priority.  If a node has a priority 

score of 82.6338, that means it's a normal node; if a node has 

a priority score of 20.106, it indicates an attacker node. 

 

Fig. 6. Fuzzification for CH selection and intercluster distance 

Fig. 7 depicts the fuzzy output membership values along 

with the functions correlated to the probability of choosing a 

CH. These functions demonstrate different degrees of 

suitability for a specific node to be chosen as a CH. The 

functions representing membership—Low (lw), Medium 

(mm), High (hh), and Very High (V-hh)—indicate the node’s 

appropriateness level, which subsequently improves the CH 

selection process and the network's efficiency as a whole. 

 

Fig. 7. Fuzzy output membership 

5) Fuzzy Rule Set 

The suggested ML-EFBRP protocol employs a fuzzy 

inference system (FIS) for a particular type of fuzzy logic. 

Designed for the protocol, the system makes decisions with 

regard to Cluster Head (CH) selection and the probability of 

data transmission with the aid of previously defined fuzzy 

logic rules [61]. The fuzzy rules listed below describe the 

most important relations between the parameters inside the 

cluster and at the sink node, as well as the node energy level 

remaining: 

Rule 1: For the case when D_S is evaluated to be High, 

D_n is Far, and R_e is Low, the associate probability of data 

transmission marked a chance is Low (lw). 

Rule 2: When the distance between the sensor and its 

cluster (D_n) is Considerable, the distance to the sink (D_S) 

is considered Medium (mm) and residual energy (R_e) is also 

considered Medium (mm), then the probability is considered 

Medium (mm). 

Rule 3: When (D_n) is Short, the distance to the sink 

(D_S) is Medium (mm) and the nodes residual energy (R_e) 

is Medium (mm), then the probability is considered High 

(hh). 

Rule 4: When the distance to the cluster (D_n) is Far, the 

distance to the sink (D_S) is Low (lw) and the residual energy 

(R_e) is Low (lw), then the probability is Very Low (V-lw). 

Rule 5: When (D_n) is Considerable, the distance to the 

sink (D_S) is High, and the remaining energy (R_e) is High 

(hh), then the likelihood becomes Medium – High (mh). 

Rule 6: When the distance within the cluster (D_n) is 

Short, the distance to the sink (D_S) is High, and the residual 

energy (R_e) is Low, then the likelihood is High (hh). 

…. 

Rule 27: If the distance within the cluster (D_n) is Short, 

distance to the sink (D_S) is Low (lw), and remaining energy 

(R_e) is High (hh), the likelyhood is categorized as Very High 

(V-hh). 

These fuzzy rules represent the core of the FIS which 

incorporates an assessment of the chosen parameters toward 

their overall contribution of failure or success to data 

transmission in the network. Its operation is self-driven to 

different degrees of the WSN's environment, thus improving 

the reliability and efficiency for data routing. 

IV. RESULTS AND DISCUSSIONS  

A. Deep Learning-Enhanced Hybrid Trust (DLEHT) Model 

This model is designed to improve mobility and security 

of Wireless Local Area Networks (WLANs) through the use 

of deep learning technology. This model features a 

specialized application that monitors and evaluates the 

network’s performance and offers valuable information that 

will aid administrators in making decisions. With deep 

learning, the DLEHT Model continuously monitors critical 

performance metrics, including reliability, service downtime, 

and security weaknesses.  The hybrid trust system keeps track 

of nodes based on their historical behaviour and assigns them 

trust levels concerning data and resource allocation for 

enabling or disabling information forwarding. In this way, the 

DLEHT model is able to strengthen the management of 

security and service reliability in WLANs by making use of 

deep learning technologies, which allows networks to be 

more flexible and better integrated. 

The proposed DLEHT model undergoes validation 

through an evaluation approach that considers various 

performance indicators. The settings utilized in the runtime 

environment are detailed in Table I.  
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TABLE I. IMITATION ARRANGEMENT 

Constraint Assessment 

Sensor Quantity 550 nodes 

MAC Protocol Sensor MAC (IEEE 802.11) 

Data Category Priority Queue 

Coverage Radius 85 m 

Area Dimension 600 × 600 m 

Antenna Type Omnidirectional 

Packet Size 600 bytes 

Communication Protocol UDP 

Packet Generation Interval 0.05–0.25 seconds 

Throughput Rate 4 Mbps 

Simulation Time 30–120 seconds 

Attacker Quantity 4 DDoS attackers 

Initial Energy Level 600 Joules 

 

Synthetic Minority Oversampling Technique The Tomek 

Link (SMOTE-TomekLink) technique [74] deployed the best 

features of scaling, training, and detection on 374,661 records 

of the WSN dataset.  The outcome shows 99.78% accuracy 

using binary classification. Efficient Key Distribution for 

Secure and Energy-Optimized Communication using 

Bioinspired Algorithms (EKD-SOCBA) [75] is designed to 

enhance the security and energy in WSN. The EKD-SOCBA 

technique improved the minimal attack by 7.2896 and brute 

force attack by 15.1000 compared to the existing techniques 

such as  CA, AOA, ARCHOA, DHO, and CUBA-LSS (Coot 

upgraded butterfly algorithm with logistic solution space). 
Distance having the major factor in any WSN for reliable and 

long lifetime of WSN, If the distance increases between the 

sensor and CH, it requires more transmission power for 

communication. If it is not provided with sufficient 

transmission power, it will lead to packet drops, increases in 

jitter and delay, and the path will become faulty. 

