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Abstract—Three-dimensional object detection in point 

clouds serves a vital role in autonomous driving and robotics. 

Point Clouds provide a vivid representation of 3D data that 

enables reliable object detection by acquiring the spatial 

distribution of points in a scene, facilitating the localization and 

identification of the objects within three-dimensional space. 

Precise localization of the objects remains challenging, 

particularly for moderately visible objects which attributes to 

inconsistent quality proposals. To tackle this, this paper 

presents a multi-stage proposal refinement network to generate 

the qualitative predictions. The research contribution is, first to 

improve the quality of proposals in partially visible objects, the 

model is integrated with 3D Resnet backbone through the 

refinement module at various stages. Second, to improve the 

quality of predictions, a confidence-weighted box voting 

mechanism is incorporated ensuring the precise bounding box 

detections. Experimentation analysis was carried out on the 

KITTI, NuScenes and the custom LIDAR datasets. Notably, the 

proposed method achieves an average precision of 82.45% for 

Car class, 44.94% for Pedestrian class and 66.12% for Cyclist 

class on the moderate category of KITTI dataset, but in the hard 

category with high occlusion need to be improved. On Nuscenes 

dataset, the model achieved mAP of 66.2%. In custom dataset, 

2739 training frames, 342 frames for validation, and 343 frames 

for testing were taken which achieved an average precision of 

82.40% for Car, 44.10% for pedestrian and 67.90% for Cyclist. 

The results indicate that multi-stage refinement network 

enhances to perform the object detection precisely, which is 

critical to localize and detect the target in autonomous driving 

and robotics. 

Keywords—Object Detection; LiDAR 3D Point Clouds; 

Progressive Refinement; Localization. 

I. INTRODUCTION 

Recent breakthroughs in 3D deep learning [1] have 

unveiled the new capabilities that enable machines to 

interpret complex spatial scenes from autonomous driving to 

medical imaging. While 2D deep learning only works with 

images [2]-[4] 3D deep learning benefits from the depth and 

spatial structure, enhancing its capability of capturing 

complex scenes through the analysis of objects in three-

dimensional space. This kind of approach is essential for 

object detection tasks, to enable the object’s position and 

geometry which significantly improve accuracy and safety. 

Deep learning systems are better equipped to handle real-

world scenarios requiring precise spatial perception, such as 

navigating through the obstacles [5] and detection of the 

objects in real-time which is essential for autonomous robots 

and vehicles. A critical source of 3D data in this domain is 

3D point clouds, a data format that represents the surfaces and 

edges of objects in three-dimensional space through 

collections of individual points. The utilization of the point 

clouds [6] is central to the 3D deep learning, depicting objects 

as distinct collection of points in three-dimensional space 

with their shapes and spatial relationships. The recent 

advancements in the autonomous vehicles and robotics 

gained much attention in [7]-[14], [15]-[17] and [18]-[20] 

particularly in lidar-based point clouds. These point clouds 

are acquired by the sensing technologies such as LIDAR, 

RADAR and RGB-Depth Cameras [21], delivering an 

effective and versatile approach to encoding three-

dimensional information. Depth images [22] obtained from 

RGB-depth cameras are transformed into point cloud data to 

identify the positions of objects and walls within a 3D space 

or the real-world space. To effectively detect the objects, 

precise localization is important within the point clouds, 

which involves novel neural network architectures to handle 

the structures. 

The evolution of 3D object detectors has significantly 

improved with the unique point cloud architectures for better 

accuracy and efficiency. From the PointNet series, the 

PointNet [23] and then its successor, PointNet++ [24], 

brought efficient methods for direct learning from raw point 

clouds. Building on these bases, Frustum-PointNet [25] 

extended the PointNet model into 3D object detection for 

autonomous vehicles. The latest advancements in 3D 

detection commonly employ either single-stage or two-stage 

frameworks to process data effectively. Single stage detectors 

streamline the object detection process without generating 

region proposals and directly connect to the detection head, 

achieving the balance between speed and accuracy. Some of 

the most prominent models include SSD [26] adapted for 3D 

detection and its variants, namely SE-SSD [27], SA-SSD 

[28], 3D-SSD [29] and PVT-SSD [30]. Other single stage 

detectors are [31]-[33]. Two-stage detectors are another 

variant which refines the initial proposals for higher accuracy 

mainly in complex environments, [34]-[39] are few efficient 

two-stage detectors. Object detection in 3D point clouds 

represents categories such as point-centric, voxel-centric, and 

point-voxel centric approaches. Point-centric approaches 

such as PointGNN [33], pointdrop [40] and improved-
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PointRCNN [35] applied graph based, augmentation and 

segmentation-based approaches on the raw points directly. 

Point-Voxel approaches such as PV-rcnn [41] and pvrcnn++ 

[42] are effective in terms of detection capability but are 

highly computational. In contrast to these approaches, voxel-

centric approaches balance the trade-off by organizing the 

unstructured point clouds in structured format. VoxelNet [31] 

being pioneer to voxel-centric approach; the successor 

methods include [18], [43]-[52] gained better performance 

with various strategies. Pillar-based approaches are also a 

type of voxel-centric approach that is light-weight. 

PointPillar [32] being pioneer to this kind, and the successors 

are [53]-[56].  

Despite the progress achieved in the point clouds and 

object localization, one significant issue persists is the precise 

localization in the moderately visible objects. This is critical 

for real-time systems such as autonomous vehicles, robotic 

positioning and navigation, as it enables reliable spatial 

understanding and decision-making. In autonomous driving, 

occlusions caused by other vehicles or buildings can obscure 

critical information such as lane boundaries, traffic signals or 

potential hazards. Precise localization aids the vehicle to 

maintain its position and predict the moderately visible 

objects and navigate safely. Similarly, in robotics, occlusions 

from objects or machinery can disrupt the robot’s view to 

determine its own position or the target. Precise localization 

in such scenarios allows robots to operate reliably and carry 

out the tasks such as navigating warehouses, object 

manipulation, working collaboratively with humans 

efficiently and safely. Precise localization of the objects in 

autonomous driving and robotics is affected by several 

factors. Firstly, variability in object size, shape and texture 

[57] complicates the consistent identification and positioning. 