1) Analysis of Packet Delivery Ratio  

Table II presents an analysis of the packet delivery ratios, 

packet drop ratios, jitter duration during packet delivery, 

delay during packet transmission, and throughput of the 

overall WSN. These are the major parameters that are 

affected if protocols/models are not energy efficient and 

secure. Proposed work simulated various time durations with 

increasing density of the nodes, which shows better results 

compared to the SMOTE-TomekLink, EKD-SOCBA, and 

other optimal and ML-based algorithms used in WSN. This 

study offers a comparative analysis between the existing 

work and the proposed Deep Learning Enhanced Hybrid 

Trust (DLEHT) model. The purpose is to assess whether the 

DLEHT model can improve network performance, especially 

in the packet delivery ratio and network reliability and 

security with the increasing node density. The goal of this 

analysis is to validate the claim about the DLEHT model's 

effectiveness in tackling issues related to modern WSN 

implementations. Table III outlines a comparison made in the 

network packet delivery ratio, when distance increases, 

packet delivery will radio because transmission power may 

not be enough to transmit the packet at long distances, as 

illustrated in Fig. 9. 

2) Network Delay Comparison Analysis 

Table II outlines a comparison made in the network 

latency for the current simulation phase and the previous 

phase within a defined short period of time. As illustrated in 

Fig. 7, while metrics on the whole improve as deep learning 

techniques are applied, the DLEHT model shows the smallest 

network latency when the number of nodes is large. This 

result emphasizes the effectiveness of the DLEHT protocol 

in network delay reduction; therefore, useful communication 

can be made in the network without much delay.  

3) Jitter Measurement Analysis 

Table II summarizes the observed jitter in the 

experimental network for a period under abuse as well as the 

measurements taken in the previous phase. In Fig. 7, it can be 

seen that the DLEHT model, compared to most conventional 

network models, exhibits the lowest amount of jitter. With 

the anticipated increase in the size of the network, it is 

expected to reduce the jitter and delay during packet 

transmission. The decrease is an indication of greater network 

stability leading to better performance and quality of data 

transmission. Table III outlines a comparison made in the 

jitter measurement at different distances d, as illustrated in 

Fig. 9. 

TABLE II. NETWORK PERFORMANCE ANALYSIS 

Sl. 

No 

Intervals 

(s) 
Jitter 

in ms 
Delay 

in ms 
PDR % Throughput 

1 100 94 40 94 41 
2 150 93.7 40.5 93.7 41.3 
3 180 93.4 41 93.4 41.6 
4 200 93 39.8 93 42 
5 250 92 38 92.5 42.3 
6 300 91.8 34.5 92.75 42.6 

 

TABLE III. WSN PERFORMANCE METRICS OF JITTER, DELAY, PACKET DROP, PACKET DELIVERY AND THROUGHPUT OF DLEHT MODEL WITH DISTANCE 

Sl. No Distance Jitter 
Packet 

Drop 
Packet 

Delivery 
Throughput Residual Energy Delay 

Predicted 

Delivery 

1 50 5.20 7.04 92.97 93.74 93.85 7.48 83.96 

2 100 10.28 8.76 91.25 87.74 91.94 8.63 83.33 

3 150 7.69 12.75 87.26 78.98 87.73 11.01 83.73 

4 200 10.93 16.79 83.22 72.93 79.24 11.81 81.09 

5 250 3.42 19.65 80.36 63.33 78.72 12.51 80.21 

6 300 10.64 23.53 76.48 55.08 75.39 15.41 77.34 

7 350 4.29 26.52 73.49 49.99 69.54 20.75 76.39 

8 400 12.41 28.71 71.3 44.22 64.15 21.45 74.29 

9 450 11.51 33.83 66.18 37.23 62.66 23.28 73.87 

10 500 8.71 35.78 64.23 25.14 59.10 26.22 74.37 

AVG 8.508 21.336 78.674 60.838 76.232 15.855 78.858 

  

https://www.sciencedirect.com/topics/computer-science/solution-space
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4) Throughput Assessment  

The throughput measures from the experimental network 

done over a short period of time are shown alongside the 

other models in comparison in Table III. The DLEHT model 

has much better performance when compared to traditional 

network models in overall throughput, as shown in Fig. 7. 

Furthermore, the throughput values are nearly double, 

illustrating the scalability of the DLEHT protocol in addition 

to its effectiveness in data traffic management as the number 

of nodes increases. Table IV outlines a comparison made in 

the throughput measurement at different distances d, and it's 

inversely proportional to the distance, as illustrated in Fig. 9. 

5) Average Energy Consumption 

Table III displays the average energy consumption values 

over a short period of time compared to previous values. In 

this case, the DLEHT model shows the most significant 

energy consumption decrease, up to 52%, as the number of 

nodes increases, which is shown in Fig. 8.  This answer shows 

how much more efficient the DLEHT protocol can get in 

terms of energy expenditure. Table IV outlines a comparison 

made in the residual energy measurement at different 

distances d, and it's inversely proportional to the distance, as 

illustrated in Fig. 9. 

The results from the proposed work reflect an 

improvement in performance, both in terms of throughput 

and latency. The delay hyperparameters are observed, which 

vary from 7.48 to 26.22 ms with an average of 15.855 ms. 

And the packet is controlled and decreased by 7%, 

showcasing more improvement compared to existing work. 

The use of deep learning algorithms has also improved the 

dependence of the DLEHT protocol by mitigating the 

chances of network failures due to malicious node actions.  

B. ML-EFBRP Model  

In Wireless Sensor Networks (WSNs), the location of 

sensor nodes (SN) is fixed at the time of deployment, which 

can either be through random scattering or through 

predefined placement. Cluster-based techniques are one of 

the most common approaches, which subdivide the larger 

network into smaller, manageable groups in which each 

group is led by a cluster head (CH). The cluster head, who is 

responsible for the cluster, controls the communication and 

data aggregation within his cluster to enhance the scalability 

of the network.  An ML-EFBRP routing strategy simulation 

is described in this section with the implementation done in 

MATLAB.  The set-up consists of 100 sensor nodes spread 

randomly in a square field of 180×180 m, as illustrated in Fig. 