Secondly, lighting conditions, shadows and background 

clutter [58][59] makes the objects difficult to detect due to the 

alteration of the visibility of objects. Thirdly, occlusion [59] 

[60], where objects are partially blocked by other objects or 

elements in the environment, hiding essential features 

necessary for precise localization. This research focuses on 

the precise localization in occlusion-related scenarios i.e., 

moderately visible objects. Precise localization is achieved 

by improving the quality of the 3D proposals, which is critical 

for 3D object detection systems because they serve initial 

candidate regions where the objects are likely to be located in 

the 3D space. 

Occlusion in LiDAR data is a critical challenge for 3D 

object detection, where detection of moderately visible 

objects leads to improper proposals which is important for 

better detection. LGSLNet [60] addresses occlusion by 

leveraging the multi-view features and semantic-aware 

convolution to improve the 3D object detection, this still has 

a limitation to improve the proposal quality and reduce the 

inference time on lower batch sizes i.e., achieved inference of 

127ms at batch size 2. AGONet [61] constructs the 

conceptual scenes with non-occluded objects enriching the 

feature representation. A re-weighting module dynamically 

emphasizes informative regions, refining feature adaptation 

to boost the detection accuracy but for highly sparse and 

occluded objects, the lack of proper proposals needs to 

improvise the detection accuracy of the model for precise 

localization of the objects. The fusion framework in [62] 

enhances object localization in occluded areas by 

dynamically integrating LiDAR’s precise depth data with 

monocular vision’s rich texture details. The Depth-Aware 

Transformer (DAT) interprets spatial hierarchies, allowing 

for more accurate depth estimation and object positioning 

even in challenging occluded environments, however, precise 

localization in sparse point clouds need to be improved. 

While these works have made progressive strides in 

occlusion-related challenge, there is a need to localize the 

objects precisely and improvement of the precision is critical 

for autonomous driving applications and robotics navigation. 

The work proposed in this paper addresses the limitations as 

mentioned. 

A new vision for object recognition has recently emerged 

as a result of several domains of computer vision by 

Transformer [63]-[68] models, which are particularly good at 

learning context-based local representations. DETR [57] 

considered the detection as a set prediction task and performs 

parallel detection on images for 2D detection. DETR [67] 

also proposed a deformable cross-scale aggregation attention 

module. A 3D version of DETR is proposed by 3D-DETR 

[68]. Multi-stage methods were also less explored in the area 

of 3D point cloud detection and are proven to be very 

effective in 2D detection tasks. [69]-[72] applies cascade R-

CNN where the inputs from previous layers are the input of 

the next layers for the further detection process. Another RPN 

network is CT3D [73] which is a channel-wise transformer 

with an encoder-decoder module. With Intersection over 

Union, [69] improves Intersection over Union by estimating 

the overlap between detected object and its associated ground 

truth object. Other work on muti-stage networks is [74]. 

However, multi-stage refinement is less explored in 3D 

object detection tasks especially for point clouds. With this 

motive, the current work addresses a refinement module with 

multiple stages for effective, precise localization and good 

quality predictions under partly occluded scenarios with 

moderately visible objects addresses the problems mentioned 

as above. The research contribution is three-fold: 

• A multi-stage feature refinement module is integrated to 

the 3D Resnet backbone to improve the quality of the 

proposals. 

• A confidence-weighted fusion for box voting is 

incorporated for the final detections ensuring precise 

bounding box detections. 

• Comparison with cutting-edge methods and performance 

improvement to assess the proposed method. 

II. METHOD 

This research presents the model pertaining to 3D Object 

detection is as follows- 3D Resnet is the main backbone used 

to process the voxelized point cloud data. Firstly, the raw 

point clouds are distributed into volumetric cells called as 

voxels, and computing the local features within each voxel. 

These voxelized features are further processed by a 3D 

Resnet architecture incorporating residual connections for 

capturing spatial hierarchies while preserving the important 

details at multiple scales. 
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The 3D Resnet backbone outputs a three-dimensional 

feature map which is forwarded to Region Proposal Network 

(RPN) and generates initial bounding box proposals. At this 

stage, multi-stage refinement module (MSRM) uses the 

features from each proposal and refines the proposals. This 

iteratively enhances the bounding box predictions and 

confidence scores by refining the features and aggregating the 

attention-based information across stages. In the refinement 

network, attention module captures rich object characteristics 

across the proposal stages, which help boost distant and 

complex object detection. Finally, the comprehensive 

training objective with the combined RPN and multi-stage 

refinement losses optimizes the model for robust 3D object 

detection.  Fig. 1 depicts the comprehensive architecture of 

the proposed model and Fig. 2 shows the flow of the multi-

stage refinement network, where the model is operated under 

three stages of refinement. 

 

Fig. 1. Overall Architecture of the proposed method 

A. 3D Resnet Backbone 

1) Preprocessing and Voxelization: 

The raw point cloud 𝑃 =  {𝑝𝑖 = 1, 2, 3, … . , 𝑁} contains 

points 𝑃𝑖  =  (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑓𝑖) where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are spatial 

coordinates, and 𝑓𝑖  represents feature intensity. These points 

are divided into voxels 𝑉 =  {𝑣𝑗  | 𝑗 = 1, 2, … , 𝑀}. For each 

voxel 𝑣𝑗, features are aggregated by averaging the spatial and 

feature information as represented in equation (1). 

𝑣𝑗 =
1

|𝑃𝑗|
∑ 𝑝

𝑝∈𝑃𝑗

 (1) 

Where 𝑝𝑗 denotes the points within the voxel 𝑣𝑗. 

The voxelized data 𝑉 is processed through a 3D ResNet 

backbone that uses sparse convolution and sub manifold 

convolution [75] to derive the spatial features efficiently 

thereby handling the sparsity in 3D point clouds. The input to 

the sparse 3D Resnet backbone is 3D grid of size which is 

computed as in the equation (2). 

𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒𝑖 =  
𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖

𝑣𝑜𝑥𝑒𝑙_𝑠𝑖𝑧𝑒𝑖

, 𝑓𝑜𝑟 𝑖 𝜖 {𝑥, 𝑦, 𝑧} (2) 

where 𝑥, 𝑦, 𝑧 are the three-dimensional coordinates, mini and 

maxi are the boundaries along the axes, 𝑣𝑜𝑥𝑒𝑙_𝑠𝑖𝑧𝑒𝑖 is the 

voxel size over the axes. 

The backbone generates a hierarchical feature map by 

progressively down sampling the input to 1x, 2x, 4x and 8x 

over the four convolutions used in 3D Resnet backbone. The 

squeeze and excitation [76] is applied after each convolution 

to progressively obtain the critical features. The detailed 

explanation of the 3D Resnet with Squeeze and excitation 

mentioned in [77]. 

The feature maps obtained after 3D backbone are depicted 

in Fig. 3. The higher activation points in the feature maps of 

the LiDAR point cloud represent the learned features with 

more probability for being an object. 

 

Fig. 2. 3D object detection using multi-stage refinement  

  

Fig. 3. Feature maps obtained at 96th and 112th iterations 

B. Region Proposal Network 

The approach RPN adopts is directly upon the feature 

maps produced by the backbone 3D ResNet on processing the 

input 3D point cloud data. These feature maps are 

compressed further along the z-axis to form a representation 

called Bird-Eye-View (BEV). Then, a 2D backbone that 

consists of a standard convolution with non-linearity is 

applied according to the BEV representation in order to 

encode the features further. Two sibling 1x1 convolutions are 

added on top of the 2D backbone to obtain the bounding box 
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offsets and categories along with 3D region proposals, which 

utilizes the IoU-based matching for ground-truth bounding 

boxes to the anchors, compute’s part scores similar to [24]. 

The RPN generates a set of 3D proposals with initial 

bounding box parameters and confidence scores, which are 

then refined in subsequent stages. The loss computed at this 

stage is the loss generated at the region proposal networks 

defined as in [71]. 

The output of the RPN contains both the proposed 

regions, also known as Region of Interest (RoIs), and their 

corresponding scores that assess the possibility that a region 

with an object existence. The network specifically outputs the 

bounding boxes in coordinates such as center positions, 

dimensions as well as objectness scores that represent the 

confidence with which a proposal contains an object. These 

proposals are further refined by the refinement module, 

which involves fine-grained classification and regression. 

C. Multi-Stage Refinement Module (MSRM) 

The MSRM refines the initial bounding boxes generated 

by the RPN. For each proposal, the MSRM performs iterative 

refinement, updating the box coordinates and confidence 

scores. The MSRM is structured with multiple stages, each 

incorporating the multi-stage Attention Module (MSAM) to 

enhance the features. In this stage, a single detection head is 

restructured into T progressive stages, forming a multi-stage 

detection framework, where each stage consists of a 

localization adjustment branch and the confidence prediction 

branch. Each stage of MSAM consists of pooling layer, 

embedding layer and attention layer which is in Fig. 1. Let R 

be the initial set of proposals denoted as 𝑅0 = {𝑅𝑖
0}𝑖=1

𝑀 , where 

M is the total number of proposals and these proposals are 

iteratively refined across stages, with the proposals at 𝑡𝑡ℎ 

stage is 𝑅𝑡 = {𝑅𝑖
𝑡}𝑖=1

𝑀 . When 𝐹3𝐷 is the 3D features obtained 

from the backbone network, pooling extracts features 𝑓𝑚
𝑡  

related to the region as in equation (3). 

𝑓𝑚
𝑡  = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹3𝐷 , 𝑅𝑚

𝑡−1) (3) 

The pooled features are encoded by the encoding layer, 

which contains series of operations that processes the feature 

maps during the encoding stage. The sequence of operations 

is depicted in the Fig. 4, which is a sequential operation as in 

equation 4. This consists of a linear layer, batchnorm1d and 

ReLU with dropout layer and the linear layer, batchnorm1d 

and ReLU. 

𝐹′ = 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙(𝑓𝑚
𝑡 ) (4) 

Each encoded feature 𝐹′ is refined under 𝑡 stages. The 

current stage feature is concatenated with the previous stage 

feature and so on. Finally, at the 𝑡𝑡ℎ refinement stage the 

current feature is computed as in equation (5). 

𝐹𝑡  = [𝐹0
′, 𝐹1

′, . . . . 𝐹𝑡
′] (5) 

For each stage, MSAM computes attention scores using 

queries, keys, and values derived from proposal features. The 

attention scores from the attention layer [78] are obtained 

using equation (6) where  𝑄𝑡 = 𝐹𝑡
′𝑊𝑡

𝑞
, 𝐾𝑡 = 𝐹𝑡

′𝑊𝑡
𝑘 and 

𝑉𝑡 = 𝐹𝑡
′𝑊𝑡

𝑣, 𝐶′ is the feature dimension and 𝑖 refers to the 𝑖𝑡ℎ 

head in multi-head attention to improve the representational 

capability in learning the features. 

𝐹(𝑡,𝑖)
′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄(𝑡,𝑖)(𝐾(𝑡,𝑖))𝑇

√𝐶′
) 𝑉(𝑡,𝑖)     (6) 

 

Fig. 4. Encoding layer 

For H heads in multi-head attention, the feature vector is 

formulated by concatenating attention outputs across stages, 

providing a composite feature vector for bounding box 

refinement and score prediction as in the equation (7). The 

self-attention and cross attention stages are depicted in Fig. 

5, where in the initial stage i.e., stage-1 features obtained 

from current stage only were taken. In stage-2, features from 

stage-1 have been concatenated to the stage-2. Similarly, for 

Stage-3, features from Stage-1 and stage-2 are concatenated 

to Stage-3 through which refinement is done at multiple 

stages. 