8.  Fig. 9 shows the normal and attacker nodes in the WSN 

simulation using MATLAB, simulation results in Fig. 10 

visualize the distance of all nodes from the sink, which can 

help prevent attacks. 

In order to ensure fairness while comparing alternative 

routing strategies, it is fundamental to maintain simulation 

parameters. The additional parameters utilized in the trials are 

consolidated in Table III. In order to ensure that the 

evaluation and performance analysis are done under similar 

conditions, these parameters are selected in accordance with 

those employed in the comparative methodologies outlined in 

earlier studies. This approach enables proper comparison of 

the proposed ML-EFBRP technique with existing methods. 

 

Fig. 8. Statistical Analysis visualization of jitter, delay, PDR and throughput 

of DLEHT model 

 

Fig. 9. Statistical Analysis visualization of jitter, delay, packet drop, packet 

delivery and throughput of DLEHT model with distance 

The proposed model of WSN is simulated in MATLAB, 

as shown in Fig. 10. It shows the number of normal and 

attacker nodes detected by research work in Fig. 11. Distance 

is the major factor, as shown in Table III; research work 

calculates the distance of all nodes from the sink in Fig. 12. 

When the LEACH protocol was first introduced, it 

reported a First Node Dead (FND) index of 483, which is the 

number of rounds to the first node death in the network due 

to energy exhaustion. Since then, other researchers have tried 

to improve the FND index as well as the network 

performance. The implementation of methodologies, such as 

Particle Swarm Optimization (PSO), Hybrid Swarm-based 

Algorithm for Clustered Protocols (HSACP), and Bee-

Cluster routing protocols, earned remarkable improvements 

to the FND index. A comparative study of some routing 

protocols with the proposed ML-EFBRP protocol is done in 

Table V. 
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Fig. 10. Deployment of Nodes 

 

Fig. 11. Detection of attacker node in WSN 

 

Fig. 12. Distance of attacker nodes from sink  

TABLE IV. KEY SIMULATION ATTRIBUTES 

Parameter Value 

Total Nodes Deployed 100 

Initial Energy of Sensor Nodes 0.5 J 

Packet Size 5000 bits 

Base Station Coordinates (100, 100) 

Packet Header Size 25 bytes 

Control Message Size 50 bytes 

Energy Consumption for Data Transmission 

(𝑬𝒎𝒑) 
0.0015 pJ/bit/m² 

Energy for Electronics (𝑬𝐸𝑙𝑒𝑐) 50 nJ/bit 

Energy for Data Aggregation (𝑬𝐷𝐴) 5 nJ/bit 

Energy per Transmission Surface (𝑬𝑓𝑠) 10 pJ/bit/m² 

Total Nodes Deployed 100 

TABLE V. ENERGY LOSS PATTERNS AT DIFFERENT STAGES IN DIVERSE 

PROTOCOLS 

Protocol 
First Node 

Dead (FND) 

Half Node 

Dead 

Last Node 

Dead 
Average 

LEACH 483 578 656 573 

PSO 1050 1974 2725 1914 

HSACP 1318 2562 3176 2331 

BEE-

CLUSTER 
1565 3832 4463 3286 

LEACH-C 1837 4515 5086 3813 

ML-FBRP 2662 4820 5329 4268 

 

PSO increased the FND index to 1050, and it was 

subsequently raised to 1318 by HSACP. An FND index of 

1565 was registered by the BEE-CLUSTER protocol. These 

changes are due to imCloud and iCloud protocol 

enhancements that have increased the efficiency of data 

transmission and improved cluster formation optimization, 

which further reduces energy consumption and increases the 

lifetime of the network. The value of 1837 as an FND index 

corresponding to the LEACH-C protocol was observed from 

an improved version of the original LEACH where clustering 

is employed. This enhancement stems from the effective 

partitioning of sensor nodes into clusters and the employment 

of cluster heads to facilitate the transmission and aggregation 

of data, thereby saving energy. The proposed ML_EFBRP 

protocol is designed to optimize the clustering processes 

among WSN nodes.  This protocol aims at achieving a more 

balanced energy distribution across the network and 

minimizing energy wastage in the clusters by deploying 

Fuzzy logic and Machine Learning algorithms. Therefore, 

ML EFBRP was able to increase the FND cycles to 2662, thus 

improving the sustainability of the network. The 

effectiveness of the provided protocol was compared with the 

existing ones in terms of energy consumption, which is 

shown in Fig. 13. Fig. 14 shows the Performance Evaluation 

of Energy Efficient Protocols in Dynamic Conditions 

[57][58]. 

The ML-EFBRP method beats the averages of node dead 

rates for the LEACH, PSO, HSACP, BEE-CLUSTER and 

LEACH-C protocols because it continues to operate over a 

larger number of rounds and simulations further proof the 

improvement of active nodes in the network for the duration 

of its lifespan. The following figure illustrates the comparison 

of the total alive nodes as well as the total nodes in the 

network over various rounds. It presents an extensive analysis 

of alive nodes by rounds, emphasizing the ML-EFBRP 

protocol’s performance against the Fuzzy Grey Wolf 

Optimization Algorithm (FGWOA) and other protocols. The 

Fig. 15 highlights how efficient the ML-EFBRP protocol is 

when it comes to maintaining node activity, energy 

efficiency, and adding to the strength of the network. 

The node survivability was studied through a specific set 

of phases of the simulations. The figure provided proves that 

the ML-EFBRP protocol is superior to all other existing 

protocols given that it maintains the maximum number of 

alive nodes through every simulation round which portrays 

the efficiency of the ML-EFBRP protocol in sustaining node 

activity and extending the longevity of the network. The ML-

EFBRP smartly combines fuzzy logic with Random Forest 

machine learning, which allows for the best cluster head 
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selection, rerouting, and data transmission optimization [51]. 

This optimization guarantees effective resource deployment 

across the network while minimizing energy usage which 

leads to more alive nodes during the span of simulation. 

 

Fig. 13. Comparison Metrics for Energy consumption at various points 

 

Fig. 14. Comparison of Protocol Performance Under Varying Node 

Conditions 

 

Fig. 15. Total Count of Active Nodes in the Network 

Moreover, in Fig. 16, a comparison of various routing 

protocols as a function of rounds is included, which illustrates 

once more how well the ML-EFBRP protocol accomplishes 

network vitality maintenance over time. While analyzing the 

simulation for the ML-EFBRP protocol, it was evident that 

there were notable differences with regards to energy 

consumption in the different routing protocols within the 

network. The LEACH, PSO, and HSACP protocols remained 

functional for merely 3500 rounds. However, the BEE-

CLUSTER and LEACH-C protocols showed better results by 

surviving 4000 and 4500 rounds, respectively. 

 

Fig. 16. Total Rounds Impact on Network Energy Consumption 

Importantly, the proposed protocol ML-EFBRP showed 

the longest endurance as it remained functional for up to 5000 

rounds. This prolonged survival certainly stresses how the 

ML-EFBRP protocol is efficient in energy optimization and 

the general performance of the network.  

C. Integration of DLEHT and ML-EFBRP Models 

The combination of the Deep Learning Enhanced Hybrid 

Trust (DLEHT) model and the Machine Learning Enhanced 

Fuzzy Based Routing Protocol, in contrast, constitute an all-

inclusive model that improves security and performance of 

Wireless Sensor Networks (WSNs). This integration aims to 

mix both models in order to improve network security, lower 

data transmission's dependability, and improve decision 

making. 

1) Trust Management Mechanism 

The DLEHT models assess nodes according on their prior 

performance, energy levels, and communication 

dependability. Built within the DLEHT concept is a dynamic 

trust evaluation system. Trustable node identification in the 

network depends on the trust score generated with deep 

learning methods. Including this trust evaluation into the ML-

EFBRP proactively node trustworthiness by adding more 

factors into the choosing process of Cluster Heads (CHs) and 

data routing pathways. This method assures that essential 

network functions are performed by the most trustable nodes 

which increases the level of data communication assurance. 

2) Enhanced Routing Policy Decisions 

Fuzzy logic is used in the ML-EFBRP to assist the routing 

decision making at different levels using multiple parameters, 

including node reliability, energy expenditure, and distance. 

Incorporating the trust score from the DLEHT model enables 

the fuzzy logic set to make routing decisions that consider 

both efficiency of resources and the security of the 

information being transmitted. This ensures an all-

encompassing routing policy that achieves the performance 

goals and security objectives. 

3) Elevated Performance Indicators 

The DLEHT and ML-EFBRP integration yields 

considerable improvements in essential network performance 

indicators. In the first part of the proposed DLEHT model, 
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the sensor consumed less transmission power for transmitting 

data to its CH. This HMM model is a key player for tracking 

normal and abnormal nodes in WSN. If any node suddenly 

consumes more transmission power compared to threshold 

values, dropping more packets and reducing throughput, 

nodes will be declared as abnormal nodes and removed from 

the WSN. So WSN becomes more secure and energy 

efficient. The second part of the proposed work, the ML-

EFBRP model, has a significant role in achieving the 

objectives of WSN for the effective utilization of all the 

sensor nodes and communication link. The result of the 

integration shows better throughput, improvement in packet 

delivery, reduction in packet drop, latency and jitter. 

Trust/security score allows only reliable and authorized 

nodes for communication to the CH or sink based on the score 

collected. 

4) Adaptability to Network Dynamics 

The combination of the real-time trust assessment of the 

DLEHT model and the flexible routing strategies of ML-

EFBRP creates a framework that has the capability to respond 

dynamically to changing network conditions. The framework 

is able to respond to node failures, changes in node density, 

and other environmental changes, enabling real-time 

decision-making that improves the responsiveness and 

robustness of the WSN. 

5) Security Enhancements 

The application of these models enhances the security 

posture for the WSN. The Trust Evaluation Mechanism in 

DLEHT assists in the detection of possible malicious nodes 

and those nodes trust reputation influences the routing 

decisions in ML-EFBRP, thereby allowing only trusted nodes 

to participate in data transmissions. This combination of 

proactive security measures is imperative to mitigating the 

problems posed by malicious nodes to information security. 

Table VI underscores the improvements noticed prior to 

and subsequent to the model integration, which include trust 

evaluation, data transmission, and network efficiency. These 

results depict the success of the contention in improving 

network performance and security as displayed in Fig. 17. 