 

Fig. 5. Self-Attention and Cross-Attention at Stage-1(S1), Stage-2(S2) and 

Stage-3(S3) 

𝐹𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹(𝑡,0),
′ 𝐹(𝑡,1)

′ … 𝐹(𝑡,𝐻)
′   )    (7) 

The thresholds at each stage for the objects Car, 

Pedestrian and Cyclist for the refinement are 𝑢1 =

[0.5, 0.45, 0.45], 𝑢2 = [0.55, 0.5, 0.5] and 𝑢3 =

[0.6, 0.55, 0.55]. The thresholds are adjusted progressively 

in each stage such that stage-1 focuses to learn broader set of 

data whereas in the stage-2 model focuses on learning the 

hard samples with higher threshold compared to stage-1. 

Similarly, stage-3 foreground samples are refined with 

stricter threshold as mentioned in 𝑢1, 𝑢2 and 𝑢3 respectively. 

The thresholds are set in this manner since the 3D object 

detection evaluation is done at 0.7 for Cars and 0.5 for 
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Pedestrians and Cyclist classes. Multi- Layer Perceptron is 

processed layer wise using linear transformation and GELU 

activation function which finally represents the bounding box 

values and confidence scores. 

The pooling is performed by RoI grid pooling which 

extracts features from 3D grid of size G×G×G. The number 

of RoIs being R, T is the total number of grid points (R.G3), 

K be the average number of neighbors for each grid point, C 

be the dimension of the grouped features where C is voxel 

feature dimension and 3 is the dimension of the relative 

coordinates, C’ is the dimension of the output after the 

encoder layer the computational complexity is measured as 

O(T.K.(C+3).C’). These grouped voxels occupy more 

memory when encoder layer is applied. Hence, to mitigate 

this, a decomposition step is applied where voxel features and 

the relative coordinates are processed in separate streams. 

Firstly, voxel features are processed independently (O 

(N.C.C’)). Secondly, the relative coordinates are processed 

fewer computations for the relative coordinates 

O(M⋅K⋅3⋅C′)). Finally, the RoI grid pooling is computed as 

O (N.C.C’+M.K.3.C’) which reduces the number of 

computations for each type of feature, leading to better 

computational efficiency. For S stages and the cross 

attention, the computational complexity is O (R. C2. S). The 

total computational complexity of the multi stage refinement 

module is the O (N.C.C’+M.K.3.C’+ R. C2. S).   

D. Box Voting 

3D object detection is a challenge with the need to ensure 

the quality of predictions precisely. To further improve the 

accuracy of predictions, box voting strategy has been 

implemented among the stages. NMS-based methods usually 

suppress the detections of low confidence and there by retains 

the high confidence bounding boxes. Also, this has been 

implemented with the motivation of strong and weak 

predictions at each stage are ensembled to obtain correct 

detections.  This is mitigated by adopting the confidence-

weighted box which computes the average of the detection 

confidences and aligns the boxes with the respective 

detection confidences as in equation (8). Box regression is 

performed similar to voxel-rcnn [37] and pv-rcnn [41]. To 

compute the confidence score, bilinear interpolation was 

adopted to extract the corresponding features and these 

features are averaged to produce the scalar confidence value 

for each of the anchors, making the predictions consistent. 

𝑉 =
∑ 𝐶𝑖.𝐵𝑖

𝑚
𝑖=1

∑ 𝐶𝑖
𝑚
𝑖=1

    (8) 

Where 𝐶𝑖 is the merged confidence and 𝐵𝑖  is the bounding 

box parameters of ith proposal and m is the total number of 

proposals. 

After bounding boxes merging and box voting, there will 

be some high quality and redundant boxes. To remove this, 

we perform Non-Max-Suppression (NMS) on these boxes to 

predict the final bounding boxes. The procedural flow for 

bounding boxes merging, voting and NMS was depicted in 

Fig. 6. With this approach, several predictions obtained from 

multiple scales as well as high/low confidence are combined 

to form more accurate and reliable final outcomes. 

 

Fig. 6. Wok Flow of Box Merging, Voting and NMS 

As discussed in Table X, the inference time increases 

progressively with each stage of the model. While the 

detection performance at the fourth stage is nearly similar to 

that of the third stage, this marginal difference does not 

justify the additional computational cost. Since the 

performance of the third-stage and fourth-stage models is 

nearly identical, we prioritize computational efficiency and 

adopted the three-stage model. This configuration achieves a 

performance with a running speed of 66.40ms per frame on a 

single NVIDIA 4080 GPU, striking an optimal balance 

between the precision and computational complexity. 

III. RESULTS AND DISCUSSIONS 

A. Datasets and Implementation Details 

KITTI Dataset:  The experimentation was performed on 

the KITTI [79] 3D object detection dataset. The dataset with 

7481 frames was taken, which was split into 3712 frames of 

data for training and 3769 frames of data for testing. In 

addition to this, custom split [80] on the training set of 3712 

frames in a 5:1 ratio of training and validation samples is 

done respectively. The point clouds are clipped in the range 

of [0m,70.4m] in the X-axis, [-40m, +40m] in the Y-axis and 

[-3m, +1m] in the Z-axis. The voxel size is set as (0.05m, 

0.05m, 0.05m) with RoI per Image 160 at each stage. To 

compute average precision, the IoU thresholds are set at 0.7 

for cars, 0.5 for pedestrians, and 0.5 for cyclists. The 

proposed model was trained on a single RTX 4080, NVIDIA 

machine with 16GB graphics memory and 32GB RAM with 

80 epochs, batch size of 4 and the Adam one cycle optimizer 

with the learning rate of 0.01 and weight decay of 0.01. The 

detailed hyperparameters explanation is mentioned in 

Appendix. 

NuScenes Dataset: The experimentation was performed 

on the NuScenes [81] 3D object detection dataset. The dataset 

with 28130 samples was taken in which 22504 samples are 

split into training set, 5626 samples for validation and 6019 

samples for testing. For NuScenes dataset, point clouds are 

clipped in the range of [-54m, +54m] in the X-axis and Y-

axis, [-5m, +3m] in the Z-axis. The voxel size is (0.075m, 

0.075m, 0.2m) with RoI per Image 160. To compute average 

precision, the IoU thresholds are set at 0.7 for cars, 0.5 for 

pedestrians, and 0.5 for cyclists. The proposed model was 

trained on a single RTX 4080, NVIDIA machine with 16GB 

graphics memory and 32GB RAM with 40 epochs, batch size 

2 and utilized Adam one cycle optimizer with the learning 

rate of 0.01 and weight decay of 0.01. 

Custom Dataset: The dataset was collected using the 32-

channel ouster LIDAR, which is acquired in the outdoor 

space near the host institution. The LIDAR has an operating 

mode of 1024 towards horizontal and 32 towards vertical 

mode at 10 frames per second, with a horizontal field of view 

as 3600 and vertical field of view as 450. The dataset is point-
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cloud dataset which comprises of 2739 training frames, 342 

frames for validation, and 343 frames for testing. The dataset 

is in .npy format with x, y, z and reflectance values in each 

frame. For the custom dataset, point clouds are clipped in the 

range of [-54m, +54m] in the X-axis and Y-axis, [-5m, +3m] 

in the Z-axis. The voxel size is (0.05m, 0.05m, 0.05m). To 

compute average precision, the IoU thresholds are set at 0.7 

for cars, 0.5 for pedestrians, and 0.5 for cyclists. The 

experimentation was done on the pseudo labels obtained by 

the KITTI dataset. The training of the proposed model is done 

on a single NVIDIA GeForce RTX 4080 consisting of 16GB 

GPU memory and 32GB of RAM with 80 epochs, employing 

a batch size of 2 and a learning rate of 0.01 with the Adam 

One Cycle optimizer with weight decay of 0.01. 

B. Evaluation of the proposed Method 

Evaluation on the KITTI dataset: The proposed model 

is assessed on the three objects Car, Pedestrian and Cyclist 

which in turn has three categories for each object – Easy, 

Moderate and Hard. Experimentation was done on the 

proposed two stage network on 3DResnet, 3DResnet 

integrated to SE module at input stage only and 3DResnet 

integrated to SE module at all layers with multi-stage 

refinement under various stages. Fig. 7. depicts the mean 

average precision results for the objects “Car”, “Pedestrian” 

and “Cyclist” on the validation set. Here, the 3D Resnet 

backbone is experimented on the CT3D based RPN and also 

the proposed multi-stage attention module with and without 

box voting.  

 

Fig. 7. Comparison of mean Average Precision on 3D Resnet with various 

RPNs on the three classes 

As discussed in Table I, Table II and Table III, the 

proposed method is compared to the state-of-the-art models 

on the KITTI test split which progresses the average precision 

over the existing methods especially in moderate and hard 

categories of 3D detection. Compared to one of the recent 

works VoxelNeXt, the proposed model improvises the Car 

moderate and hard categories by 2.1% and 0.62% 

respectively, Pedestrian moderate and hard categories by 

2.22% and 1.32% respectively, Cyclist moderate and hard 

categories by 0.83% and 2.12% respectively. Compared to 

another recent work pvt-ssd [30] especially for Car detection, 

the results were also improvised under moderate and hard 

categories by 0.16% and 0.67% respectively. The underlined 

value represents the second highest detection value in the 

moderate category where Car has an improvement in average 

precision of 0.68%, Cycle has an improvement of 0.08% and 

Cyclist has an improvement of 0.17%. Table IV shows the 

performance comparison with the average precision metric 

on the validation set for the Car class, which yielded better 

results over the state-of-the-art. Also, the recall is more 

compared to the state-of-the-art approaches as shown in Fig. 

8, yielding to 78.1%. The main findings of the present study 

indicate the precise object localization for the moderated 

visible objects with the average precision of 82.45% for Car, 

44.94% for Pedestrian and 66.12% for Cyclist classes. 

 

Fig. 8. Comparison of Recall over state-of-the-Art 

Fig. 9 depicts the prediction of the objects with classes 

“Car”, “Pedestrian” and “Cyclist” classes on the proposed 

method. The car object is indicated by green; the pedestrian 

object is indicated by blue and the cyclist object is indicated 

by yellow. The model has been tested and visualized at a 0.7 

threshold and is able to localize and detect the objects 

precisely. Fig. 10 shows the comparison of the most recent 

model VoxelNext in terms of visualization for three samples 

of the KITTI dataset. The visualization is depicted in three 

parts – the first one is the original image of the point cloud; 

the second one is the visualization of the frame using the 

VoxelneXt model and the third one is the predicted 

visualization of the proposes multi-stage attention module. 

The highlighted red symbol indicates the false negative of the 

VoxelneXt model which suffers from missing detections for 

long range detections of 0-70m for KITTI dataset.  This also 

depicts the proposed model’s ability in terms of precise 

localization of the distant objects. Also, due to the 

implementation of transformer-based approach the model is 

able to localize and detect the objects precisely. 

 

 

 
Fig. 9. Qualitative Predictions on the KITTI dataset 
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TABLE I.  3D OBJECT DETECTION PERFORMANCE COMPARISON USING 

AVERAGE PRECISION METRIC ON THE CAR CLASS - KITTI TEST SPLIT 

Model Name 
Car% (R40) 

E M H 

VoxelNet [31] 81.97 65.46 62.85 

Second [39] 83.13 73.66 66.2 

PointRCNN [34] 85.94 75.76 68.32 

PointPillar [32] 79.05 74.99 68.3 

PointGNN [33] 88.33 79.47 72.29 

Part-A2[36] 85.94 77.86 72 

PV-RCNN [41] 90.25 81.43 76.82 

Voxel RCNN [37] 90.76 81.69 77.42 

SparseDet [48] 90.79 81.17 78.11 

CT3D [67] 87.83 81.77 77.16 

VoxelNeXt [44] 89.1 80.35 76.9 

Proposed Model (ours) 89.81 82.45 77.52 

TABLE II.  3D OBJECT DETECTION PERFORMANCE COMPARISON USING 

AVERAGE PRECISION METRIC ON THE PEDESTRIAN CLASS - KITTI TEST 

SPLIT 

Model Name 
Pedestrian% (R40) 