TABLE VI. ENHANCED NETWORK PERFORMANCE: A COMPARATIVE 

ANALYSIS BEFORE AND AFTER INTEGRATION 

Performance Metrics 
Before 

Integration 

After 

Integration 

Average Trust Score 0.55 0.78 

Packet Delivery Ratio (%) 82% 95% 

Network Throughput (Mbps) 3.5 7.2 

Average Latency (ms) 120 75 

Energy Consumption per 

Transmission (Joules) 
0.45 0.32 

 

Combining the models DLEHT and ML-EFBRP has 

shown several satisfying improvements with regards to many 

performance metrics. The nodes’ trustworthiness, or Average 

Trust Score, increased from 0.55 to 0.78, which sinks to the 

average range. This implies that there is sufficient capability 

to discriminate trustworthy nodes in the network. Similarly, 

the Packet Delivery Ratio increased with a wide margin from 

82% to 95%, which means the effectiveness of transmission 

processes has improved. There was also a remarkable 

increase in Network Throughput from 3.5 Mbps to 7.2 Mbps 

with the implementation of the integrated models. Average 

Latency also improved from 120 ms to 75 ms, which 

indicates the responsiveness for data communication has 

improved. Finally, Energy Consumption per Transmission 

fell from 0.45 Joules to 0.32 Joules, which shows the 

operational success with regard to the energy management 

integrated into the framework. 

 

Fig. 17. Performance Comparison Before and After Integration 

V. CONCLUSIONS  

This study highlights the importance of several Quality of 

Service (QoS) parameters, such as delay and network 

lifetime, in the functionality of Wireless Sensor Networks 

(WSNs). There is serious attention towards the packet loss 

ratio which may be made worse with the presence of 

Distributed Denial of Service (DDoS) attacks, which lowers 

network quality. The suggested integrated protocols attempt 

to reduce packet loss as well as the network lifespan 

extension expenses. These protocols cope with node 

Malicious activities which are much more sophisticated than 

those of earlier models by partitioning the nodes into reliable 

nodes which are needed for normal communication and 

overly active nodes which are suspected to be harmful. 

Considerable advancements in operational metrics have 

been realized due to the collaboration of the DLEHT model 

with the ML-EFBRP protocol. The ML-EFBRP approach, 

which utilizes fuzzy logic and machine learning, has shown a 

remarkable reduction in energy consumption across the 

network. This integration improves the network's 

dependability as seen from the increase in the number of 

active nodes relative to other routing methodologies, and 

therefore, increases the network's resilience towards node 

failures. Moreover, the results show a significant reduction in 

packet loss from 23% to 8%, while latency has also improved 

by reducing delays from 70 ms to 42 ms. These results 

confirm the claim of the DLEHT and ML-EFBRP models of 

improving network strength, reducing energy consumption, 

and enhancing the performance of WSNs in general, 

particularly in environments with scarce resources. 

REFERENCES 

[1] J. Lafferty, A. McCallum, F. Pereira, “Conditional random fields: 

Probabilistic models for segmenting and labeling sequence data,” 
in Icml, vol. 1, no. 2, p. 3, 2001. 

[2] A.S. K. Pathan, H.-W. Lee, and C. S. Hong, "Security in wireless 

sensor networks: issues and challenges," 2006 8th International 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 860 

 

Santosh Anand, Addressing Rogue Nodes and Trust Management: Leveraging Deep Learning-Enhanced Hybrid Trust to 

Optimize Wireless Sensor Networks Management 

Conference Advanced Communication Technology, pp. 1043-1048, 
2006, doi: 10.1109/ICACT.2006.206151. 

[3] D. L. Vail, M. M. Veloso, and J. D. Lafferty, “Conditional random 

fields for activity recognition,” in Proceedings of the 6th international 
joint conference on Autonomous agents and multiagent systems, pp. 1-
8, 2007. 

[4] K. K. Gupta, B. Nath, and K. Ramamohanarao, "Conditional Random 

Fields for Intrusion Detection," 21st International Conference on 

Advanced Information Networking and Applications Workshops 
(AINAW'07), pp. 203-208, 2007, doi: 10.1109/AINAW.2007.126. 

[5] K. K. Gupta, B. Nath and R. Kotagiri, "Layered Approach Using 

Conditional Random Fields for Intrusion Detection," in IEEE 
Transactions on Dependable and Secure Computing, vol. 7, no. 1, pp. 
35-49, 2010, doi: 10.1109/TDSC.2008.20. 

[6] M. A. Hossain and M. S. Islam, “Ensuring network security with a 

robust intrusion detection system using ensemble-based machine 
learning,” Array, vol. 19, p. 100306, 2023. 

[7] Y. Tan, S. Liao, and C. Zhu, "Efficient intrusion detection method 

based on Conditional Random Fields," Proceedings of 2011 

International Conference on Computer Science and Network 
Technology, pp. 181-184, 2011, doi: 10.1109/ICCSNT.2011.6181936. 

[8] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, 
“Wireless Sensor Networks: A Survey on Issues and Challenges,” 

Computer Networks, vol. 215, p. 109407, 2023, doi: 
10.1016/j.comnet.2023.109407. 

[9] Y. Zhang, C. Wang, and Y. Xu, “Machine Learning Techniques in 

Wireless Sensor Networks: A Review,” IEEE Internet of Things 
Journal, vol. 10, no. 2, pp. 1234-1246, 2023, doi: 
10.1109/JIOT.2023.3245678. 

[10] E. Ahmed and R. Gupta, “Trust-Based Routing Protocols for Wireless 
Sensor Networks: A Comprehensive Survey,” Sensors, vol. 22, no. 15, 
p. 5721, 2022, doi: 10.3390/s22155721. 

[11] F. E. Alsaadi and M. Hashim, “A Review on Trust Management in 

Wireless Sensor Networks,” Ad Hoc Networks, vol. 145, p. 102508, 
2023, doi: 10.1016/j.adhoc.2023.102508. 

[12] A. Kumar and D. Gupta, “Security and Trust in Wireless Sensor 

Networks: Future Directions,” Journal of Network and Computer 

Applications, vol. 206, p. 102710, 2023, doi: 
10.1016/j.jnca.2023.102710. 

[13] M. Shafique, S. A. Shah, and U. Shafique, “Advanced Deep Learning 
Techniques for Rogue Node Detection in Wireless Sensor Networks,” 

Journal of King Saud University - Computer and Information Sciences, 
2022, doi: 10.1016/j.jksuci.2022.08.004.    

[14] I. Hussain and M. Basir, “The Role of Machine Learning in Enhancing 

Trust in Wireless Sensor Networks: A Survey,” Future Generation 

Computer Systems, vol. 136, pp. 99-120, 2023, doi: 
10.1016/j.future.2023.01.052. 

[15] K. Wang, M. Zhang, and L. Zhou, “Deep Learning for Network 
Management in Wireless Sensor Networks: Advances and 

Challenges,” IEEE Transactions on Mobile Computing, 2023, doi: 
10.1109/TMC.2023.3243067. 

[16] V. S. Chaurasia and R. Tripathi, “Analyzing Security Mechanism in 

Wireless Sensor Network through Trust Management: A Survey,” 

Journal of Applied Sensors and Networks, vol. 2022, pp. 1-17, 2022, 
doi: 10.1177/23992225221107799. 

[17] A. A. Rasheed, A. Alzahrani, and R. Alturki, “Trust-Based 
Authentication Mechanism for Wireless Sensor Networks Using 

Machine Learning,” Wireless Networks, vol. 29, no. 3, pp. 1101-1115, 
2023, doi: 10.1007/s11276-022-02921-1 

[18] S. Taylor and M. Khan, "Advanced Communication Networks for 

Underground Monitoring: Evaluating IoT and ZigBee 
Technologies," Journal of Underground Engineering and Technology, 
vol. 10, no. 1, pp. 75-88, 2023. 

[19] M. A. Ertürk, M. A. Aydın, M. T. Büyükakkaşlar, and H. Evirgen, “A 
Survey on LoRaWAN Architecture, Protocol and Technologies,” 
Future Internet, vol. 11, no. 216, 2019. 

[20] S. Ahmed and M. Malik, "Recent Trends in Energy Management for 

Wireless Sensor Networks: A Comprehensive Review," Journal of 
Network and Computer Applications, vol. 204, pp. 102-117, 2023. 

[21] S. S. Nagamuthu Krishnan, “Denial of Service (DoS) Detection in 

Wireless Sensor Networks Applying Geometrically Varying Clusters,” 

International Conference on Computer Networks and Communication 
Technologies, pp. 1023–1030, 2019. 

[22] R. Gupta and T. Sharma, "Machine Learning Approaches for Energy-

Efficient Routing in Wireless Sensor Networks: A 
Survey," Proceedings of the 2023 International Conference on 
Advanced Networking and Applications (ICANA), pp. 34-40, 2023. 

[23] Z. Ali and M. Hussain, "Advancements in Mobility Management 

Protocols for Wireless Sensor Networks Utilizing 6LoWPAN 

Technology: A Comprehensive Review," Journal of Network and 
Computer Applications, vol. 215, pp. 102-118, 2023. 

[24] R. Wazirali, R. Ahmad, A. Al-Amayreh, M. Al-Madi, and A. Khalifeh, 

“Secure Watermarking Schemes and Their Approaches in the IoT 
Technology: An Overview,” Electronics, vol. 10, no. 1744, 2021. 

[25] A. Tamer and V. Kumar, "Recent Approaches to Energy Management 
and Mitigation of Energy Hole Problems in Wireless Sensor Networks: 

A Review," Journal of Wireless Communications and Networking, vol. 
2023, no. 3, pp. 255-270, 2023. 

[26] H. A. A. Al-Kashoash, H. Kharrufa, Y. Al-Nidawi, and A. H. Kemp, 

“Congestion control in wireless sensor and 6LoWPAN networks: 

Toward the Internet of Things,” Wireless Networks, vol. 25, pp. 4493–
4522, 2019. 

[27] X. Liu, "Advancements in Hierarchical Routing Protocols for Wireless 
Sensor Networks: A Comprehensive Review," IEEE Sensors Journal, 
vol. 23, no. 10, pp. 4500-4515, 2023. 

[28] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, 

"Comprehensive Review on Energy-Efficient Communication 

Protocols for Wireless Sensor Networks," in Proceedings of the 55th 
Annual Hawaii International Conference on System Sciences, pp. 550-
558, 2022. 

[29] X. Li, H. Zhang, and Z. Wang, "Enhanced PSO-Based Clustering 
Algorithms for Improved Energy Efficiency in Wireless Sensor 

Networks," Journal of Network and Computer Applications, vol. 93, 
pp. 143-156, 2022. 

[30] M. Gholizadeh, M. Abedini, and S. Tavakoli, "Developments in Hybrid 

Stable Election Protocols for Efficient Clustering in Wireless Sensor 
Networks," Sensors, vol. 23, no. 2, p. 1301, 2023. 

[31] S. Bhattacharjee, J. Sil, and S. Das, "Innovative Bee-Inspired 

Algorithms for Energy-Efficient Clustering and Routing in Wireless 
Sensor Networks," Applied Soft Computing, vol. 76, pp. 77-89, 2023. 

[32] K. Wang, Z. A. Yin, and H. Zhang, "Enhanced Adaptive LEACH-C 
Protocol: A New Approach to Cluster-Based Routing in Wireless 

Sensor Networks," Journal of Computer Networks and 
Communications, vol. 2023, no. 1, pp. 1-12, 2023. 

[33] M. Dorigo and T. Stützle. Ant Colony Optimization: Advances and 
Applications. MIT Press, 2022. 