E M H 

VoxelNet [31] 57.86 53.42 48.87 

Second [39] 51.07 42.56 37.29 

PointRCNN [34] 49.43 41.78 38.63 

PointPillar [32] 52.08 43.53 41.49 

PointGNN [33] 51.92 43.77 40.14 

Part-A2[36] 54.49 44.5 42.36 

Voxel RCNN [37] 52.57 44.86 39.09 

PV-RCNN [41] 52.17 43.29 40.29 

SparseDet [48] 52.92 44.61 41.8 

VoxelNeXt* [44] 52.1 42.72 39.08 

Proposed Model (ours) 51.89 44.94 40.4 

TABLE III.  3D OBJECT DETECTION PERFORMANCE COMPARISON USING 

AVERAGE PRECISION METRIC ON THE CYCLIST CLASS - KITTI TEST SPLIT 

Model Name 
Cyclist% (R40) 

E M H 

VoxelNet [31] 67.17 47.65 45.11 

Second [39] 70.51 53.85 46.9 

PointRCNN [34] 73.93 59.6 53.59 

PointPillar [32] 75.78 59.07 52.92 

PointGNN [33] 78.6 63.48 57.08 

Part-A2[36] 78.58 62.73 57.74 

Voxel RCNN [37] 77.54 64 53.15 

PV-RCNN [41] 78.6 63.71 57.65 

SparseDet [48] 81.93 65.95 60.41 

VoxelNeXt [44] 81.33 65.31 57.43 

Proposed Model (ours) 81.62 66.12 59.55 

TABLE IV.  3D OBJECT DETECTION PERFORMANCE COMPARISON USING 

AVERAGE PRECISION METRIC ON THE CAR CLASS - KITTI VAL. SPLIT 

Model Name 
Car % (R40) 

E M H 

VoxelNet [31] 81.97 65.46 62.85 

Second [39] 87.43 76.48 69.1 

PointRCNN [34] 88.88 78.63 77.38 

PointGNN [33] 87.89 78.34 77.38 

Part-A2 [36] 89.47 79.47 78.54 

PV-RCNN [41] 92.57 84.83 82.69 

Voxel RCNN [37] 92.38 85.29 82.86 

SparseDet [48] 93.81 84.78 84.33 

CT3D [67] 92.85 85.82 83.46 

VoxelNeXt [44] 92.51 84.35 82.71 

Proposed Model (ours) 93.01 85.97 83.63 

 

 

Fig. 10. Comparison of Visualization between VoxelNeXt and the proposed 

MSAM model for missing object detection. First row represents the Image 
corresponding to the point cloud, second row represents detections on 

VoxelNeXt, third row represents the detections on the proposed model 

Evaluation on the NuScenes dataset: The proposed 

model is evaluated on the objects Car, Truck(Trk), Bus, 

Trailer(Trl), Construction Vehicle(C.V), Pedestrian(Ped), 

Bicycle(Byc), Motor Cycle(Mot), Traffic Cone(T.C) and 

Barrier(Bar) on the NuScenes dataset. To facilitate training 

and testing of the proposed model on NuScenes dataset, the 

detection head is replaced with center head similar to 

VoxelneXt [44] and Center Point [49] methods. 

Table V depicts the average precision results on the 

NuScenes test split. Compared to VoxelNeXt, the proposed 

model has an improvement of 3% on the Car class, 6.1% 

improvement in Trailer class and 1.3% improvement on 

Motor Cycle class. As mentioned in Table V, the proposed 

method achieved better performance on the benchmarks for 

the mean average precision(mAP) metric. The underlined 

value represents the second highest detection model 

corresponding to the particular class. Bus, Truck, Pedestrian, 

Bicycle, Traffic Cone and Barrier are the second highest 

detectors. Table VI depicts the performance of average 

precision on the NuScenes Validation split, which represents 

superior over other methods. 

Evaluation on the Custom dataset: The custom dataset 

was acquired as mentioned in the section 4.1.3 and 

annotations for 500 frames were done using the Computer 

Vision Annotation Tool (CVAT), which is a lidar-based 3D 

object detection annotation tool for point clouds. The other 

frames labels were the pseudo labels obtained from the KITTI 

dataset. Initially, the labelled data was fine-tuned using the 

pre-trained model of the proposed work with the aid of 

OpenPCDet [86]. On the unlabeled data, pseudo labels were 

obtained from the predictions. At this stage, retain the labels 

with high confidence score and discard the remaining labels. 

The criteria considered here is 0.7 for Car, 0.5 for pedestrian 

and 0.5 for cyclist objects. Finally, the predictions obtained 

from the labelled data and the predictions obtained from the 

pseudo labels are combined and the model is trained on the 

combined dataset and evaluated for the average precision 

metric. This is iterated until the desired performance is met. 

In this case, two iterations were done since the desired 

predictions are obtained with comparable performance to 

KITTI dataset at the second iteration itself.  
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TABLE V.  3D OBJECT DETECTION PERFORMANCE COMPARISON USING AVERAGE PRECISION METRIC– NUSCENES TEST SPLIT 