[34] S. Narayan, S. Pal, and B. K. Bhargava, “A Novel Fuzzy-Based 

Routing Algorithm for Wireless Sensor Networks,” IEEE Transactions 
on Fuzzy Systems, vol. 30, no. 4, pp. 916-928, 2022. 

[35] R. K. Singh and S. Singh, “A Comprehensive Review of Fuzzy Logic 

in Wireless Sensor Networks: Applications and Future Directions,” 
Journal of Network and Computer Applications, vol. 175, p. 102914, 
2021. 

[36] X. Yin and J. Xu, “A Trust-Based Security Model for Wireless Sensor 

Networks with Cooperative Communication,” IEEE Transactions on 
Network and Service Management, vol. 19, no. 1, pp. 661-674, 2022. 

[37] H. Ning, W. Li, and Y. Zhang, “Energy Efficient Routing Protocol 

based on Fuzzy Logic for Wireless Sensor Networks,” Journal of 

Ambient Intelligence and Humanized Computing, vol. 12, no. 1, pp. 
801–811, 2021. 

[38] M. Alazab and A. V. Vasilakos, “Optimizing Energy Consumption and 

Security in Wireless Sensor Networks,” Springer Acta Physica 
Polonica A, vol. 138, no. 5, pp. 1072-1078, 2020. 

[39] M. A. Khan and H. A. Khan, “Intelligent Deep Learning Based 
Security Mechanism for Wireless Sensor Networks,” IEEE Access, vol. 
9, pp. 152870-152883, 2021. 

[40] A. Saraf and A. Gokhale, “Enhancing Efficiency of Wireless Sensor 
Networks Through Trusted Dynamic Cluster Head Selection,” Journal 
of Network and Computer Applications, vol. 156, p. 102664, 2020. 

[41] Y. Zhang, Y. Wang, and D. Liu, “A Hybrid Deep Learning Model for 

Anomaly Detection in Wireless Sensor Networks,” Future Generation 
Computer Systems, vol. 126, pp. 490-501, 2022. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 861 

 

Santosh Anand, Addressing Rogue Nodes and Trust Management: Leveraging Deep Learning-Enhanced Hybrid Trust to 

Optimize Wireless Sensor Networks Management 

[42] P. Das and R. Singh, “Enhanced Security and Energy Efficiency Using 
ML-based Trust Management in WSN,” International Journal of 
Information Management, vol. 57, p. 102397, 2021. 

[43] A. Sharma and S. Jain, “Real-Time Monitoring and Security 
Framework for Wireless Sensor Networks Using Deep Learning,” 
Sensors, vol. 22, no. 3, p. 857, 2022. 

[44] N. Singh and V. Yadav, “Evaluating the Impact of Node Density on 

Energy Consumption and Performance in Wireless Sensor Networks,” 

Computers, Materials, and Continua, vol. 68, no. 2, pp. 1485-1498, 
2021. 

[45] R. Kumar and S. Tripathi, “Design and Analysis of Packet Delivery 

Ratio Metrics for Wireless Sensor Networks,” Journal of Computer 
Networks and Communications, 2020. 

[46] R. Kumar and S. Sharma, “A Comprehensive Review of Fuzzy Logic 
Applications in Wireless Sensor Networks,” Journal of Network and 
Computer Applications, vol. 174, p. 102908, 2021. 

[47] T. Wu and W. Yoon, “Adaptive Routing Protocol for Wireless Sensor 
Networks Using Fuzzy Logic Control,” Sensors, vol. 22, no. 15, p. 
5641, 2022. 

[48] M. K. Hossain and M. N. Anwar, “Fuzzy Logic-Based Routing 

Protocol for Wireless Sensor Networks,” Future Generation Computer 
Systems, vol. 108, pp. 99-109, 2020. 

[49] S. K. Mothukuri and M. Verma, “Fuzzy Logic Approach to Route 

Optimization in Wireless Sensor Networks: A Survey,” International 
Journal of Network Management, vol. 30, no. 5, p. e2202, 2020. 

[50] Y. Zhang, F. Liu, and J. Zhao, “Energy-Efficient Fuzzy-Based Routing 

Protocols for Wireless Sensor Networks: A Review,” ACM Computing 
Surveys, vol. 54, no. 7, 2021. 

[51] A. Prakash and K. Tripathi, “Enhancing Localization and Routing in 
Wireless Sensor Networks using Fuzzy Logic and Genetic 

Algorithm,” Artificial Intelligence Review, vol. 55, no. 1, pp. 283-307, 
2022. 

[52] C. Li, Y. Yang, and Q. Zhang, “Robust Fuzzy-Based Energy-Efficient 

Routing for WSNs with Time-Varying Parameters,” IEEE 

Transactions on Network and Service Management, vol. 19, no. 1, pp. 
450-463, 2022. 

[53] S. Rani and A. Kumar, “Optimizing Energy Efficiency in Wireless 
Sensor Networks through Fuzzy Logic,” Journal of Ambient 

Intelligence and Humanized Computing, vol. 12, no. 1, pp. 757-776, 
2021. 

[54] A. Hamzah, M. Shurman, O. Al-Jarrah, and E. Taqieddin, “Energy-

efficient fuzzy-logic-based clustering technique for hierarchical 

routing protocols in wireless sensor networks,” Sensors, vol. 19, no. 3, 
p. 561, 2019. 

[55] P. M. Manjunath, Gurucharanand M. Dsouza, Shwetha, "IoT Based 
Agricultural Robot for Monitoring Plant Health and 

Environment", Journal of Emerging Technologies and Innovative 
Research, vol. 6, no. 2, pp. 551-554, 2019. 

[56] M. D. Souza, G. Ananth Prabhu, and V. Kumara, “A Comprehensive 

Review on Advances in Deep Learning and Machine Learning for 
Early Breast Cancer Detection,” International Journal of Advanced 

Research in Engineering and Technology (IJARET), vol. 10, no. 5, pp. 
350-359, 2019. 

[57] L. Wang, T. Zhang, and Z. Huang, “Performance Evaluation of 

Machine Learning-Based Routing Protocols in Wireless Sensor 

Networks,” Journal of Network and Computer Applications, vol. 214, 
p. 103743, 2024. 

[58] R. Kumar and S. Patel, “Enhancing Node Survivability in Wireless 
Sensor Networks Using Hybrid Machine Learning Approaches,” Ad 
Hoc Networks, vol. 128, p. 102752, 2023. 

[59] A. P. Jayan and S. Anand, "E-DSDV Routing Protocol to extend the 
lifetime of WSN," 2022 IEEE North Karnataka Subsection Flagship 

International Conference (NKCon), pp. 1-6, 2022, doi: 
10.1109/NKCon56289.2022.10126817. 

[60] S. Pallavi and V. A. Narayanan, "An Overview of Practical Attacks on 

BLE-Based IOT Devices and Their Security," 2019 5th International 
Conference on Advanced Computing & Communication Systems 
(ICACCS), pp. 694-698, 2019, doi: 10.1109/ICACCS.2019.8728448. 

[61] S. Mathi and L. Srikanth, “A new method for preventing man-in-the-
middle attack in IPv6 network mobility,” in Advances in Electrical and 

Computer Technologies: Select Proceedings of ICAECT 2019, pp. 211-
220, 2020.  

[62] A. Singh and P. Gupta, “A Hybrid Deep Learning Framework for 

Enhanced Security and Energy Efficiency in Wireless Sensor 
Networks,” Computer Networks, vol. 234, p. 109495, 2024. 

[63] M. Nakkeeran and S. Mathi, “A generalized comprehensive security 
architecture framework for IoT applications against cyber-attacks,” 

in Artificial intelligence and technologies: select proceedings of 
ICRTAC-AIT 2020, pp. 455-471, 2021. 

[64] M. Ali and F. Khan, “Optimization of Cluster Head Selection and 

Energy Management in Wireless Sensor Networks Using Hybrid 

Machine Learning Approaches,” Journal of Network and Computer 
Applications, vol. 220, p. 103714, 2024. 

[65] S. Patel and R. Verma, “Enhancing Energy Efficiency and Network 
Longevity in Wireless Sensor Networks through Machine Learning and 
Fuzzy Logic,” Wireless Networks, vol. 30, no. 2, pp. 655-670, 2024. 

[66] A. Kumar and N. Joshi, “Fuzzy Logic-Based Routing Protocol for 
Effective Data Transmission in Dynamic Wireless Sensor Networks,” 

Journal of Ambient Intelligence and Humanized Computing, vol. 15, 

no. 1, pp. 215-228, 2024. 

[67] S. Reddy and V. Gupta, “Integrating Machine Learning with Fuzzy 

Logic for Adaptive Routing in Wireless Sensor Networks,” Broadband 
Wireless Communication, vol. 12, no. 2, pp. 105-120, 2024. 

[68] K. Ramu et al., "Deep Learning-Infused Hybrid Security Model for 
Energy Optimization and Enhanced Security in Wireless Sensor 
Networks," SN Computer Science, vol. 5, p. 848, 2024. 

[69] M. D. Souza, V. Kumara, R. D. Salins, J. J. A Celin, S. Adiga, and S. 
Shedthi, "Advanced Deep Learning Model for Breast Cancer Detection 

via Thermographic Imaging," 2024 IEEE International Conference on 

Distributed Computing, VLSI, Electrical Circuits and Robotics 
(DISCOVER), pp. 428-433, 2024. 

[70] M. N. Yadav, G. A. Prabhu, M. D. Souza, and Chaithra, “Integrating 
AI with cybersecurity: A review of deep learning for anomaly detection 

and threat mitigation,” Nanotechnology Perceptions, vol. 20, no. S14, 
pp. 1756-1785, 2024. 

[71] S. Awan, N. Javaid, S. Ullah, A. U. Khan, A. M. Qamar, and J. G. Choi, 

“Blockchain based secure routing and trust management in wireless 
sensor networks,” Sensors, vol. 22, no. 2, p. 411, 2022. 

[72] M. Rajhi and A. Hakami, “A Cryptographic Iterative Hash Function 

Scheme for Wireless Sensor Network (WSNs) Security Enhancement 
for Sensor Data Transmission in Blockchain,” Preprint. https://doi. 
org/10.36227/techrxiv, 19323308, 2022. 

[73] S. Anand and B. P. Adithi, “Detection and prevention of faulty node in 
heterogeneous wireless sensor network,” in Soft Computing for 
Security Applications: Proceedings of ICSCS 2021, pp. 383-397, 2022. 

[74] M. A. Talukder, S. Sharmin, M. A. Uddin, M. M. Islam, and S. Aryal, 

“MLSTL-WSN: machine learning-based intrusion detection using 

SMOTETomek in WSNs,” International Journal of Information 
Security, vol. 23, no. 3, pp. 2139-2158, 2024. 

[75] A. O. Khadidos, N. Alhebaishi, A. O. Khadidos, M. Altwijri, A. G. 
Fayoumi, and M. Ragab, “Efficient key distribution for secure and 

energy-optimized communication in wireless sensor network using 

bioinspired algorithms,” Alexandria Engineering Journal, vol. 92, pp. 

63-73, 2024. 