Method Car T.C Ped Mot C.V Trl Bar Byc Bus Trk mAP 

Point Pillar [32] 68.4 30.8 59.7 27.4 4.1 23.4 38.9 1.1 28.2 23 30.5 

3D-SSD [29] 81.2 31.1 70.2 36 12.6 30.5 47.9 8.6 61.4 47.2 42.7 

CBGS [82] 81.1 70.9 80.1 51.5 10.5 42.9 65.7 22.3 54.9 48.5 52.8 

CenterPoint [49] 84.6 76.7 83.4 53.7 17.5 53.2 70.9 28.7 60.2 51 58 

Focals-Conv [83] 86.7 81.4 87.5 64.5 23.8 59.5 74.1 36.3 67.7 56.3 63.8 

PillarNet [56] 87.4 82.1 87.2 67.4 30.4 61.8 76 40.3 60.9 56.7 65 

VoxelNeXt [44] 84.6 79 85.8 73.2 28.7 55.8 74.6 45.7 64.7 53 64.5 

Ours 87.6 81.7 87.4 74.5 28.3 61.9 75.3 43.6 65.3 56.4 66.2 

TABLE VI.  3D OBJECT DETECTION PERFORMANCE COMPARISON USING AVERAGE PRECISION METRIC – NUSCENES VAL SPLIT 

Method Car Mot C.V Bar T.C Ped Bus Byc Trl Trk 

SECOND [39] 81.8 42.5 15 59.2 57.4 77.7 66.9 17.5 37.3 51.7 

CenterPoint [49] 85 58.8 15.5 67.1 70 85.3 69.5 40.9 35.7 58.2 

WYSIWYG [84] 80 18.5 7.5 34.5 27.9 66.9 54.1 0 28.5 35.8 

Transfusion [85] 86.9 72.9 25.2 70.3 77.2 87.5 73.1 57.3 43.4 60.8 

AGONet [61] 81.5 32.5 13.3 51.2 48.1 72.2 62.2 5.9 34 50.1 

PillarNeXt [54] 84.8 68.4 21.8 68.2 74.2 86.1 68.3 56.5 37.1 58 

VoxelNeXt [44] 85.6 59.7 17.9 68.1 70.8 85.4 71.6 43.4 38.6 58.4 

Ours 88.2 74.8 28.9 77.1 84 89.2 66.2 44.6 63.2 57.3 

Refer to Table VII for the iteration-wise results over 

validation set and Table VIII on the test set. Refer to Fig. 11 

for the iteration-wise average precision on the validation 

split. Table IX shows the detailed performance comparison 

of precision, recall and f1-score metrics over iterations on the 

test split for the classes Car, Pedestrian and Cyclist. Fig. 12 

clearly shows the visualization of the predictions after final 

refinement and detection of the distant objects. Various 

markers are depicted to represent the distance – purple cone 

represents the range up to 20m, orange represents the range 

up to 40m, blue cone to 60m and magenta cone to 80m. With 

the implementation of transformer-based multi-stage 

approach, the model is able to detect the distant objects also. 

The major challenge faced while working on the custom 

dataset is pseudo label processing, where the labels generated 

initially were noisy. To mitigate this issue, pseudo labels are 

refined iteratively with confidence-based thresholding to 

obtain the qualitative labels. 

TABLE VII.  ITERATION-WISE MAP ON THE VALIDATION SPLIT FOR THE 

3D RESNET WITH MSRM MODEL ON THE CUSTOM DATASET USING 

PSEUDO LABEL REFINEMENT 

Iteration No. Car % Ped. % Cyclist % 

Iteration-1 82.37 45.06 67.98 

Iteration-2 84.51 47.02 69.58 

 

 

Fig. 11. Average Precision on the Validation Set for each iteration 

TABLE VIII.  ITERATION-WISE AVERAGE PRECISION RESULTS ON THE 

TEST SET OF THE CUSTOM DATASET  

Model Car % Ped. % Cyclist % 

Iteration-1 81.3 43.5 66.8 

Iteration-2 82.4 44.1 67.9 

TABLE IX.  3D OBJECT DETECTION PERFORMANCE COMPARISON OF 

PRECISION, RECALL AND F1-SCORE METRICS ON THE CUSTOM DATASET 

Iteration Class Precision Recall F1-Score 

Iteration-1 

Car 81.30 83.40 82.34 

Pedestrian 43.50 66.51 52.60 

Cyclist 66.80 79.30 72.52 

Iteration-2 

Car 82.40 84.70 83.53 

Pedestrian 44.10 69.40 53.93 

Cyclist 67.90 81.20 73.96 

 

 

 

Fig. 12. Visualization of predictions over ranges 

C. Ablation Study 

Refinement Stages: Initially, the model has been tested 

with multiple stages as shown in Table X, which depicts the 

average precision results at various stages of the multi-stage 

refinement network. The improvement of proposals has been 

observed stage-wise for the Easy, Moderate and Hard 

categories for the three stages and in the fourth stage, similar 
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performance is observed. For the efficiency of computational 

complexity, three stages are adopted with the inference of 

78.93ms on a single 4080 GPU.  

TABLE X.  STAGE-WISE AVERAGE PRECISION RESULTS ON THE KITTI 

DATASET FOR CAR AND CYCLIST CLASSES 

Stage 

Car Cyc. Inf. 

Time 

(ms) 
E M H E M H 

1 88.84 80.79 75.12 80.32 64.81 57.92 60.40 

2 89.32 81.48 76.46 81.29 65.14 58.78 66.35 

3 89.81 82.45 77.52 81.62 66.12 59.55 78.93 

4 89.97 82.41 77.43 81.78 66.09 59.48 101.56 

 

Post-Processing Methods: To verify the effectiveness of 

the box voting strategy, the proposed method has been tested 

on the 3D Resnet directly with NMS, 3D Resnet integrated 

with multi stage refinement module with NMS and 3D Resnet 

integrated with multi-stage refinement module with box 

voting followed by NMS. The results have shown that the 

model yields better with box voting with NMS rather than 

NMS alone. Since the predicted boxes at each stage has 

strong detections as well, box voting has contributed to the 

improvement of the average precision for the mentioned 

classes in Table XI. The key findings of this study indicate 

that with the confidence-weighted box voting, there is an 

improvement in the average precision of the classes in all the 

categories.  

TABLE XI.  ABLATION EXPERIMENTS ON THE BOX VOTING STRATEGY IN 

MSRM WITH 3D RESNET BACKBONE 

MS 
Car Ped. Cyc. 

E M H E M H E M H 

3DR 88 79.2 76.2 47.3 39.9 37.7 77.9 62.2 55.8 

+MN 89.1 82.3 77.2 51.2 44.8 40 81.5 65.9 58.2 

+MB 89.8 82.4 77.5 51.8 44.9 40.4 81.6 66.1 59.5 

Note: (3DR): 3D Resnet (+MN): 3DR+MultiStage Refinement Module + 

NMS (+MB): 3DR+MultiStage Refinement Module+Box Voting with NMS 

D. Inference Analysis 

The analysis of the inference time of all the models 

discussed in Table XII are obtained from [60]. The proposed 

method has been inferred with the batch sizes of 2 and 4 

yielding to the inference time of 78.93 and 66.40 respectively. 

In comparison with LGSLNet [60], which is LiDAR-only 

method, the proposed method achieved better inference time 

at both the batch sizes 2 and 4. Additionally, the model not 

only reduces the inference time but also improved the 

detection accuracy in terms of average precision for 

moderately visible objects. 

TABLE XII.  COMPARISON ON THE KITTI DATASET. L-LIDAR-ONLY 

L+C: LIDAR+CAMERA, AP-AVERAGE PRECISION OF CAR (MODERATE 

CATEGORY) 

Method Modality 
Batch-

Size 

AP-Car 

(%) 

Inference 

Time (ms) 

Voxel-RCNN L 8 81.69 26.1 

PDV L 8 81.86 54.2 

Part-A2 L 8 77.86 35.8 

PV-RCNN L 8 81.43 55.4 

Focals-Conv L+C 8 82.28 158.9 

LGSLNet L 

8 

82.16 

81 

4 96 

2 127 

MSAM-

proposed 
L 

4 
82.45 

66.4 

2 78.93 

E. Limitation 

Small Object Detection: Fig. 13 depicts the two cases 

describing the failure cases of the model where the first part 

represents the detection capability of the model in normal 

case and the second part represents the missing detection in 

occluded scenario. This poses a limitation in detecting the 

small objects due to the low-resolution of the point cloud for 

small objects, capturing the fine-grained details should be 

improvised to boost the detection accuracy in pedestrians.  

 

Fig. 13. Pedestrian detection results on the KITTI dataset 

The main findings of this study indicate good quality 

proposals obtained through the refinement of proposals stage-

wise while achieving good performance of 82.45% for Car 

class and 66.12% for Cyclist class in moderately visible 

objects. The improved precision and recall can be attributed 

to two key innovations. First is, integration of 3D Resnet with 

multi-stage refinement network improves the proposal 

quality. Second is, with box voting strategy, the performance 

of the predictions was improved w.r.t the average precision. 

Also, the inference time of the model is reduced compared to 

the methods mentioned in Table VII. 

IV. CONCLUSION 

In this work, good quality proposals are obtained by using 

multi-stage refinement integrated with a 3D ResNet 

backbone in 3D object detection. The proposals are refined 

stage-wise using the pooling and attention mechanism for the 

precise localization as well as for the detection of partly 

visible and distant objects. 3D Resnet-based backbone was 

incorporated in the voxel-driven approach which contributes 

rich, hierarchical feature maps that capture both local and 

global contextual information about the scene, which in turn 

aids the RPN in generating high-quality proposals. With the 

aggregation of multi-stage refinement mechanism and box 

voting, the model improvised the average precision of 

82.45% for Car, 44.94% for pedestrian and 66.12% for 

Cyclist for the moderately visible objects and results 

demonstrated that this study provides valuable insights into 

detecting the objects in 3D point cloud data. 

The proposed method improvised the precision and recall 

of the objects; especially in Car and Cyclist detection, 

suitable for autonomous driving applications. Also, the 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 754 

 

Jyothsna Datti, Three-Dimensional Object Detection in Point Clouds with Multi-Stage Proposal Refinement Network 

method’s ability to precisely localize the objects and 

accurately detect can be applied in robotic navigation and 

positioning including safety assessment. To improve the 

detection capability of small objects, further research can be 

extended to multi-modal inputs to improve the accuracy of 

small objects i.e., Pedestrian to capture the fine-grained 

details of the small objects.  
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APPENDIX 

In Appendix section, we discuss the hyperparameter 

tuning with experimental results. 

The hyperparameters of the model are chosen empirically 

based on the recall rate and Inference time. The model has 

been tested with voxel size [0.05,0.05,0.05] with various RoI 

per image. RoI per Image is one of the hyperparameters 

causing trade-off between average precision and inference 

time. Table XIII shows the average precision of the model at 

various RoIs at the learning rate of 0.01. 

TABLE XIII.  AVERAGE PRECISION RESULTS WITH ROIS  

RoI 
Car Pedestrian Cyclist 

E M H E M H E M H 

120 84.6 78.4 76.6 46.7 39.2 37.9 78.7 64.9 56.4 

140 89.3 82.5 77.8 49.1 40.2 38.1 80.3 66.3 60 

150 88.7 82.3 77.6 50.6 41.6 38.2 79.2 65.1 58.6 

160 89.8 82.5 77.5 51.9 44.9 40.4 81.6 66.1 59.6 
 

 

Table XIV shows the inference time, memory usage, 

mean average precision(mAP) and recall at various RoIs. It 

is observed that a smaller number of RoIs require a larger 

feature map per RoI to maintain sufficient information, 

causing an increase in memory usage. More RoIs contribute 

to efficient packed feature maps optimizing the memory 

usage. Also, the recall rate tends to decrease with smaller 

number of RoIs. With respect to mAP, the detection 

capability for RoI 140 for moderate and hard categories 

improved but there is a downfall in the detection of small 

objects pedestrian. With respect to inference time, the model 

has better inference time at RoI 140 but looking into mAP 

and recall, there is no significant improvement in inference 

time compared to the results obtained with RoI 160. 

However, there is a tradeoff between inference time and 

precision-recall with slight increase in inference time 

balancing mean average precision and recall at RoI 160 

which is chosen as the best hyperparameter of the model. 

TABLE XIV.  PERFORMANCE COMPARISON: MAP, RECALL, INFERENCE 

TIME, AND MEMORY USAGE  

RoI 
mAP 

(%) 

Recall 

(%) 

Infer. Time 

(ms) 

 Memory 

(GB) 

120 64.3 38.01 62.14 3.9 

140 64.84 75 62.99 3.5 

150 64.66 75 63.09 3.3 

160 66.03 78.1 64.4 2.8 
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